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Abstract

Gravimetric models of the geoid over Western Australia have been constructed using two

adapted forms of Stokes’s integral; one uses the unmodified Stokes kernel with a global

geopotential model and the other uses a deterministically modified kernel with a global

geopotential model. The solutions use a combination of the complete expansion of the EGM96

global geopotential model with Australian gravity and terrain data. The resulting combined

solutions for the geoid are compared with the control given by Global Positioning System

(GPS) and Australian Height Datum heights at 63 points over Western Australia. The

improved fit of the model that uses a modification to Stokes’s kernel shows that this approach

is more appropriate for gravimetric geoid computations over Western Australia.

1 Introduction

The geoid is the equipotential surface of the Earth’s gravity field, which corresponds most

closely with mean sea-level (ignoring oceanographic effects) and undulates with respect to

an ellipsoidal model of the figure of the Earth. In 1849, G. G. Stokes published a solution

to the boundary value problem of geodesy, which requires a global integration of gravity

data over the Earth to compute the separation (N) between the geoid and reference ellipsoid
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(Stokes, 1849). However, the incomplete global coverage and availability of accurate gravity

measurements has precluded an exact determination of the geoid using Stokes’s formula.

Instead, an approximate solution is used in practice, where only gravity data in and around

the computation area are used. This approach is also attractive because of the increase in

computational efficiency that is offered by working with a smaller integration area.

In 1958, M. S. Molodensky (cited in Molodensky et al., 1962) proposed a modification to

Stokes’s formula to reduce the truncation error that results when gravity data are used over

a limited area. However, Molodensky’s modification did not receive a great deal of attention

at that time because of the contemporaneous availability of low-frequency global gravity field

information, derived from the analysis of the orbits of artificial Earth satellites. These global

geopotential models are expressed in terms of fully normalised spherical harmonic functions

and are now routinely used in conjunction with terrestrial gravity data via a truncated form

of Stokes’s integral (eg. Vincent and Marsh, 1973; Sideris and She, 1995). This combined

approach reduces the truncation error because its series expansion begins at a higher degree,

where the truncation coefficients are smaller in magnitude (assuming that the global geopo-

tential model is an exact fit to the low-degree terrestrial gravity field). Another advantage

of this combined solution for the geoid is that it reduces the impact of the spherical approx-

imation inherent to the derivation of Stokes’s integral (eg. Heiskanen and Moritz, 1967); the

reason being that most of the geoid’s power is contained in the low frequencies.

1.1 The generalised Stokes scheme

A formal representation of the combination of a global geopotential model with terrestrial

gravity data has been proposed by Vańıc̆ek and Sjöberg (1991), which they refer to as the

generalised Stokes scheme for geoid computation. Importantly, this satisfies a solution to the

geodetic boundary value problem when formulated for a higher than second-degree reference

model of the figure of the Earth (Martinec and Vańıc̆ek, 1997). In this scheme, the low-

frequency geoid undulations generated by a global geopotential model (NM ) are extended
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into the high frequencies by a global integration of complementary high-frequency, terrestrial

gravity anomalies (∆gM ) using

N = NM + κ

∫ 2π

0

∫ π

0

SM (cos ψ) ∆gM sin ψ dψ dα , (1)

where κ = R/4πγ, R is the spherical Earth radius, γ is normal gravity evaluated on the

surface of the geocentric reference ellipsoid as required by Bruns’s formula (eg. Heiskanen

and Moritz, 1967), ψ and α are the coordinates of spherical distance and azimuth angle

about the computation point, respectively, and SM (cosψ) is the spheroidal form of Stokes’s

integration kernel, which is implicit to the generalised scheme and has the series expansion

SM (cos ψ) =
∞∑

n=M+1

2n + 1
n− 1

Pn(cos ψ) , (2)

where Pn(cosψ) is the n-th degree Legendre polynomial.

