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Abstract

An accurate prediction of pile behaviour under axial loads is necessary for safe and
cost effective design. This paper presents the development of a new model, based on
artificial neural networks (ANNSs), to predict the load-settlement relationship of driven
piles in sand and mixed soils, and subjected to axial loads. ANNs have been recently
applied to many geotechnical engineering problems and have shown to provide high
degree of success. Two models are developed; one for steel piles and the other for
concrete piles. The data used for ANN models development are collected from the
literature and comprise. a series of in-situ driven piles load tests as well as cone
penetration test (CPT) results. Predictions from the ANN models are compared with the
results of experimental data, and statistical analysis is conducted to verify the
performance of ANN models. The results indicate that ANN models perform well and
able to predict the pile load-settlement relationship quite accurately.
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1. Introduction 5
It is well known that bearing capacity and settlement are the two main factors that govern the design
process of pile foundations so that safety and serviceability requirements are achieved. In order to satisfy
these requirements, the load-settlement relationship needs to be accurately identified. The in-situ pile
load testing is the most reliable method for this purpose. However, this option is not always available
because it is expensive and time consuming. Alternatively, the pile load-settlement relationship can be
predicted and used for design. Currently, there are two approaches to estimate the pile load-settlement
relationship; empirical or analytical. However these approaches can not provide an accurate and
consistent prediction of pile load-settlement relationship because the behaviour of pile in different soil
types is complex and not entirely understood. In this respect, artificial neural networks (ANNs) may be
used to provide more accurate solution. The modeling advantage of ANNs over traditional methods is the
ability of ANNs to capture the nonlinear and complex relationship of pile behaviour without the need for a
priori formula of what could be this relationship. In recent times, artificial neural networks have been
successfully applied to many geotechnical engineering problems [e.g. 1,2, 3]

This paper aims to: (i) utilize the ANN technique to simulate the load-settlement relationship of driven
piles in sand and mixed soils; (ii) compare the performance of the developed ANN model with
experimental resuits; and (iii) measure the accuracy of the ANN model using statistical analysis.




2. Overview of artificial neural networks
Artificial neural networks (ANNs) are problem solving technique that tries to mimic the function of the
human brain and nervous system. The type of neural network used in this study is the multilayer
perceptrons {(MLPs) trained with the back-propagation algorithm [4]. Full description of this type of neural
networks is beyond the scope of this paper and can be found in many publications [e.g. 5]. The MLP is
usually composed of three layers; an input layer, intermediate hidden layer and output layer. Each layer
consists of a number of processing elements, known as nodes or neurons. The processing elements of
each layer are fully or partially connected to the nodes of the other layers via weighted connections. The
network is trained to gain its knowledge about specific problem by presenting a set of input patterns and
the corresponding target patterns. The input patterns are fed {o the network to produce predicted output

patterns. The output patterns are compared with the target patterns and the summation of the squared.

error is calculated. The error is then back propagated through the network and a gradient-descent rule is
used to modify the connection weights and to minimize the summed squared error. The above process
is continued until a stopping criterion is met.

As the pile load-settlement relationship involves interdependency between the current and previous
states of load-setflement points, the sequential (recurrent) neural network is used. The sequential neural
network was first proposed by Jordan [6] and consists of two sets of input units; i.e. plan unils and
current state units. The role of the current state units is to remember past activity and during training,
patterns of input data are presented to the plan units while the current state units are set to zero. At the
first training epach, the output is produced and copied back to the current state units for the next training
epoch. This process continues until the end of the training phase. The performance of the trained
network is then tested using an independent validation set.

3. Development of ANN models
In this work, ANN models are developed using the commercial available software package Neuroshell 2,
release 4.0 [7]. Two ANN models are developed for piles installed in sand and mixed scil; one for steel
piles and the other for cancrete piles. The data used for ANN model development are collected from the
literature and comprise experimental results of 60 load-settlement tests as well as cone penetration test
(CPT) results that are reported by Eslami [8]. The piles have different sizes and shapes with equivalent
diameters ranging from 250 to 660 mm and lengths from 8 to 36.3 m. The piles are classified into two
categories: small-diameter piles (for pile diameter < 600 mm) and large-diameter piles (for pile diameter
> 600 mm). This classification is in accordance with Ng et al. [9] and based on the fact that large-
diameler piles may behave differently in comparison with small-diameter piles.

