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A critical concern with respect to marine animal acoustics is the issue of

hearing “sensitivity,” as it is widely used as a criterion for the onset of

noise-induced effects. Important aspects of research on sensitivity to sound

by marine animals include: uncertainties regarding how well these species

detect and respond to different sounds; the masking effects of man-made

sounds on the detection of biologically important sounds; the question how

internal state, motivation, context, and previous experience affect their be-

havioral responses; and the long-term and cumulative effects of sound expo-

sure. If we are to better understand the sensitivity of marine animals to

sound we must concentrate research on these questions. In order to assess

population level and ecological community impacts new approaches can

possibly be adopted from other disciplines and applied to marine fauna.
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I. INTRODUCTION

Research on the bioacoustics of marine animals has been conducted

for over a century and has intensified over the past decades. This increase in

research is closely tied to growing awareness of the potential effects of

anthropogenic (man-made) noise1 on aquatic animals (National Research

Council, 2005; Nowacek et al., 2007; European Commission, 2008; Clark

et al., 2009; Schipper et al., 2008; Williams et al., 2014). Despite substantial

progress, however, major aspects of marine animal bioacoustics remain

unresolved and science is still far from providing a comprehensive assess-

ment of the potential for noise-induced effects on marine fauna (Southall

et al., 2007; Popper et al., 2014; Hawkins et al., 2014; Popper and Hawkins,

2016). One of the most critical concerns with regards to bioacoustics is the

issue of hearing “sensitivity,” as it is widely used as criterion for the onset

of noise-induced effects. The objectives of this forum letter are to (i) define

auditory sensitivity to sound, (ii) address uncertainties when examining the

acoustic sensitivities of aquatic animals, (iii) briefly discuss long-term con-

sequences to hearing of sound exposure, and (iv) highlight a potential alter-

native approach to assessing sensitivity to sound, taking into account

population based effects of underwater sound.

II. SENSITIVITY

In audiometry, the term sensitivity generally refers to auditory percep-

tion or the physiological response(s) of an individual, or group of individu-

al’s, to sound. This may include the effects of noise upon animals in terms

of changes in hearing sensitivity due to temporary or permanent damage to

sensory cells of the ear, or (when referring to behavioral sensitivity) any be-

havioral disturbance it might cause to animals. The threshold for onset of

behavioral disturbance is not to be confused with the auditory threshold (or

hearing threshold) which only reflects how well an animal detects the sound

and not the level of sound to which an animal may respond. The hearing

threshold is defined herein as the stimulus level corresponding to a 50% cor-

rect detection probability (Reichmuth et al., 2013). It is important to specify,

however, whether the threshold was determined under quiet conditions or in

the presence of other sounds since such sounds can raise thresholds (Yost,

2013).

Any threshold values or sound exposure criteria may specify those

sound levels above which particular responses (such as behavioral disturb-

ance or damage to the auditory system) may take place. The assessment end

points are typically aimed at determining whether there is a significant

impact on populations and on the wider ecosystem.
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III. UNCERTAINTIES

Over a century of auditory research on marine animals has produced

audiograms for more than 30 (of 129, Perrin et al., 2009) species of marine

mammals and just over 100 of over 32 100 fish species (Fay, 1988; Ladich

and Fay, 2013). Only a few species of invertebrates, the most diverse of the

three major marine taxa, have been tested for their sensitivity to sound and

far more work needs to be done to get a real understanding of sound detec-

tion by invertebrates (Budelmann 1992a,b; Samson et al., 2014).