In Eq. (1), the low-frequency component of the geoid (NM ) is computed from the fully

normalised spherical harmonic coefficients that define the global geopotential model according

to

NM =
GMe

rγ

M∑
n=2

(a

r

)n n∑
m=0

(δCnm cosmλ + Snm sin mλ)P
m

n (cos θ) . (3)

The corresponding high-frequency gravity anomalies (∆gM ) are evaluated by subtracting the

same spherical harmonic degrees of the same global geopotential model from the terrestrial

gravity anomalies (∆g) according to

∆gM = ∆g − GMe

r2

M∑
n=2

(a

r

)n

(n− 1)
n∑

m=0

(δCnm cos mλ + Snm sin mλ)P
m

n (cos θ) . (4)

In Eqs. (3) and (4), GMe is the product of the Newtonian gravitational constant and mass of

the solid Earth, oceans and atmosphere, a is the equatorial radius of the reference ellipsoid,

(r, θ, λ) are the geocentric spherical polar coordinates of each computation point, δCnm and

Snm are the fully normalised geopotential coefficients of degree n and order m, which have

been reduced by the even zonal harmonics of the reference ellipsoid, and P
m

n (cos θ) are the

fully normalised associated Legendre functions. It is assumed that the reference ellipsoid is
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geocentric and has the same mass, potential and rotation rate as the geoid, such that the

zero and first degree harmonics are inadmissible (eg. Heiskanen and Moritz, 1967).

The degree of spheroid (M) chosen for the generalised scheme can be driven by the

maximum degree of global geopotential model available, which is usually Mmax = 360. How-

ever, there are more important considerations than simply taking the maximum degree of

expansion available (eg. Featherstone, 1992). Firstly, the Mmax = 360 models are already

combined solutions for the geoid because they are constructed from both satellite-derived

and terrestrial gravity data. Therefore, the same terrestrial gravity data are usually used

twice in Eq. (1), which gives rise to unknown correlations between these data that are rarely

accounted for or even acknowledged by some authors. Another consideration is the leakage

of low-frequency errors from the terrestrial gravity data into the combined solution for the

geoid, which can be filtered by the spheroidal kernel due to the orthogonality of spherical

harmonic functions over the sphere (eg. Vańıc̆ek and Featherstone, 1998). This is considered

to be a desirable scenario because the low-frequency geopotential coefficients are currently the

best source of this information, whereas terrestrial gravity data are subject to low-frequency

errors. Therefore, choosing the degree of spheroid at say M = 20 in Eq. (1), which is the

limit of the reliable resolution of the satellite-derived geopotential coefficients, both avoids

the correlations and reduces the leakage of terrestrial gravity anomaly errors.

2 Reductions of the Approximation Error

2.1 The generalised Stokes scheme

The generalised Stokes scheme (Eq. 1) remains subject to a truncation error when high-

frequency terrestrial gravity anomalies are used over a limited area. Accordingly, there is

an adjustment of Eq. (1) that involves limiting the integration domain to a spherical cap of

radius ψ0 (0 ≤ ψ0 ≤ π) about each geoid computation point, which yields the approximation

N̂1 ' NM + κ

∫ 2π

0

∫ ψ0

0

SM (cos ψ) ∆gM sin ψ dψ dα (5)
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with a corresponding truncation error of

δN1 = κ

∫ 2π

0

∫ π

ψ0

SM (cos ψ) ∆gM sin ψ dψ dα , (6)

such that N = N̂1 + δN1. This truncation error can be expressed as a series expansion by

δN1 = 2πκ

∞∑

n=M+1

QM
n (ψo) ∆gn , (7)

where the spheroidal truncation coefficients

QM
n (ψo) =

∫ π

ψo

SM (cos ψ) Pn(cos ψ) sin ψ dψ (8)

can be evaluated using the algorithms of Paul (1973). The n-th degree surface spherical

harmonic of the gravity anomaly

∆gn =
GM

r2

(a

r

)n

(n− 1)
n∑

m=0

(δCnm cos mλ + Snm sin mλ)P
m

n (cos θ) (9)

can be evaluated for each n upto the maximum degree (Mmax) of the geopotential model.

As such, the truncation error in Eq. (7) reduces to

δN1 = 2πκ

∞∑

n=Mmax+1

QM
n (ψo) ∆gn (10)

