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Abstract 

 

The primary purpose of this dissertation is to investigate the behavior of the elements of the 

foreign exchange market, the largest financial market in the world.  Whilst the market itself is 

not new, the concept of currency as an alternative asset, is.  Apart from growing awareness of the 

attractiveness of foreign exchange as an asset class, the recent huge growth in foreign investing 

combined with record high levels of currency volatility raised the importance and immediacy of 

foreign exchange risk.  This dissertation applies several copulas to model the dependency 

between a chosen currency pair, and employs a superior goodness-of-fit test recently proposed in 

the copula literature.  Applying the selected copula (from the goodness-of-fit test) for the 

calculation of Value at Risk, it is shown that the selected copula offers superior protection to the 

organization with only one-third the failure rate compared to the classical correlation-based 

Value at Risk.  In addition, regression techniques are applied on interbank foreign exchange 

intraday trades to investigate the factors behind the massive volume of foreign exchange trades.  

Volatility and investments in foreign equity are found to be the key reasons driving foreign 

exchange trades in 1998; in 2008, the ‘carry’ trade became the most prominent factor. 
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Chapter 1 

Introduction 
1. Introduction 

1.1 Motivation and Background 

 

While there is a plethora of research on traditional asset classes, especially for equity markets, 

relatively fewer analyses have been carried out on what may be the world’s most active market: 

foreign exchange.  Indeed, currency markets provide an interesting alternate arena for developing 

and testing theories because they differ from the equity markets in their organization, in the 

characteristics of the traded assets, and in the nature of the relevant information flows 

(Bessembinder, 1994). 

 

There are a few reasons to explain why currency has become more important of late.  One such 

reason is for hedging purposes.  For some years now, ‘how much currency exposure should be 

hedged?’ has been a key question for many international investors seeking to minimize foreign 

exchange risk.  Recently, this question has taken on an even greater immediacy given the huge 

growth in foreign investing, combined with record high levels of currency volatility seen over 

the past two years (Poullaouec, 2009). 

 

With international assets becoming a significant part of assets held, the matter of hedging (or not 

hedging) such exposures increases in importance.  For hedging purposes, it is important that the 

dependency between currencies is appropriately modeled.  Ang and Bekaert (2002) confirm 

previous evidence by Glen and Jorion (1993) that the costs of not using currency hedging, like 

the costs of not internationally diversifying, are rather large.  Ang and Bekaert (2002) report that 

for a one-year horizon, not engaging in currency hedging costs around 70 basis points. 
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Apart from the increased exposure to foreign currencies via increased diversification or 

international investment, there is a growing awareness of the attractiveness and importance of 

foreign exchange as an asset class, as compared to the traditional asset classes of equity, debt and 

property. 

 

The foreign exchange is by far the largest financial market in the world.  It includes trading 

between large banks, central banks, currency speculators, multinational corporations, 

governments and other financial markets and institutions.  While the participants in most other 

investment markets are all looking to out-perform the market as a whole, the currency market is 

used by a wide range of people with different motives.  Some end-users of the market are not 

aiming to make money from currency, but are undertaking certain currency trades as a knock-on 

effect of another activity.  Some examples of end-users are manufacturers who buy raw materials 

or sell finished goods across borders, travelers going on holidays or on business trips, and central 

banks that attempt to fulfill a wider economic or political objective.  Overall, it is a zero-sum 

activity, but the fact that some participants cannot avoid trading makes it possible for currency 

managers – who are trading only for profit, and can choose whether and what to trade – to be on 

the positive side of the zero, while leaving other market users with the negative. 

 

As the foreign currency market is the largest and deepest market, a substantial amount of money 

will not affect the market to the same extent that it could affect the equity and bond markets.  

The size of the market indicates that the exchange rate is being determined in a liquid, active and 

competitive marketplace.  Currency markets are the most liquid in the world.  Where a country’s 

government allows the nation’s currency to operate in a free market, the market price of a 

foreign currency – its exchange rate with the domestic currency – is usually the most transparent 

of all asset prices.  Currencies also offer good portfolio diversification opportunities due to low 

correlation with the major equity markets, low transaction costs, minimal regulation, long trading 

hours and the opportunity to bet on a country’s economic status. 

 

Furthermore, it is not possible for the currency market to suffer a ‘crash’ through which the 

wealth of all market participants dwindles (Panholzer, 2004).  In the currency market, each loss 

is matched by an equivalent gain of the counterparty.  While it is theoretically possible for stocks, 
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bonds and commodities to fall in price all at the same time, it is not possible for all currencies to 

fall at the same time, because the values of currencies are expressed in terms of other currencies.  

If one declines, another must rise to make up the difference. 

 

There is a definite move towards managing currencies in investment portfolios, either to increase 

or reduce portfolio risk.  Currency represents both a risk to be managed and an opportunity to 

earn a return, possibly even an excess return.  Whether or not currency is seen as an alternative 

asset class is becoming irrelevant to the decision about whether it should be managed; its 

absence from financial models would simply result in sorely inadequate results. 

 

As such, more research should be dedicated to modeling the dependencies between currencies, as 

in the case of international stock indices.  In addition, with the participants in the foreign 

exchange market having a greater variability of expectations and diversity of beliefs than those 

of the equity market, there is reason to believe that more exploitable opportunities exists in the 

foreign exchange market.  There is the possibility that strategies could be developed to take 

advantage of the anomalies, if any, of the currency market. 
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1.2 Outline of Thesis 

 

Chapter 2 provides a brief overview of copulas and describes the types of copulas that could be 

employed when modeling dependencies between asset classes.  Goodness-of-fit tests which are 

used for copula selection are also discussed.  Until recently, there was no simple and reliable test 

of copula correctness.  The double parametric bootstrap procedure is documented to be superior 

and is employed in this thesis. 

 

Chapter 3 presents the results of modeling the dependencies using the currency pairs of Canadian 

Dollar/Deutsche Mark and US Dollar/Deutsche Mark.  Different copulas are used to model the 

time series observations of the chosen currency pair, and the goodness-of-fit test is employed to 

identify the most appropriate copula.  The selected copula is able to adequately model the joint 

behavior of the return series of currency pair, while taking extreme events into proper account. 

 

Chapter 4 calculates the Value at Risk (VaR) using the currency return data.  It shows the 

improvement that copula models provide over classical correlation-based VaR models, illustrates 

the sensitivity of VaR estimates to the choice of copula, and calculates the optimal time 

adjustment factor required for currency returns. 

 

Chapter 5 investigates the factors driving the foreign exchange volume, using data from an 

electronic interbank trading platform.  Measured by daily turnover, the foreign exchange market 

is known to be the largest financial market in the world.  However, this chapter represents the 

first attempt at examining the elements driving the growth and transformation of the global 

foreign exchange market. 

 

Chapter 6 summarizes the main contributions of this work and identifies potential directions for 

future research. 
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Chapter 2 
Modeling Dependency with 
Copulas 
2. Modeling Dependency with Copulas 

2.1 Rationale behind Use of Copulas to Model Dependencies 

 

Previous studies on dependency modeling typically fell into one of two approaches, namely 

correlation and extreme value theory. 

 

Earlier studies were focused on evaluating the conventional dependency measure, known as the 

Pearson correlation, and developing statistical tests revolving around this measure.  Karolyi and 

Stulz (1996) studied the correlation of portfolio returns, in which they constructed overnight and 

intraday returns for a portfolio of Japanese stocks and a matched-sample portfolio of US stocks, 

using transaction data from 1988 to 1992.  Likewise, in their study of how stock market crises 

spread, Boyer, Kumagai and Yuan (2006) examined the return correlation between accessible 

stock index returns and inaccessible stock index returns of countries in crisis.  The non-

parametric sign test was performed on the correlation. 

 

Ang and Chen (2002) developed a new statistic for measuring, comparing and testing 

asymmetries in conditional correlations.  Hong, Tu and Zhou (2007) subsequently improved on 

this statistical test by providing a model-free correlations symmetry test. 

 

More recently, the extreme value theory approach is gaining popularity in modeling 

dependencies (see Longin and Solnik, 2001; Poon, Rockinger and Tawn, 2003; Jondeau and 

Rockinger, 2006).  The argument for this new approach is that the conventional dependency 

measure (i.e., the Pearson correlation) is not a good measure of dependency in cases where 
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extreme realizations are important.  With the dependencies of extreme events attracting more 

attention in an increasingly globalized world, many are looking to the statistical developments in 

extreme value theory as an alternative to the traditional approach. 

 

Extreme value theory is a branch of statistics that analyzes events that deviate sharply from the 

norm.  Longin and Solnik (2001) explored the use of multivariate extreme value methods for 

modeling stock market returns, and demonstrated how VaR of a position can be derived with this 

method.  Fortin and Kuzmics (2002) introduced an alternative way of modeling (asymmetric) 

dependency in asset returns, in which the return dynamics is also captured.  The authors 

proposed a bivariate (multivariate) GARCH model with a dependency structure that allows for 

the existence of lower tail dependency by employing copulas.  Their idea was similar to a 

number of models recently put forward by Patton (2001), Rockinger and Jondeau (2001), Hu 

(2002) and Mashal and Zeevi (2002).  These authors also suggested modeling financial return 

series with bivariate GARCH models and utilizing copulas on the residuals, though in slightly 

different versions. 

 

In a similar fashion, Goorbergh (2004) allowed for asymmetry in the dependency parameter to 

cater for negative and positive innovations.  This served to test the frequently suggested 

hypothesis that asset prices have a greater tendency to move together during market downturns 

than during market upswings.  In particular, the dependency across markets is allowed to vary 

over time through a GARCH-linked autoregressive conditional copula model. 

 

One drawback of the extreme value approach is that it concentrates on the tails of the distribution 

while neglecting the rest.  Whilst accurately characterizing the tails of the distribution is of much 

importance for analyzing extreme comovements, modeling the entire dependency structure 

between asset returns – both the tails and the central part of the distribution – is the cornerstone 

for portfolio allocation decisions or risk management in general.  Proper understanding and 

modeling of the linkages between various classes of asset returns are important for fund 

managers to diversify risk and also for policymakers to monitor the potential for financial 

contagion (Bae, Karolyi and Stulz, 2003).  Failure to accurately model asset dependency may 



 

7 
 

lead to improper assessment of the risk exposure and result in erroneous portfolio decisions as 

well as incorrect pricing of financial instruments. 

 

To take into account contagion and herding behavior in financial markets, distributions that 

exhibit tail dependency can be used to model financial variables of interest.  The tail dependency 

property would be a useful feature to allow for the possibility of extreme comovements.  In this 

regard, copulas are widely recognized as a flexible tool to allow for various kinds of dependency 

structures and tail dependency properties.  Mathematically, a copula is a function which allows 

us to combine univariate distributions to obtain a joint distribution with a particular dependency 

structure (Dorey and Joubert, 2005).  The use of copula functions has become an increasingly 

popular approach to model dependency structures, particularly when the marginal distributions 

of the processes considered are non-Gaussian. 

 

This chapter aims to give a brief overview of the common types of copula that are generally used 

to model financial time series data, and provide an update on the recent developments in the area 

of copula selection.  Until recently, there has been a rather sad lack in the literature available on 

copula selection for reference. 
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2.2 Basic Definition of a Copula 

 

In this section, the definition of a copula is provided, and some important results which will be 

used later are stated. 

 

Definition 2.2.1  A copula is a joint distribution function of standard uniform random variables: 

 

( ) ( )1 1 1,..., P ,...,d d dC u u U u U u= ≤ ≤      (2.1) 

 

where ( )1,0~ UUi  represents uniformly distributed random variables for i = 1, 2, 3, … , d.   

 

Proposition 2.2.1  If dXXX ,...,, 21  are random variables with joint distribution function F and 

continuous marginal distribution functions iF , i = 1, 2, 3, … , d,  then for any multivariate 

distribution F, there exists a unique copula C which can be written as:  

( ) ( ) ( )[ ]ddd uFuFFuuC 1
1

1
11 ,...,,..., −−=       (2.2) 

where the quantile function 1−
iF  is defined by 

 

( ) ( )[ ]uxFxuF ii ≥=− :inf1        (2.3) 

 

Proof.  See Sklar (1959) for the proof of the proposition. 

 

Proposition 2.2.2  If C represents the copula function, and dFFF ,...,, 21  are the arbitrary 

distribution functions, then F defined by 

 

( ) ( ) ( )[ ]ddd xFxFCxxF ,...,,..., 111 =      (2.4) 

 

is a multivariate distribution function with marginal distribution functions dFFF ,...,, 21 . 
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Proof.  Proposition 2.2.2 follows directly from Proposition 2.2.1. 

 

Copulas allow one to characterize the dependency structure of a set of random variables, where 

these random variables are separated by their respective marginal distributions.  A copula links 

together two or more marginal distributions to form a multivariate distribution.  All the 

univariate information is contained in the marginal distributions, while the dependency is fully 

captured by the copula.  From a modeling point of view, the advantage is that appropriate 

marginal distributions for the components of a multivariate system can first be selected on a 

univariate basis, and then linked through a suitably chosen copula, or a family of copulas, to 

form the joint distribution of the components.  Copulas can be used to model the comovement of 

dependent variables whose probability distributions are non-normal or different from one another. 

 

Copula functions permit flexible modeling of the dependency between random variables by 

allowing separate decisions between the marginal distributions and the dependency structure.  

This separation enables researchers to avoid the common assumption of multivariate normal 

distribution, which restricts the dependency structure to the linear correlation matrix and the 

marginal distributions to normality. 

 

While the concept of copulas is borrowed from the theory of statistics, it has gathered an 

increasing interest among both researchers and practitioners in the field of finance.  This trend 

appears to be driven by huge increases in volatility and erratic behavior in financial markets 

(Cherubini, Luciano and Vecchiato, 2004). 
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2.3 Types of Copula 

 

There is a variety of copula functions.  In general, a copula is able to capture both the shape and 

strength of the association between dependent random variables.  Different copulas have 

different features, in such things as tail dependency and positive or negative association. 

 

The discussion here is restricted to bivariate distributions (d = 2) with the focus on the 

examination of five different copulas covering a wide range of dependency structures.  For more 

details, see Joe (1997) where a comprehensive coverage of copulas and their general properties 

were provided. 

 

In particular, the five copulas chosen have non-negative association.  The choice is due to the 

fact that asset returns that move in line are of greater interest to investors than if they move in 

opposite directions since most asset returns are positively correlated.  These copulas fall into one 

of four categories: lower tail dependency only, upper tail dependency only, no tail dependency, 

and both lower and upper tail dependencies. 

 

The five copulas to be discussed in this section are (i) Clayton copula; (ii) Gumbel copula; (iii) 

Gaussian copula; (iv) Student’s t copula; and (v) individuated t copula.  Clayton copula and 

Gumbel copula belong to a particular group of copulas, namely the Archimedean copulas which 

possess a high degree of flexibility and tractability.  Ling (1965) suggested the name 

‘Archimedean’ as these copulas satisfy a particular Archimedean axiom in mathematics. 

 

The Gaussian copula and Student’s t copula are elliptical copulas, which are simply the copulas 

of elliptically contoured (or elliptical) distributions.  The key advantage of elliptical copulas is 

that one can specify different levels of correlation between the marginals.  The key 

disadvantages are that elliptical copulas do not have closed form expressions and are restricted to 

have radial symmetry.  The individuated t copula generalizes the Student’s t copula (Venter, 

Barnett, Kreps and Major, 2003) and allows for radial asymmetry. 
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Whilst each type of copula may display some sort of ‘advantage’ in terms of flexibility or 

tractability, the choice of copula is ultimately dependent on its ability to capture the association 

between the random variables of interest more accurately relative to its peers. 

 

Regardless of the copula type, Kendall’s τ must first be estimated in order to fit any copula to the 

associated random variables X and Y.  If (Xi, Yi) represents the ith pair of independent observation 

of (X, Y), and there are n pairs of observations, then Kendall’s τ between X and Y is defined as: 

 

( )( ) ( )( )1 2 1 2 1 2 1 20 0P X X Y Y P X X Y Yτ    = − − > − − − <       (2.5) 

 

From Fantazzini (2004), we have the following proposition. 

 

Proposition 2.1  Let (Xi, Yi) denote the ith pair of independent observation of the pair of random 

variables (X, Y).  If there are n pairs of observations, then Kendall’s τ defined by Equation (2.5) 

is estimated as: 

 

 ( )( )
1

2 i j i j
i j

n
sign x x y yτ

−

<

   = − −    
∑      (2.6) 

 

Next, the following proposition, known as Proposition 2.2, is from Nelsen (1999). 

 

Proposition 2.2  Bivariate Archimedean copulas have the following general form: 

 

( ) ( ) ( )[ ]21
1

21 , uuuuC ϕϕϕ += −       (2.7) 

 

where ϕ is a function known as the generator and ϕ –1  is the corresponding inverse function. 

 

As stated in Proposition 2.2, each type of Archimedean copula has a unique form of the 

generator ϕ.  Generally, ϕ  is continuous and strictly decreasing with ϕ(1) = 0.  From Proposition 

2.2, it follows that the following proposition, known as Proposition 2.3, is valid. 
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Proposition 2.3  Kendall’s τ, which is required to fit any Archimedean copula to the bivariate 

random variables X1 and X2, can be estimated as: 

 

   ( ) ( )∫+=
1

0
'/41 dttt ϕϕτ       (2.8) 

 

in which ( )t'ϕ  is the first derivative of ϕ(t) with respect to t. 

 

The details of the bivariate form of the five types of copulas are given below, including the form 

of the generator for the Archimedean copulas, fitting and simulation. 

 

2.3.1 Clayton Copula 

 

Definition 2.3.1  (Clayton, 1978) Suppose that X and Y are random variables with joint 

distribution function 

     ( ) ( ) ( )
1

, 1H x y F x G yθ θ θ
θ

 = + −       (2.9) 

 

for all 2,x y∈ℜ , where 0θ > , and that ( )F x  and ( )G y  are the cumulative distribution functions 

of X and Y respectively.  Then, the copula of X and Y is given by  

    ( ) ( )
1

1 2 1 2, max 1 ,0C u u u uθ θ θ
θ

−− − 
= + −  

 
   (2.10) 

 

with generator 

 ( ) 1tt
θ

θϕ θ

− −
=        (2.11) 

 

From Nelsen (1999), we have the following proposition, known as Proposition 2.3.1. 
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Proposition 2.3.1  Suppose that X and Y are two random variables defined in Definition 2.3.1. 

Let τ, 0 < τ ≤ 1, be a given Kendall’s τ, estimated according to Proposition 2.1.  Then, the 

parameter θ of the Clayton copula is calculated as: 

 

       2
1
τθ
τ

=
−

      (2.12) 

 

Furthermore, suppose that X and Y are bivariate random variables linked by an Archimedean 

copula, with cumulative distribution functions F1 and F2 respectively.  Then, the formula for 

( )CK t , where t∈ℜ , is 

 

( ) ( ) ( )ttttKC '/ϕϕ−=       (2.13) 

 

where ϕ is the generator and 'ϕ  denotes its derivative. 

 

For the Clayton copula, ( )CK t  defined in Equation (2.13) can be expressed as: 

 

( )
1

C
t tK t t
θ

θ

+ −
= −       (2.14) 

 

Based on Equation (2.13), it is known from Embrechts, Lindskog and McNeil (2001) that the 

bivariate random variables X and Y can be simulated by using the following algorithm, which is 

referred to as Algorithm 2.3.1. 

 

Algorithm 2.3.1  Simulation of bivariate random variables X and Y linked by an Archimedean 

copula: 

(i) Sample two sets of values S~U(0, 1) and Q~U(0, 1). 

(ii) Calculate ( )QKT C
1−=  in which 1−

CK  is the inverse function of KC. 

(iii) Calculate ( )[ ]STV ⋅= − ϕϕ 1
1  and ( ) ( )[ ]STV −⋅= − 11

2 ϕϕ , where ϕ is the generator and 

1ϕ−  denotes its inverse. 
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(iv) Calculate ( )1
1 1X F V−=  and ( )1

2 2Y F V−= , where 1
1F −  and 1

2F −  are the inverse of the 

cumulative distribution functions for X and Y respectively. 

 

The Clayton copula (Clayton, 1978) is a one-parameter Archimedean copula which 

accommodates lower tail dependency and positive association.  While allowance for negative 

association is possible under certain conditions, it is not considered here. 

 

2.3.2 Gumbel Copula 

 

Definition 2.3.2  (Gumbel, 1960) Suppose that X and Y are random variables with joint 

distribution function 

     ( )
1

,
x ye eH x y e

θ θ θ

θ

−− − − + =       (2.15) 

 

for all 2,x y∈ℜ , where 1θ ≥ .  Then the copula of X and Y is given by 

    ( ) ( ) ( )
1

1 2ln ln
1 2,

u u
C u u e

θ θ θ

θ

 − − + −  =      (2.16) 

 

with generator 

 ( ) ( )lnt t θ
θϕ = −       (2.17) 

 

Again from Nelsen (1999), we have the following proposition, known as Proposition 2.3.2. 

 

Proposition 2.3.2  Let X and Y be two random variables defined in Definition 2.3.2.  Suppose 

that τ, 0 ≤ τ ≤ 1, is a given Kendall’s τ between the two random variables, estimated according to 

Proposition 2.1.  Then, the parameter θ of the Gumbel copula is calculated as: 

       1
1

θ
τ

=
−

      (2.18) 

 

The Gumbel copula, like the Clayton copula, is an Archimedean copula.  As such, the bivariate 

random variables of the Gumbel copula can be simulated using Algorithm 2.3.1. 
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For the Gumbel copula, ( )CK t , defined by Equation (2.13), is expressed as: 

( ) ln
C

t tK t t
θ

= −       (2.19) 

 

The Gumbel copula possesses upper tail dependency and non-negative association. 

 

2.3.3 Gaussian Copula 

 

Definition 2.3.3  (Embrechts, Lindskog and McNeil, 2001) Suppose that X and Y are random 

variables with joint density function  

( )
( )

( )
2 2

2

2

2 1

2

1,
2 1

x y xy

x y e

ρ

ρ
ρφ

π ρ

− + −

−
=

−
     (2.20) 

 

where φ is the standard normal density function and ρ  is the linear correlation coefficient 

between X and Y.  Then the Gaussian copula has the form: 

  ( )
( )

( )( )( )

2 2

1 1 2
1 2

2

2 1
1 2 2

1,
2 1

s st t

u u
C u u e dsdt

ρ

ρ
ρ

π ρ

− −

− − +

Φ Φ −

−∞ −∞
=

−
∫ ∫     (2.21) 

 

where Φ–1 is the inverse of the univariate standard normal cumulative distribution function. 

 

The Gaussian copula is one of the most commonly used elliptical copulas in finance and 

insurance.  It is symmetric and the dependency structures are fully described by the correlation 

matrix of the random variables.  This copula gives the total risk measure equal to the risk 

measure given by the traditional linear correlation measure ρ if the underlying marginal 

distributions are normal. 

 

To fit the Gaussian copula to bivariate random variables, Kendall’s τ, estimated according to 

Proposition 2.1, is first estimated between X and Y.  Then, ρ, –1 < ρ < 1, is calculated as: 

 ρ = 







2
sin πτ       (2.22) 
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The parameter ρ given in Equation (2.22) is known as the dispersion parameter of the Gaussian 

copula.  This elegant relation between Kendall’s τ and the linear correlation coefficient ρ holds 

for all non-degenerate elliptical distributions and is not limited to two-dimensional normal 

distributions with linear correlation coefficient ρ.  The detailed proof of this result can be found 

in Lindskog, McNeil and Schmock (2001).  The proof for the case when the distribution is 

normal is reproduced in brief below. 

 

Theorem 2.1  Let ( )~ ,X N µ Σ .  If ( ) 1<=Ρ iiX µ  for 1,2,3,...,i n= , and ( ) 1<=Ρ jjX µ  for 

1,2,3,...,j n= .  Then, 

( ) ( ) ( ) 2, 2 0 1 arcsini j i i j j ijX X X X X Xτ ρ
π

 = Ρ − − > − = 
    (2.23) 

where X~  is an independent copy of X (i.e., X and X~  are independently and identically 

distributed random variables). 