For marine mammals, the challenges of conducting (auditory) research

and maintaining animals in research facilities has often resulted in species-

defining audiograms being based on a few (or even one) individuals of a

species (Kastelein et al., 2010; Pacini et al., 2011). Generalizations on the

sensitivities of marine mammals are being based on results from just a few

species (National Research Council, 2005; Southall et al., 2007). This has

resulted in a very limited understanding of species auditory diversity or vari-

ation within species. For those marine mammal species for which we have

audiograms from several individuals, such as the bottlenose dolphin

(Tursiops truncatus), the published auditory thresholds at any one frequency

may vary by more than 80 dB between animals (Finneran and Houser, 2006)

although wild populations of belugas (Delphinapterus leucas) have shown

much less variation (Castellote et al., 2014). To some extent this variation

may reflect individual differences in such factors as age related effects

(Houser and Finneran, 2006) or prior noise exposure histories and can also

be influenced by the method for threshold determination (Finneran, 2008).

Similar differences in thresholds have been found in the most widely

studied fish species, the goldfish (Carassius auratus), and such variation

would likely be found in many other fish species where there have been mul-

tiple studies (Ladich and Fay, 2013; Sisneros et al., 2016). This variation is

largely considered to be a result of the experimental environment, the acous-

tics of the environment, and/or basic methodology of determining

“thresholds” (Popper and Fay, 2011; Rogers et al., 2016). Although there

may be differences related to age and size, these remain to be demonstrated.

In invertebrates, thresholds for the detection of underwater sound are

too few to make any generalizations or to reach any conclusions. With

sound-detection organs varying widely amongst invertebrate species

(Budelmann 1992a,b; Popper et al., 2003), it is likely that sensitivities may

differ substantially between species, as they do for marine mammals and

fishes.

Hearing thresholds and overall sensitivities to sound for the majority

of marine species have yet to be defined, leaving great uncertainty regarding

how well these species detect and respond to sound. The uncertainty regard-

ing hearing thresholds resulting from this paucity of data is an important li-

mitation in considering the effects of underwater sound. While testing all

species is completely unrealistic and unnecessary, the existing information

deficit leaves open questions such as: how representative are results obtained

from a small number of specimens within a species and what are the influen-

ces of size, age, season, motivation, etc., in these results; to what extent can

results from one species be transferred or extrapolated to other species

within the same taxonomic group; and are there consistent trends/guidelines

useable across taxonomic groups?

These questions present substantial challenges for scientists, regula-

tors, and other stakeholders as they seek to manage the uncertainty resulting

from species for which we have few data, and for which sensitivity may

vary at different life stages. As an example, audiograms of many individual

bottlenose dolphins have been measured (Houser and Finneran, 2006;

Houser et al., 2008). While much has been gained from these studies, these

results are not necessarily representative for other species of toothed whales

(Nachtigall et al., 2008; Castellote et al., 2014). Moreover, such data pro-

vides no information that relates to baleen whales (National Research

Council, 2005; Finneran and Jenkins, 2012).

General functional criteria are often used to characterize hearing sensi-

tivity in different taxonomic groups. Traditional auditory groupings of ma-

rine mammals have been based upon the frequency range of their auditory

and vocal systems (Ketten, 2000; Southall et al., 2007). In fishes, species

have been grouped based upon the presence or absence of hearing special-

izations and not necessarily on taxonomic relationships. Such specializations

include the presence or absence of a swim bladder or other air bubble and its

degree of connection to the inner ear (Popper et al., 2014). There are no sim-

ilar functional auditory criteria yet available for invertebrates, and there are

probably far too few data on these species to even consider setting such cri-

teria at this point in time.

Real life hearing thresholds are often ambient noise limited and not

sensitivity limited (Hawkins and Chapman, 1975; Dooling and Blumenrath,

2014). Therefore, it is important to monitor ambient noise conditions when

auditory thresholds are being determined. Masking studies using tonal sound

may not provide a complete description of masking (Kidd et al., 2008; Clark

et al., 2009; Fay, 2010; Erbe et al., 2016) as real-life signals are usually not

sinusoidal and masking noise may not be Gaussian (Branstetter and

Finneran, 2008; Erbe, 2008; Trickey et al., 2011; Branstetter et al., 2013).