However, if ∆gM 6= 0 (2 ≤ n ≤ M), which is true if the global geopotential model

is not an exact fit to the low-frequency terrestrial gravity field, there is a leakage of any

low-frequency gravity errors into the low-frequency geoid solution when the integration is

performed over a limited area (Vańıc̆ek and Featherstone, 1998). This is a direct consequence

of the approximation of the generalised Stokes integral (Eq. 5), which introduces the non-

zero truncation coefficients in the region 2 ≤ n ≤ M because the orthogonality of spherical

harmonics breaks down under the approximation in Eq. (5). Since ∆gn only depend on

the physical properties of the Earth, it becomes necessary to seek a modification to the

integration kernel that reduces the magnitude of the truncation coefficients and hence the

truncation error. Ideally, this modification should reduce the truncation error as well as

making the kernel behave as a (partial) high-pass filter so as to reduce the leakage of any

low-frequency terrestrial gravity data errors (Vańıc̆ek and Featherstone, 1998).
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2.2 The remove-compute-restore scheme

The remove-compute-restore technique (eg. Torge, 1991) has almost become a standard ap-

proach in regional combined solutions for the geoid. However, most users of this approach

make no attempt to modify the integration kernel and thus reduce the truncation error or

adapt its filtering properties. Instead, this scheme uses the unmodified kernel as originally

introduced by Stokes (eg. Sideris and She, 1995; Smith and Milbert, 1999). The remove-

compute-restore approach also generally uses the maximum degree of the global geopotential

model (Mmax), which gives rise to the data combination

N̂2 ' NMmax + κ

∫ 2π

0

∫ ψ0

0

S(cosψ) ∆gMmax sin ψ dψ dα (11)

where the terms NMmax and ∆gMmax are computed from the maximum available degree and

order of a global geopotential model (Eqs. 3 and 4), and the unmodified Stokes kernel is

given by

S(cos ψ) =
∞∑

n=2

2n + 1
n− 1

Pn(cos ψ) (12)

In this combined solution for the geoid, the truncation error has to be neglected because

it cannot be computed since the complete expansion of the global geopotential model has

already been used. This also makes it subject to the correlation of errors between the

global geopotential model and terrestrial gravity data used in the regional geoid solution.

Moreover, no other attempt has been made to reduce the truncation error or adapt the

filtering properties of the integration kernel. Admittedly, the truncation error will reduced a

great deal if the global geopotential model is a good fit to the terrestrial gravity anomalies

in the area of interest (ie. if ∆gM = 0 in the region 2 ≤ n ≤ Mmax). However, the penalty

of taking this approach is that any errors in the terrestrial gravity anomalies to propagate

unattenuated into the combined solution for the geoid (eg. Vańıc̆ek and Featherstone, 1998).

It must also be acknowledged that, despite these restrictions, the remove-compute-restore

technique has delivered quite reasonable results (eg. Sideris and She, 1995; Smith and Milbert,

1999). However, the question of whether a modified integration kernel in the generalised

6



Stokes scheme will deliver even better results remains, and thus forms the primary aim of

this investigation.

2.3 Integration kernel modifications

As argued above, it remains preferable to apply a modification to the approximated form

of the generalised Stokes’s integral (Eq. 5) so as to further reduce the associated truncation

error. Since Molodensky’s pioneering work, several other authors have proposed modifications

to Stokes’s (1849) integral. These have been based on different criteria and can be broadly

classified as deterministic modifications (eg. Molodensky et al., 1962; Wong and Gore, 1969;

Meissl, 1971; Heck and Grüninger, 1987; Vańıc̆ek and Kleusberg, 1987; Vańıc̆ek and Sjöberg,

1991; Featherstone et al., 1998) and stochastic modifications (eg. Wenzel, 1982; Sjöberg,

1991; Vańıc̆ek and Sjöberg, 1991). The stochastic modifications, whilst offering an optimal

combination of the two data types together with a minimisation of the truncation error (in

a least-squares sense), require reliable variance estimates of the data. However, the error

characteristics of the terrestrial gravity data over Western Australia and over most other

parts of the world are currently unknown, which renders the stochastic modifications of

limited practical use. Therefore, the deterministic kernel modifications will have to be relied

upon in the interim.