 

Proof:  Using 0i iiσ Σ > , 0j jjσ Σ >  and ij
ij

i j

ρ
σ σ
Σ

 , we have 

 

   
2

2
ii ij i i j ijij

ji jj i j ij j

σ σ σ ρ
σ σ ρ σ

Σ Σ   
Σ = =     Σ Σ   

 

 

Define Y X X−   and note that ( ) ( )2, ~ 0,2 ij
i jY Y N Σ .  Furthermore, 

 

   ( ) ( ), 2 cos sin ,i j i ij i ij jY Y V W Wσ ϕ σ ϕ σ+  

 

where arcsin ,
2 2ij ij
π πϕ ρ  ∈ −  

  and (V, W) is standard normally distributed. 
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By the radical symmetry of ( ),i jY Y , 

 

( ) ( )
( )
( )

, 2 0 1

4 0, 0 1

4 cos sin 0, 0 1

i j i j

i j

ij ij

X X YY

Y Y

V W W

τ

ϕ ϕ

= Ρ > −

= Ρ > > −

= Ρ + > > −

 

 

If Φ is uniformly distributed on [ , )π π− , independent of 2 2R V W+ , then 

( ) ( ), cos ,sinV W R Φ Φ  and 

 

( ) ( )

( )

, 4 cos cos sin sin 0,sin 0 1

4 , 0, 1
2 2

24 1
2

2 arcsin

i j ij ij

ij ij

ij

ij

X Xτ ϕ ϕ

π πϕ ϕ π

πϕ

π

ρ
π

= Ρ Φ + Φ > Φ > −

  = Ρ Φ∈ − + ∩ −    
 + 

= − 
 
 

=

 

This completes the proof. 
■  

 

Let X and Y be bivariate random variables with cumulative distribution functions F1 and F2 

respectively.  The bivariate random variables X and Y linked by the Gaussian copula with form 

given in Equation (2.21) can be simulated with the following algorithm (Embrechts, Lindskog 

and McNeil, 2001), which is referred to as Algorithm 2.3.3. 

 

Algorithm 2.3.3  Simulation of bivariate random variables X and Y linked by the Gaussian 

copula: 

(i) Sample two sets of values Z1 and Z2 from the bivariate standard normal distribution with 

the estimated dispersion parameter as the correlation coefficient ρ. 
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(ii) Calculate V1 = Φ(Z1) and V2 = Φ(Z2) where Φ is the univariate standard normal 

cumulative distribution function. 

(iii) Calculate ( )1
1 1X F V−=  and ( )1

2 2Y F V−= , where 1
1F −  and 1

2F −  are the inverse of the 

cumulative distribution functions for X and Y respectively. 

 

2.3.4 Student’s t Copula 

 

Definition 2.3.4  Suppose that X and Y are random variables with joint density function  

( ) ( )

1
22 2

, 22

1 2, 1
12 1

v

v
x y xyf x y

vρ
ρ

ρπ ρ

 − + 
  + − = +

 −−  
   (2.24) 

 

where ρ  is the linear correlation coefficient between X and Y and ν is the degrees of freedom.  

Then, the Student’s t copula (Embrechts, Lindskog and McNeil, 2001) has the form: 

  ( ) ( )
( )( )

2

1 1
1 2

2
22 2

, 1 2 22

1 2, 1
12 1

v v

u

t u t u s st tC u u dsdtρ ν
ρ

ν ρπ ρ

− −

+
−

−∞ −∞

 − + = +
 −−  

∫ ∫   (2.25) 

 

where 1−
vt  is the inverse of the univariate Student’s t cumulative distribution function. 

 

As with Gaussian copulas, Student’s t copulas are symmetric, elliptical copulas with the 

dependency measure fully described by the correlation matrix of the random variables.  This 

family of elliptical copulas exhibits higher tail dependency than Gaussian copulas as the degrees 

of freedom decrease.  The Student’s t copula has identical lower and upper tail dependency and 

this tail dependency converges to zero when v approaches to infinity.  In fact, the Student’s t 

copula converges to the Gaussian copula as v approaches to infinity.  The way to fit the Student’s 

t copula is similar to that of fitting the Gaussian copula.   

 

The bivariate random variables X and Y linked by the Student’s t copula can be simulated with 

the following algorithm (Embrechts, Lindskog and McNeil, 2001), which is referred to as 

Algorithm 2.3.4. 
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Algorithm 2.3.4  Simulation of bivariate random variables X and Y linked by the Student’s t 

copula: 

(i) Sample two sets of values Z1 and Z2 from the bivariate standard normal distribution with 

the estimated dispersion parameter as the linear correlation coefficient ρ. 

(ii) Sample a value S from the chi-square distribution with v degrees of freedom 2
vχ  (i.e., 

2~ vS χ ). 

(iii) Calculate  

( )SvZtV v /11 =  

and 

( )SvZtV v /22 =  

where vt  is the univariate Student’s t cumulative distribution function. 

(iv) Calculate 

( )1
1 1X F V−=  

and 

( )1
2 2Y F V−=  

where 1
1F −  and 1

2F −  are the inverse of the cumulative distribution functions for X and Y 

respectively. 

 

Whilst it has been established that extreme comovement is a common phenomenon in the real 

world, the Gaussian copula does not have tail dependency to capture this behavior.  The 

Student’s t copula, on the other hand, includes a ‘degrees of freedom’ parameter and so allows 

one to model the tendency for extreme events to occur jointly.  Apart from using the fitting 

procedure stated above, the Student’s t copula can also be calibrated via estimating its scalar 

degrees of freedom parameter ν and its linear correlation ρ by maximum likelihood. 

 

2.3.5 Individuated t Copula 

 

Two problems in the use of the Student’s t copula are the symmetry between right and left tails 

and having only a single ‘degrees of freedom’ parameter.  Since empirical studies conducted on 
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financial time series data document that asset returns tend to be more correlated during bear 

markets than during bull markets, the Student’s t copula may not provide the best fit due to its 

symmetrical extremal dependencies.  Assuming the same dependency in both right and left tails 

would be somewhat unrealistic and lead to inaccurate results. 

 

The individuated t copula generalizes the Student’s t copula – it can be used whenever the 

symmetric tail properties of the Student’s t copula are deemed unsuitable or restrictive (Venter, 

Barnett, Kreps and Major, 2003). 

 

Although the simulation is straightforward, the copula density and probability functions are 

somewhat complicated and interested readers are referred to Venter, Barnett, Kreps and Major 

(2003) for further details. 

 

The bivariate random variables X and Y linked by the individuated t copula can be simulated with 

the following algorithm (Venter, Barnett, Kreps and Major, 2003), which is referred to as 

Algorithm 2.3.5. 

 

Algorithm 2.3.5  Simulation of bivariate random variables X and Y linked by the individuated t 

copula: 

(i) Sample two sets of values Z1 and Z2 from the bivariate standard normal distribution with 

the estimated dispersion parameter as the linear correlation coefficient. 

(ii) Sample two sets of values S1 and S2, both from the chi-square distribution.  S1 has a chi-

square distribution with 1v  degrees of freedom (i.e., 2
1 1

~ vS χ ) and S2 has a chi-square 

distribution with 2v  degrees of freedom (i.e., 2
2 2

~ vS χ ); 1v  and 2v are the lower and 

upper degrees of freedom respectively. 
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(iii) Calculate 

( )11 1 1 1/vV t Z v S=  

and 

( )22 2 2 2/vV t Z v S=  

where 
ivt , { }2,1∈i , is the univariate Student’s t cumulative distribution function. 

(iv) Calculate 

( )1
1 1X F V−=  

and 

( )1
2 2Y F V−=  

where 1
1F −  and 1

2F −  are the inverse of the cumulative distribution functions for X and Y 

respectively. 

 

To allow greater dependency in the lower tail – in line with empirical research which 

demonstrates evidence of a stronger lower tail dependency – the selected 1v  should be smaller 

than 2v . 
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2.4 Copula Selection 

 

It is essential that a reliable statistical test is in place for appropriate copula selection.  Kole, 

Koedijk and Verbeek (2007) show the importance of selecting an accurate copula for risk 

management.  Many proposals have been made recently for goodness-of-fit testing of copula 

models.  The literature on the subject can be divided broadly into three groups (Genest, 

Remillard and Beaudoin, 2009). 

 

The first group of goodness-of-fit tests is limited and procedures in this category are those that 

allow only specific dependency structures to be tested (Malevergne and Sornette, 2003; Cui and 

Sun, 2004). 

 

The second group of goodness-of-fit tests is more general.  It extends to permit any class of 

copulas to be tested.  However, the implementation of each of these tests involves some form of 

user intervention – whether it be selecting an arbitrary parameter (Wang and Wells, 2000), or 

weight functions and associated smoothing parameters (Berg and Bakken, 2005; Fermanian, 

2005; Panchenko, 2005; Scaillet, 2007).  The standard chi-squared test falls under this class of 

goodness-of-fit tests, and its applications involve arbitrary grouping of data by the user (Genest 

and Rivest, 1993; Klugman and Parsa, 1999; Junker and May, 2005). 

 

The third group of goodness-of-fit tests addresses the weaknesses of the other two groups, and 

can be applied to any copula structures with no possibility of user interference in the 

determination of the fit of the copula.  These tests are termed “blanket tests”.  Included in this 

category are variants of the Wang-Wells approach derived from Genest, Quessy and Remillard 

(2006), and Dobric and Schmid (2007). 

 

Blanket tests are particularly attractive due to the lack of user interference on its results, in the 

sense that they involve no parameter tuning or other strategic choices.  Genest, Remillard and 

Beaudoin (2009) provided a detailed discussion on the comparison and effectiveness of the 

available blanket tests used to test the following hypothesis: 
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H0: C ∈ C0      (2.26) 

 

where C represents the underlying copula while { }∈℘= θθ :0 CC .  Here, the copula is indexed 

by a parameter θ belonging to an open set℘ in pℜ  for some integer p ≥ 1.  In other words, C0 is 

the particular class of copula for which the underlying copula is believed to belong to.  The null 

hypothesis, H0, is that the observed data follows a particular copula.  Rejection of the null 

hypothesis implies that the selected copula does not lead to a satisfactory model for the data. 

 

Genest, Remillard and Beaudoin (2009) found that one of the best blanket goodness-of-fit test 

procedures for copula modeling is the Sn statistic, of which the application for testing bivariate 

copulas is described in detail below.  The test based on Sn utilizes a specific parametric bootstrap 

procedure, upon which an approximate p-value can be obtained for the null hypothesis that the n 

pairs (for bivariate copulas) of observations can be modeled via the user-specified copula.  The 

validity of this test was established by Genest and Remillard (2008), and its application is 

summarized in brief below. 

 

Sn is a rank-based procedure, which requires working with the ranks of the observations.  For all 

{ }1,2,3,...,i n∈  and { }1,2j∈ , Rij is the rank of Xij among 1 ,...,j njX X .  Upon applying a scaling 

factor such that  

1
ij

ij
R

U
n

=
+

      (2.27) 

 

one gets a set of points which forms the domain of the so-called empirical copula (Deheuvels, 

1979), formally defined by 

 

   ( ) { } ( )
1 1 2 2 1 1 2 2,

1 1

1 1 1 ,
i i

n n

n i iU u U u
i i

C I U u U u
n n< <

= =

= = < <∑ ∑u    (2.28) 

 

where ( ) [ ]21 2, 0,1u u= ∈u  and { }1 1 2 2,i iU u U uI < <  is an indicator function taking the value 1 if both 

1 1iU u<  and 2 2iU u< , and 0 otherwise.  1iU  and 2iU  are the ith values of the vector  ( )1 2,i i iU U=U .  
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According to Genest, Remillard and Beaudoin (2009), the associated empirical distribution 

represented by Equation (2.28) conveniently summarizes the information contained in 1,..., nU U , 

where ( )1 11 12,U U=U ,…, ( )1 2,n n nU U=U .  Since 1,..., nU U  are calculated from the ranks of the 

observations according to Equation (2.27), they can be interpreted as a sample from the copula 

(i.e., pseudo-observations). 

 

The pseudo-observations 1,..., nU U  constitute the maximally invariant statistics on which H0 is to 

be tested.  Given that it is entirely nonparametric, Cn is arguably the most objective benchmark 

for testing H0.  Therefore, the goodness-of-fit test consists of comparing a ‘distance’ between the 

nonparametric Cn and a parametric estimate 
n

Cθ  of C obtained under H0.  n
Cθ  is obtained from 

some consistent estimate θn which is an estimation of the unknown true parameter value θ0.  θn is 

obtained from the observations 1,..., nX X , and is the rank-based estimator defined as: 

 

( )1,...,n n nTθ = U U       (2.29) 

 

where Tn is a function of n and θn is calculated based on the information provided by the pseudo-

observations (i.e., 1,..., nU U ) calculated from 1,..., nX X .  The exact form of Tn depends on the 

underlying copula assumed.  For example, if θ is the parameter of the Clayton copula, Tn is the 

function used to calculate the parameter θn as defined by Proposition 2.3.1.  Proposition 2.3.1 

identifies, through Equation (2.12), the expression for the parameter θ, to be 2
1
τθ
τ

=
−

.  To 

calculate θn, Kendall’s τ is calculated according to Proposition 2.1 using the ranks (i.e., 1,..., nU U ) 

of the observations, rather than from the observations (i.e., 1,..., nX X ).  In other words, θn 

represents an estimate of θ0 derived from pseudo-observations (i.e., 1,..., nU U ). 

 



 

25 
 

Goodness-of-fit tests based on the empirical process 

 

     ( )nn nn C Cθ= −       (2.30) 

 

are examined by Genest and Remillard (2008), where rank-based versions of the familiar 

Cramer-von Mises statistic given below are considered. 

 

     ( ) ( ) ( )
[ ]2

2

0,1n n n nS dCφ= = ∫  u u     (2.31) 

 

According to Genest, Remillard and Beaudoin (2009), large values of the statistic Sn lead to the 

rejection of H0.  Genest and Remillard (2008) showed that, if 0C C∉ , H0 is rejected with 

probability 1 as n → ∞. 

 

In practice, the limiting distribution of Sn depends on the family of copulas under the composite 

null hypothesis, and on the unknown parameter θ in particular.  As a result, the asymptotic 

distribution of the test statistic cannot be tabulated.  Only approximate p-values can be obtained 

via specifically adapted Monte Carlo simulation methods. 

 

To perform a goodness-of-fit test based on a continuous functional 

 

     ( )n nS φ=         (2.32) 

 

 of the process 

 

     ( )nn nn C Cθ= −       (2.33) 

 

one must compute the parametric estimate of the empirical copula 
n

Cθ  at various points, but this 

is not always easily done.  Many copula families are not algebraically closed.  According to 
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Genest and Remillard (2008), there is a simple way to circumvent this problem, as laid out in 

Proposition 2.4.1. 

 

Proposition 2.4.1  (Genest and Remillard, 2008) If *
nC  and *

nθ  are analogs of (or having similar 

meaning to) Cn and θn respectively, computed from parametric estimate 
n

Cθ  of C obtained under 

H0, then the empirical processes 

 

     ( )nn nn C Cθ= −       (2.34) 

 

and 

 

     ( )*
* *

n
n nn C C

θ
= −       (2.35) 

 

converge jointly in distribution to independent copies of the same limit. 

 

As stated in Proposition 2.4.1, to circumvent the problem of many copula families not having an 

algebraically closed form, a sample of bivariate random variables * *
1 ,..., nX X  is generated from the 

original observations 1,..., nX X  using parametric estimate nθ  defined by Equation (2.29).  

Thereafter, using * *
1 ,..., nX X , *

nθ  and *
nC  can be calculated as: 

 

( )* * *
1 ,...,n n nθ ψ= U U       (2.36) 

and 

 

     ( )* * *
1 ,...,n n nC γ= U U       (2.37) 

 

respectively, where ψn is a function of n and *
nθ  is calculated based on the information provided 

by the pseudo-observations (i.e., * *
1 ,..., nU U ) calculated from * *

1 ,..., nX X .  The exact form of ψn, 

similar to the discussion for Tn, depends on the underlying copula assumed.  For example, if θ is 
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the parameter of the Clayton copula, ψn is the function used to calculate the parameter *
nθ  as 

defined by Proposition 2.3.1.  Proposition 2.3.1 identifies, through Equation (2.12), the 

expression for the parameter θ, to be 2
1
τθ
τ

=
−

.  To calculate *
nθ , Kendall’s τ is calculated 

according to Proposition 2.1 using the ranks (i.e., * *
1 ,..., nU U ) of the generated sample, rather than 

from the generated sample (i.e., * *
1 ,..., nX X ). 

 

Likewise, the function γn in Equation (2.37) is a function of n.  *
nC  takes the empirical copula 

(i.e., Cn) form introduced in Equation (2.28), but unlike Cn, *
nC  is calculated based on pseudo-

observations (i.e., * *
1 ,..., nU U ) of the generated sample (i.e., * *

1 ,..., nX X ), rather than on the pseudo-

observations (i.e., 1,..., nU U ) of the observations (i.e., 1,..., nX X ). 

 

It should be noted that for all { }1,2,3,...,i n∈  and { }1,2j∈ , *
ijR  is the rank of *

ijX  among 

* *
1 ,...,j njX X  and 

      
*

*

1
ij

ij
R

U
n

=
+

      (2.38) 

The vector form of * *
1 ,...,j njX X  and * *

1 ,...,j njU U  is denoted by * *
1 ,..., nX X  and * *

1 ,..., nU U  respectively. 

 

With both *
nθ  and *

nC , the continuous functional defined by Equation (2.35)  

 

     ( ) ( )*
* *

n
n n nS n C C

θ
φ= = −      (2.39) 

 

can be computed. 

 

However, in order to approximate the distribution of Sn defined by Equation (2.39), a second 

parametric bootstrap procedure is necessary.  To do this, pick a large integer N, and repeat 

Algorithm 2.4.1 for every { }1,2,3,...,m N∈ . 
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Algorithm 2.4.1  The following steps generate an approximate distribution of 

( ) ( )*
* *

n
n n nS n C C

θ
φ= = − : 

(i) Using parametric estimate nθ  calculated using Equation (2.29), generate a random 

sample ** **
1, ,,...,m n mX X  using Algorithms 2.3.1 to 2.3.5 depending on which is the proposed 

copula under H0. 

(ii) Compute ( )** ** **
, 1, ,,...,n m n m n mθ ψ= U U where **

,ij mR  is the rank of **
,ij mX  among ** **

1 , ,,...,j m nj mX X  and 

**
,**

, 1
ij m

ij m
R

U
n

=
+

 for all { }1,2,3,...,i n∈  and { }1,2j∈ .  The vector form of ** **
1 , ,,...,j m nj mX X  and 

**
,**

, 1
ij m

ij m
R

U
n

=
+

 is denoted by ** **
1, ,,...,m n mX X  and ** **

1, ,,...,m n mU U  respectively.  Then, 

( )** ** **
, 1, ,,...,n m n m n mC γ= U U . 

(iii) Using parametric estimate **
,n mθ  from Step (ii), generate a random sample *** ***

1, ,,...,m n mX X  

using Algorithms 2.3.1 to 2.3.5 depending on which is the proposed copula under H0. 

(iv) Then, ( )*** *** ***
, 1, ,,...,n m n m n mC γ= U U  where ***

,ij mR  is the rank of ***
,ij mX  among *** ***

1 , ,,...,j m nj mX X  and 

***
,***

, 1
ij m

ij m
R

U
n

=
+

 for all { }1,2,3,...,i n∈  and { }1,2j∈ .  The vector form of *** ***
1 , ,,...,j m nj mX X  and 

***
,***

, 1
ij m

ij m
R

U
n

=
+

 is denoted by *** ***
1, ,,...,m n mX X  and *** ***

1, ,,...,m n mU U  respectively. 

 

The important result of Proposition 2.4.1 forms the basis of the bootstrap method for testing the 

goodness-of-fit of multivariate distributions and copulas.  Readers are referred to Genest and 

Remillard (2008) for the proof. 
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Proposition 2.4.2  (Genest, Remillard and Beaudoin, 2009) Suppose that 

 

1
ij

ij
R

U
n

=
+

      (2.40) 

 

and 

 
*

*

1
ij

ij
R

U
n

=
+

      (2.41) 

 

where ijR  is the rank of ijX  among 1 ,...,j njX X , and that *
ijR  is the rank of *

ijX  among * *
1 ,...,j njX X  

for all { }1,2,3,...,i n∈  and { }1,2j∈ .  Then, 

 

( ) ( )*
* *

n
n n nS n C C

θ
φ= = −      (2.42) 

 

can be approximated by 

 

2*

1

n

n rn rn
r

S C B
=

 = − ∑       (2.43) 

where { }1,2,3,...,r n∈ , 

( )1 1 2 2
1

1 1 ,
n

rn i r i r
i

C U U U U
n =

= ≤ ≤∑     (2.44) 

and 

( )* * *
1 1 2 2

1

1 1 ,
n

rn i r i r
i

B X U X U
n =

= ≤ ≤∑     (2.45) 
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Proposition 2.4.3  (Genest, Remillard and Beaudoin, 2009) Suppose that ** **
1 ,..., nX X , *** ***

1 ,..., nX X  

and ** **
1 ,..., nU U  are generated and defined according to Algorithm 2.4.1.  Then, an approximate p-

value for the test 

 

H0: C ∈ C0      (2.46) 

 

using the Sn statistic is given by 

 

( )∑
=

>
N

m
nmn SS

N 1

*
,11       (2.47) 

 

where Sn is calculated according to Proposition 2.4.2, N is some large integer and  

 

2* * **
, , ,

1

n

n m kn m kn m
k

S C B
=

 = − ∑      (2.48) 

 

where 

 

( )* ** ** ** **
, 1, 1, 2, 2,

1

1 1 ,.
n

rn m i m r m i m r m
i

C U U U U
n =

= ≤ ≤∑     (2.49) 

 

and 

 

( )** *** ** *** **
, 1, 1, 2, 2,

1

1 1 ,
n

rn m i m r m i m r m
i

B X U X U
n =

= ≤ ≤∑     (2.50) 
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Chapter 3 
Modeling the Dependencies 
between Currencies 
3. Modeling the Dependencies between Currencies 

3.1 Dependency among Traditional Asset Classes 

 

An already established and stylized fact of asset returns is that returns on traded financial 

instruments exhibit volatility clustering and extreme movements and these features cannot be 

satisfactorily explained by a normal distribution (Longin and Solnik, 1995; Boyer, Gibson and 

Loretan, 1999; Loretan and English, 2000).  In addition, a growing body of empirical studies 

conducted on financial time series data documents that comovement of asset returns tends to be 

more severe during bear markets than during bull markets.  Karolyi and Stulz (1996), Longin and 

Solnik (2001) and Campbell, Koedijk and Kofman (2002) provided evidence of high 

dependencies between extreme asset returns, particularly during bear markets. 

 

On the equity side, there is widespread agreement that international equity markets are linked to 

one another, with many studies supporting the existence of stronger lower tail dependency than 

upper tail dependency.  Using extreme value theory, Longin and Solnik (2001) provided 

evidence of the dependency asymmetries present in the indices of the five largest stock markets – 

US, UK, France, Germany and Japan.  Fortin and Kuzmics (2002) investigated the dependency 

structure between return pairs on European stock indices and the results were in line with those 

of Longin and Solnik (2001).  Using international stock indices data, studies by Ang and Bekaert 

(2002), Ang and Chen (2002), as well as Poon, Rockinger and Tawn (2004) showed similar 

findings of stronger lower tail dependency.  Efforts were also made to furnish a theoretical 

justification to this empirical fact.  In a rational expectations equilibrium model, in which 

investors were expected to behave rationally, Ribiero and Veronesi (2002) obtained 
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endogenously excess stock return comovements during market downturns as a result of increased 

uncertainty about the state of the economy. 

 

Similarly, some work was done on international bond market spillovers.  In particular, Borio and 

McCauley (1996), Domanski and Kremer (2000) and Hartmann, Straetmans and de Vries (2000) 

addressed the issue of cross-border linkages for extreme events. 

 

Borio and McCauley (1996) found evidence of spillovers and of a powerful and hitherto 

unappreciated influence of foreign disinvestment – spillovers gained in strength and 

geographical scope in the period of market turbulence in 1994.  In general, outflows appeared to 

have a larger impact than inflows, and spillovers of volatility tended to emanate from New York 

and, to a lesser extent, London. 