Sound in the wild is much more complex, and effects such as co-

modulation, spatial, or temporal masking release can even lead to a reduc-

tion in hearing thresholds (Branstetter and Finneran, 2008). When consider-

ing sound detection, a variety of factors creating release from masking need

to be considered as well as do the critical ratio and critical bandwidth

(Johnson, 1968; Johnson et al., 1989; Kastelein et al., 2009; Turnbull and

Terhune, 1990; Southall et al., 2003; see Erbe et al., 2016 for review). More

complex studies are needed in order to assess the audibility of a sound by

marine animals in their environment, using naturally occurring types of

masking sound (Yost, 2013). In this context it is essential to tie masking

back to hearing abilities of the animal; referring to masking effects of any

sound without reference to hearing would ignore an important aspect and

could be misleading. Masking, especially of biologically relevant sound sig-

nals involved in communication and orientation, is often overlooked in regu-

lation of underwater noise.

Key objectives of future studies with aquatic animals should include:

• What is the potential of masking from repetitive man-made sounds (e.g.,

pile driving or seismic surveys) and from continuous man-made sounds

(e.g., shipping, gas and oil platforms, underwater renewable energy

devices)?

• What are the relative masking effects of the different characteristics of

man-made sound compared to that from white noise (the default type of

noise used in masking experiments)?

• Which acoustic cues are available and used by a species and which of

these cues are masked if the noise level is increased?

In considering behavioral responses, as well as in considering hearing

capabilities, it is also important to take account of contextual factors, includ-

ing location, time of day, time of year, age of the animal, (and more) and

their previous experience of sound exposure (Ellison et al., 2011).

Behavioral responses of individual animals often depend on their internal

state (e.g., hormone levels, general health), motivation (e.g., whether animal

is feeding, in reproductive mode, interacting with young), and learned asso-

ciations between sounds and external information. Animals can learn to

exploit sound information and it can result in altering the animals’ behavior

in response to sound, such as through attraction to a food source (Stansbury

et al., 2014). All of these factors affect whether a particular sound will have

a deterrent, attractive, or neutral effect on animal behavior. Such considera-

tions should be taken into account for all taxonomic groups. However, this

tends to provide an exceedingly high number of variables, many of which

are often difficult to quantify.

It is especially important to specify which acoustic characteristics of a

stimulus are biologically important for an animal and determine the

response of the animal to those characteristics (e.g., frequency, roughness,

rise-time, pulse rate). Experiments are needed with sounds that differ in their

acoustic characteristics to determine to which features of stimuli animals are

most responsive. Much can be learned in this regard from research on terres-

trial animals (e.g., on amphibians and birds)—we need to learn from

research in other environments (Sun and Narins, 2005; Slabbekoorn et al.,

2010; Partan, 2013).

IV. STUDY DESIGN

“A man in the night, who is on his hands and knees searching in the
grass under the light of a lamp post. Along comes a second man who

asks what the first man is searching for. ‘I lost my car keys and l am

looking for them,’ the first man replies. The second offers to help him

look, and after a half an hour of intensive but futile search, he asks,

‘Are you sure you lost your car keys here?’ ‘No, I know I did not lose

them here. I lost them about one hundred feet down the road,’ replies
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the first. ‘Then why are you looking for your keys here?’ asks the

second. To which the first replies, ‘Why, there is a lighted lamp post

here.’ ”

[from Harris in discussion of Parvulescu (1967)].

When designing a new research experiment, a key question is always:

“Are we asking the right questions or are we doing an experiment merely

because it can be done”? The answer to this question clearly depends on the

aspect/research question that needs to be addressed. For example, a noise

impact experiment investigating the schooling behavior of fishes in response

to noise (e.g., Hawkins et al., 2014) may have immediate implications for

fisheries, but the results may also be important with regard to the conserva-

tion of fish populations. An important aspect of such experiments is, once

again, to carry them out under appropriate acoustic conditions with appro-

priate measurements and metrics employed to describe the received sound

stimuli in order to achieve useful results.