The deterministic kernel modifications can be further divided into two broad categories:

modifications that reduce the upper bound of the truncation error according to some pre-

scribed norm, and modifications that improve the rate of convergence of the series expansion

of the truncation error. The modification proposed by Featherstone et al. (1998) uses a com-

bination of these, where the rate of convergence of the series expansion of an already-reduced

truncation error by the L2 norm (Vańıc̆ek and Kleusberg, 1987) is accelerated from O(n−1)

to O(n−2) through the approach proposed by Meissl (1971). This can be achieved either by

setting the kernel to zero at the truncation radius through subtraction, or by choosing the

truncation radius such that it coincides with a zero point of the kernel.
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The Featherstone et al. (1998) modification is given by

SM
L (cos ψ) = SM (cos ψ)− SM (cosψ0)−

L∑

k=2

2k + 1
2

tk(ψ0) [Pk(cosψ)− Pk(cos ψ0)] , (13)

where the tk(ψ0) modification coefficients are computed from the solution of the following

set of L− 1 linear equations, once the truncation radius (ψ0) has been chosen

L∑

k=2

2k + 1
2

tk(ψ0) enk(ψ0) = QM
n (ψ0) , (14)

where

enk(ψ0) =
∫ π

ψ0

Pn(cos ψ)Pk(cos ψ) sin ψ dψ , (15)

which can be evaluated using the recursive algorithms of Paul (1973). The degree of this

kernel modification (L) can be chosen to be greater than, equal to or less than the degree of

the spheroid (M) embedded in the generalised Stokes formula (Eq. 1). If L > M , additional

terms arise due to this disparate combination and should be computed or their omission

acknowledged.

2.4 A compromise of the combined solution

The combined solution for the geoid considered in this study attempts to reach a compromise

of the above two schemes, based on considerations of the data availability, their expected re-

liability and a reduction of the truncation error through the above deterministic modification

of the generalised Stokes kernel. This compromise approach was used to compute the re-

cent Australian gravimetric geoid model AUSGeoid98 (Johnston and Featherstone, 1998).

Mathematically, this is formalised as

N̂3 ' NMmax + κ

∫ 2π

0

∫ ψ0

0

SM
L (cosψ) ∆gMmax sin ψ dψ dα , (16)

where all terms are as defined earlier.

Equation (16) utilises the maximum available expansion (Mmax) of the global geopoten-

tial model in conjunction with a low-degree (L) of deterministic kernel modification. This

approach aims at reducing the truncation error so that it can be safely ignored, whilst relying
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more on the low-degree satellite solution by filtering a proportion of the low-frequency errors

from the terrestrial gravity data (cf. Vańıc̆ek and Featherstone, 1998). However, this choice is

also driven by some practical considerations. Empirical studies by Featherstone (1992) indi-

cate that the modified kernels become numerically unstable for large L and small ψ0, which

enforces a low degree of kernel modification when a small integration radius is used. For

simplicity, the degree of kernel modification is chosen equal to the degree of spheroid used in

the generalised scheme (ie. L = M = 20). The integration radius was chosen to be ψ0 = 1◦,

since this value was empirically selected for AUSGeoid98 (Johnston and Featherstone, 1998).

It is argued that this offers a geoid solution that is superior to the application of the

remove-compute-restore technique with an unmodified kernel because of its further reduction

of the truncation error and adaption of the filtering properties of the kernel. However, it is

also important to acknowledge the deficiencies of this attempted compromise, which are the

use of the high-frequencies in the global geopotential model (which can contain 80% noise;

eg. Lemoine et al., 1998) and the correlations between the terrestrial gravity data in the

region 20 < n ≤ Mmax. Therefore, empirical tests are used in Western Australia to determine

whether the use of a deterministically modified integration kernel is more appropriate than

using the unmodified kernel.

3 Empirical tests in Western Australia

The tests that follow compare the combined solutions for the geoid, computed using Eqs. (11)

and (16), with discrete geoid heights at 63 points across Western Australia. These control

data are derived from Global Positioning System (GPS) measurements at Australian Height

Datum (AHD) benchmarks. The difference between a GPS-derived ellipsoidal height and

geodetically levelled height with respect to mean sea level gives a discrete estimate of the

separation between the geoid and reference ellipsoid. Assuming that there are no errors in

these control data, the gravimetric geoid solution that delivers the best fit can be considered
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to be the most suitable for Western Australia.

3.1 Data and its processing

The EGM96 global geopotential model (Lemoine et al., 1998), complete to Mmax = 360, was

used in this study. EGM96 is one of the most recent global geopotential models and was pro-

duced by the US National Imagery and Mapping Authority (NIMA) — formerly the Defense

Mapping Agency (DMA) — and the US National Aeronautical and Space Administration’s

(NASA) Goddard Space Flight Center (GSFC). Kirby et al. (1998) compared EGM96 with

Australian gravity data (described below) and discrete geoid heights provided by co-located

GPS and AHD data. This showed that EGM96 proved a slightly better (though statistically

not significant) representation of the Australian gravity field than its predecessors.