 

Domanski and Kremer (2000) employed bivariate GARCH models to analyze the comovements 

between weekly bond market returns across three of the countries that belong to the G8 – the US, 

Germany and Japan.  The authors found that the short-term linkage between German and US 

bond returns was much higher and simultaneously more stable than that between the bond 

returns of either of these countries and Japan.  Their results also demonstrated a positive 

relationship between market turbulence and international comovements; large price movements 

in one market, which may result from pure idiosyncratic shocks (such as monetary policy 

shocks), do always spill over to the other market to some degree and thus tighten the measured 

linkage significantly, not necessarily ‘exporting’ the underlying market uncertainty.  Experience 

suggests that this spillover effect typically occurs when a market is said to ‘decouple’ from the 

other, with relative interest rates gradually adjusting to asymmetric outlooks for their 

fundamental factors while both rates continue to move synchronously. 

 

Dependency between different asset classes is also important.  Cross-asset linkages in extreme 

conditions are one of the key elements in analyzing international financial stability.  These 

linkages are significant because they have a direct influence on the impact that contagion or joint 

crashes can involve, as noted in Hartmann, Straetmans and de Vries (2000).  These authors 

studied co-crashes between stock and bond markets and found some evidence of cross-border 
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linkages for extreme events.  These authors explored the linkages between stock and government 

bond markets; their estimates for five of the countries that belong to the G8 – US, UK, France, 

Germany and Japan – indicated that simultaneous crashes between stock markets were much 

more likely than between bond markets.  Moreover, their investigation of the phenomena of 

flight to quality, which were referred to as a crash in stock markets accompanied by a boom in 

government bond markets, suggested that stock-bond contagion was approximately as frequent 

as flight to quality from stocks into bonds. 
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3.2 Dependency between Currencies 

 

Comovements of extreme events is a common phenomenon in the real world.  For example, if 

the Canadian equity index drops by 30% today, it is highly likely that the US equity index would 

suffer a relatively large decline as well.  When the Hong Kong stock market declined sharply in 

October 1997, this movement affected markets in North and South America, Europe and Africa 

(Forbes and Rigobon, 2002). 

 

The past decade was marked by several stock market and currency crises including the Mexican 

peso collapse in 1994, the Asian financial crisis in 1997 and the Russian default in 1998 (Boyer, 

Kumagai and Yuan, 2006).  These crises are examples of how country-specific events seemed to 

transmit rapidly to markets around the globe. 

 

There has been increasing attention on dependencies between extreme events (extremal 

dependencies) in modern risk management.  In particular, dependencies between financial asset 

returns have significantly increased during recent time periods across almost all international 

markets.  This phenomenon is a direct consequence of globalization and relaxed market 

regulation in the finance and insurance industry (Schmidt and Stadtmuller, 2003). 

 

However, most studies of dependency, both theoretical and empirical, are limited to equity 

markets.  With increasing emphasis by regulators on financial institutions to adopt sound internal 

models for assessing risks, as well as greater integration of international markets, exchange rate 

risk ought to be ever closer to the forefront and modeled appropriately. 

 

Coupled with the stronger emphasis on enterprise risk management, the modeling of 

dependencies between classes of assets as well as the relative movements of different currencies 

becomes critical.  Hence, a complete financial model for the joint behavior of the return series of 

all available assets or risks is required to provide the best estimate and allow stakeholders to 

make informed decisions, while taking extreme events into proper account. 



 

35 
 

3.3 US-Canadian Dollar Dependencies 

 

This study investigates the pairwise dependency between the US Dollar (USD) and the Canadian 

Dollar (CAD) using copulas.  There are several reasons underlying the decision for the selection 

of this currency pair.  Firstly, currencies are most likely to exhibit dependency if they have 

significant trade linkages and financial interdependency, which is the case for the chosen 

currency pair.  Trade linkages can cause both currencies to fall in value at the same time, as 

currency depreciation in one country weakens the fundamentals of the other country and reduces 

the competitiveness of its exports.  Financial interdependency can also contribute in a similar 

fashion, as initial turmoil in one country can result in external creditors recalling their loans 

elsewhere, thereby creating a credit crunch in other debtor countries.  In addition, a currency 

crisis in one country can worsen market participants’ perception of the economic outlook in 

countries with similar characteristics and trigger a generalized fall in investor confidence 

(Pesenti and Tille, 2000). 

 

The US Dollar and the Canadian Dollar are freely-floated and are both major world currencies.  

The BIS Triennial Central Bank Survey (1998, 2007) listed the top four traded currencies from 

1992 to 2007 as consistently being (in decreasing order) the US Dollar (USD), the Euro (prior to 

its adoption in 1999, it was the Deutsche Mark (DEM) that was the second most traded currency), 

the Japanese Yen (JPY) and the Pound Sterling.  The Canadian Dollar (CAD) is consistently one 

of the top seven traded currencies. 

 

Where currencies are freely-floated, they are in effect another asset class.  Unlike other financial 

assets where inclusion of more assets result in increased diversification, currencies other than the 

major traded currencies – such as Euro, US Dollar, Yen and Canadian Dollar – are often 

considered as mere satellites that are too correlated to provide suitable diversification (Panholzer, 

2004).  Furthermore, liquidity cost is a chief contributor to currency portfolio return, and most 

cross rates do not offer sufficiently low execution cost to qualify for inclusion in frequent 

turnover trading.  Hence, only frequently traded world currencies are likely to be considered 

prime candidates for inclusion in investment portfolios.  As such, it is reasonable to assume that 

the chosen currency pair constitutes a substantial part for most investment portfolios, and its 
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dependency during extreme events would be of interest for both risk management and 

investment purposes.  In addition, the two countries chosen have close physical proximity 

minimizing the time difference present in the data records.  Countries with close proximity have 

similar time zones, and bias in the cross-market dependencies could be avoided. 

 

There are previous findings of dependency between currencies of countries affected by similar 

economic fundamentals.  Starica (1999) found a high level of dependency between the extreme 

movements of most of the currencies in the European Union.  In addition, an occasional paper by 

Westpac Institutional Bank in 2002 had proposed an economic model that captures the historical 

relationship between the real NZD/AUD exchange rate, and found that in terms of the ability to 

forecast the exchange rate comprehensively, the model outperforms an alternative forecasting 

technique that does not account for economic fundamentals (Conway and Franulovich, 2002).  

The model uses the following relative economic variables: productivity growth, house prices (to 

allow for relative domestic inflation pressures), interest rate differentials, commodity prices and 

current account balances (to allow for different savings/investment balances). 

 

Furthermore, Boyer, Kumagai and Yuan (2006) provided empirical evidence that stock market 

crises are spread globally through asset holdings of international investors rather than through 

changes in fundamentals.  As such, freely-floated currencies, akin to accessible stock indices, are 

likely to exhibit dependencies in such extreme events.  All these findings serve to reinforce the 

belief that there are some dependencies between the selected currency pair of USD and CAD. 
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3.4 Data & Methodology 

 

The daily exchange rates of the US Dollar versus the Deutsche Mark and the daily exchange 

rates of the Canadian Dollar versus the Deutsche Mark from 1994 to 2008 were obtained from 

Thomson Reuters Datastream (http://thomsonreuters.com/products_services/financial/), one of 

the world’s largest and most respected financial statistics database.  Although the Deutsche Mark 

officially ceased to be legal tender after 31 December 2001, the Deutsche Mark continued to be 

accepted for exchange by national central banks indefinitely in Germany.  However, from 2003, 

the value of the Deutsche Mark (as reflected in Datastream) is in parity with the Euro. 

 

Recent years’ data was used as the effects of global integration appeared to be more intense in 

the 1990s, and the 1990s also saw the introduction of more funds focused on actively managing 

currencies, which sparked the interest of currencies being viewed as an alternative asset.  After 

deleting the days where no exchange rates were recorded (public holidays such as Christmas and 

New Year), a total of 3,854 daily log-returns were collected.  The daily log-return Rt is defined as: 

1
ln t

t
t

P
R

P−

 
=  

 
      (3.1) 

 

where Pt is the value of the currency at time t with respect to one Deutsche mark. 

 

Before a copula can be used to model the joint distribution of individual indices, each dimension 

of the multivariate data would preferably be adjusted to being approximately independently and 

identically distributed.  The Ljung-Box test (named for Greta M. Ljung and George E.P. Box) is 

used to test if the data is indeed random.  This statistical test, which tests the ‘overall’ 

randomness based on a number of lags (i.e., the interval between events or phenomena 

considered together), is described as follows: 

 

H0: The data is random. 

H1: The data is not random. 

 

http://thomsonreuters.com/products_services/financial/�
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The test statistic for the test (Ljung and Box, 1978) is 

( )
2

1

ˆ
2

h
k

k

Q n n
n k
ρ

=

= +
−∑        (3.2) 

where n is the sample size, ˆkρ  is the sample autocorrelation at lag k, and h is the number of lags 

being tested.  For significance level α, the critical region for the rejection of the hypothesis of 

randomness is 
2
1 ,hQ αχ −>         (3.3) 

where 2
1 ,hαχ −  is the α-quantile of the chi-square distribution (i.e., the probability of obtaining a 

value greater than 2
1 αχ −  under the chi-square distribution is α) with h degrees of freedom.  This 

test is referred to as the Ljung-Box test. 

 

Although the choice is somewhat arbitrary, a lag of 25 is a reasonable number for many series, 

and this is used when applying the test to the daily log-return data.  The Ljung-Box test indicates 

that both the US Dollar and the Canadian Dollar daily log-returns are serially correlated and 

ARCH effects (Engle, 1982) are found in these returns.  To produce a series of independently 

and identically distributed observations suitable for the requirements of copula use, an AR(1)-

GARCH(1,1) model described below is employed to filter out serial dependency in the daily log-

return.  The daily log-return Rt defined by Equation (3.1), in such AR(1)-GARCH(1,1) models 

satisfy the recursive equation 

 

t t tR aµ= +        (3.4) 

 

where µt is referred to as the mean for Rt taking the form 

 1t tRµ λ −=         (3.5) 

 

with λ∈ℜ , while at takes the form 

    t t ta σ ε=        (3.6) 
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where tε ’s are independently and identically distributed with ( ) 0tE ε = and ( )2 1tE ε = .  The 

Student’s t distribution with zero mean and unit variance is used to model the innovations (i.e., 

residuals) εt. 

 

The model for 2
tσ  is the volatility equation for Rt given by 

2 2 2
0 1 1t t ta aσ α βσ− −= + +       (3.7) 

where a0 > 0, α ≥ 0 and β ≥ 0.  

 

Finally, the Ljung-Box test is once again applied, this time to examine the null hypothesis of 

serial independence in the filtered univariate time series (i.e., the residuals).  Both the US Dollar 

and the Canadian Dollar time series residuals do not appear to violate the independence property.  

Thereafter, the two univariate innovations are combined and assumed to follow in turn each of 

the five copulas discussed previously. 
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3.5 Results 

 

Before investigating the pairwise dependency between the US Dollar and the Canadian Dollar 

using copulas, the 3,854 daily log-returns obtained from 1994 to 2008 are plotted to illustrate the 

dependency between the two exchange rates.  The daily log-returns are filtered according to 

Equation (3.4).  Figure 3.5.1 plots the filtered daily log-returns (i.e., tε ’s defined by Equation 

(3.6)) of the US Dollar (y-axis) against those of the Canadian Dollar (x-axis).  From physical 

inspection, there exist both upper and lower tail dependencies between the two exchange rates 

(i.e., during extreme events, the Canadian and the US Dollar tend to move in the same direction). 

 

Figure 3.5.1 also confirms that the pairwise dependency of log-returns, in line with traditional 

asset returns, is non-negative.  In general, when the daily US Dollar log-return is observed to 

increase, the Canadian Dollar log-return also increases.  This confirms that the chosen five 

copulas described in Section 2.3 (Clayton, Gumbel, Gaussian, Student’s t and Individuated t), 

which exhibit non-negative association, are possible candidates for modeling the daily log-

returns. 

 

Figure 3.5.1: US Dollar tε ’s (y-axis) vs Canadian Dollar tε ’s (x-axis) 

 

Canadian Dollar εt 

US Dollar εt 
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Each of the five types of copulas which are possible candidates for modeling the daily log-

returns will be graphed in turn.  An identical number of pairs (i.e., 3,854) of bivariate random 

variables X1 and X2 of the chosen copula are simulated for each copula type.  To simulate X1 and 

X2, Kendall’s τ is first estimated from the 3,854 log-return data pairs according to Proposition 2.1. 

 

The computed Kendall’s τ is 0.53.  Using this value of Kendall’s τ, 3,854 bivariate samples are 

generated for each of the five copulas.  For the Clayton copula, Algorithm 2.3.1 is applied.  The 

Clayton copula exhibits lower tail dependency only, as evident in Figure 3.5.2.  Figure 3.5.2 

illustrates how the daily log-returns (filtered) of the US Dollar (y-axis) against those of the 

Canadian Dollar (x-axis) will look like if the bivariate data is linked by the Clayton copula.  

From Figure 3.5.2, it can be seen that the returns from holding the two currencies tend to move 

together when extreme returns are negative but not when extreme returns are positive.  An 

extreme positive return made from holding the US Dollar is not distinctly linked with an extreme 

positive return made from holding the Canadian Dollar.  From physical inspection, it is unlikely 

that the US-Canadian Dollar dependency can be modeled accurately by this copula. 

 

Figure 3.5.2: Clayton Model: US Dollar tε ’s (y-axis) vs Canadian Dollar tε ’s (x-axis)  
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Next, Algorithm 2.3.1 is applied using the computed Kendall’s τ of 0.53, calculated from 3,854 

original set of filtered log-return data pairs.  However, to simulate 3,854 bivariate samples linked 

by the Gumbel copula, the ( )CK t  and θ are calculated according to Proposition 2.3.2.  The 

Gumbel copula exhibits upper tail dependency only and this is reflected in Figure 3.5.3.  

Currency returns that follow the Gumbel copula exhibit positive extreme comovement but show 

little joint dependency when extreme returns are negative.  Observations of the dataset indicate 

that it is also unlikely that this copula is a suitable model for the US-Canadian Dollar 

dependency (see Figure 3.5.1). 

 

Figure 3.5.3: Gumbel Model: US Dollar tε ’s (y-axis) vs Canadian Dollar tε ’s (x-axis)  
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To simulate bivariate samples linked by the Gaussian copula, Algorithm 2.3.3 is applied.  In 

order to apply Algorithm 2.3.3, the dispersion parameter of the Gaussian copula ρ must be 

estimated according to Equation (2.22), i.e., sin
2
πτρ  =  

 
, which makes use of the computed 

Kendall’s τ of 0.53.  Bivariate random variables linked by a Gaussian copula do not exhibit tail 

dependency – a high positive or negative daily log-return obtained from holding the US Dollar 

does not influence that of the Canadian Dollar and vice versa. 

Canadian Dollar εt 

US Dollar εt 
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Figure 3.5.4: Gaussian Model: US Dollar tε ’s (y-axis) vs Canadian Dollar tε ’s (x-axis) 
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Figure 3.5.4 shows the case for the Gaussian copula.  Again, it does not appear that the Gaussian 

copula would be a suitable model for the selected pairwise currencies, as this copula does not 

have tail dependency which appears rather significant in the original data set illustrated in Figure 

3.5.1. 

 

To simulate bivariate samples linked by the Student’s t copula, Algorithm 2.3.4 is applied.  

Similar to the Gaussian copula, the estimated dispersion parameter ρ is calculated in an identical 

manner using Equation (2.22).  However, unlike the Gaussian copula, Algorithm 2.3.4 has no 

clue as to what is the appropriate degrees of freedom v.  A different value of v will result in a 

different degree of tail dependency.  The lower the degrees of freedom used, the higher the tail 

dependency; an infinite degrees of freedom causes the Student’s t copula to converge to the 

Gaussian copula which has no tail dependency. 

 

Starting from v = 3, Student’s t copula bivariate samples are simulated according to Algorithm 

2.3.4 and the graphical output of the simulated data is compared to the original data set graphed 

in Figure 3.5.1.  The following figures (Figure 3.5.5 to Figure 3.5.10) illustrate the simulated 

bivariate samples linked by the Student’s t copula with v taking values of 3, 4, 5, 6, 7 and 8 

Canadian Dollar εt 

US Dollar εt 
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respectively.  For v = 8, it can be observed that the tail dependency exhibited by the (filtered) 

log-return data of Figure 3.5.1 is much stronger than that of the simulated bivariate sample 

(Figure 3.5.10).  As such, there is no reason to continue to generate bivariate samples with 

degrees of freedom higher than 8. 

 

The Student’s t copula with 3 degrees of freedom (shortened to t3 model) is depicted in Figure 

3.5.5, and appears to be a feasible candidate to model the entire dependency of the US currency 

versus Canadian currency.  From Figure 3.5.5, it can be seen that currency returns move in the 

same direction during extreme times – regardless of whether the markets are headed north (i.e., 

when returns are high or positive) or south (i.e., when returns are low or negative).  When the US 

Dollar filtered log-return is high, Figure 3.5.5 shows that the Canadian Dollar filtered log-return 

tends to be high as well and vice versa.  The distribution of data is symmetric – the US Dollar 

and Canadian Dollar filtered log-returns are evenly distributed between the positive x-axis 

positive y-axis quadrant and the negative x-axis negative y-axis quadrant. 

 

Figure 3.5.5: t3 Model: US Dollar tε ’s (y-axis) vs Canadian Dollar tε ’s (x-axis)  

-10.00000

-8.00000

-6.00000

-4.00000

-2.00000

0.00000

2.00000

4.00000

6.00000

8.00000

10.00000

-10.00000 -8.00000 -6.00000 -4.00000 -2.00000 0.00000 2.00000 4.00000 6.00000 8.00000 10.00000

 
 

Canadian Dollar εt 

US Dollar εt 



 

45 
 

Figure 3.5.6: t4 Model: US Dollar tε ’s (y-axis) vs Canadian Dollar tε ’s (x-axis)  
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It can be seen that the t5 model is more dispersed around the tails compared to the t4 model.  

Figure 3.5.6 contains more extreme data points than in Figure 3.5.7.  This illustrates the stronger 

tail dependency structure exhibited by the t4 model than a model with larger degrees of freedom 

(t5): when a large negative or positive log-return occurs from holding the Canadian Dollar, it 

more than likely will occur in the US Dollar market as well.  When the US Dollar depreciates (or 

appreciates) significantly relative to the Euro, the Canadian Dollar is more likely to experience a 

concurrent large depreciation (or appreciation), also relative to the Euro, in the t4 model. 

 

Figure 3.5.7: t5 Model: US Dollar tε ’s (y-axis) vs Canadian Dollar tε ’s (x-axis)  
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Figure 3.5.8: t6 Model: US Dollar tε ’s (y-axis) vs Canadian Dollar tε ’s (x-axis)  
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Compared with the t6 model, the tail dependency is weaker in the t7 model.  The explanation is 

similar to that when comparing the t4 model against the t5 model.  The t6 model, having lower 

degrees of freedom than the t7 model, exhibits stronger tail dependency.  Stronger tail 

dependency implies that when large negative or positive log-return occurs from holding the 

Canadian Dollar, it more than likely will occur in the US Dollar market as well. 

 

Figure 3.5.9: t7 Model: US Dollar tε ’s (y-axis) vs Canadian Dollar tε ’s (x-axis) 
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Figure 3.5.10: t8 Model: US Dollar tε ’s (y-axis) vs Canadian Dollar tε ’s (x-axis)  
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Next, bivariate samples linked by the individuated t copula are simulated according to Algorithm 

2.3.5.  Similar to the Student’s t copula, the degrees of freedom must be chosen by the user.  

However, unlike the Student’s t copula which exhibits symmetrical degree of tail dependency, 

the individuated t copula is able to exhibit asymmetrical degrees of tail dependency.  This ability 

to exhibit differing dependency between upper and lower tails is dependent on the degrees of 

freedom chosen for the upper and lower tail.  In other words, a pair of degrees of freedom (v1, v2) 

must be chosen for each simulation attempt using Algorithm 2.3.5 where 1v  and 2v are the lower 

and upper degrees of freedom respectively.  When the same degrees of freedom is chosen for the 

upper and lower tail (v1 = v2), symmetric tail dependency will be obtained and this is identical to 

generating the bivariate samples using the Student’s t copula (Algorithm 2.3.4). 

 

Samples from the individuated t copula with selected pairs of degrees of freedom are simulated 

according to Algorithm 2.3.5. In line with empirical research which documents evidence of 

greater dependency in the lower tail or during times of distress, the pair of degrees of freedom 

chosen (v1, v2) is such that the selected 1v  is smaller than 2v  to allow for greater dependency in 

the lower tail than in the upper tail.  From previous simulations for the Student’s t copula, it is 

found that models with degrees of freedom greater than 8 will not be representative of the raw 

log-return data set shown in Figure 3.5.1.  As such, the simulated pairs consist of (3,4), (3,5), 
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Canadian Dollar εt 

(3,6), (3,7), (3,8), (4,5), (4,6), (4,7), (4,8), (5,6), (5,7), (5,8), (6,7), (6,8) and (7,8).  Figure 3.5.11 

shows the individuated t copula with 1v = 3 and 2v  = 4.  Figure 3.5.25 demonstrates the case for 

1v = 7 and 2v  = 8. 

 

Figure 3.5.11: t3,4 Model: US Dollar tε ’s (y-axis) vs Canadian Dollar tε ’s (x-axis)  
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Both t3,4 and t3,5 models exhibit similar lower tail dependency (since 1v = 3 in both cases) but the 

upper tail dependency is weaker in the t3,5 model than in the t3,4 model.  The lower tail 

dependency (i.e., negative x-axis and negative y-axis) is the same for the t3,4 and t3,5 models, and 

the data points in the third quadrant of Figures 3.5.11 and 3.5.12 can be seen to display a similar 

pattern.  However, the upper tail dependency (i.e., positive x-axis and positive y-axis) is stronger 

for the t3,4 model than the t3,5 model.  For the t3,4 model, when large positive log-return occurs 

from holding the Canadian Dollar, it more than likely will occur in the US Dollar market as well 

compared to the t3,5 model.  Unlike the Student’s t model which exhibits symmetrical tail 

dependencies, the individuated t model allows different dependencies, reflected by different 

degrees of freedom, between the upper and lower tails.  The higher the degrees of freedom, the 

weaker the dependency; infinite degrees of freedom will generate bivariate samples with 

behavior no different from that linked by a Gaussian copula.   

US Dollar εt 
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Figure 3.5.12: t3,5 Model: US Dollar tε ’s (y-axis) vs Canadian Dollar tε ’s (x-axis)  
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Figure 3.5.13: t3,6 Model: US Dollar tε ’s (y-axis) vs Canadian Dollar tε ’s (x-axis)  
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Likewise, the upper tail dependency is weaker in the t3,7 model than in the t3,6 model, but both 

models exhibit similar lower tail dependency as the t3 model.  The difference in strength of upper 

tail dependency is more obvious comparing Figures 3.5.11 (t3,4 model) and 3.5.14 (t3,7 model); 

Figure 3.5.11 illustrates that a significant positive log-return from holding the Canadian Dollar is 

more likely accompanied by a significant positive log-return from holding the US Dollar, than in 

Figure 3.5.14 where the upper tail dependency is weaker. 
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Figure 3.5.14: t3,7 Model: US Dollar tε ’s (y-axis) vs Canadian Dollar tε ’s (x-axis)  
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Figure 3.5.15: t3,8 Model: US Dollar tε ’s (y-axis) vs Canadian Dollar tε ’s (x-axis)  
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For those cases with 1v = 3, it can be observed that as the degrees of freedom 2v  increase, upper 

tail dependency becomes weaker.  For example, the t3,8 model has a more dispersed upper tail 
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than the t3,4 model.  As mentioned before, the higher the degrees of freedom, the weaker the tail 

dependency.  Differing tail dependency can be allowed for using different degrees of freedom for 

the upper and lower tails.  Since the t3,4 and t3,8 models have similar lower tail dependency, it 

means that concurrent large negative returns from holding the US Dollar and the Canadian 

Dollar has similar likelihood of occurring for both models.  However, concurrent large positive 

returns have a higher likelihood of occurring in the t3,4 model than in the t3,8 model.  This 

argument is also true when comparing models with identical 1v  (other than 3) but different 2v . 