Ideally, experiments should be conducted under acoustic conditions

reflecting the acoustic conditions experienced by the animals under free-

field conditions (Hawkins et al., 2014; Rogers et al., 2016). This is espe-

cially important with regards to experiments involving fishes and probably

other taxonomic groups that are sensitive to the particle motion component

of sound and not always to sound pressure. If we do not monitor and control

the appropriate components of sound for a particular species, the results can

be misleading (Mooney et al., 2010; for further discussion, see also Popper

and Fay, 2011; Popper et al., 2014; Hawkins et al., 2015). When measuring

behavioral responses observed from captive marine animals held in a tank it

is important to realize that they do not necessarily reflect the full range of

natural responses in the wild and conclusions should not be extrapolated to

other contexts (Popper et al., 2014; Hawkins et al., 2015).

V. HOW TO DEAL WITH LONG-TERM
CONSEQUENCES?

Marine animals live in an environment in which acoustic conditions

can vary substantially (Ellison et al., 2011; Erbe et al., 2015). Like terres-

trial animals, marine animals have adapted to living in aquatic soundscapes

and evolved to deal with their respective levels of background sound

(Tyack, 2008). The exact effects of sound on stress levels and the overall

health of marine animals, and associated effects on vital functions (e.g.,

feeding, growth, survival, movements, fecundity) are not well known

(Atkinson et al., 2015). The exposure to increasing underwater noise levels

due to man-made activities is clearly an issue of concern, but at the moment

how an increase in chronic background sound (rather than acute exposure to

a particular activity) may affect aquatic animals is unknown. It is also evi-

dent that underwater sound and its effect on the marine fauna should not be

assessed in isolation, but together with other stressors in the marine

environment.

We know that animals may habituate to sounds that are presented

repeatedly (Nowacek et al., 2007; Samson et al., 2014), but very few experi-

ments have assessed the significance of repeated exposure in the field.

Recovery time following sound exposure is also important, and particularly

how the effects accumulate from repeated exposures over time (cumulative

exposure). Other issues are of considerable importance such as how effects

accumulate with different time intervals between exposures. In addition, the

level of adaptation of individuals and their developmental history is impor-

tant with regards to their auditory system (some more resilient to sound ex-

posure than others).

VI. FUTURE DIRECTIONS

Looking ahead leaves the question: “How do we avoid being at the

same level of understanding two decades from now?” There is still a paucity

of data for all taxonomic groups with regard to hearing sensitivity, behav-

ioral responses to sound, and ecological effects of sound exposure (such as

population level effects or effects on predator-prey interactions). In order to

address the significance of behavior it is necessary to assess the importance

of any observed changes in behavior as a result of sound exposure. How

does the observed behavior affect vital functions and what will that mean in

terms of changes to populations? The currently popular approaches to

address population effects within a risk assessment framework (PCAD and

PCoD)2 are data hungry and can seldom be applied successfully to marine

mammal, fish, or invertebrate species of concern (National Research

Council, 2005; Keith, 2008; Muir et al., 2010; Cato et al., 2013).

Alternatively, individual-based models are used to predict what an animal

might do when it is exposed to sound, but again the results are not widely

applicable (Reuter et al., 2011).

Looking at fisheries science, Productivity/Susceptibility Analysis

(PSA) (e.g., Patrick et al., 2010) provides a way of assessing the risks to dif-

ferent species based on their life history characteristics. Productivity refers

to the number of offspring produced. In general, there are two different evo-

lutionary strategies: r-selection (animals producing many offspring, each

with a poor chance of survival under natural conditions, e.g., Atlantic cod

Gadus morhua) vs k-selection (animals producing fewer offspring with a

higher probability of surviving under natural conditions, e.g., catshark

Scyliorhinus sp.). In Atlantic cod, mortality is generally enormous and

results in only a small number of adults surviving out of millions of eggs. In

contrast, catsharks produce only a few offspring that must show high sur-

vival. Susceptibility refers to the degree to which sound exposure can have

an impact upon a stock or species. Fish species may show extreme differen-

ces in their susceptibility to (acoustic) disturbance. Overall, PSA can be

used to compare the relative vulnerability of different stocks and species to

sound exposure and appropriate mitigation procedures can then be

considered.