The Australian Geological Survey Organisation’s (AGSO) 1996 national gravity data re-

lease, being the most recent available to the author, has been used in the computations. As

most of the AGSO gravity data were collected and reduced predominantly for geophysical

exploration purposes, they are not necessarily suited to the requirements of gravimetric geoid

computation. As such, they have been validated according to the procedures in Featherstone

et al. (1997) and the gravity anomalies computed using the more stringent geodetic ap-

proaches (eg. Featherstone, 1995). Deficiencies were also found in the mean free-air gravity

anomalies computed on land, due to the gravity data collection strategies used by AGSO.

The land gravity observations were typically made along roads and tracks in areas of rugged

terrain, which usually follow valleys or areas of least height variation. A similar, though

opposite, effect occurs in central Australia where most observations were performed using

helicopter transport. These observations were often located on raised ground where conve-

nient landing spots were identified. Specifically, the computed mean gravity anomaly does

not truly represent the actual mean gravity anomaly of an area. As such, the resultant geoid

are biased by these observation techniques. To numerically counter this biasing effect, a

digital elevation model (described below), which gives a better representation of the mean
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height than the gravity observation elevations, was used to reconstruct more representative

mean gravity anomalies (Featherstone and Kirby, 1999).

Satellite-altimeter-derived marine gravity anomalies were used offshore Australia to sup-

plement AGSO’s marine gravity data coverage. These gravity anomalies were computed

from a combination of satellite-borne radar altimeter missions and supplied on a 2’ by 2’

grid (Sandwell and Smith, 1997). These data significantly improve the gravity data coverage

offshore Australia and, as such, were expected to give an improved geoid solution in marine

areas and on land areas close to the coast. However, errors thought to reside in the low-

frequency altimeter-derived gravity anomalies adversely affect the gravimetric geoid near the

coast, which was indicated by comparisons of the geoid solution with GPS and AHD data

near the coast. The low-frequency errors in the satellite altimeter data are probably due to a

combination of un-modelled near-shore sea-surface topography and backscatter of altimeter

returns from the land. Another explanation for this observed deficiency comes from the con-

version of sea surface heights, which are the direct measurements taken by the altimeter, to

gravity anomalies, then converting these gravity anomalies to geoid heights. At present, it is

unknown how the errors, such as un-modelled sea-surface topography, propagate through the

approximations used in these processes. Therefore, as an interim and practical solution, least

squares collocation (eg. Moritz, 1980b) was used to ‘drape’ the altimeter gravity anomalies

onto the AGSO marine gravity anomalies (Kirby and Forsberg, 1998). This approach then

improved the geoid solution near the coast, when compared with GPS and AHD data, over

that achieved using only the AGSO marine gravity data or simple averaging of the AGSO

marine gravity data and the satellite-altimeter data.

Gravimetric terrain corrections, based on the national 9” by 9” digital elevation model

(Carrol and Morse, 1996), were evaluated using Moritz’s (1968) formula via the fast Fourier

transform or FFT (Kirby and Featherstone, 1999). The FFT offers the only practical way

to compute detailed terrain corrections on a continental scale, since prism integration at

this scale could take several months to evaluate. It was found (ibid.) that the terrain
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correction computations had to be performed using a 27” by 27” grid to avoid the instability

in Moritz’s terrain correction algorithm that occurs for high-resolution digital terrain models

close to the computation point (cf. Martinec et al., 1996). Associated with the gravimetric

terrain correction are the primary and secondary indirect effects (eg. Wichiencharoen, 1982).

The primary indirect effect accounts for the change in potential caused by the free-air gravity

reduction and gravimetric terrain correction. The primary indirect effect was computed using

the FFT on a 27” grid, which avoids the kernel instability and, moreover, is consistent with

the terrain correction computations. The secondary indirect effect on gravity was computed

by applying the free-air reduction over the geoid-compensated-geoid separation computed

via the primary indirect effect. This resulted in an additional gravity term that was added

to the gravity anomalies prior to geoid computation.