 

Figure 3.5.16: t4,5 Model: US Dollar tε ’s (y-axis) vs Canadian Dollar tε ’s (x-axis)  
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Figures 3.5.16 and 3.5.17 illustrate the joint distribution assuming it conforms to the t4,5 model 

and the t4,6 model respectively.  The similarity between these two models are that they have the 

same lower degrees of freedom, 1v = 4.  Compared to the models with 1v = 3, these two models 

(i.e., 1v = 4 models) exhibit a weaker lower tail dependency.  This means that when the US 

Dollar depreciates significantly, relative to the Euro, the Canadian Dollar is likely to experience 

a concurrent large depreciation, also relative to the Euro.  However, the difference between the 

t4,5 and t4,6 models come from  large currency appreciations.  When the Canadian Dollar 

significantly appreciates in value to the Euro, the US Dollar is more likely to experience a 

significant appreciation at the same time, according to the t4,5 model than the t4,6 model.  In both 
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the t4,5 and t4,6 models, 21 vv <  and thus the dependency exhibited as a result of an appreciation 

of currency is weaker, compared to the dependency arising from a depreciation of currency. 

 

Figure 3.5.17: t4,6 Model: US Dollar tε ’s (y-axis) vs Canadian Dollar tε ’s (x-axis)  
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Figure 3.5.18: t4,7 Model: US Dollar tε ’s (y-axis) vs Canadian Dollar tε ’s (x-axis)  
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Both t4,7 and t4,8 models exhibit similar lower tail dependency but the t4,8 model has weaker upper 

tail dependency as evidenced by more scattered data in the top right corner of the graph of Figure 

3.5.19 compared to Figure 3.5.18.  A large positive return from holding the Canadian Dollar is 

more likely accompanied by a large positive return from holding the US Dollar in the t4,7 model 

than in the t4,8 model.  Negative returns from holding the Canadian Dollar (i.e., depreciation of 

Canadian Dollar relative to the Euro) and US Dollar (i.e., depreciation of US Dollar relative to 

the Euro) are modeled similarly by t4,7 and t4,8 models. 

 

Figure 3.5.19: t4,8 Model: US Dollar tε ’s (y-axis) vs Canadian Dollar tε ’s (x-axis)  
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Figure 3.5.20: t5,6 Model: US Dollar tε ’s (y-axis) vs Canadian Dollar tε ’s (x-axis)  
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Figure 3.5.21: t5,7 Model: US Dollar tε ’s (y-axis) vs Canadian Dollar tε ’s (x-axis)  

-10.00000

-8.00000

-6.00000

-4.00000

-2.00000

0.00000

2.00000

4.00000

6.00000

8.00000

10.00000

-10.00000 -8.00000 -6.00000 -4.00000 -2.00000 0.00000 2.00000 4.00000 6.00000 8.00000 10.00000

 
 

Figure 3.5.22: t5,8 Model: US Dollar tε ’s (y-axis) vs Canadian Dollar tε ’s (x-axis)  
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The t5,6 model in Figure 3.5.20 exhibits stronger upper tail dependency than the t5,8 model in 

Figure 3.5.22.  The strength of the upper tail dependency is dependent on the value that the upper 

degrees of freedom take; the smaller the value, the stronger the dependency.  A large positive 

return from holding the Canadian Dollar (i.e., appreciation of the Canadian Dollar relative to the 

Euro) is much more likely accompanied by a large positive return from holding the US Dollar 

(i.e., appreciation of the US Dollar relative to the Euro) in the t5,6 model than in the t5,8 model. 

 

However, since both the t5,6 model and the t5,8 model have identical lower degrees of freedom, 

this means that the dependency of large depreciation in currency value relative to the Euro is 

similarly modeled in both the t5,6 and t5,8 models.  Comparing the dependency of the currencies 

within these two models, significant depreciation of the Canadian Dollar relative to the Euro is 

more likely to be accompanied by significant depreciation in the US Dollar relative to the Euro, 

than significant concurrent appreciation of the two currencies relative to the Euro. 

 

Figure 3.5.23: t6,7 Model: US Dollar tε ’s (y-axis) vs Canadian Dollar tε ’s (x-axis)  
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Figure 3.5.24: t6,8 Model: US Dollar tε ’s (y-axis) vs Canadian Dollar tε ’s (x-axis)  
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Figure 3.5.25: t7,8 Model: US Dollar tε ’s (y-axis) vs Canadian Dollar tε ’s (x-axis)  
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3.6 Goodness-of-Fit 

 

As discussed in Section 2.4, blanket tests are particularly attractive due to the lack of user 

interference and one such test is used here in deciding the appropriate copula for the data.  Using 

the rank-based test statistic Sn defined by Equation (2.39) as well as discussed in detail in Section 

2.4, Table 3.6.1 shows the results obtained from applying Algorithm 2.4.1 using N = 100 

bootstrap samples for each of the four copulas considered. 

 

The aim of applying Algorithm 2.4.1 is to arrive at an approximate p-value in accordance with 

Proposition 2.4.3, to test if the data conforms to the chosen copula (see Equation (2.26)). 

 

The amount of evidence required to accept that an event is unlikely to have arisen by chance is 

known as the significance level or critical p-value, and the conventional level of significance of 

5% is adopted.  The p-value is the probability of observing data at least as extreme as that 

observed, given that the null hypothesis is true.  If the obtained p-value is smaller than the level 

of significance, the null hypothesis is rejected and the data unlikely follows the chosen copula. 

 
Table 3.6.1 p-values of Rank-Based Test Statistic – Clayton, Gumbel, Gaussian, t3 

 Clayton Gumbel Gaussian t3 

p-value 0.00 0.00 0.00 0.14 
 

From Table 3.6.1, it can be seen that the p-values of the null hypothesis that the distribution of 

bivariate data follows that of the Clayton, Gumbel and Gaussian models respectively, are all zero.  

When using a level of significance of 5%, the zero p-values mean that these three models –

Clayton, Gumbel and Gaussian – are all rejected. The p-value obtained for the t3 copula, however, 

is 14% (greater than level of significance of 5%), and thus the t3 copula is a suitable candidate in 

modeling the US-Canadian Dollar dependency. 

 

To further investigate whether stronger lower tail dependency than upper tail dependency is 

more appropriate than symmetric lower and upper tail dependency, the individuated t copula is 

tested according to Proposition 2.4.3.  Table 3.6.2 shows the results obtained from applying 



 

58 
 

Algorithm 2.4.1 using N = 100 bootstrap samples for each of the individuated t copulas 

considered. 

 
Table 3.6.2 p-values of Rank-Based Test Statistic – Individuated t Copula 

1v \ 2v  3 4 5 6 7 8 

3 0.14 0.15 0.14 0.13 0.11 0.11 

4  0.16 0.15 0.13 0.13 0.11 

5   0.18 0.17 0.15 0.13 

6    0.16 0.14 0.13 

7     0.14 0.13 

8      0.14 

 

From Table 3.6.2, it can be seen that the p-values are all greater than 5% (level of significance).  

This means that all the above combinations of individuated t copula are possible candidates in 

modeling the US-Canadian Dollar dependency.  However, upon further examination of the p-

values, it is observed that the p-values generally decrease between models as the difference 

between the upper degrees of freedom v2, and the lower degrees of freedom v1, increases.  For 

example, the t4,4 model (i.e., Student’s t copula with v = 4) has a p-value of 16%, which is higher 

than the p-values of the t4,5 model (15%), the t4,6 model (13%), the t4,7 model (13%) and the t4,8 

model (11%).  The only exception to this observation is the comparison between the t3,3 and t3,4 

models.  The t3,3 model (i.e., Student’s t copula with v = 3) has a p-value of 14%, which is lower 

than the p-value of the t3,4 model (15%). 

 

The p-values listed in Table 3.6.2 indicate that the individuated t copula t5,5, which is equivalent 

to the Student’s t model t5, is the best model for the dependency between US and Canadian 

currency returns since it has the highest p-value of 18%.  Comparing the p-values for t5,5, t5,6, t5,7 

and t5,8, it is observed that the p-values are 0.18, 0.17, 0.15 and 0.13 respectively.  As evident by 

the p-values and explained in the previous paragraph, the additional flexibility provided by the 

individuated t copula which allows for different lower and upper degrees of freedom (and thus 

different degrees of dependency between the lower and upper tails), does not seem to improve 

the fit significantly. 
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The p-values suggest that the US and Canadian currency returns exhibit symmetrical dependency 

during downturns and upturns, unlike the returns on equity which are documented to display 

significantly stronger dependency during downturns compared to upturns. 
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3.7 Robustness Tests 

 

3.7.1 Comparison with Equity Markets 

 

To investigate the appropriateness of the results regarding the currency returns presented in 

Sections 3.5 and 3.6, equity returns are modeled in a similar fashion to that described in Section 

3.4, for comparison purposes.  Just as was done for currency data, weekends and public holidays 

such as Christmas and New Year where no data was observable was deleted from the sample.  A 

total of 3,913 daily log-returns of US and Canadian total return indices data for the period from 

1994 to 2008 were collected from Datastream.  Datastream provides the daily total return data 

for the equity indices of US and Canada.  The daily log-return Rt is defined in the same way as 

Equation (3.1) for currency data: 

1
ln t

t
t

P
R

P−

 
=  

 
      (3.8) 

 

where Pt is the value of the equity index at time t. 

 

In addition, to produce a series of independently and identically distributed observations suitable 

for the requirements of copula use, an AR(1)-GARCH(1,1) model which was used in Section 3.4 

for daily currency return and discussed again below, is employed to filter out serial dependency 

in the daily equity log-return.  Finally, the Ljung-Box test (Ljung and Box, 1978) with test 

statistic given by Equation (3.2), is used to test if the residual data is indeed random. 
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Identical to currency data, the daily equity log-return Rt satisfy the recursive equations defined 

by Equations (3.4), (3.5), (3.6) and (3.7): 

 

t t tR aµ= +        (3.9) 

 

where µt is referred to as the mean for Rt taking the form 

 1t tRµ λ −=         (3.10) 

 

with λ∈ℜ , while at takes the form 

    t t ta σ ε=        (3.11) 

 

where tε ’s are independently and identically distributed with ( ) 0tE ε = and ( )2 1tE ε = .  The 

Student’s t distribution with zero mean and unit variance is used to model the innovations (i.e., 

residuals) εt. 

 

The model for 2
tσ  is the volatility equation for Rt given by 

2 2 2
0 1 1t t ta aσ α βσ− −= + +       (3.12) 

where a0 > 0, α ≥ 0 and β ≥ 0.  

 

The Student’s t distribution with zero mean and unit variance is used to model the innovations, 

and the Ljung-Box test (see Equation (3.2)) indicates that the resulting residuals do not violate 

the independence property.  Figure 3.7.1.1 plots the filtered daily US equity return (i.e., tε ’s in 

Equation (3.11)) against those of the Canadian equity.  From physical inspection, there exists 

both upper and lower tail dependency between the two returns (i.e., during extreme events, the 

Canadian and the US equity returns tend to move in the same direction). 

 

Figure 3.7.1.1 also confirms that the pairwise dependency of log-returns is non-negative.  In 

general, when the daily US equity log-return is observed to increase, the Canadian equity log-

return also increases.  This confirms that the chosen five copulas described in Section 2.3 
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(Clayton, Gumbel, Gaussian, Student’s t and Individuated t), which exhibit non-negative 

association, are possible candidates for modeling the daily equity log-returns. 

 

Figure 3.7.1.1: US Equity tε ’s (y-axis) vs Canadian Equity tε ’s (x-axis) 

 
 

Figures 3.7.1.2 to 3.7.1.25 depict the simulated bivariate random variables using the five 

different copula models.  Although there are only five copula models, the Student’s t model 

requires user-specified degrees of freedom.  The individuated t model too requires the 

specification of the lower and upper degrees of freedom.  This results in a number of dependency 

structures reflecting possible combinations of lower and upper degrees of freedom. 

 

In order to simulate the bivariate random variables, Kendall’s τ is first estimated according to 

Proposition 2.1, between the pair of total return indices.  Then, Algorithms 2.3.1 to 2.3.5 is 

applied depending on which copula type is assumed.  The computed Kendall’s τ for equity data 

is 0.39. 
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Figure 3.7.1.2: Clayton Model: US Equity tε ’s (y-axis) vs Canadian Equity tε ’s (x-axis) 

 
Comparing Figures 3.7.1.2 and 3.7.1.3, one can see the stark difference between the Clayton 

model and the Gumbel model.  The former exhibits strong lower tail dependency while the latter 

displays strong upper tail dependency. 

 

Using the Clayton model to model daily equity return dependency suggest that when the 

Canadian equity return suffer a huge drop, it is highly likely that the US equity return 

experiences a similar blow.  However, a huge positive equity return experienced in US or 

Canada is believed to have no influence on the other country’s equity return. 

 

The Gumbel model suggests the opposite.  According to the Gumbel model, when the Canadian 

equity return soars, it is highly likely that the US equity return also rises significantly.  However, 

a huge negative equity return experienced in US or Canada is believed to have no influence or 

dependency on the other country’s equity return. 
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Figure 3.7.1.3: Gumbel Model: US Equity tε ’s (y-axis) vs Canadian Equity tε ’s (x-axis) 

 
 

Figure 3.7.1.4: Gaussian Model: US Equity tε ’s (y-axis) vs Canadian Equity tε ’s (x-axis) 

 
 

The Gaussian model in Figure 3.7.1.4, which displays no tail dependency, is the limiting version 

of the t3 model in Figure 3.7.1.5 when the degrees of freedom tend to infinity. 
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Figure 3.7.1.5: t3 Model: US Equity tε ’s (y-axis) vs Canadian Equity tε ’s (x-axis) 

 
Figure 3.7.1.6: t4 Model: US Equity tε ’s (y-axis) vs Canadian Equity tε ’s (x-axis) 

 
It can be seen that the t4 model (Figure 3.7.1.6) is more dispersed around the tails compared to 

the t3 model (Figure 3.7.1.5).  Figure 3.7.1.5 is observed to contain more extreme data points 

than in Figure 3.7.1.6.  This illustrates a stronger tail dependency structure exhibited by the t3 

model than a model with a value for the degrees of freedom larger than three: when a large 
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Canadian Equity εt 

negative or positive log-return occurs from holding Canadian equity, it more than likely will 

occur in the US equity market as well if the joint distribution follows that of the t3 model. 

 

Figure 3.7.1.7: t5 Model: US Equity tε ’s (y-axis) vs Canadian Equity tε ’s (x-axis) 

 
Figure 3.7.1.8: t6 Model: US Equity tε ’s (y-axis) vs Canadian Equity tε ’s (x-axis) 
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Canadian Equity εt 

The higher the degrees of freedom assumed, the weaker the tail dependency of the Student’s t 

copula.  To best observe this, compare the t4 (Figure 3.7.1.6) and t8 (Figure 3.7.1.10) models.  

There are more dispersed values around the tails in both the first and third quadrant (i.e., in the 

positive xy-axis and the negative xy-axis respectively) in the t8 model.  This is because the t8 

model assumes weaker tail dependency so that a huge positive (negative) Canadian equity return 

is not as likely to be accompanied by a huge positive (negative) US equity return, as compared to 

the returns modeled in the t4 model. 

 

Figures 3.7.1.5 to 3.7.1.10 show the gradual weakening in the tail dependency, from the t3 model 

having the strongest dependency strength to the t8 model with the weakest dependency strength.  

For someone with a portfolio of US and Canadian equities, it suggests that their portfolio return 

will be more volatile if the dependency follows that of a t3 model rather than a t8 model.  If 

dependency follows a t3 model, high returns (or low returns) occurring at the same time in both 

US and Canadian equities are more likely compared to a t4 model, which is, in turn, more likely 

compared to a t5 model and so on.  As the number of degrees of freedom increases, the strength 

of the dependency weakens, and eventually culminates in a Gaussian model (see Figure 3.7.1.4) 

when the degrees of freedom approach to infinity. 

 

Figure 3.7.1.9: t7 Model: US Equity tε ’s (y-axis) vs Canadian Equity tε ’s (x-axis) 
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Canadian Equity εt 

Figure 3.7.1.10: t8 Model: US Equity tε ’s (y-axis) vs Canadian Equity tε ’s (x-axis) 

 
 

Looking at Figure 3.7.1.1 (original data set), one can see that the residuals in the first quadrant 

(positive xy-axis) are rather compact, while there are evidence of some strong dependency in 

equity returns in the third quadrant (negative xy-axis).  This implies that huge positive returns in 

both the Canadian and the US equities are unlikely to occur concurrently, but huge negative 

returns do.  From physical inspection which is subject to statistical tests, none of the models 

considered thus far seem able to adequately model the first quadrant of the original data set.  It 

seems pointless to consider degrees of freedom higher than 8 for the Student’s t copula since 

ultimately, the dependency pattern in the first quadrant will resemble that of the Gaussian copula 

(see Figure 3.7.1.4) as v increases. 

 

To allow for the observed difference in dependency between the lower (third quadrant) and 

upper (first quadrant) tails, the individuated t copula with a smaller lower degrees of freedom v1 

and a higher upper degrees of freedom v2 is examined for several combinations.  Figures 3.7.1.11 

to Figures 3.7.1.15 illustrates the dependency when v1 = 3 and with v2 taking values from 4 to 8 

consecutively.  The case when v1 = v2 = 3 is not considered since this is just equivalent to the 

Student’s t copula with degrees of freedom v = 3. 
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Figure 3.7.1.11: t3,4 Model: US Equity tε ’s (y-axis) vs Canadian Equity tε ’s (x-axis) 

 
Figure 3.7.1.12: t3,5 Model: US Equity tε ’s (y-axis) vs Canadian Equity tε ’s (x-axis) 
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Canadian Equity εt 

As the upper degrees of freedom increases from Figure 3.7.1.12 (t3,5 model) to 3.7.1.13 (t3,6 

model), the upper tail dependency weakens.  Concurrent extreme positive US and Canadian 

equity returns are more plausible under the t3,5 model than under the t3,6 model.  Concurrent 

extreme negative US and Canadian equity returns, however, are similarly modeled under both t3,5 

and t3,6 models. 

 

The dependency of extreme negative returns is controlled by the lower degrees of freedom v1 

while the dependency of the extreme positive returns is controlled by the upper degrees of 

freedom v2.  All combinations of (v1,v2) for the individuated t copula considered here have v1 

taking a smaller value than v2.  This is in line with empirical research which suggests that asset 

prices have a greater tendency to move together during market downturns than during market 

upswings.  The smaller the degrees of freedom, the stronger the tail dependency. 

 

Figure 3.7.1.13: t3,6 Model: US Equity tε ’s (y-axis) vs Canadian Equity tε ’s (x-axis) 
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Canadian Equity εt 

Figure 3.7.1.14: t3,7 Model: US Equity tε ’s (y-axis) vs Canadian Equity tε ’s (x-axis) 

 
 

Figure 3.7.1.15: t3,8 Model: US Equity tε ’s (y-axis) vs Canadian Equity tε ’s (x-axis) 
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Canadian Equity εt 

Similar to what was considered in the currency data, individuated t copula with varying 

combinations of lower and upper degrees of freedom are simulated according to Algorithm 2.3.5.  

Figure 3.7.1.16 to Figures 3.7.1.19 considers the combinations where the lower degrees of 

freedom parameter takes the value of 4 while the upper degrees of freedom parameter is varied 

such that it takes values from 5 to 8 consecutively.  In all these cases, the lower degrees of 

freedom value is chosen to be smaller than the upper degrees of freedom value as the equity 

return movements are expected to move in a similar manner during market crashes (modeled by 

the lower degrees of freedom) but the movements may not be that aligned during market booms 

(modeled by the higher degrees of freedom). 

 

A portfolio consisting only of US and Canadian equities with their joint return modeled by the t3,5 

copula illustrated in Figure 3.7.1.12 are more likely to experience higher drops in value of their 

portfolio as concurrent negative returns are more likely to occur, compared to when their joint 

return conforms to the t4,5 copula illustrated in Figure 3.7.1.16.  In both models, the upper degrees 

of freedom are the same, meaning that the experiences of the portfolios during bullish investment 

times are similar. 

 

Figure 3.7.1.16: t4,5 Model: US Equity tε ’s (y-axis) vs Canadian Equity tε ’s (x-axis) 
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Canadian Equity εt 

Figure 3.7.1.17: t4,6 Model: US Equity tε ’s (y-axis) vs Canadian Equity tε ’s (x-axis) 

 
Figure 3.7.1.18: t4,7 Model: US Equity tε ’s (y-axis) vs Canadian Equity tε ’s (x-axis) 

 
 

US Equity εt 

US Equity εt 



 

74 
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Canadian Equity εt 

Figure 3.7.1.19: t4,8 Model: US Equity tε ’s (y-axis) vs Canadian Equity tε ’s (x-axis) 

 
The next few figures (Figures 3.7.1.20 to 3.7.1.22) consider the cases when v1 = 5.  Compared to 

the cases when v1 = 4, the US and Canadian equity returns modeled with v1 = 5 are less likely to 

register concurrent extreme negative returns. 

 

Figure 3.7.1.20: t5,6 Model: US Equity tε ’s (y-axis) vs Canadian Equity tε ’s (x-axis) 
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Figure 3.7.1.21: t5,7 Model: US Equity tε ’s (y-axis) vs Canadian Equity tε ’s (x-axis) 

 
 

Figure 3.7.1.22: t5,8 Model: US Equity tε ’s (y-axis) vs Canadian Equity tε ’s (x-axis) 

 
Finally, similar to what was considered for currency data, the equity returns are modeled 

assuming their dependency follows that of the t6,7 copula (Figure 3.7.1.23), the t6,8 copula (Figure 
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Canadian Equity εt 

Canadian Equity εt 

3.7.1.24) and the t7,8 copula (Figure 3.7.1.25).  US and Canadian equity returns modeled under 

the t6,7 and t6,8 copulas exhibit similar concurrent down-movements (extreme negative returns) 

but the former will contain more instances of concurrent up-movements (extreme positive returns) 

than the latter. 

 

Figure 3.7.1.23: t6,7 Model: US Equity tε ’s (y-axis) vs Canadian Equity tε ’s (x-axis) 

 
Figure 3.7.1.24: t6,8 Model: US Equity tε ’s (y-axis) vs Canadian Equity tε ’s (x-axis) 
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Canadian Equity εt 

Figure 3.7.1.25: t7,8 Model: US Equity tε ’s (y-axis) vs Canadian Equity tε ’s (x-axis) 

 
Table 3.7.1.1 and Table 3.7.1.2 shows the results obtained from applying Algorithm 2.4.1 using 

N = 100 bootstrap samples, for each of the nineteen copula models considered.  According to 

Proposition 2.4.3, an approximate p-value can be estimated, to test the null hypothesis that the 

data conforms to the chosen copula (see Equation (2.26)). 

 
Table 3.7.1.1 p-values of Rank-Based Test Statistic – Clayton, Gumbel, Gaussian, t3 

 Clayton Gumbel Gaussian t3 

p-value 0.00 0.00 0.01 0.02 
 

Adopting the conventional level of significance of 5%, the null hypothesis that the equity returns 

conform to the chosen copula model is rejected when the calculated p-value is less than 5%.  

From Table 3.7.1.1, all the copula models considered – Clayton, Gumbel, Gaussian and t3 

copula – have p-values smaller than the level of significance of 5%.  The filtered equity log-

returns distribution cannot be modeled adequately with any of these four copula models. 

 

In addition, although physical inspection of the data to be modeled (see Figure 3.7.1.1) illustrates 

that Canadian and US equity prices do experience concurrent extreme drop in prices, this 

dependency is not as strong as that exhibited by currency depreciations (see Figure 3.5.1).  For 

currency data, the p-values indicate that the t5 copula performs better than the t3 copula in 

US Equity εt 
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modeling the dependency between the US and Canadian currency returns (see Section 3.6).  

Since the equity data exhibits a weaker tail dependency than the currency data, it is unlikely that 

an individuated t copula with lower degrees of freedom (v1) equal to three will be suitable in 

modeling the dependency of equity returns.  Thus, individuated t copulas with v1 = 3 have been 

omitted from the analysis.  The p-values approximated according to Proposition 2.4.3, and 

assuming that the data conforms to the individuated t copula (see Equation (2.26)) with v1 greater 

than three, are shown in Table 3.7.1.2. 