A comparison of the responses of wild fishes to impulsive sounds

(Hawkins et al., 2014) is a good example in this context. European sprat

(Sprattus sprattus) was compared with Atlantic mackerel (Scomber scomb-

rus) at a particular location. For the Atlantic mackerel, as an r-strategist, the

number of animals that can be extracted from the stocks in general without

doing any harm to the overall population is high (except when stocks are

overexploited) and the Atlantic mackerel rates low in terms of risk assess-

ment. Sprat laid numerous eggs as well, but in a particular place and time of

the year and fewer than the Atlantic mackerel. Also it appears that European

sprat may communicate using sound. Their susceptibility to sound exposure

is perhaps higher than that of Atlantic mackerel and their vulnerability to

sound exposure is probably greater. The European sprat would fit into an in-

termediate category with respect to risk from sound exposure. If we look at

another species living at the same location, the red-mouthed goby (Gobius

cruentatus) lives on the sea-bed, forms small populations, is a sound-

producer, and as a k-strategist lays a small number of eggs. It has little resil-

ience in general and it is likely to be exposed to a much greater risk from

sound exposure.

The PSA approach has been used in an ecosystem context for manag-

ing fisheries. Policies in Europe are now moving toward a multi-species

approach in managing fisheries, as different species interact with one

another within the ecosystem. It is necessary to consider whether (sound

induced) impact on prey also has an effect on the predators and vice versa.

In complex systems, single species and single stressor studies (i.e., noise

alone) do not necessarily predict the responses of multispecies systems or

multistressor assays, both in trophic functioning and the timescales of

responses (Pfister et al., 2014). Research on environmental change in the

ocean will likely reveal community or systems level impacts and research

programs addressing noise should be prepared to detect such changes. With

reference to the findings by Hawkins et al. (2014), when the European sprat

schools break up and individual fish disperse following noise exposure, does

that make them more susceptible to predation from Atlantic mackerel? Also,

when looking at the ecosystem as a whole, the species at risk may be the

least expected ones. The most vulnerable species are not necessarily those

that are commercially most valuable. It can be argued that we need to priori-

tize species according to the role they play within the ecosystem—some are

more important in terms of ecosystem integrity than others.

VII. CONCLUSIONS

A number of important research aspects emerge which are relevant for

research on sensitivity of sound on marine animals:

• How do we deal with the uncertainty regarding how well these species

detect and respond to sound?
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• What are the masking effects of man-made sounds on the detection of

biologically important sounds by marine animals?

• How do internal state, motivation, context, and previous experience

affect behavioral responses and how might these be taken into account?

• How should long-term and cumulative effects be taken into account in

assessing the effect of underwater sound on marine animals?

• Can we adopt approaches from other disciplines to assess population

level impacts which are then applicable to marine fauna?

These aspects have to become a focus of research if we want to better

understand the sensitivity on marine animals for sound and subsequently the

effects of underwater sound on these animals. This list is not exclusive, but

answering these research questions will provide essential information for a

scientifically more meaningful assessment of this issue.

1For purposes of this paper, “The term ‘noise’ is […] used to describe unde-

sired sound, or sound that interferes with detection of any sound that is of

interest” (Popper et al., 2014), or can lead to physical effects. In this paper

“the term ‘sound’ is used both to refer to identifiable man-made sources

such as individual ships or oil and gas platforms, or to distant man-made

sources that cannot be located or identified” (Popper et al., 2014).
2PCAD: Population Consequences of Acoustic Disturbance (National

Research Council, 2005); PCoD: Population Consequences of Disturbance

(see King et al., 2015).
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