A grid of residual Faye gravity anomalies was computed from the AGSO gravity obser-

vations using the continuous curvature spline in tension algorithm (Smith and Wessel, 1990;

Wessel and Smith, 1995). Residual Faye gravity anomalies are terrain-corrected free-air

gravity anomalies that have been reduced by the gravity anomalies implied by the complete

expansion of EGM96 (Eq. 4). A regular grid of residual Faye gravity anomalies is required for

the residual geoid computations via the one-dimensional FFT technique. It is acknowledged

that other gravity gridding techniques do exist, such as least squares collocation (Moritz,

1980b), but the continuous curvature spline in tension algorithm was readily available (Wes-

sel and Smith, 1995) and gives similar results in a considerably shorter computation time

(Zhang, 1998). For this study, a 2’ by 2’ grid of gravity anomalies was generated over the

region −11◦ ≤ φ ≤ −37◦ and 110◦ ≤ λ ≤ 131◦, which covers the state of Western Australia.

Table 1 summarises the statistical properties of the Faye gravity anomalies and the residual

Faye gravity anomalies, where the Mmax = 360 expansion of EGM96 has been subtracted via

Eq. (4). The GRS80 reference ellipsoid (Moritz, 1980a) has been used in all computations.

Grey-scale images of the EGM96 gravity anomalies and residual Faye gravity anomalies are

shown in Figures 1 and 2, respectively.
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max. min. mean st. dev. rms

Faye gravity anomalies 131.085 -147.678 -8.762 ±29.110 ±30.400

residual Faye gravity anomalies 91.554 -101.236 0.009 ±10.968 ±10.968

Table 1. Statistical properties of the gravity anomalies over Western Australia (units in

mGal).

The statistical fit of the gravity anomalies implied by the EGM96 global geopotential

model to the gravity field of Western Australia is poorer than that experienced in other

parts of the world (cf. Forsberg and Featherstone, 1998). This is probably due to the larger

uncertainty in the computed gravity anomalies, which is principally caused by errors in the

gravity station elevations (eg. Featherstone et al., 1997). However, since a large proportion

of these data have been used in the construction of the EGM96 global geopotential model,

a more likely explanation is an inaccuracy in the mean gravity anomalies used. Lemoine

et al. (1998) describe the construction of the JGP95E 5’ by 5’ digital elevation model,

where the Australian 5’ by 5’ digital elevation model was used west of λ = 136◦ and a

National Imagery and Mapping Agency (NIMA) digital elevation model was used east of

λ = 136◦. The Australian 5’ by 5’ digital elevation model used was probably that constructed

at the Australian National University from the elevations associated with the gravity station

elevations. Featherstone and Kirby (1999) show that this digital elevation model is biased

because the gravity observations do not accurately represent the topographic morphology

(see earlier discussion). Therefore, more reliance should be placed on the terrestrial gravity

anomalies described earlier, hence the use of a low-degree kernel modification.

13



Figure 1. The Mmax = 360 EGM96-implied gravity anomalies over Western Australia.

(units in mGal; Mercator’s projection).
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Figure 2. The residual Faye gravity anomalies over Western Australia.

(units in mGal; Mercator’s projection).
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3.2 Geoid computation by the 1D-FFT technique

In the mid 1980s, the fast Fourier transform (FFT) technique began to find wide-spread use

in gravimetric geoid computation, because of its efficient evaluation of convolution integrals

when compared to quadrature-based numerical integration. For many years, the planar, two-

dimensional FFT was used (eg. Schwarz et al., 1990). Strang van Hees (1990) then introduced

the spherical, two-dimensional FFT. However, both of these FFT approaches are subject

to approximation errors, the most notable of which is the simplification of Stokes’s kernel.

Forsberg and Sideris (1993) therefore proposed the spherical, multi-band FFT, which reduces

the impact of the simplified kernel. Haagmans et al. (1993) then refined this approach to

give the spherical, one-dimensional FFT, which requires no simplification of Stokes’s kernel.

For this reason, the 1D-FFT has been used in this investigation so that the exact kernels in

Eqs. (12) and (13) can be used efficiently and without the need for a kernel simplification.

Another consideration is that remove-compute-restore determinations of the geoid using

the 1D-FFT often convolve the whole rectangular grid of gravity anomalies over a region with

the spherical Stokes kernel (eg. Sideris and She, 1995; Smith and Milbert, 1999). On the other

hand, quadrature-based geoid determinations use only gravity anomalies over a spherical

integration radius about each computation point. Therefore, each approach results in a

different truncation error due to the neglect of the residual gravity anomalies in the (different

shaped) remote zones outside each integration domain. Both of these implementations are

tested in this study, where in Eq. (11) the spherical integration radius is set to ψ0 = π so

as to use the whole gravity data rectangle, and ψ0 < π is used to mimic quadrature-based

numerical integration.