 
Table 3.7.1.2 p-values of Rank-Based Test Statistic – Individuated t Copula 

1v \ 2v  4 5 6 7 8 

4 0.03 0.03 0.03 0.03 0.03 

5  0.03 0.03 0.03 0.03 

6   0.03 0.03 0.03 

7    0.03 0.03 

8     0.03 

 

From Table 3.7.1.2, all the p-values are lower than the level of significance of 5%.  This suggests 

that that none of the copulas considered are suitable in modeling the US-Canadian equity return 

dependency. 

 

As evidenced by the rejection of the Gaussian copula (Table 3.7.1.1 shows that the p-value is 

only 1%) which assumes tail independence, tail dependency exists for equity returns.  However, 

the dependency exhibited by equity returns is not as strong as that for currency returns which can 

be adequately modeled using a Student’s t model with degrees of freedom v = 5. 

 

An observation of the p-values in Table 3.7.1.2 is that the p-values are not increased when the 

more flexible individuated t copula is used in place of the symmetric Student’s t copula in 

modeling the tail dependency of equity returns.  Consider the case where 41 =v .  The p-values 

of the t4,4, t4,5, t4,6, t4,7 and t4,8 models are all the same at 3%.  Whilst these models allow for 

identical lower tail dependency so that concurrent drops in US and Canadian equity prices are 

modeled identically, the upper tail dependency is modeled differently.  The t4,4 model assumes 
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that a concurrent rise in US and Canadian equity prices occur on a much more frequent basis 

than that assumed in the t4,8 model.  In the t4,4 model, a concurrent drop or rise in US and 

Canadian equity prices is modeled identically.  The identical p-values obtained for the t4,4, t4,5, 

t4,6, t4,7 and t4,8 models imply that the added flexibility of stronger lower tail dependency 

(negative xy-axis) than upper tail dependency (positive xy-axis) did not add much value in the 

modeling. 

 

Whilst it is not feasible to try each and every possible combination, the strength of the tail 

dependencies between currencies compared to equity returns loosely supports the view that the 

currency market is less developed as an asset class compared to the equity market.  The equity 

market is well known to be efficient in the weak form, and its prices incorporate all past 

information.  As such, past patterns should not lead to exploitable opportunities for investors.  

This means that a historically strong equity tail dependency (if present) will easily have been 

spotted by investors, all of whose attempts in exploiting the definable pattern will alter the 

dependency structure such that the pattern becomes less recognizable and not easily modeled. 

 

In addition, the results for the dependency between daily stock returns are consistent with a 

previous study by Goorbergh (2004).  Goorbergh (2004) modeled the tail dependency between 

daily stock returns for the period from 3 August 1990 to 10 March 2004.  Equity returns in 

international markets – US (S&P 500 index), the UK (FTSE 100 index) and France (CAC 40 

index) are used.  Goorbergh used copulas to model the dependency between three pairs of returns: 

US and the UK; US and France; the UK and France.  The copula family attaining the highest 

likelihood is selected as the best model.  It was found that a symmetric copula model is favored 

for the dependency structure for all the pairs of data considered.  In particular, the Student’s t 

copula gave the best description of the tail dependency for each pair of market indices under 

consideration.  For the US-UK pair and the US-France, the Student’s t copula with 11 degrees of 

freedom is optimum; for the UK-France pair, the Student’s t copula with 7 degrees of freedom is 

found to be optimum. 
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3.7.2 Variability of Kendall’s τ 

 

To fit any Archimedean copula to the bivariate random variables X1 and X2, Kendall’s τ (Nelsen, 

1999) has to be estimated between the two variables by Proposition 2.1.  As such, if Kendall’s τ 

varies depending on the time period of the dataset, there is a possibility that the Student’s t 

copula may not be the optimal choice. 

 

Using the daily log-returns (filtered) of the Canadian Dollar and the US Dollar, a plot of 

Kendall’s τ for 50, 100 and 250 consecutive observations is shown in Figures 3.7.2.1 to 3.7.2.3.  

It can be seen that Kendall’s τ seems to be decreasing in recent years.  In addition, it appears to 

fluctuate widely. 

 

Consider Figure 3.7.2.1.  The x-axis represents the 3,854 filtered currency log-return data.  Using 

the first 50 observations, Kendall’s τ is computed using Proposition 2.1.  The second set of 50 

observations, from observation 51 to 100 are then used and a second value of Kendall’s τ is 

obtained using Proposition 2.1.  This goes on for the remaining observations and the graph of 

Kendall’s τ is then plotted. 

 

For Figure 3.7.2.2, instead of using 50 observations, data of 100 observations are used. 

 

Figure 3.7.2.3 plots the value of Kendall’s τ obtained using Proposition 2.1, for samples of 250 

observations. 

 

Comparing Figure 3.7.2.1 to 3.7.2.3, it can be seen that the fluctuation in Kendall’s τ is reduced.  

This is to be expected since there are fewer values of Kendall’s τ calculated going from Figure 

3.7.2.1 to 3.7.2.3. 
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Figure 3.7.2.1: Kendall’s τ, 50 Consecutive Observations 

 
 

Figure 3.7.2.2: Kendall’s τ, 100 Consecutive Observations 
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Figure 3.7.2.3: Kendall’s τ, 250 Consecutive Observations 

 
Whilst it is not possible to conduct an out-of-sample test to further investigate whether the choice 

of copula will be affected by the variability of Kendall’s τ, the result of this study is in line with 

a previous study by Breymann, Dias and Embrechts (2003).  These authors found that the 

dependency structure of the bivariate deseasonalized daily log-returns of the USD/JPY versus the 

USD/DEM from February 1986 to June 2001 is best described by a Student’s t copula with 

degrees of freedom around 5.  Although the currencies and the time period of the sample are 

different from what was used in this thesis, it appears that the dependency structures are similar.  

The practical relevance of this is that dependency between pairs of currency is likely adequately 

described by a Student’s t copula with degrees of freedom around 5. 

 

More importantly, whether the data can be fitted using copula depends on whether or not it 

passes the Ljung-Box test described in Section 3.4.  At least 10 years of data are required for the 

non-violation of the independence property.  As such, the volatility of Kendall’s τ over short 

intervals of time is not of a concern. 
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3.8 Discussion 

 

The goodness-of-fit test results listed in Section 3.6 indicate that a Student’s t copula is superior 

to other copulas in modeling the dependency between US Dollar and Canadian Dollar returns.  In 

other words, tail dependency is likely to exist for this pair of currencies and the dependency 

tends to be symmetric. 

 

In addition, the Student’s t copula with degrees of freedom of five is found to perform the best 

compared to other degrees of freedom.  The result indicates that the tail dependency is quite 

strong, since five degrees of freedom is indicative of a strong tail dependency.  Note that when 

the degrees of freedom approach to infinity, the Student’s t copula converges to the Gaussian 

copula which does not have tail dependency. 

 

An organization exposed to exchange rate movements in the US and Canadian Dollars will need 

to monitor and manage the exchange rate risks carefully.  The currency prices of US and Canada 

have historically responded in a similar manner during market downturns (as well as upturns).  

Since the currency movements are similar, the impact of holding one currency is not offset by 

the impact of holding the other; there is little support for diversification.  Diversification is a 

positive property of a risk portfolio, as it may allow greater risk to be taken on than would have 

been deemed acceptable if the diversification was not recognized. 

 

Previous studies document that asset returns demonstrate more prominent co-movements during 

market downturns.  Yet, the goodness-of-fit test results indicate that symmetric modeling is not 

inappropriate for currency returns.  One significant reason is that the currency market has less 

end-users aiming to make money from currency compared to, say equity.  Hence, regardless of 

whether the currency market is high or low, the actions of these non-profit end-users will 

possibly offset the activities of the active currency trader to some extent.  Equity investors, on 

the other hand, will tend to react similarly during a market crash resulting in stronger lower tail 

dependency for equity returns. 
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One would expect that more investor-efficient markets exhibit lower dependency as investment 

managers work to take advantage of such anomalies.  In an investor-efficient market, anomalies 

that exist would be arbitraged excluding transaction costs, and the opportunity disappears 

quickly.  As such, definable or strong patterns (eg dependency), will be exploited to the 

advantage of investors.  When sufficient investors exploit this dependency, the pattern will be 

less defined and thus weaker.  Equity, arguably one of the most tradable asset classes, is used as 

an illustration of a more investor-efficient market compared to the foreign exchange market. 

 

There is some evidence that currency affects the dependency of other assets.  Bartram, Taylor 

and Wang (2007) found that the introduction of the Euro (around the beginning of 1998 when 

Euro membership was determined and announced) increased market dependency for large equity 

markets such as in France, Germany, Italy, the Netherlands and Spain.  As such, future research 

could investigate the dependencies between the various classes of assets over time. 
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Chapter 4 
Value at Risk 
4. Value at Risk 

4.1 Overview of Value at Risk 

 

The most well known risk measure is the Value at Risk (VaR).  It is defined as the maximum 

loss which may be incurred by a portfolio, at a given time horizon and at a given level of 

confidence α.  In general, α is between 0.95 and 0.99 depending on the time horizon and the 

application.  A general definition of VaR is that it is the smallest loss, in absolute value, such that 

 

      P(Loss > VaR) ≤ 1 – α 

 

For example, if the level of confidence is 99% and the VaR is $5 million, the chance of the 

organization making a loss of more than $5 million is less than 1% or P(Loss > $5mil) ≤ 1%). 

 

A comprehensive review of VaR can be found in Jorion (2007). 

 

There are two definitions of VaR: relative VaR and absolute VaR. 

 

Definition 4.1.1  Let V0 denote the current market value of the portfolio and let VT be the market 

value of the portfolio at the end of the time horizon T.  Suppose that R is the actual return over 

the time horizon T, and that µ is the expected return (i.e. µ = E(R)).  Let R* denote the return 

corresponding to the worst case loss (i.e., R* is negative) at the α% confidence level.  If the 

portfolio value, V*, at the end of the time horizon T is 

 

V* = V0(1 + R*)     (4.1) 
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then, the relative VaR, defined as the dollar loss relative to the mean on the time horizon T, is 

 

Relative VaRT,α = E(VT) – V* = V0(1 + µ) – V0(1 + R*) = V0(µ – R*)  (4.2) 

 

Using the variables are the same as in Definition 4.1.1, the absolute VaR is defined in the 

following definition. 

 

Definition 4.1.2  The absolute VaR, defined as the dollar loss relative to zero or without 

reference to the expected value, is 

 

Absolute VaRT,α = V0 – V* = V0 –V0(1 + R*) = –V0R*    (4.3) 

 

VaR is recognized by both official bodies (e.g. regulators) and private sector groups as an 

important market risk measurement tool.  The VaR risk measure has been adopted by the Basel 

Committee on Banking Supervision (http://www.bis.org/about/factbcbs.htm) for assessing the 

capital adequacy requirements for banks and is also a commonly used risk measure for setting 

risk limits in banks.  The regulator sets the time horizon to 10 days for any position in the trading 

book.  In insurance, the probability of ruin has been a concept that actuaries and regulators have 

studied and this is equivalent to the VaR risk measure (Wu and Sherris, 2006). 

 

While VaR is one of the main risk measurement methods used by practitioners to calculate the 

capital requirements of a risk portfolio, this risk measure is not without its limitations.  Artzner 

(1999) and Danielsson, Embrechts, Goodhart, Keating, Muennich, Renault and Hyun (2001) 

provided a discussion of these weaknesses. 

 

The arguments against VaR can be divided into the following categories: assumption of 

elliptically distributed returns, point estimate of the loss distribution, and mismatch between 

regulatory risk and systemic risk. 

 

The normal distribution is a special case of elliptical distributions.  Among the weaknesses listed, 

Danielsson, Embrechts, Goodhart, Keating, Muennich, Renault and Hyun (2001) commented 

http://www.bis.org/about/factbcbs.htm�
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that VaR is a misleading risk measure when the returns are not normally distributed.  According 

to these authors, existing databases show that the distribution of credit, market and operational 

risks are heavily-tailed, so that estimates beyond VaR become crucial. 

 

Moreover, VaR does not measure the distribution or extent of risk in the tail.  A significant 

drawback of VaR and related risk-measuring methodologies, as emphasized by Danielsson (2000) 

and Embrechts, McNeil and Straumann (1999), is that it provides a point estimate of the loss 

distribution, usually at 1% quantile.  Such a simple VaR estimate does not provide any useful 

information on the shape of the loss function in the tail – the information that is particularly 

important when the risk distribution is characterized by non-normal tails. 

 

Danielsson, Embrechts, Goodhart, Keating, Muennich, Renault and Hyun (2001) also argued that 

the use of VaR or similar risk-modeling techniques may not be justified in times of crisis.  

Indeed, in times of crisis, homogeneity among market participants can have damaging effects.  

The process that drives the underlying data will have undergone a structural break at the onset of 

a crisis – it will no longer be governed by the behavior of heterogeneous, rather by that of 

relatively homogenous, market players.  Following this argument, data immediately preceding 

the onset of a crisis become useless for the purpose of estimating risk. 

 

Furthermore, these authors also documented that VaR regulation can destabilize an economy and 

induce crashes when they would not otherwise occur.  When prices fall, banks must sell risky 

assets to fulfill their binding regulatory constraints.  In the absence of regulation, less risk-averse 

banks would be able and willing to provide liquidity by buying these assets.  In a regulated 

economy, however, regulatory constraints restrict their ability to do so.  Eventually, markets for 

such assets break down.  Such a breakdown would not have had occurred if VaR regulation were 

absent.  The authors suggested that such an argument is not against regulation per se, but rather 

against the use of VaR or of similar approaches to measuring risk for regulatory purposes. 

 

In their response to Basel II (i.e., the second of the Basel Accords which are recommendations 

on banking laws and regulations issued by the Basel Committee on Banking Supervision – an 

institution created by the central bank governors of the Group of 10 nations: Belgium, Canada, 
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France, Germany, Italy, Japan, Netherlands, Sweden, United Kingdom and United States), 

Danielsson, Embrechts, Goodhart, Keating, Muennich, Renault and Hyun (2001) critiqued that 

regulators require banks to hold capital against an event that occurs on average once every 

hundred days or roughly 2.5 times a year.  Regulatory capital is held to prevent systemic failures 

– which are extremely rare events that certainly do not occur with an expected frequency of 2.5 

times a year.  As a result, there exists a considerable mismatch between regulatory intention and 

regulatory prescription or, between regulatory risk and systemic risk. 

 

Despite its weaknesses, VaR continues to be the most commonly used method for assessing risk 

capital and has become a standard measure used in determining economic capital. 

 

In addition, this section shows that some of the weaknesses of VaR can be addressed.  In 

response to the drawback of VaR as a misleading risk measure when the returns are not normally 

distributed, copula functions are used instead.  The VaR figure obtained using copulas is shown 

to be adequate when backtested using historical real data.  Backtesting is a formal statistical 

process to compare actual portfolio return to the VaR predicted. 

 

In addition, since the VaR figure derived adequately protects the company even in periods of 

crisis, it is argued that information on the shape of the loss function in the tail is not required to 

protect the financial institutions from insolvency.  The ‘mismatch’ between regulatory risk and 

systemic risk is likewise addressed. 

 

As for the argument that VaR regulation can destabilize an economy and induce crashes when 

they would not otherwise occur, it is essential that regulators ensure that companies have 

sufficient capital as events are uncertain.  Ultimately, the confidence is the building block of the 

financial system and what drives investment.  It is certainly better to err on the safe side. 

 

 

 



 

89 
 

4.2 Computing Value at Risk 

 

To calculate VaR, it is necessary to generate the forward distribution of the portfolio values at 

the risk horizon or equivalently, the distribution of the changes in the value of the portfolio.  

Only after this is done can the mean and the quantiles of the distribution be calculated (Crouhy, 

Galai, Mark, 2000).  There are two approaches to deriving this distribution: parametric and 

nonparametric. 

 

4.2.1 Parametric Value at Risk 

 

The VaR computation is simple if the distribution can be assumed to belong to a parametric 

family, such as the normal distribution.  This approach is ‘parametric’ as it involves estimation 

of parameters, such as the standard deviation instead of just reading the quantile off the empirical 

distribution.  Historical data are used to estimate the parameters of the assumed distribution. 

 

As can be seen from the following definition, the VaR figure can be derived directly from the 

portfolio standard deviation using a multiplicative factor that depends on the confidence level. 

 

Definition 4.2.1  Consider return R and assume that it follows a normal distribution with mean µ 

and standard deviation σ.  Then, for a given level of confidence α = 99%, the cut-off return R* is 

given by 

 

( )
*

P( *) 1 0.01
R

R R f R dR α
−∞

< = = − =∫      (4.4) 

 

On the basis of Definition 4.2.1, the following proposition, Proposition 4.2.1, can be easily 

obtained. 
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Proposition 4.2.1  The cut-off return R* is given by 

 

( )1* 1R µ σ α−= + Φ −        (4.5) 

 

where 1−Φ  is the inverse of the cumulative distribution function of the standard normal 

distribution. 

 

Proposition 4.2.2  The relative VaR and absolute VaR are, respectively, given by 

 

   Relative VaRT,α = ( )1
0 1V σ α−− Φ −       (4.6) 

and 

   Absolute VaRT,α = ( )1
0 1V µ σ α− − + Φ −        (4.7) 

 

Whilst the parametric approach is simple and convenient, there remains the concern on whether 

the distribution of the return assumed is realistic.  If the distribution assumed is vastly different 

from the return to be modeled, it will result in a sorely misleading VaR. 

 

4.2.2 Nonparametric Value at Risk 

 

This is the most general method of calculating VaR.  This approach makes no assumption about 

the shape of the distribution of return. 

 

Nonparametric VaR is derived from a distribution that is constructed using historical data.  

Unlike the parametric approach, the calculation does not involve estimating the parameters of a 

theoretical distribution.  No assumption is made about the distribution of the return.  The first 

percentile of the distribution is such that only 1% of the return lies on its left-hand side. 

 

For this approach, simulation is often used.  The changes that have been seen in historical market 

prices are analyzed over a specified historical period.  Subsequently, the portfolio under 

examination is revalued to create the distribution of the portfolio return from which the VaR of 
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the portfolio can be derived.  Each daily simulated change in the portfolio is considered as an 

observation in the distribution.  The following algorithm illustrates this. 

 

Algorithm 4.2.2  Obtaining the nonparametric VaR: 

(i) Using 100,000 pairs of simulated bivariate sample of a chosen copula type (eg for the 

Clayton copula, the simulated data were generated using Algorithm 2.3.1), re-express the 

data in terms of its raw log-return (rather than filtered) using the historical observation 

data parameters (i.e., parameters obtained in Equations (3.1) to (3.4)). 

(ii) Calculate the total portfolio return by assuming fixed holdings of each asset class (eg for 

exchange rate data, total portfolio return could be calculated as 50% of log-return of US 

Dollar plus 50% of log-return of Canadian Dollar if equal holdings of each currency is 

assumed).   

(iii) Order the log-returns obtained in Step (ii) from smallest to largest.  For the 1st percentile, 

the VaR is the 1,000th ordered return, R*. 

 
Table 4.2.1: Obtaining the 10th Percentile Nonparametric VaR 

US Dollar Return (%) Canadian Dollar Return (%) Portfolio Return (%) Ordered Return (%) 

10.0 6.0 8.0 -9.0 

8.0 8.0 8.0 -3.0 

6.0 8.0 7.0 -2.0 

5.0 5.0 5.0 -1.0 

5.0 7.0 6.0 1.0 

-2.0 -4.0 -3.0 5.0 

-8.0 -10.0 -9.0 6.0 

-4.0 2.0 -1.0 7.0 

-1.0 3.0 1.0 8.0 

-2.0 -2.0 -2.0 8.0 

 

As an illustration of Algorithm 4.2.2, consider the case where ten pairs of returns from holding 

the US Dollar and Canadian Dollar are provided (see Table 4.2.1).  If equal amounts are invested 

in each of the currencies, the total portfolio return is calculated as the average of the US Dollar 

return and the Canadian Dollar return.  The last column of Table 4.2.1 shows the ordered 
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portfolio return, from smallest to largest.  For the 10th percentile nonparametric VaR, it is the 

first ordered return from the sample of ten (i.e., R* = -9.0%). 

 

A variety of scenarios for the portfolio value on the target date are simulated.  These scenarios 

can be generated in a random fashion (Monto Carlo simulation), or from historical data 

(historical simulation), or in other systematic ways.  The portfolio VaR can then be read off 

directly from the distribution of simulated portfolio values. 

 

Due to their flexibility, the simulation methods are more powerful approaches to VaR.  They can 

potentially account for a wide range of risks including price risk, volatility risk and complex 

interactions such as those described by copulas (Jorion, 2007). 
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4.3 Time Adjustment 

 

The Basel Committee (http://www.bis.org/about/factbcbs.htm) imposes a 99% confidence level 

over a 10-business day horizon.  A 10-day period is chosen presumably because it reflects the 

tradeoff between the costs of frequent monitoring and the benefits of early detection of potential 

problems (Jorion, 2007).  Based on this definition, a loss worse than the VaR estimate will occur 

about 1% of the time on average.  It is unthinkable for regulators to allow major banks to fail so 

often – as such, the multiplicative factor 10  applied to the calculated VaR should provide a 

much better insurance against bankruptcy. 

 

With independently and identically distributed returns, variances are additive over time.  This 

implies that volatility grows with the square root of time.  To see this, consider the movement of 

an asset on two consecutive trading days t1 and t2.  The standard deviation of the movement of 

the asset over the two-day period is given by 

 

   
212121

222
tttttt σρσσσσ ++=+      (4.8) 

 

where ρ is the correlation between the returns on t1 and t2, and 
1t

σ  and 
2t

σ  are the standard 

deviation of the movement of the asset on t1 and t2 respectively. 

 

If the volatility is assumed to be constant over time (i.e., 22
21 tt σσ = ) and ρ = 0 (since returns are 

assumed to be independent), Equation (4.8) reduces to 

 

   ( )
1111121

20222
ttttttt σσσσσσ =++=+     (4.9) 

 

http://www.bis.org/about/factbcbs.htm�
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If the above logic is extended to n days which all have the same volatility and zero cross-

correlations, the general result is that the standard deviation over n days is n  times the standard 

deviation of one day 

 

    1σσ nn =        (4.10) 

 

where 1σ  is the standard deviation of one day. 

 

Time, however, is measured in terms of trading days (the time span that a particular exchange is 

open; trading never takes place on weekends) instead of calendar days.  This is so because, 

empirically, volatility arises more uniformly over trading days (Fama, 1965; French, 1980). 

 

Fama (1965) and French (1980) show that the variance of stock returns over the weekend 

(Saturday to Sunday) is basically similar to the variance over trading days (eg Monday to Friday).  

The interpretation is that not much new information is generated during the weekend (Jorion 

2007).  As such, the adjustment for time is expressed in terms of the square root of the number of 

trading days.  In other words, if n is the number of trading days, the adjustment for time is n . 
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4.4 Assessing Value at Risk 

 

Understanding the extent to which dependency should be allowed for in assessing risk and in 

determining economic capital with measures such as VaR is clearly important in the risk and 

prudential capital management of insurers and banks.  In order to assess the impact of different 

copulas and marginal distributions, this section uses an experimental simulation study approach 

to assess VaR. 