In order lo accurately predict the pile load-settiement relationship, the significant factors that
influence the load-setflement need to be identified and presented to the neural network as input
variables. These include the pile geomelry and soil properties. The pile geometry is represented by the
equivalent pile diameter, Dqg, which is taken as the pile perimeter/r, and pile embedment length, L. The
soil properties are represented by the weighted average cone point resistance over the pile tip failure
zone, .., weighted average cone point resistance over the shaft length, 7 _,,, and weighted average

sleeve friction over the shaft length, f. These input variables represent the plan units of the neural

network, as shown in Figure 1. In simulations of the pile load-seftlement curves, the current state of load
and sefflement govems the next state of load and settlement. Thus, a typical neural network for pile
load-settiement modeling includes current state nodes, which as mentioned previously, are processing
element that remember past activity (i.e. memory nodes). At the beginning of the training process, the
inputs for the current state of load and/or settlement are set to zero and training proceeds to predict the
next expected state of load and/for settlement for an input load or settiement increment. The predicted
load and/or settlement are then copied back to the current state nodes for the next pattern of input data.
The inputs to the ANN models in the current state units are the current state of load, P, current
normalized settlement, & (where & = setilement/pile diameter) and normalized settlement increment, Ag;,
as shown in Figure 1. The single output is the next state of load, Pis.
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Figure 1. Schematic representation of the structure of ANN models

In this study, the varying normalized settlement increments are chosen as: 0.01, 0.02, 0.03, ..., 0.1,
0.11. As recommended by Penumadu and Zhao [10], using varying strain increment values results in
good modeling capability without the need for a large size of training data. Because the data needed for
the ANN models at the above settlement increments were not recorded in the original experiments of the
pile load-settlement tests, the curves of the available tests were digitized to obtain the required data. A
set of 40 training patterns was used in representing a single load-settlement curve.

It should be noted that for small-diameter piles, the failure zone over which .., is averaged was
taken in accordance with Eslami [8], in which when the pile tip is located in a homogenous soil, the failure
zone extends 4D below and above the pile tip, whereas when the pile tip is located in a strong soil layer
above which a weak layer exists, the failure zone extend from 4D below and 8D above the pile tip. On
the other hand, when the pile tip is located in a weak layer beneath a dense stratum, the failure zone
extends from 4D below to 2D above the pile tip. For large-diameter piles, however, the failure zone is
taken in accordance with Alsamman [11] to be 1D below the pile tip. It should be also noted that several
pile load tests include mechanical rather than electric CPT data and thus, it was necessary to transform
the mechanical CPT readings into equivalent electric CPT values. This was carried out using the
correlation proposed by Kulhawy and Mayne [12], as follows:

1.1¢8
[q—ﬂj = 0.408[‘7—'=J (1)
Pa FEfectric Pa Mechanical

where; p, is the atmospheric pressure, and p, and g, are in kPa. For f; values, the mechanical cone
gives higher readings than the electrical cone in all soils and Kulhway and Mayne [12] suggested a ralio
of 2 for sand which is adopted in the current study.

The next step in development of the ANN models is the data division. In this work, the data are
randomly divided into two statistically consistent sets, as recommended by Masters [13] and detailed by
Shahin et al. [14]. This includes a training set for model calibration and an independent validation set for
model verification. In total, 26 steel pile case records (84%) of the available 31 cases of steel piles were
used for training and 5 cases (16%) for validation. On the other hand, 24 concrete case records (83%) of
the available 29 cases of concrete piles were used for training and 5 cases (17%) for validation. The




statistics of the data used for the training and validation sets of the steel piles are given in Table 1, which
includes the mean, standard deviation, minimum, maximum and range. For brevity, the statistics of the
data used for the concrete piles are not shown. It should be noted that, like all empirical models, ANN
performs best in interpretation rather than extrapolation, thus, the extreme values of the data used were
included in the training set.