In order to make the 1D-FFT approach closely mimic quadrature-based numerical inte-

gration over a spherical cap, the integration kernel is set to zero outside the truncation radius

(ψ0 = 1◦) before transformation to the frequency domain. A further adaption of this tech-

nique has been added to allow the 1D-FFT-based evaluation of Eq. (16), where the modified

kernel (Eq. 13) was implemented by evaluating it before transformation to the frequency
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domain (Featherstone and Sideris, 1998). Comparisons with quadrature-based numerical in-

tegration software that uses spherical caps and deterministically modified integration kernels

(Featherstone, 1992) were used to verify these adaptions of the 1D-FFT.

In what follows, the gravimetric geoid heights from each approach have been evaluated us-

ing the 1D-FFT for (i) the remove-compute-restore technique with an unmodified kernel and

residual Faye gravity anomalies over whole data area ψ0 = π, (ii) the remove-compute-restore

technique with an unmodified kernel and residual Faye gravity anomalies over a spherical cap

of radius (ψ0 = 1◦), and (iii) the compromise approach in Eq. (16) with a deterministically

modified kernel and residual Faye gravity anomalies over a spherical cap (ψ0 = 1◦). In the

latter case, the degree of spheroid associated with the generalised Stokes scheme is M = 20

and the degree of deterministic kernel modification is the same (ie. L = 20). Of course,

a large number of permutations of these parameters is possible by varying the degree of

global geopotential model (M), integration radius (ψ0), degree of kernel modification (L)

and indeed the type of kernel modification (see Section 2.3). However, only these three cases

are studied for Western Australia because the remove-compute-restore technique is used in

many other parts of the world (eg. Sideris and She, 1995; Smith and Milbert, 1999), and the

L = M = 20 modification for a cap radius of ψ0 = 1◦ was used for AUSGeoid98 (Johnston

and Featherstone, 1998).

All geoid computations were conducted on a 2’ by 2’ grid over an area bound by −12◦ ≤

φ ≤ −36◦ and 112◦ ≤ λ ≤ 129◦, which accounts for the edge effect associated with the one-

degree integration radius (with the exception of the integration over the whole data area).

It should be pointed out that this edge effect affects the whole computation area when the

cap-radius is unlimited. Nevertheless, the comparisons are conducted over the same area.

3.3 Comparison of Geoid Results with GPS at AHD Benchmarks

As is customary in almost all validations of gravimetric geoid models on land (eg. Feather-

stone and Alexander, 1996), the geoid results from this study were compared with Global
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Positioning System (GPS) and geodetic levelling data to determine if any improvements are

made when utilising limited spherical integration caps and a deterministically modified ker-

nel. However, it must be pointed out this type of comparison is inevitably biased because the

geodetic levelling data used in this investigation are based on the Australian Height Datum

(AHD), which is a normal orthometric height system based on estimates of mean sea level

from 30 tide gauges around Australia (Roelse et al., 1971). As such, it does not give an exact

representation of the equipotential geoid (eg. Featherstone, 1998). Nevertheless, GPS and

geodetic levelling data currently provide the only (partially) independent means with which

to verify a gravimetric geoid model on land. However, given that the primary geodetic ap-

plication of a gravimetric geoid model is to transform GPS-derived ellipsoidal heights to the

AHD, this type of analysis is useful to ascertain the gravimetric geoid models’ performance

for this application.

For each of the three cases investigated, the gravimetric geoid solution was bi-cubically

interpolated from the 2’ by 2’ grid and statistically compared with 63 discrete geoid heights

derived from the most precise GPS networks available in Western Australia (Morgan et al.,

1996; Stewart et al., 1997) for points that are co-located with geodetically levelled heights of

third order, or better, on the AHD. Table 2 shows a statistical summary of the differences

between the 63 control geoid heights and the results from EGM96 alone (Eq. 3), the 1D-FFT

implementations of Eq. (11) with ψ0 = π and ψ0 = 1◦, and Eq. (16) with ψ0 = 1◦. The mean

differences in Table 2 should not be relied upon to choose the most accurate geoid solution

because any gravimetric determination of the geoid is deficient in scale (ie. only the gravimet-

ric geoid’s precision can be estimated). This scale deficiency due to the imperfect knowledge

of the mass of the Earth (cf. the text immediately after Eqs. (3) and (4)). Accordingly, only

the standard deviations (st. dev.) of the fit of each gravimetric geoid model to the control

data should be used to assess the performance in terms of precision of each model; the mean

and root mean square (rms) values are only included for the sake of completeness.