 

The 3,854 daily log-returns Rt introduced in Section 3.4 and defined by Equation (3.1) are used 

in the calculation of the nonparametric VaR.  In the calculation of the portfolio return, a portfolio 

consisting of equal holdings (measured in Deutsche Mark) in the US Dollar and the Canadian 

Dollar is assumed.  Then, nonparametric VaRs, which are calculated by applying Algorithm 

4.2.2 under dependency assumption of the (filtered) log-returns of the US Dollar and the 

Canadian Dollar, can be appropriately modeled by the following copulas: 

(i) Clayton 

(ii) Gumbel 

(iii) Gaussian 

(iv) Student’s t copula with 3 degrees of freedom 

(v) Student’s t copula with 4 degrees of freedom 

(vi) Student’s t copula with 5 degrees of freedom 

(vii) Student’s t copula with 6 degrees of freedom 

(viii) Student’s t copula with 7 degrees of freedom 

(ix) Student’s t copula with 8 degrees of freedom 

(x) Individuated t copula with lower degrees of freedom 3 and upper degrees of freedom 4 

(xi) Individuated t copula with lower degrees of freedom 3 and upper degrees of freedom 5 

(xii) Individuated t copula with lower degrees of freedom 3 and upper degrees of freedom 6 

(xiii) Individuated t copula with lower degrees of freedom 3 and upper degrees of freedom 7 

(xiv) Individuated t copula with lower degrees of freedom 3 and upper degrees of freedom 8 

(xv) Individuated t copula with lower degrees of freedom 4 and upper degrees of freedom 5 

(xvi) Individuated t copula with lower degrees of freedom 4 and upper degrees of freedom 6 

(xvii) Individuated t copula with lower degrees of freedom 4 and upper degrees of freedom 7 
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(xviii) Individuated t copula with lower degrees of freedom 4 and upper degrees of freedom 8 

(xix) Individuated t copula with lower degrees of freedom 5 and upper degrees of freedom 6 

(xx) Individuated t copula with lower degrees of freedom 5 and upper degrees of freedom 7 

(xxi) Individuated t copula with lower degrees of freedom 5 and upper degrees of freedom 8 

(xxii) Individuated t copula with lower degrees of freedom 6 and upper degrees of freedom 7 

(xxiii) Individuated t copula with lower degrees of freedom 6 and upper degrees of freedom 8 

(xxiv) Individuated t copula with lower degrees of freedom 7 and upper degrees of freedom 8 

(xxv) Multivariate normal 

 

Apart from the multivariate normal and multivariate t cases, the computation of the one-step-

ahead VaR is not straightforward when using copulas with different marginal distributions, since 

there are no analytical and easy-to-use formulae to switch from the conditional means and 

volatilities to the VaR of the portfolio. 

 

As such, the VaR will be computed using a historical simulation as detailed by Algorithm 4.2.2, 

the approach widely used in quantitative finance and VaR applications (Jorion, 2007; Giot and 

Lauren, 2003; Bauwens and Laurent, 2005).  In addition, Giot and Laurent (2003) showed that a 

choice of 100,000 simulations provide accurate estimates of the quantile.  The 100,000 

simulations are sorted in an increasing order, and the 99% VaR is taken as the 1,000th ordered 

return.  This approach is adopted by this thesis. 

 

This section aims to throw light on the following: 

• Do copula models offer a significant improvement over classical correlation-based VaR 

models? 

• The sensitivity of VaR estimates to the choice of copula. 

• The optimal time adjustment factor required for currency portfolios. 
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4.5 Backtesting Value at Risk 

 

To judge the effectiveness of a VaR model, it is common to use backtesting.  Backtesting is a 

formal statistical framework that consists of verifying that actual losses are in line with projected 

losses.  This involves systematically comparing the actual results to those generated with the 

VaR model.  The backtesting procedure serves to evaluate the quality of the forecast of the 

model.  Backtesting is also central to the Basel Committee’s ground-breaking decision in 1988 to 

allow internal VaR models for capital requirements (http://www.bis.org/publ/bcbsca03.pdf). 

 

When conducting backtesting, a shorter time horizon is preferable.  Longer time horizons reduce 

the number of independent observations and thus the power of the tests: a 2-week horizon means 

that there are only 26 independent observations per year while a 1-day VaR horizon, in contrast, 

will have about 252 observations over the same year.  While the Basel Committee requires the 

use of 99% confidence level and 10-day holding period for official reporting and capital 

adequacy purposes (http://www.bis.org/publ/bcbs148.pdf), the Basel Committee performs 

backtesting over a 1-day horizon. 

 

As such, the backtest of the copula models are implemented on a 1-day horizon based on a time 

series ranging from January 1994 to December 2008 (i.e., 3,854 filtered log-return data 

introduced in Section 3.4 were considered and compared to the VaR return estimate).  The 

backtest is conducted using the following algorithm. 

 

Algorithm 4.5.1  Obtaining the nonparametric VaR: 

(i) Using 100,000 pairs of simulated bivariate sample of a chosen copula type (eg for the 

Clayton copula, the simulated data were generated using Algorithm 2.3.1), re-express the 

data in terms of raw log-returns (rather than filtered) using the historical observation data 

parameters (i.e., parameters obtained in Equations (3.1) to (3.4)). 

(ii) Calculate the total portfolio return by assuming equal holdings of US Dollar and 

Canadian Dollar. 

(iii) Order the log-returns obtained in Step (ii) from the smallest to the largest.  The VaR R* is 

the 1,000th ordered return; this corresponds to 99% confidence level. 

http://www.bis.org/publ/bcbsca03.pdf�
http://www.bis.org/publ/bcbs148.pdf�
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(iv) Compare the actual next day return of the portfolio with the VaR return estimate for each 

day in the time series; if the actual return is lower than the VaR return estimate, it is 

counted as an outlier, otherwise it is not. 

 
Table 4.5.1: Results of Backtest 

Assumed Model 
Number of times loss exceeded 

VaR out of 3,854 observations 
VaR Return Estimate, R* 

Clayton 9 -0.01825725 

Gumbel 18 -0.01612770 

Gaussian 11 -0.01734237 

t3 10 -0.01763795 

t4 10 -0.01757362 

t5 10 -0.01760413 

t6 11 -0.01750633 

t7 11 -0.01746072 

t8 11 -0.01746600 

t3,4 17 -0.01662452 

t3,5 19 -0.01605480 

t3,6 22 -0.01571421 

t3,7 25 -0.01545307 

t3,8 26 -0.01529347 

t4,5 15 -0.01689787 

t4,6 17 -0.01648955 

t4,7 18 -0.01614287 

t4,8 20 -0.01591859 

t5,6 12 -0.01702922 

t5,7 17 -0.01666046 

t5,8 17 -0.01644118 

t6,7 12 -0.01714088 

t6,8 15 -0.01684992 

t7,8 12 -0.01721213 

Multivariate Normal 32 -0.01467241 
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Table 4.5.1 lists the results of the backtest for the 25 scenarios considered. 

 

Consider the results when the dependency is assumed to take the form of the Clayton copula.  

The VaR return estimate, R* (see Table 4.5.1) is –1.826%.  Comparing R* to the actual next day 

return of the portfolio (calculated as 50% of the return of US Dollar and 50% of the Canadian 

Dollar), only 9 actual daily portfolio returns register a return smaller than that of R*.  Looking at 

the results when the dependency is assumed to be multivariate normal, the VaR return estimate, 

R*, is –1.467%.  Since the actual next day return of the portfolio is fixed and known (as 

historical data is used), a more optimistic R* estimate assumed under the assumption of the 

multivariate normal dependency when compared with a lower R* under the assumption of 

Clayton dependency (–1.826%) means that more outliers are expected under the assumption of 

multivariate normal.  As expected, the number of daily actual portfolio returns that fall below –

1.467% is a high 32. 

 

An outlier count of 32 means that the actual daily log-return fell below the VaR return estimated 

for 32 times out of the 3,854 days of the data.  From the point of view of management, the one-

percentile VaR represents the return that the portfolio will fall below only 1% of the time.  In 

other words, management is 99% confident that the portfolio value will not drop below the VaR 

return estimate R*.  Whilst an outlier of 32 out of 3,854 represents a ‘failure rate’ of only 0.83% 

which is well within the 1% threshold, an outlier of one is one too many, especially for 

organizations such as banks where the consequences to the society due to its failure are 

enormous and wide-reaching. 

 

The VaR return estimate (R*) obtained under the assumption of multivariate normal is most 

optimistic at –1.467% while the Clayton copula delivers the most conservative VaR return 

estimate at –1.826%.  As shown in Figure 3.5.2, bivariate data under the Clayton copula exhibits 

strong lower tail dependency.  Using R* as a rough guide to the strength dependency, it appears 

that the tail dependency of the Clayton copula is stronger than that assumed under the Student’s t 

copula with degrees of freedom at 3 (see Figure 3.5.5) since the R* obtained under the t3 model 

is –1.764%. 
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4.6 Discussion 

 

The goodness-of-fit tests in Chapter 3 indicate that the Student’s t copula with degrees of 

freedom 5 performs the best for modeling the US-Canadian currency pair. 

 

Compared to the classical correlation-based VaR, the Student’s t copula with 5 degrees of 

freedom (t5 model) has one-third the failure rate (see Table 4.5.1).  In addition, the symmetric 

Student’s t copula has a smaller failure rate than the more complicated individuated t copula.  

The empirical forward forecasting result indicates that the Student’s t copula protects the 

company by being more conservative than what the data reveals, and effectively increases the 

confidence level to be higher than 99%, compared to both the Gaussian copula and the Gumbel 

copula. 

 

The failure rate – the probability that actual losses exceed VaR – is the lowest for the Clayton 

copula, but this difference is not significant, especially when the multiplier is considered.  Of 

these nine outliers (see Table 4.5.1 for the number of times the loss exceeded the VaR estimate), 

five occurred during 1995 on examination of the data – probably brought about by the 1995 

financial crisis in Japan, one was the result of the 1997 Asian Financial Crisis, while the 

remaining three happened in year 2000, 2002 and 2008. 

 

For frequently traded assets and illiquid assets, Khindanova and Rachev (2000) suggested that 

the 10-day holding period was inadequate in the calculation of the VaR.  Since currency falls 

under the category of ‘frequently traded asset’, multipliers were applied to the 1-day VaR to 

determine if a suitable multiplier exists. 

 

It is found that a multiplier of two – corresponding to 99% confidence level and 4-day holding 

period – will result in a zero failure rate regardless of the copula assumed in modeling the 

dependency between US and Canadian Dollars.  This means that by applying a multiplicative 

factor of 4 (as discussed in Section 4.3) to the calculated VaR, there will be no outliers at all, 

regardless of the dependency structure assumed in the modeling of the joint dependency for the 

US and Canadian Dollars.  As this backtest period – January 1994 to December 2008 – 
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witnessed the occurrence of several financial market crises, including the most current global 

financial crisis in 2007, the conclusion is especially strong. 

 

The discussion here suggests that the choice of copula model will affect the failure rates of 

institutions and regulators should thus take note of the appropriateness of the assumed 

dependency between risks.  However, for currency risks, applying a multiplier of 4  renders the 

appropriateness of the assumed dependency irrelevant. 

 

Stress testing was not conducted as it was not applicable to the portfolio of currencies whose 

valuation is not explicitly linked to varying interest rates. 
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Chapter 5 
Foreign Exchange Market: 
Growth & Development 
5. Foreign Exchange Market: Growth & Development 

5.1 Overview of the Foreign Exchange Market 

 

The foreign exchange market is well known to be the largest financial market in the world, as 

measured by daily turnover.  The BIS Triennial Central Bank Survey (1998) estimated that the 

daily turnover in global foreign exchange markets in 1995 was US$1.1 trillion.  The most recent 

Bank of International Settlements Triennial Survey (BIS, 2007) estimates that the total turnover 

in global foreign exchange markets is US$3.2 trillion a day – more than 6 times larger than 

trading in US Treasury bonds and 30 times larger than trading on the New York Stock Exchange 

(SIFMA 2007, NYSEData.com 2007). 

 

By most estimates, the trading volume in the foreign exchange market is continuing to grow 

rapidly.  For instance, the Tower Group (http://www.towergroup.com/research/home/index.htm) 

estimated that daily global trading volumes would likely reach US$5 trillion by 2010 (Profit & 

Loss Magazine 2007).  Should this happen, the foreign exchange trading volume will have more 

than tripled in this decade. 

 

What may be less apparent is how quickly this market has grown over the past few years and 

why it is growing so quickly (Barker, 2007).  In particular, what is behind the growth of the 

foreign exchange trading volume? 

 

One popular belief is that, over the last decade, the notion of currency as an asset class has 

gained a wider following.  Investment consultants have promoted currency products as a 

http://www.towergroup.com/research/home/index.htm�
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potential source of alpha (i.e., the return in excess of the compensation for the risk borne).  This 

is reflected by the growth in the number of professionally managed currency funds being offered 

in the market.  For instance, the number of funds in the Barclay Currency Trader Index 

(http://www.barclaygrp.com/indices/cta/sub/curr.html) has grown from 44 in 1993 to 119 in 

2010.  More are jumping on the bandwagon, and even UK fund manager Schroders 

(http://www.schroders.com/global/home/) launched its first currency fund in June 2009 (Reuters, 

2009).  Schroders is one of the UK’s largest asset managers, with 103 billion pounds in assets 

under management as of 31 March 2009. 

 

According to Christopher Wyke (Reuters, 2009), the product manager at Schroders, the currency 

investment team aims to exploit anticipated spike in volatility as ‘currency volatility is set to 

increase’ and ‘many investors are holding record amounts on deposit’ which pays very low 

interest rates.  Moreover, by holding money in a single currency, investors are ‘eroding their 

global purchasing power’. 

 

Institutional investors such as pension funds are showing more interest in investing in currency 

as a standalone asset class due to perceived diversification benefits and a relatively strong 

historical showing (Reuters, 2009). 

 

As reported in Reuters (2009), the more than 200 currency funds grouped in the Lipper UK 

Offshore-Currency benchmarks (http://www.lipperweb.com) delivered aggregate returns of 

15.6% over the last 12 months and almost 28% over the last 3 years.  That compares with an 

aggregate 12 month fall of 40.71% in funds in Lipper’s global equity benchmark, and a fall of 

32% over 3 years. 

 

The phenomenal trading volume and growth of the foreign exchange market, coupled with the 

attractiveness of historical currency returns raises some crucial questions.  Will the foreign 

exchange market replace the equity market as the prime investment asset class in time to come?  

More importantly, can the massive increase in the volume of foreign exchange trading be 

accounted for by the speculative activity of investors hoping to earn short-term profits from 

fluctuations in exchange rates?  The answers to these questions will have important implications 

http://www.barclaygrp.com/indices/cta/sub/curr.html�
http://www.schroders.com/global/home/�
http://www.lipperweb.com/�
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for fund managers, academics, regulators, central banks as well as those who conduct business 

globally. 

 

Fund managers will need to develop the skills necessary for currency investment, as different 

asset classes are driven by different dynamics.  Academics – whose focus has always been on 

equity, in line with the interests of the real world – will have to devote their efforts to 

investigating the mechanics and anomalies of the foreign exchange markets.  Regulators will 

have to develop new risk management tools to ensure the financial soundness of firms exposed 

to currency risk.  Governments will have to ensure that domestic policies are sound, and the 

fundamentals of the country are strong, to prevent speculative attacks on their currency. 

If indeed the massive increase in the volume of foreign exchange trading is caused by the 

speculative activity of investors hoping to earn short-term profits from fluctuations in exchange 

rates, there is real cause for concern, particularly for central banks. 

 

The speculative demand for money is extremely difficult for a central bank to accommodate, and 

there is a real risk that currency speculation can undermine real economic growth.  Large 

currency speculators may deliberately create downward pressure on a currency in order to force 

the central bank to buy their currency to keep it stable.  When the central bank is no longer able 

to support the currency’s price, the currency devalues (for fixed exchange rate currencies) or 

depreciates (for floating exchange rate currencies).  The speculator can then buy the currency 

back from the bank at a lower price, close out their position, and thereby take a profit. 

 

As for those who conduct business globally, a huge percentage of speculators in the currency 

market may result in increased volatility in global currencies and thus, a highly unstable bottom 

line for companies. 

 

This chapter aims to provide some insight into the reasons behind the apparent massive growth 

in trading volume of foreign exchange, and investigate if currency is indeed increasingly viewed 

as an alternative asset. 
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5.2 Attractiveness of Currency as an Asset Class 

 

As mentioned earlier, apart from the increased exposure to foreign currencies via increased 

diversification or international investment, there is a growing awareness of the attractiveness and 

importance of foreign exchange as an asset class, as compared to the traditional asset classes of 

equity, debt and property. 

 

This section provides a discussion on the attributes of currency that contributes to higher 

turnover in the foreign exchange market.  A discussion on the limitations of foreign exchange is 

also provided. 

 

5.2.1 Appeal of Currency as an Asset Class 

 

Foreign exchange has many appeals as an asset class.  Some of its appeals include: 

• Extremely low transaction cost and transparent pricing 

• Wide range of end-users 

• Opportunity to ‘bet’ on a country’s economic status 

• Extremely liquid market with minimal regulation 

• Good portfolio diversification 

• Impossibility of ‘crash’ 

• Volatile prices 

• Ability for investors to profit in the short-term 

 

Extremely low transaction cost and transparent pricing.  According to Barker (2007), 

technological innovations in the mid-1990s resulted in electronic trading platforms which 

dramatically reduced trading costs and created new opportunities for a broad range of market 

participants.  The electronic aggregation of a multitude of worldwide orders, transparency in 

pricing and heightened competition has also contributed to tighter bid/offer spreads. 

 

Wide range of end-users.  While the participants in most other investment markets are all 

professional investors or investment managers, all looking to out-perform the market as a whole, 
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the currency market is used by a wide range of people with different motives.  Some end-users of 

the market are not aiming to make money from currency, but are trading as a knock-on effect of 

another activity.  The fact that some participants cannot avoid trading makes it possible for 

currency managers – who are trading only for profit, and can choose whether and what to trade – 

to be on the positive side of the zero, while leaving other market users with the negative. 

 

Opportunity to bet on a country’s economic status.  There is no better available medium than 

currency to fully reap the benefits of betting on a country’s economic status. 

 

Extremely liquid market with minimal regulation.  As the foreign currency market is the largest 

and deepest market, a substantial amount of money will not affect the market to the same extent 

that it could affect the equity and bond markets.  Informed trades can be executed with ease and 

without fear of leakage of information to other traders which diminishes anticipated returns.  In 

addition, to obtain huge absolute returns on investments, investors have to invest a huge amount 

of money in the right investment choice.  With currencies, cash-rich investors can choose to 

invest substantial amounts of their wealth without fear of violating any rules or regulations which 

are especially relevant in equity investments. 

 

Good portfolio diversification.  Currencies also offer good portfolio diversification opportunities.  

Campbell, Medeiros and Viceira (2010) studied the correlations of foreign exchange rates with 

stock and bond returns over the period 1975 to 2005 and found that international equity investors 

can minimize their equity risks by taking short positions in the Australian and Canadian Dollars, 

Japanese Yen and British pound, and long positions in the US Dollar, Euro and Swiss Franc.  For 

global bond investors, most currency excess returns (i.e., returns above the riskfree rate) – the 

exception is the US Dollar which registers a weak negative correlation – are almost uncorrelated 

with bond excess returns, regardless of the investors’ home country and regardless of whether 

they hold only domestic bonds or an international bond portfolio. 

 

Impossibility of ‘crash’.  It is not possible for the currency market to suffer a ‘crash’ through 

which the wealth of all market participants dwindles (Panholzer, 2004).  In the currency market, 

each loss is matched by an equivalent gain of the counterparty.  While it is theoretically possible 
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for stocks, bonds and commodities to fall in price all at the same time, it is not possible for all 

currencies to fall at the same time, because the values of currencies are expressed in terms of 

other currencies.  If one declines, another must rise to make up the difference. 

 

Volatile prices.  Price volatility creates opportunities for excess returns.  The huge turnover in 

the foreign exchange market, attributed in part to the low transaction costs, contributes greatly to 

the volatility of the foreign exchange market.  Exchange rates respond directly to all sorts of 

events, both tangible and psychological.  Some of these events listed in the Federal Reserve 

Bank of New York website (http://www.newyorkfed.org/index.html) include business cycles, 

balance of payment statistics, political developments, new tax laws, stock market news, 

inflationary expectations, international investment patterns, government and central bank 

policies, among others. 

 

Ability for investors to profit in the short-term.  This is consistent with the short-term investment 

horizon of majority of investors.  Investing in foreign exchange is unlike investing in equities.  

The latter is not meant to produce large returns over short periods of time, since buying a share 

of a company represents buying a share in the business.  Yet, it is well known that investor’s 

investment horizons for equities are usually around three years.  A recent study by Mercer (2010) 

which examined the investment horizon of active equity managers across different geographies 

and styles found that nearly two-thirds of strategies have turnover higher than expected.  In their 

defence, equity managers argue that short-termism is caused by the tendency of retail investors 

to be overly concerned about short-term performance.  As such, foreign exchange ought to be the 

‘optimal’ investment class for the majority of investors. 

 

5.2.2 Limitations of Currency as an Asset Class 

 

Despite its many attractions, investors have hitherto been cautious about treating foreign 

exchange as an asset class.  One such reason offered by Campbell, Medeiros and Viceira (2010), 

suggested that investors appear reluctant to hold foreign currency directly in practice, perhaps 

because they see currency as an investment with high volatility and low average return. 

 

http://www.newyorkfed.org/index.html�
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Foreign exchange is highly volatile and is definitely not the right investment class for the faint-

hearted.  Yet, it is precisely this volatility that enables excess and possibly phenomenal returns to 

be earned.  In addition, the low average return registered historically is estimated using a buy-

and-hold strategy and not via active management which has recently caught on this decade. 

 

Yet, there are good reasons why foreign exchange is limiting as an asset class. 

 

Unlike other financial assets where inclusion of more assets result in increased diversification, 

currencies other than the major traded currencies are often considered as mere satellites that are 

too correlated to provide suitable diversification (Panholzer, 2004).  The BIS Triennial Central 

Bank Survey (1998, 2007) listed the top seven traded currencies from 1992 to 2007 as 

consistently being the US Dollar, the Euro (prior to its adoption in 1999, it was the Deutsche 

Mark that was the second most traded currency), the Japanese Yen, the Pound Sterling, the Swiss 

Franc, the Australian Dollar and the Canadian Dollar.  Compared to the million of choices of 

equities and bonds around, the foreign exchange market is indeed limited in its choices. 

 

Furthermore, even if investors view a particular economy as ‘positive’, it is not possible to 

directly invest in the currency of the economy and hope to earn phenomenal rewards.  This is 

because currency investment requires investing in a pair of currencies.  Not only does the 

investor have to identify which economy will be ‘positive’, the investor will also have to identify 

the economy that will best amplify the reward with the least risk.  Assuming most investors will 

only choose pairs of currency out of the top seven traded currencies, this means that investors 

have 21 pairs of currency to trade with.  Clearly, the number of choices is insignificant when 

compared to the equity and bond markets. 

 

The relative popularity of equity investment versus currency investment is also reflected in the 

research on predictability of asset returns – research in strategies earning excess returns in the 

equity market far outweigh the research in the foreign exchange market.  Of course, a 

contributing factor is that the foreign exchange prices are affected by many more factors than 

equity prices and thus its prices may be more difficult to predict leading to less published 
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strategies.  It is however not unfair to suggest that investors will only turn to currency when the 

prospects of returns from equity investment is low or too risky. 

 

Such a phenomenon already exists between the two traditional asset class of equity and debt.  In 

times of economic distress, investors are often observed to rebalance their portfolios towards less 

risky and more liquid securities, especially in fixed-income markets.  This phenomenon is 

commonly referred to as a flight-to-quality and a flight-to-liquidity respectively (Beber, Brandt 

and Kavajecz, 2009). 

 

Buying equities is akin to having a share in the business.  Investing in bonds promises the 

investor fixed coupons plus return of the par value.  Foreign exchange investment, however, is a 

whole new ballgame altogether.  It is difficult to convince an investor that the act of swopping 

currencies from time to time is not mere speculation.  Educating investors on thinking of 

currency as ‘assets’ may take some time, and especially so since there is little documented track 

record. 
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5.3 The Curious Case of Currency 

 

One of the great puzzles of finance is the sheer volume of trading, which seems far in excess of 

what could reasonably be anticipated based on the arrival of new information (Roll, Schwartz 

and Subrahmanyam, 2010). 

 

Evans and Lyons (2008) find that macro news triggers trading that reveals dispersed information, 

which in turn affects currency prices.  These authors consider the full set of Reuters Money 

Market Headline News that is observed on news screens by market participants.  The news set 

includes the scheduled announcements concerning macroeconomic variables as well as 

unscheduled news that account for the majority of items appearing on news screens each day.  

Their results indicate that the arrival of macro news can account for more than 30% of daily 

variance.  This is already more than three times the explanatory power found in previous studies, 

making their study the most successful thus far. 

 

Whilst researchers have tried to explain the changes in currency prices, relatively little is known 

about the factors driving the growth in trading volume of the foreign exchange market.  To the 

best of our knowledge, this is the first attempt that examines and endeavors to explain the factors 

behind the massive volume of currency traded.  With the trading volume in the foreign exchange 

market expected to continue its rapid growth in the near future, knowledge of the factors driving 

the growth of the foreign exchange trading volume will provide insight on the future 

development and efficiency of the market. 