Table 1. ANN input and output statistics of the steel piles

Model variable Statistical parameters
and data sels Mean Standard Minimum Maximum Range
deviation
Equivalent pile diameter, Dey (mm)
Training 395.8 101.7 273.0 660.0 387.0
Validation 412.8 1234 300.0 609.0 309.0
Pile embedment length, L (m)
Training 17 7.1 8.5 36.3 27.8
Validation 23.8 11.6 11.1 34.3 23.2
Weighted average cone point resistance along pile tip failure zone, ot (MPa)
Training 7.2 8.2 0.0 23.9 23.9
Validation 3.1 3.9 0.0 8.7 8.7
Weighted average cone point resistance along shaft length, Te—shuf (MPa)
Training 9.5 5.6 1.5 17.6 16.1
Validation 8.0 6.9 1.4 15.5 14.1
Weighted average sleeve friction along shaft length, Js (kPa)
Training 57.2 23.9 18.0 131.0 113.0
Validation 42.4 19.4 19.0 65.0 46.0

The following step in the development of the ANN model is determining the optimal model geometry.
A network with one hidden layer is used in this study, as Hormik et al [15] recommended that one hidden
layer can approximate any continuous function provided that sufficient connection weights are used. The
trial-and-efror approach is used to determine the optimum values of the network parameters. In the first
stage, the number of hidden nodes was determined by assuming the following values of neural network
parameters; initial connection weight of 0.3, learning rate of 0.1 and momentum term of 0.1, tanh transfer
function in the hidden layer and sigmoidal transfer function in the output layer. Several networks were
then trained assuming numbers of hidden nodes of 2, 3, 4, ..., (2+1); where / is the number of inputs, as
recommended by Caudill [16]. The optimum model parameters is achieved by training the network with
different combinations of learning rates (i.e. 0.05, 0.1, 0.15, ..., 0.6) and momentum terms (i.e. 0.05, 0.1,
0.15, ..., 0.6). The mean squared error, MSE, between the actual and predicted values of the pile loads
in the validation set was used as stopping criterion to terminate training. Whenever the MSE of the
validation set has reached the lowest value with no improvement in performance of the training sef,
training is stopped and the output is examined. 4

4. Resuits and model validation

Two good models were selected for predicting the load-settlement relationship of driven piles in sand and
mixed soil: Model 1 for steel piles and Model 2 for concrete piles. The models were selected because
they have minimum number of hidden nodes accompanied with high and consistent performance in the
training and validation sets. The model that was found to perform best for steel piles is composed of
eleven hidden layer nodes, leaming rate of 0.3 and momentum term of 0.2. The model that was found to
perform best for concrete piles includes eleven hidden layer nodes, learning rate of 0.2 and momentum
term of 0.3. The performance of the optimum ANN models, i.e. Models 1 and 2, in the training set and the
predictive ability of the models in the validation set are depicted in Figures 2 and 3, respectively. It should
be noted the dotted lines in Figures 2 and 3 represent the experimental data and the solid lines are for
ANN model predictions. For brevity, only some representative curves are selected and presented in
Figures 2 and 3, which show good performance for ANN models.
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Figure 2. Some simulation results for ANN Model 1 in the training and validation sets
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Figure 3. Some simulation results for ANN Model 2 in the training and validation sets
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It can be seen from Figures 2 and 3 that the complex nonlinear relationship of the pile load-
settlement is well simulated by the ANN models including the strain hardening behaviour. The
performance of the developed ANN models is also measured analytically using the coefficient of
correlation, r, in the training and validation sets and the results are given in Table 2. It can be seen that
both ANN Models 1 and 2 perform well with high r of 0.99 and 1.00 in the training and validation sets,
respectively.

The above results demonstrate that the developed ANN models are able to accurately predict the
nonlinear behaviour of the pile load-settlement relationship in sand and mixed soils, hence, can be used
with confidence for routine design practice.

Table 2. Performance of ANN models in the training and validation sets

ANN Model Data set Correlation coefficient, r
Model 1 (steel piles) Training 0.99
Validation 1.00
Model 2 (concrete Piles) Training 0.99
Validation 1.00

5. Conclusions
This paper proposed an artificial neural network approach for modeling the load-settiement relationship
of steel and concrete piles driven in sand and mixed soils. The results indicate that the ANN models are
capable of accurately predicting the complex nonlinear behavior of pile load-settlement with high degree
of accuracy. The statistical analyses of the cosfficient of the correlation indicate high values close to unity
for the performance of ANN models in the training and validation sets.
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