The difference between the fit of each geoid model in Table 2 is not always significant in
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max. min. mean st. dev. rms

EGM96 only (Eq. 3) 0.889 -0.328 0.148 ±0.274 ±0.311

Eq. (11) with ψ0=π and S(cos ψ) 0.751 -0.776 -0.092 ±0.362 ±0.374

Eq. (11) with ψ0=1◦ and S(cos ψ) 0.625 -0.664 0.118 ±0.249 ±0.276

Eq. (16) with ψ0=1◦ and S20
20(cos ψ) 0.761 -0.308 0.140 ±0.223 ±0.263

Table 2. The statistics of the absolute between the 63 control GPS-AHD heights and the

gravimetric geoid heights computed from EGM96 only, Eq. (11) with ψ0=π and ψ0=1◦, and

Eq. (16) with ψ0=1◦. (units in metres).

a statistical sense, when considering that the random error budget of the GPS data is 0.05m

(Morgan et al., 1996; Stewart et al., 1997) and distortions of the AHD from the geoid are of

the order of 1m (Roelse et al., 1971; Featherstone and Stewart, 1998). Despite these caveats,

however, some useful inferences can be made from these results as follows.

Firstly, the use of the whole gravity data area in the combined solution for the geoid

(Eq. 11 with ψ0=π) gives a result that is worse than using the EGM96 global geopotential

model alone (Table 2). Whilst the use of the whole data area appears to be appropriate in

other parts of the world (eg. Sideris and She, 1995; Smith and Milbert, 1999), a consider-

ably worse result is achieved in Australia when using this approach (Table 2; Forsberg and

Featherstone, 1998; Johnston and Featherstone, 1998). This is a slightly unexpected result

since, the more data that are included in the geoid solution should yield a better result.

This is either due to noise in the Australian gravity anomalies, which been estimated to be

approximately 2 mGal (Featherstone et al., 1997), or the theoretical basis of this approach

is unsuitable for Australia.

Next from Table 2, there is an improvement over the results of using only the EGM96

global geopotential model offered by the use of a limited integration radius in Eqs. (11).

Importantly, there is a further improvement offered by using the deterministically modified
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integration kernel in Eq. (16) for the same integration radius. Though inconclusive due to

the perceived uncertainties in the control data, these results do indicate that the use of

deterministically modified integration kernel is a preferable approach for geoid computations

in Western Australia. Figure 3 shows a contour map of the gravimetric geoid model of

Western Australia that has been computed using Eq. (16) with ψ0=1◦ and S20
20(cos ψ).

Finally, as the improvements offered by using a one-degree integration radius (ψ0=1◦ in

Eqs. 11 and 16) are not significantly better than using the EGM96 model alone. This suggests

that the EGM96 global geopotential model provides most of the power in the combined

solution for the geoid and thus dominates its performance. Given the earlier arguments that

EGM96 may not offer the optimal model for Australia, this suggests that further work is

required to determine the optimal selection of the degree of global geopotential model (M)

as well as the optimal degree of kernel modification (L).

4 Conclusions

From these gravimetric geoid results over Western Australia, it is clear that 1D-FFT geoid

computations should use a spherical cap of limited extent instead of the whole gravity data

grid. Also, small though not necessarily statistically significant improvements are observed

when a deterministically modified integration kernel is used over a spherical cap. This is

because the kernel modification reduces the truncation error so that its neglect has less

impact on the solution and adapts the filtering properties of the kernel. Therefore, it is

recommended that limited integration caps and modified kernels are used in future spectral

geoid determinations of Western Australia.
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Figure 3. The gravimetric geoid over Western Australia, computed using Eq. (16) with

ψ0=1◦ and S20
20(cos ψ). (units in metres; Mercator’s projection).
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1D-FFT method. Bulletin Géodésique, 69(2):92-108.
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