 

This section examines the time-series properties and the determinants of the foreign exchange 

trading volume using a comprehensive cross-section and time-series of data on equities and 

foreign exchange. 

 

5.3.1 Extent of Speculation in the Foreign Exchange Market 

 

The Federal Reserve Bank of New York (http://www.newyorkfed.org/index.html) identified four 

types of market participants in the foreign exchange market: 

http://www.newyorkfed.org/index.html�
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(I) Banks and other financial institutions.  These institutions are the biggest participants, and 

they earn profits by buying and selling currencies from and to each other.  The Federal 

Reserve Bank of New York estimates that approximately two-thirds of all foreign 

exchange transactions involve banks dealing directly with each other. 

(II) Brokers.  Brokers act as intermediaries between banks, and earn profit by charging a 

commission on the transactions they arrange. 

(III) Customers.  Customers comprise mainly of large companies who require foreign 

currency in the course of doing business or making investments.  Other types of 

customers are individuals who buy foreign exchange to travel abroad or make purchases 

in foreign countries. 

(IV) Central banks.  Central banks act on behalf of their governments, and sometimes 

participate in the foreign exchange market to influence the value of their currencies. 

 

Whilst it is not possible to estimate the value of trading activity of financial institutions and 

brokers in the foreign exchange markets, some light can be thrown on the extent of their activity. 

 
Table 5.3.1: Annual Foreign Exchange, Volume of World Trade, Foreign Reserves Data 

 1995 1998 2001 2004 2007 

US$ in millions 

Foreign Exchange (FX) 434,350,000 543,850,000 438,000,000 695,400,000 1,171,650,000 

Merchandise Exports 5,164,000 5,501,000 6,191,000 9,219,000 13,993,000 

Commercial Services 1,172,400 1,340,700 1,484,900 2,220,400 3,381,200 

Official Reserves (Res) 1,389,801 1,643,803 2,049,580 3,748,358 6,682,461 

 

Table 5.3.1 shows the annual foreign exchange trading, global trade in merchandise exports and 

commercial services as well as the world’s official foreign reserves for the years in which the 

BIS Triennial Surveys (http://www.bis.org/publ/rpfxf07t.htm) were carried out.  Annual global 

trade data (i.e. sum of merchandise exports and commercial services) was obtained from the 

World Trade Organization website (http://www.wto.org/), while official foreign reserves were 

obtained from the International Monetary Fund website (http://www.imf.org/external/index.htm).  

From the table, it can be seen that the value of foreign exchange traded has almost tripled from 

http://www.bis.org/publ/rpfxf07t.htm�
http://www.wto.org/�
http://www.imf.org/external/index.htm�
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434 trillion USD in 1995 to 1,172 trillion USD in 2007.  However, at the same time, annual 

global world trade data has also almost tripled from 6 trillion USD to 17 trillion USD. 

 

Apart from global trade, the level of official reserves also impacts the volume of foreign 

exchange trading.  Central banks hold foreign currency deposits to enable their participation in 

the foreign exchange market to influence the value of their currencies, if and only if, the need 

arises.  As such, it can be argued that a measure of the extent of ‘trading activity’ in the foreign 

exchange market is the ratio of foreign exchange traded net of official reserves to the volume of 

world trade: 

        

 Foreign Exchange Traded Official ReservesExtent of Trading Activity = 
World Trade

−   (5.1) 

 
Table 5.3.2: Extent of Trading Activity 
 1995 1998 2001 2004 2007 

FX Res
Trade
−  68 79 57 60 67 

 

 

As can be seen from Table 5.3.2, the extent of ‘trading activity’ was especially high in 1998 at 

79, but dropped to a much lower level, 57 in 2001.  The following section provides some insight 

into the reasons for such a pattern of trading volume. 

 

5.3.2 Factors Affecting the Trading Volumes of the Market 

 

To explain the trading volume of foreign exchange between a selected currency pair, all 

variables for which there is available data and which could possibly explain the cross section of 

trading volume are used.  These independent variables include: difference in the target for 

overnight rates declared by the relevant central banks, intraday volatility of the volume of 

currency pair bought and sold, volume of equity traded in the relevant countries, tourist figures 

between the countries as well as imports and exports.  Justifications for each of these variables 

are provided below. 



 

113 
 

Target for overnight rate.  There is endless literature suggesting that interest rates affect currency 

prices.  The literature on the forward premium puzzle (Fama, 1984; Hodrick, 1987; Engel, 1996) 

shows that currencies with high short-term interest rates deliver high returns on average.  The 

currency carry trade, which exploits this phenomenon by holding high-rate currencies and 

shorting low-rate currencies, was extremely profitable from 1975 till 2008 (Campbell, Medeiros 

and Viceira, 2010).  If trading volume increases when the interest rate differential between the 

pair of currencies increases, it will mean that currency is indeed viewed as an alternative asset as 

investors aim to make the best return out of their money without purchase of any capital assets. 

 

Intraday volatility of the volume of currency pair.  Volatility in the volume of trades – both buy 

and sell – is an indication of many different parties trading in a particular day.  This variable 

takes into account macro news and other major events which impacts uncertainty of the economy 

involved and which triggers trading of the pair of currencies.  As different parties react 

differently to the news, it gives rise to an increase in volatility in the volume of trades made.  

Including this variable in the regression effectively takes into account the effect of all news – 

political, macro and micro – that might have an impact on the exchange rates of the currency pair. 

 

Volume of equity traded.  When a country’s capital assets such as equities suddenly find favor 

from the rest of the world, they indirectly affect trading and pricing in the foreign exchange 

market as dealmakers first have to buy the country’s currency before they can buy the stock.  The 

same can be said when the situation is reversed.  Volatility of market cap, or even market cap 

itself, of the major equity indices of the pair of countries is likely correlated as widely 

documented in the finance literature.  Hence, to overcome this issue, the volume of equity traded 

is used instead.  Such a variable provides a good measure of activity in the equity indices.  A 

positive significance will mean that equity turnover is in line with currency turnover, supporting 

the explanation that currency traded is a by-product of investment in the equity market. 

 

Tourist figures.  Travelers going on holidays or on business trips will need to change their local 

currency for the destination country’s currency.  It is likely that tourists will carry out their 

transactions in the spot market rather than using the forwards or swaps that large organizations 

are likely to use. 
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Imports and exports.  Trade between the countries will impact trading of the currency pair as 

goods are sold and bought in the respective currencies.  Whilst significance of this variable to 

spot market trades will mean that trade does affect the volume of currency traded, the sign of the 

regression variable is difficult to interpret since swaps and the business practices of organizations 

in payment do complicate analysis. 

 

In addition to the above variables, four dummy (or indicator) variables are included, two for each 

country.  The two dummy variables are the ‘meeting’ and the ‘rate change’ dummy variables.  

The ‘meeting’ dummy variable takes a value of 1.0 on the day that the central bank announces 

their decision on the target for overnight rate, and also three days before and after that date.  The 

idea is to ascertain whether in the three days before the meeting announcement, (including the 

announcement day) there is additional informed currency trading volume.  In addition, following 

the announcement, trading volume is likely to be impacted depending on whether the 

announcement is anticipated.  As for the ‘rate change’ variable, it takes a value of 1.0 on the day 

of the announcement if indeed there is a rate change to the target for overnight rate; otherwise, it 

takes a value of 0. 
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5.4 Data & Methodology 

 

The currency pair chosen is the USD/JPY, as it is the pair of currencies most traded after 

USD/Euro.  However, unlike the Euro which was introduced only in this decade, data for 

USD/JPY has been available since 1998.  The currency order flow and price data are drawn from 

time-stamped, tick-by-tick transactions in the USD/JPY spot market over two one-year periods 

of 1998 and 2008. 

 

The transactions are from ICAP EBS (http://www.icap.com/markets/electronic-markets/ebs.aspx) 

which carries most of the interbank trading volume in the Euro, Yen and Swiss Franc; over 90% 

of the world’s bilateral transactions between USD/JPY take place through the system.  ICAP is 

the world’s premier interdealer broker and provider of post trade risk and information services 

(http://www.icap.com/).  The award-winning EBS platform, owned by ICAP, provides efficient 

and fair access to global markets for more than 2,900 spot foreign exchange in over 50 countries 

around the world.  The EBS system delivers anonymous, transparent, reliable and highly liquid 

trading opportunities, as well as authoritative real-time and historical market data.  EBS provides 

24-hour access to unparalleled liquidity and depth and supports a wide range of forex trading 

strategies. 

 

Excluding weekends and bank holidays, there are 250 full trading days in the 1998 sample and 

251 full trading days in the 2008 sample.  Intraday volatility of the volume of USD/JPY bought 

and sold is calculated from this database. 

 

The target for overnight rate for 1998 and 2008 is obtained from Bloomberg 

(http://www.bloomberg.com), and tallied with the respective central bank’s website information 

(listed below).  The meeting and announcement dates are also obtained from the websites of the 

respective central banks: 

• US Federal Reserve (http://www.federalreserve.gov/monetarypolicy/fomccalendars.htm) 

• Bank of Japan (http://www.boj.or.jp/en/theme/seisaku/kettei/index.htm) 

 

http://www.icap.com/markets/electronic-markets/ebs.aspx�
http://www.icap.com/�
http://www.bloomberg.com/�
http://www.federalreserve.gov/monetarypolicy/fomccalendars.htm�
http://www.boj.or.jp/en/theme/seisaku/kettei/index.htm�
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The volume of equity traded is downloaded from Datastream (http://thomsonreuters.com).  

Datastream provides the daily volume of trades from selected equity indices.  Stock market 

indices may be classed in many ways.  A global stock market index includes (typically large) 

companies without regard for where they are domiciled or traded, for instance the S&P Global 

100 (http://www.standardandpoors.com/indices/main/en/us).  A national index represents the 

performance of the stock market of a given nation – and by proxy, reflects investor sentiment on 

the state of its economy.  For instance, the US S&P500 is a national index composed of the 

stocks of large companies listed on the US’s largest stock exchanges 

(http://www.standardandpoors.com/indices/main/en/us).  Each index comprises selected equities; 

the total volume of equity traded belonging to companies that are part of the index are totaled by 

Datastream, and this total volume represents the volume of equity traded by the index.  For this 

exercise, the equity indices used to represent the equity turnover in the respective countries are 

the S&P500 Index for US and the Topix Index for Japan, the latter of which is available from the 

Tokyo Stock Exchange website (http://www.tse.or.jp/english/). 

 

Tourist figures are obtained from the Office of Travel & Tourism Industries, OTTI (for 2008 

data, see http://tinet.ita.doc.gov/view/m-2008-I-001/table5.html) and Japan Tourism Marketing 

Company (http://www.tourism.jp/english/statistics/inbound.php).  Trade figures between US and 

Japan are obtained from the US Census Bureau website (http://www.census.gov/foreign-

trade/balance/c5880.html#2008).  As only monthly data are available for both tourist and trade 

figures, the particular month’s data is divided by the number of trading days in that month to 

arrive at a ‘daily’ figure. 

 

Multiple linear regression is used to model the linear relationship between the dependent variable 

(i.e., trading volume of foreign exchange between a selected currency pair) and the independent 

variables (i.e., variables which could possibly explain the cross section of trading volume).   

 

A general regression equation with k variables is given by 

 

      0 ,
1

k

t i t i t
i

Y Xβ β ε
=

= + +∑       (5.2) 

http://thomsonreuters.com/�
http://www.standardandpoors.com/indices/main/en/us�
http://www.standardandpoors.com/indices/main/en/us�
http://www.tse.or.jp/english/�
http://tinet.ita.doc.gov/view/m-2008-I-001/table5.html�
http://www.tourism.jp/english/statistics/inbound.php�
http://www.census.gov/foreign-trade/balance/c5880.html#2008�
http://www.census.gov/foreign-trade/balance/c5880.html#2008�


 

117 
 

where 

• Yt: value of the dependent variable at time t 

• Xt,i: value of the ith independent variable at time t 

• β0: regression constant 

• βi: regression coefficient of the ith independent variable 

• εt: error term of regression 

 

In the linear regression, 0 1, ,..., nβ β β are the unknown parameters to be estimated in the least 

squares sense.  The best ‘fit’ definition in the least squares method minimizes the sum of all the 

squared differences between observed values and the fitted values provided by the model given 

by 

 

      0 ,
1

ˆ
k

t i t i
i

Y b b X
=

= +∑       (5.3) 

where 

• tŶ : predicted value of the dependent variable at time t 

• Xt,i: value of the ith independent variable at time t 

• b0: estimated regression constant 

• bi: estimated regression coefficient of the ith independent variable 

 

The error term in Equation (5.2) is unknown because the true model is unknown.  Once the 

model has been estimated, the regression residuals are defined as: 

 

      ˆ
t̂ t tY Yε = −        (5.4) 

 

where 

• Yt:  observed value of dependent variable at time t 

• t̂Y : predicted value of dependent variable at time t 
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The residuals measure the closeness of fit of the predicted values and the actual value the 

dependent variable takes in the calibration period.  The least squares method yields parameter 

estimates such that the sum of squares of the regression residuals given by Equation (5.4) is 

minimized (i.e., minimize 2
t̂

t

ε∑ ). 

 

To determine which of the discussed factors are significant in explaining the amount of currency 

pair traded, a linear regression equation with the following 13 variables is run 

 

      
13

0 ,
1

t i t i t
i

Y Xβ β ε
=

= + +∑       (5.5) 

where 

• Yt:  volume of USD/JPY traded (in millions of Yen) in day t 

• Xt,1: intraday volatility of the pair of currency bought in day t 

• Xt,2: intraday volatility of the pair of currency sold in day t 

• Xt,3: rate change dummy of country 1 in day t 

• Xt,4: country 1 central bank meeting dummy variable in day t 

• Xt,5: rate change dummy of country 2 in day t 

• Xt,6: country 2 central bank meeting dummy variable in day t 

• Xt,7: interest rate differential between the two countries (in percentage) in day t 

• Xt,8: volume of country 1’s equity traded in day t 

• Xt,9: volume of country 2’s equity traded in day t 

• Xt,10: number of tourists to country 1 from country 2 in day t 

• Xt,11: number of tourists to country 2 from country 1 in day t 

• Xt,12: exports from country 1 to country 2 (USD) in day t 

• Xt,13: imports from country 2 to country 1 (USD) in day t 

• εi: error term of regression 

 

Daily amounts of USD/JPY traded (Y) are regressed against the following 13 variables: 

• X1, intraday volatility of USD bought 

• X2, intraday volatility of USD sold 
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• X3, rate change dummy of US such that: 

 3
1 on announcement date, if there is a change in target rate
0 otherwise                                                                          

X


= 


 

• X4, US central bank meeting dummy variable such that: 

4
1 on announcement date, and 3 days prior to and after announcement date
0 otherwise                                                                                                   

X


= 


 

• X5, rate change dummy of JPY 

5
1 on announcement date, if there is a change in target rate
0 otherwise                                                                          

X


= 


 

• X6, Japan central bank meeting dummy variable 

6
1 on announcement date, and 3 days prior to and after announcement date
0 otherwise                                                                                                   

X


= 


 

• X7, difference between target interest rates of US and Japan 

• X8, volume of US equity traded 

• X9, volume of Japanese equity traded 

• X10, number of Japanese visitors to US 

• X11, number of US visitors to Japan 

• X12, US exports to Japan 

• X13, US imports from Japan 

 

As an illustration, consider the 2008 data.  Snippets of the data are listed in the following tables, 

Tables 5.4.1 and 5.4.2: 
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Table 5.4.1: Extract of 2008 Data Part I 

Date 

Y, Amount of 

USD/JPY traded 

(in millions of 

JPY) 

X1, Intraday 

Volatility of USD 

bought (in 

millions) 

X1, Intraday 

Volatility of USD 

sold (in millions) 

X3, rate change 

dummy of US 

Jan 2, 2008 4,250,310 2.969 3.732 0 

Jan 3, 1008 5,618,270 2.973 3.639 0 

: : : : : 

Dec 31, 1008 727,755 2.769 1.695 0 

 

From Table 5.4.1, on 2 January 2008, 4.25 trillion Yen worth of USD/JPY changed hands.  On 

the same day, the intraday volatility in terms of trade size for transactions buying USD was 3.0 

million, while the intraday volatility of trade size for transactions selling USD was higher at 3.7 

million.  Intraday volatility of trade size can mean that there was either a greater difference in 

opinions amongst traders regarding the value of the currency in the future (which is why they 

decided to buy or sell at varying amounts), or a greater diversity of traders carrying out their 

trades, or both.  The rate change dummy of US takes a value of zero, meaning that the US 

Federal Reserve did not announce a rate change on 2 January 2008. 

 
Table 5.4.2: Extract of 2008 Data Part II 

Date 

X7, difference 

between target 

interest (in %) 

X8, volume of US 

equity traded 

X10, number of 

Japanese visitors 

to US 

X13, US imports 

from Japan (USD) 

Jan 2, 2008 3.75 2,920,857 12,952 557,571,429 

Jan 3, 1008 3.75 2,737,131 12,952 557,571,429 

: : : : : 

Dec 31, 1008 0.15 2,876,313 11,394 445,636,364 

 

From Table 5.4.2, it can be seen that the difference in the target interest rates between the US 

Federal Reserve and the Bank of Japan was 3.75% on 2 January 2008.  On that same day, 2.9 

million shares belonging to the S&P500 Index for US changed hands.  The number of Japanese 
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visitors averaged 12,952 daily in the month of January, while the US imports from Japan 

averaged 557 million USD in value. 

 

Each of the 251 data points or daily observations ,1 ,2 ,13, , ,...,t t t tY X X X  as shown in Equation (5.3) 

for the year 2008 is input into the statistical software SPSS (http://www.spss.com/) developed by 

IBM, and the least squares method returns the regression coefficients (i.e., 0 1 13, ,...,b b b ) of the 

model: 

 

      
13

0 ,
1

t̂ i t i
i

Y b b X
=

= +∑       (5.6) 

 

where Ŷ  is the predicted amount of USD/JPY traded in millions of JPY and 0 1 13, ,...,b b b  are the 

regression coefficients determined according to the least squares principle. 

http://www.spss.com/�
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5.4.1 Summary Statistics of 1998 Data 

 

In 1998, there are 20 meetings held by the central bank of Japan, while the US central bank only 

had 10 meetings.  Of the 20 meetings held by the central bank of Japan, only 1 meeting 

announcement registered a change in the target for overnight rate.  The US central banks 

announced 3 rate changes in 1998. 

 

Table 5.4.1.1 lists the mean, median and standard deviation of the quantitative variables used in 

the analysis of the volume of currency traded. 

 
Table 5.4.1.1: Summary Statistics of 1998 Data  

 

Y: Amount of 

USD/JPY 

traded (in 

millions of 

JPY) 

X1: Intraday 

volatility of 

USD bought 

(in millions) 

X2: Intraday 

volatility of 

USD sold (in 

millions) 

X7: Difference 

between target 

rates of US and 

Japan (in %) 

X8: Volume 

of US 

Equity 

traded 

X9: Volume 

of Japanese 

Equity traded 

Mean 3,520,000 2.585 2.527 4.930 567,000 417,000 

Median 3,470,000 2.553 2.472 5.000 540,000 396,000 

Sigma 1,370,000 0.413 0.422 0.188 136,000 179,000 

 

From Table 5.4.1.1, it can be observed that on average, the daily amount of USD/JPY traded in 

1998 is worth 3.52 trillion JPY.  The median amount (i.e., 3.47 trillion JPY) is close to the mean 

amount, indicating that extreme data is probably absent in the sample.  Nevertheless, the 

standard deviation of the daily amounts traded (i.e., 1.37 trillion JPY) is rather large, at one-third 

the mean amount of trades.  As mentioned earlier, this could be a result of either a greater 

difference in opinions amongst traders regarding the value of the currency in the future (which is 

why they decided to buy or sell at varying amounts), or a greater diversity of traders carrying out 

their trades, or both. 

 

The mean intraday volatility for trades purchasing USD (i.e., 2.59 million) is slightly higher than 

for trades selling USD (i.e., 2.53 million).  Since the intraday volatility measures the volatility in 
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the number of trades, this means that the size of USD purchased differs more than those trades 

that sold USD. 

 

The US target rate is higher than Japan target rate by approximately 5% per annum on average.  

One attraction of a huge difference in target rates between the two countries is that traders could 

borrow from the country with a lower target interest rate, and invest in the country with a higher 

target interest rate.  All other things being equal, this could yield a profitable return to the 

investor.  A trader using this strategy, referred to as a ‘currency carry trade’, attempts to capture 

the difference between the rates, which can often be substantial, depending on the amount of 

leverage used. 

 

As an example of a ‘yen carry trade’, consider a trader who borrows 1000 JPY from a Japanese 

bank.  This trader converts the funds into USD and buys a bond for the equivalent amount.  If we 

assume that the bond pays 4.5% and the Japanese interest rate is 0.5%, the trader stands to make 

a profit of 4% as long as the exchange rate between the countries does not change. 

 

A larger volume of trades take place on the national stock exchange in US (i.e., 567,000) than in 

Japan (i.e., 417,000), although the variation in trades is larger in Japan.  In Japan, it can be seen 

that the median (i.e., 396,000) is rather different from the mean (i.e., 417,000), which gives the 

indication that extreme values in terms of trade size took place.  In addition, the standard 

deviation figure for the Japanese stock exchange (i.e., 179,000) also confirms this.  The standard 

deviation of the volume of Japanese equity traded is much higher than compared to the US (i.e., 

136,000). 

 

The monthly travel and trade figures are provided in Table 5.4.1.2.  From Table 5.4.1.2, there 

appears to be no clear pattern in the tourism data, although for the trade data, US exports to 

Japan appears to decline while US imports from Japan seems to increase.  US exports to Japan 

dropped from 5.2 million USD in January to 4.7 million USD in December, while the US 

imports from Japan increased from 9.4 million USD to 10.5 million USD over the same period. 
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Table 5.4.1.2: Summary Statistics of 1998 Tourism and Trade Data 

 X10: Japanese 

Visitors to US 

X11: US Visitors to 

Japan 

X12: US Exports to 

Japan (USD) 

X13: US Imports 

from Japan (USD) 

January 391,437 48,625 5,161,000 9,426,000 

February 416,117 46,476 4,636,000 9,910,000 

March 449,134 56,318 5,228,000 10,986,000 

April 348,392 57,658 4,869,000 10,327,000 

May 397,712 59,532 4,753,000 9,655,000 

June 390,216 60,778 4,756,000 9,971,000 

July 445,937 60,997 4,968,000 10,210,000 

August 493,996 53,210 4,770,000 9,890,000 

September 457,306 50,358 4,572,000 9,736,000 

October 355,838 69,884 4,965,000 10,924,000 

November 356,337 54,904 4,499,000 10,334,000 

December 382,947 47,960 4,656,000 10,476,000 

 

5.4.2 Summary Statistics of 2008 Data 

 

In 2008, there are 18 meetings held by the central bank of Japan, while the US central bank had 

14 meetings.  Of the 18 meetings held by the central bank of Japan, only 2 meeting 

announcements registered a change in the target for overnight rate.  The US central banks 

announced 7 rate changes in 2008.  The information is listed in the banks’ respective websites. 

 

Table 5.4.2.1 lists the mean, median and standard deviation of the quantitative variables used in 

the analysis of the volume of currency traded. 
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Table 5.4.2.1: Summary Statistics of 2008 Data 

 

Y: Amount of 

USD/JPY 

traded (in 

millions of 

JPY) 

X1: Intraday 

volatility of 

USD bought 

(in millions) 

X2: Intraday 

volatility of 

USD sold (in 

millions) 

X7: Difference 

between target 

rates of US and 

Japan (in %) 

X8: Volume 

of US 

Equity 

traded 

X9: Volume 

of Japanese 

Equity traded 

Mean 4,630,000 3.056 2.974 1.621 4,100,000 1,955,000 

Median 4,596,000 3.084 2.987 1.500 3,841,000 2,026,000 

Standard 

deviation 
1,562,000 0.667 0.594 0.793 1,221,000 628,000 

 

Looking at the 2008 data, the mean daily amount of USD/JPY traded in 2008 is worth 4.6 trillion 

JPY. This represents more than 30% growth in USD/JPY traded compared to 1998 where the 

mean daily amount traded is 3.5 trillion JPY.  Similar to 1998, the median amount of trades for 

2008 is close to the mean amount, indicating that extreme data is probably absent in the sample.  

The standard deviation of the daily amounts traded (i.e., 1.56 trillion JPY) is similar in size to the 

1998 data, at one-third the mean amount of trades. 

 

The intraday volatility for trades purchasing USD (i.e., 3.06 million) is slightly higher than for 

trades selling USD (i.e., 2.97 million).  Since the intraday volatility measures the volatility in the 

number of trades, this means that the size of USD purchased differs more than those trades that 

sold USD. 

 

Similar to 1998, a larger volume of trades took place on the national stock exchange in US (i.e., 

4.10 million) than in Japan (i.e., 1.96 million).  However, it can be seen that the volume of trades 

in US equity has grown by more than seven times to 4,100,000 from 1998 where it only 

averaged 567,000 daily.  Trade in Japanese equity, though, has increased by less than five times 

to 1,955,000 from 417,000 in 1998.  In terms of variation in trade size, US equity experienced 

higher variation (i.e., 1,221,000) than Japanese equity (i.e., 628,000), different from 1998.  In 

addition, unlike 1998 where the median is rather different from the mean for Japanese data but 

not for US data, it is the other way around for 2008.  The 2008 data indicates that extreme values 
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in terms of trade size took place in the US equity trades (i.e., mean 4.10 million versus median 

3.84 million) but not for Japan (i.e., mean 1.96 million versus median 2.03 million). 

 

The monthly travel and trade figures for 2008 are provided in Table 5.4.2.2.  From Table 5.4.2.2, 

there appears to be no clear pattern in the tourism and trade data. 

 
Table 5.4.2.2: Summary Statistics of 2008 Tourism and Trade Data 

 X10: Japanese 

Visitors to US 

X11: US Visitors to 

Japan 

X12: US Exports to 

Japan (USD) 

X13: US Imports 

from Japan (USD) 

January 271,988 54,169 4,951,000,000 11,709,000,000 

February 275,865 49,968 5,524,000,000 12,542,000,000 

March 303,384 82,222 5,627,000,000 13,016,000,000 

April 226,591 69,186 5,431,000,000 13,045,000,000 

May 266,812 69,105 6,025,000,000 11,244,000,000 

June 266,637 76,691 5,752,000,000 12,144,000,000 

July 286,794 72,992 5,601,000,000 12,029,000,000 

August 321,429 57,121 5,908,000,000 11,137,000,000 

September 287,616 57, 851 5,434,000,000 11,008,000,000 

October 257,826 68,058 5,339,000,000 11,476,000,000 

November 233,975 56,044 5,058,000,000 10,108,000,000 

December 250,661 54,938 4,493,000,000 9,804,000,000 

 

Comparing the 1998 and 2008 figures, it can be seen that the volatility in all aspects – intraday 

and daily – have increased from 1998 to 2008.  Having said that, 2008 is a particularly volatile 

year given that the global financial crisis started to show its effects in mid-2007 and continued to 

2008.  Although Japan and US were similarly not spared the effects of the Asian Financial crisis 

which gripped much of Asia beginning in July 1997, the effects of the 2007 global financial 

crisis were of a much larger scale with US suffering the brunt of the 2007 crisis. 

 

Comparing the volume of US and Japanese equity traded in 1998 and 2008, the 2008 figures (i.e., 

4,100,000 for US and 1,955,000 for Japanese equities) registered an increase of more than seven 
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times and four times respectively since 1998 (i.e., 567,000 for US and 417,000 for Japanese 

equities).  USD/JPY daily trades increased by more than one trillion JPY for the same time 

period, from 3.5 trillion JPY in 1998 to 4.6 trillion JPY in 2008. 

 

Japanese visitors to US in 2008 (i.e., monthly average of 271,000 visitors) has dropped by one-

third on average from 1998 (i.e., monthly average of 407,000 visitors), while US visitors to 

Japan has increased by 15% in 2008 (i.e., monthly average of 64,000 visitors) compared to 1998 

(i.e., monthly average of 56,000 visitors).  From 1998, US exports to Japan has increased by 12% 

(i.e., from 57 billion USD in 1998 to 65 billion USD in 2008), but US imports from Japan has 

increased by 14% on average in 2008 (i.e., from 122 billion USD in 1998 to 139 billion USD in 

2008). 

 

In general, one would expect that increased tourism and trade increases the volume of currency 

trades in USD/JPY.  However, the analysis on the impact of these two factors on the amount of 

USD/JPY traded is complicated by the drop in Japanese visitors as well as the possibly different 

spending patterns of the tourists. 

 

The net impact of all these factors on the amount of USD/JPY traded is investigated in the 

following section. 
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5.5 Regression Results 

 

This section examines the determinants of the amount of USD/JPY trades made in 1998 and 

2008.  Separate analyses are carried out for each of 1998 and 2008 data. 

 

5.5.1 1998 Analysis 

 

The result of the cross-sectional regression of daily total amounts of USD/JPY traded to probable 

determinants, obtained by applying Equation (5.6) to the 250 data points or daily observations 

,1 ,2 ,13, , ,...,t t t tY X X X  in 1998 (described in Section 5.4), is shown in Table 5.5.1.1. 

 
Table 5.5.1.1: Regression Results for 1998 

Regression Model 
Regression 

Coefficient 

Standardized 

Coefficient 
t Significance 

X1, Intraday volatility of USD bought 874,891.869 0.264  7.131 0.000* 

X2, Intraday volatility of USD sold 1,824,625.804 0.562 15.661 0.000* 

X3, US rate change dummy 511,529.303 0.041 1.260 0.209 

X4, US meeting dummy 4,283.438 0.001 0.042 0.966 

X5, Japan rate change dummy 1,967,306.568 0.091 2.869 0.004* 

X6, Japan meeting dummy 236,751.805 0.086 2.635 0.009* 

X7, Difference between US and Japan 

target rates 
447,467.658 0.061 1.270 0.205 

X8, Volume of US equity traded 2.475 0.245 7.094 0.000* 

X9, Volume of Japan equity traded 1.038 0.135 4.088 0.000* 

X10, Japan tourists to US 65.878 0.100 2.445 0.015* 

X11, US tourists to Japan 603.471 0.131 3.152 0.002* 

X12, US exports to Japan -0.016 -0.141 -3.258 0.001* 

X13, US imports from Japan -0.001 -0.028 -0.567 0.571 
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In a multiple linear regression model as defined by Equation (5.2), the adjusted-R2, 2
aR , is given 

by 
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where n is the sample size (i.e., the number of observations in the calibration period) and Y is the 

mean of the observed data (i.e., 
1

1 n

t
t

Y Y
n =

= ∑ ). 

 
2
aR  measures the proportion of the variation in the dependent variable that is accounted for by 

the explanatory variables.  In other words, it is a measure of how good the regression model is in 

explaining the dependent variable.  If the regression is ‘perfect’, all residuals are zero (i.e., 
2ˆ 0t

t

ε =∑ ), and 2
aR  is 1.0.  If the regression is a total failure, then 

        ( )22
t̂ t

t t

Y Yε = −∑ ∑  

and 2
aR  takes a value close to zero. 

 

Using the 1998 daily data (described in Section 5.4) and the regression model defined by 

Equation (5.5), the 2
aR  is a high 76.2% and the regression is highly significant with a p-value of 

zero.  The p-value of zero for the linear regression model indicates that the linear equation 

linking the dependent variable to the 13 independent variables is valid.  Of the 13 independent 

variables used, 9 are significant at the 5% level.  This indicates that 76.2% of the variation in the 

dependent variable Y, daily total amounts of USD/JPY traded, can be explained by the linear 

relationship with the 13 independent variables.  Of these 13 independent variables, however, 

only 9 (i.e., X1, X2, X5, X6, and X8 to X12) are important in predicting the dependent variable. 

 

It can be seen from Table 5.5.1.1 that the two most important factors contributing to 1998 daily 

trades in USD/JPY traded Y, are the intraday volatility of USD sold (X2) and bought (X1) since 
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the absolute standardized coefficients for these independent variables are the highest.  As X2 and 

X1 are proxies for macro and micro news, it appears that forex trading a decade ago was triggered 

by news.  Volatile markets and changing macroeconomic conditions are a major contributor to 

intraday volatility of USD sold (X2) and bought (X1).  All things being constant, an increase in a 

unit of intraday volatility in terms of transactions buying USD results in an increase in USD/JPY 

trades worth 875 billion JPY, while an increase in a unit of intraday volatility in terms of 

transactions selling USD results in an increase in USD/JPY trades worth 875 billion JPY.  As 

volatility in trade size is a proxy for the uncertainty and market news released, the magnitude of 

the impact on USD/JPY trades appears reasonable. 

 

In addition, since the volume of US and Japanese equity traded (X8 and X9 respectively) plays a 

significant role in explaining the variation of the daily USD/JPY trades Y, equity investors’ 

actions has a pass-on effect on the foreign exchange market.  When the volume of US and 

Japanese equity traded increases, so does the amount of USD/JPY trades.  All other things being 

equal, one additional stock traded which is part of the S&P 500 index for US will result in an 

increase in USD/JPY trades worth 2.475 million JPY.  One additional stock traded which is part 

of the Topix Index for Japan will result in an increase in USD/JPY trades worth 1.038 million 

JPY.  The numbers may look huge, but it should be borne in mind that the S&P 500 index for US, 

like the Topix Index for Japan, is just a proxy for the activity of the stock market in a particular 

index while the USD/JPY trade amounts are the actual values traded for the currency pair.  As 

such, many investors could be trading at the same time in different stocks across the nation, and 

it is unlikely that investors or fund managers transact in the currency point only at the point of 

trade.  Investors wishing to transact in the particular stock market could first get the relevant 

currency while waiting for the right ‘price’ to invest in the particular stock. 

 

The Japan ‘rate change’ dummy (X5) and the Japan ‘meeting’ dummy (X6) are both very 

significant variables in explaining the variation in daily amounts of USD/JPY traded Y in 1998.  

Trades increase around (3 days before and 3 days after the announcement date) and on the 20 

announcements of the Japanese central bank’s decision with regards to the target for overnight 

rate.  When the US Federal Reserve decided on a rate change, trades around the announcement 

date increase by 512 billion JPY, while Japanese target rate changes result in an increase of 
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1,967 billion JPY.  One possible interpretation is that the US Federal Reserve rate changes were 

possibly anticipated by investors and thus its announcements did not have the impact that the 

Japanese announcements had. 

 

On the other hand, the US meetings (X4) and rate change (X3) decisions did not have an impact 

on USD/JPY trades.  This could be due to the 1997 Asian financial crisis which impacted Japan 

much more than US and increased the sensitivity of the decisions made by the central bank of 

Japan. 

 

Curiously, the difference between the target rates of the US central bank and that of the Japan 

central bank (X7) does not serve to explain the USD/JPY trades Y, although on average, there is a 

5% difference in the two rates (see Table 5.4.1.1) which allows for highly profitable carry trades. 

 

It can be concluded that the major reason for the large volume of foreign exchange trades in 

1998 can be attributed to uncertainty in the economy.  Moreover, uncertainty in the economy 

passes through to equity markets and further impacts the foreign exchange markets.  Turnover in 

the equity markets adds to trades in the USD/JPY and leads to further volatility and transactions 

in USD/JPY trades.  In 1998, the carry trade is not yet significantly ‘popular’, as evidenced by 

the insignificant X7 variable, and does not serve to explain the trading volume of USD/JPY. 
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5.5.2 2008 Analysis 

 

The result of the cross-sectional regression of daily total amounts of USD/JPY traded to probable 

determinants, obtained by applying Equation (5.6) to the 251 data points or daily observations 

,1 ,2 ,13, , ,...,t t t tY X X X  in 2008, is shown in Table 5.5.2.1. 

 
Table 5.5.2.1: Regression Results for 2008 

Regression Model 
Regression 

Coefficient 

Standardized 

Coefficient 
t Significance 

X1, Intraday volatility of USD bought 201,001.846 0.086  1.924 0.056 

X2, Intraday volatility of USD sold 994,689.069 0.378 7.533 0.000* 

X3, US rate change dummy 832,719.233 0.088 2.579 0.011* 

X4, US meeting dummy -251,444.111 -0.078 -2.015 0.045* 

X5, Japan rate change dummy -393,246.239 -0.022 -0.671 0.503 

X6, Japan meeting dummy 43,378.435 0.014 0.403 0.687 

X7, Difference between US and Japan 

target rates 
809,342.557 0.411 7.109 0.000* 

X8, Volume of US equity traded 0.612 0.478 12.186 0.000* 

X9, Volume of Japan equity traded 0.450 0.181 5.094 0.000* 

X10, Japan tourists to US -35.181 -0.031 -0.676 0.500 

X11, US tourists to Japan 588.174 0.176 3.833 0.000* 

X12, US exports to Japan 0.001 0.017 0.297 0.767 

X13, US imports from Japan -0.001 -0.032 -0.501 0.617 

 

The 2
aR  is a high 73.8% and the regression is highly significant.  Of the 13 independent variables 

used, 7 (i.e., X2, X3, X4, X7, X8, X9 and X11) are significant at 5% level.  This indicates that 73.8% 

of the variation in the dependent variable Y, daily total amounts of USD/JPY traded, can be 

explained by the linear relationship with the 13 independent variables.  Of these 13 independent 

variables, however, only 7 are important in predicting the dependent variable, compared to 9 

significant variables in the 1998 regression.  The comparison of significant variables between the 

1998 and 2008 regressions are shows in Table 5.5.2.2. 
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Table 5.5.2.2: Comparison between 1998 & 2008 Regressions 

Variables that do not 

explain the volume of 

USD/JPY traded in both 

1998 & 2008 

Variables that explain 

the volume of USD/JPY 

traded in both 1998 & 

2008 

Variables that explain 

the volume of USD/JPY 

traded in 1998 

Variables that explain 

the volume of USD/JPY 

traded in 2008 

• X13: US imports from 

Japan 

• X2: intraday volatility 

of USD sold 

• X8: volume of US 

equity traded 

• X9: volume of Japan 

equity traded 

• X11: US tourists to 

Japan 

• X1: intraday volatility 

of USD bought 

• X5: Japan rate change 

dummy 

• X6: Japan meeting 

dummy 

• X10: Japan tourists to 

US 

• X12: US exports to 

Japan 

• X3: US rate change 

dummy 

• X4: US meeting 

dummy 

• X7: difference between 

US and Japan target 

rates 

 

There appears to be a structural change in the foreign exchange market.  As reflected by the 

standardized coefficients in Table 5.5.2.1, the most important variables explaining the 2008 

USD/JPY trades Y are now the value of US equity traded (X8) and the difference (X7) between 

the US and Japanese target rates.  In 1998, although the value of US equity traded (X8) was also 

an important factor determining the amount of USD/JPY trades, it was not the top two most 

significant factors.  As for the difference (X7) between the US and Japanese target rates, it did not 

affect the amount of USD/JPY traded in 1998. 

 

Previously, volatility in USD bought (X1) is extremely significant in explaining Y, the trades in 

USD/JPY.  However, this factor is no longer true for 2008 data.  Nevertheless, trades are still 

affected by the intraday volatility in USD sold (X2).  All things being equal, an increase in one 

unit of intraday volatility in USD sold (X2) will result in 995 billion JPY worth of USD/JPY 

trades.  Such a scenario could be reflective of the view that the USD’s status as the main reserve 

currency is under challenge, so the herding effect with respect to purchasing USD is not as high 

as in 1998. 
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Unlike 1998 where the Japan ‘rate change’ and ‘meeting’ dummies were both significant, this is 

no longer true for the 2008 regression.  In fact, for 2008, the roles have reversed such that the US 

– but not Japan – ‘rate change’ and ‘meeting’ dummies are significant at the 5% level.  This 

could be due to the 2007 global crisis where US is the focal point of the crisis.  As such, any 

meeting announcements and rate changes declared by the US will highly impact the USD/JPY 

trades.  One interesting fact is that the US ‘meeting’ dummy is negative, meaning that in the days 

around and on the announcement dates, the contribution of ‘meeting’ variable to the total 

USD/JPY trades are actually smaller than on an average day.  Such a result is surprising since on 

days surrounding the announcements, there is more uncertainty and this should have resulted in 

more trades carried out as people react in anticipation of, and respond to, the announcements. 

 

According to the regression coefficient given in Table 5.5.2.1, USD/JPY trades carried out in the 

days around and on the announcement dates are 251 billion JPY less than on days away from the 

announcement dates.  A possible explanation for this is, around the US central bank’s 

announcement day of their decision on the target for overnight rate, intraday volatility of 

USD/JPY trades are higher, and this variable might have diluted most of the effects of the 

USD/JPY trades.  An investigation of the 2008 data, detailed in Table 5.5.2.3, supports this 

preliminary explanation. 

 
Table 5.5.2.3: Statistics Explaining the Negative US ‘Meeting’ Dummy 

Daily Average Meeting Dummy = 1 Meeting Dummy = 0 

Intraday volatility of USD bought 3.131 3.042 

Intraday volatility of USD sold 3.009 2.932 

Daily trades of USD/JPY (in JPY) 5,120,000 4,327,000 

Volume of US equity traded 4,614,000 3,781,000 

Volume of Japan equity traded 2,063,000 1,889,000 

 

Furthermore, in 2008, there is affirmation of currency as an alternative asset.  Trade volumes in 

USD/JPY are significant and sensitive to the difference in overnight target rates of US and Japan.  

In 1998, this variable registered no significance in explaining USD/JPY trades even though the 

‘returns’ from the difference in target rates was higher in 1998.  For 2008, the data reveals that 
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an increase in 1% in the difference in target rates between that pursued by the US and Japan 

central banks will result in an increase of 809 billion JPY worth of USD/JPY trades. 

 

The conclusion that can be drawn from the above analysis is that, in 2008, investors appear to be 

channeling funds to equity markets (especially the US) and even to foreign exchange markets in 

their search for yield.  Similar to 1998, uncertainty about the economy plays a role in foreign 

exchange trades, but this has taken a back seat (in percentage terms compared to in 1998) as 

investors clamor for yield in 2008. 
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5.6 Robustness Tests 

 

Further tests are carried out to investigate the robustness of the results as well as to delve deeper 

into the implications of the data.  Three tests are carried out: 

(i) Additional independent variables were added to the model to test the sensitivity of the 

model to changes in independent variables.  If the regression coefficients and variables 

found to be significant vary widely when additional independent variables are added to 

the model, the model and its results are questionable. 

(ii) The ‘meeting’ variables are defined in a different manner to check if there is evidence of 

informed trading before the central banks’ decisions are announced. 

(iii) Two interaction variables are added to the regression model listed in Equation (5.6), to 

investigate if it is the cause of the negative US ‘meeting’ dummy variable.  The 

interaction variables account for the interaction between the intraday volatility of USD 

bought/sold with the US meeting dummy variable.  The negative variable implies that in 

the days around and on the announcement dates, the contribution of ‘meeting’ variable to 

the total USD/JPY trades are actually smaller than on an average day.  This is an anomaly, 

since it is normal to expect that trades around and on the announcement dates should be 

higher as investors react to central banks’ decisions.  Uncertainty should result in more 

trades and not less.  A possible explanation for this anomaly given in Section 5.5.2 is that 

the intraday volatility of USD/JPY trades are higher, and this variable has explained most 

of the effects of the USD/JPY trades.  This section tests if the explanation is supported. 

 

For the first test, apart from the 13 variables used in the regression (see Equation (5.6)), two 

additional variables – the US and the Japan target rates, were added to the regression so that 

there are 15 independent variables in the regression model.  However, these rates have been 

found to add no value to the regression in both the 1998 and 2008 regressions.  The regression 

coefficients and variables in this model is found to be similar to the 13 independent variables 

model. 

 

To check whether there is informed trading, the regressions were ran allowing the dummy 

‘meeting’ variables (X4 and X6) to take the value of 1.0 before and on the announcement day, but 
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not after.  The ‘meeting’ variables (X4 and X6) became insignificant at the 5% level, meaning that 

trades are not affected on the days before and on the announcement day compared to an average 

day.  This indicates that there was no informed trading, and trades are made as a result of the 

response to the central banks’ decisions. 

 

To further examine the negative 2008 US ‘meeting’ dummy variable (X4), two interaction terms 

were added to the regression equation defined by Equation (5.6): both the intraday volatility of 

USD bought (X1) and sold (X2) are separately interacted with the US ‘meeting’ dummy.  The 

coefficient of the US ‘meeting’ dummy turns out to be positive as suspected (see Section 5.5.2 

for the explanation). 
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5.7 Discussion 

 

Volume is an integral part of financial markets and deserves a full understanding by academics 

(Roll, Schwartz and Subrahmanyam, 2010).  While many papers have focused on the time-series 

and cross section of equity market volume, bond market volume and recently, volume in 

derivatives relative to their underlying equities, little is known about what drives the volume in 

foreign exchange.  This chapter represents a first attempt to address this issue. 

 

Apart from trade and tourism, the massive growth in foreign exchange volume can be attributed 

to reaction to news and uncertainty in the economy, equity investments which requires exchange 

of currencies and more recently, investment in currency itself as an asset.  In time to come, with 

more investors viewing currency as an asset providing quick profits, volatility in trades – be it 

buy or sell – will increase due to differing views of investors.  Volatility can produce 

opportunities for exploitation, and this in turn will lead to an even greater volume of trades.  In 

short, the growth of foreign exchange trading volume is set to increase in the near future. 

 

The results obtained in this chapter are robust across a variety of specifications, but suggest 

many areas for future research.  First, bonds can be included in the regression.  This was not 

done here as Datastream does not yet provide the volume of bonds traded.  As currency is being 

increasingly viewed as an alternative asset, it will be interesting to see how investors treat it with 

regards to both bonds and equity.  Second, flash traders or hedge funds with programmed 

algorithms are known to contribute a great deal of turnover to the aggregate equity market 

turnover (Mercer, 2010).  It will be interesting to investigate how much of the trades come from 

hedge funds, and the profits they earn in the foreign exchange market. 
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Chapter 6 
Concluding Remarks 
6. Concluding Remarks 

6.1 Summary 

 

The motivation for this thesis stems from the recent public interest in foreign exchange as an 

alternative asset class.  This invariably leads to how this ‘new’ asset class compares to the 

traditional asset classes of equity and bond.  Extensive research had been carried out in many 

aspects of the traditional asset classes and includes predictability of return, dependency structure 

and analysis of turnover.  This dissertation aims to examine some of these aspects of the foreign 

exchange market and investigate its links, whenever possible, to the traditional asset classes.   

 

The main contributions of this work include utilizing copulas to model the dependency of a pair 

of currencies as well as providing an insight into the factors driving the massive growth of the 

foreign exchange volume which have hitherto been a mystery. 

 

Professional managers at hedge funds and commodity trading accounts oversee millions, and 

indeed billions, of dollars earmarked for currency investment.  As this is set to increase with 

currency being touted as a new asset class, accurate modeling of the dependency of currency vis-

à-vis other currencies and other asset classes is increasingly important for risk management and 

asset allocation purposes. 

 

The value of modeling risk using copulas extend to many different applications.  In addition to 

measuring VaR and estimating potential losses, these techniques can also help organizations 

ensure compliance with the Basel Accords and other regulatory mandates that require financial 

institutions to quantify market risk and retain sufficient capital to protect against unanticipated 

losses. 
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6.2 Directions for Future Research 

 

As investment in the foreign exchange market is a relatively new idea to investors and academics 

alike, much work can be done in this area.  

 

With regards to modeling the dependency of asset returns, the modeling exercise carried out in 

this research attempts to filter out serial dependency in the daily log-return to produce a series of 

independently and identically distributed observations suitable for the requirements of copula use.  

A working paper by Remillard, Papageorgiou and Soustra (2010) introduces the notion of 

dynamic copulas to model dependency of economic time series.  These authors do not assume 

any structure for the time series, nor do they need to introduce innovations.  It will definitely be 

of interest to know if the choice of copula will be affected using this innovative approach. 

 

In addition, the links between foreign exchange market, equity market and bond market should 

be investigated.  Unlike other asset classes, foreign exchange market is a by-product of 

investments in other asset classes, and any investigation of its behavior should take into account 

its dependency on the actions of investors in other asset classes. 
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