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ABSTRACT

After defining the structure to a signal detection scheme, this dissertation describes
and addresses some of the unresolved issues associated with its use when the inter-
ference encountered is impulsive. The alpha-stable {(aS) family of distributions is
used as a model of this interference due to its physical interpretation and its general
form. Despite its attractive features, difficulties arise in using this distribution due to,
amongst other things, the lack of a general closed form expression for its probability
density function. Relevant to the detection scheme used, this affects parameter esti-
mation, signal detector design and goodness-of-fit tests. Significant contributions are
made in the latter through the introduction of characteristic function based test that
uses the parametric bootstrap. A modification of this test is then made to define a
test of the level of impulsive behaviour — again the parametric bootstrap is employed
to maintain levels of significance for this and another test based on testing the aS
parameter values, The performance of these tests is examined under simulated and
two sources of real, impulsive data, namely human heart rate variability and fluctu-
ations in stock prices. Once the appropriateness of the model assumption has been
verified, the final, signal detection process may take place. Detectors based on the
locally optimum criterion and approximations to it are described and compared to
their rank-based counterparts. Results are presented that suggest compelling argu-
ments based on performance and computational complexity for the consideration of
rank-based techniques.

Keywords : Impulsive behaviour, alpha-stable distribution, stable laws, Gaussianity
testing, parameter estimation, goodness-of-fit, parametric bootstrap, signal detection,
locally optimum detectors, rank-based detectors.
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Chapter 1

INTRODUCTION

A complete system to efficiently determine the presence or absence of a signal within
a finite observation sample containing interference is far more complicated than just
a signal detection scheme. With the multitude of detection techniques available now,
the choice of detector has become a significant issue.

Detectors have been designed for many of the common assumptions made on
real data. While different assumptions lead to different detector structures, there is
also often a trade-off between high performance and the generality of the necessary
assumptions or pre-conditions. In order to achieve the best overall performance for
a set, of data, it is therefore necessary to test the data to determine which detector
assumptions hold and will yield high performance.

A signal detection scheme may be considered to follow the general structure [39)
in Figure 1.1. Using this scheme as a template, this thesis addresses some of the

issues that remain when dealing with data that contains impulsive interference.

DATA
ASSUME | NO ASSUME
==  OTHER
GAUSSIANITY MODELS
YES E
l | lY s ¥
CLASSICAL | ADAPTIVE NONPARAMETRIC |
DETECTION THRESHOLD DETECTION
DETECTION

FIGURE 1.1. A signal detection scheme.
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Impulsive interference is an interesting, naturally occurring phenomenon that can
prove particularly troublesome to some traditional statistical techniques. Relatively
infrequent, though large in magnitude, the spikes that are the characteristics of im-
pulsive behaviour may have a disproportionate influence on methods that are not
designed with their presence in mind. Consequently, standard techniques may suffer
significant degradation in performance and the development of specialised approaches
is warranted.

In the following chapters, a number of problems in impulsive interference are
investigated, with special emphasis on goodness-of-fit testing and signal detection.
These are two important components of the scheme in Figure 1.1 that remain under-
developed. In particular, emphasis will be placed on one particular statistical model
for impulsive behaviour.

The alpha-stable distribution {aS) has been used to model the statistical charac-
teristics of impulsive processes and has received significant attention from the signal
processing community in recent times. While numerous references exist in the litera-
ture to signal processing techniques that can be used in the presence of oS distributed
interference, there remain many unsolved theoretical and practical problems. Im-
provements to current parameter estimation procedures may still be possible since no
maximum likelihood estimate (MLE) has been found. Statistical tests to determine
the appropriateness of the aS distribution are also lacking, as are practical signal de-
tection schemes. Contributions in this area are expected to add to the viability and
performance of testing and detection schemes for aS interference, as well as, more

generally, impulsive interference.

1.1 Aims and Objectives

The aim of this dissertation is to develop the remaining steps for a signal detection

scheme as described in Figure 1.1 when the interference is impulsive and may be
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modelled by an oS distribution. Where some of the elements of this scheme have
already been addressed in the literature, they will be investigated and, where ap-
propriate, modifications and improvements suggested. However, the main objectives

revolve around the least developed aspects of the scheme, specifically

1. Develop goodness-of-fit techniques that can be used to justify the assumption

that an oS distribution is an appropriate model for the interference encountered

2. Design of procedures for the detection of a known signal in additive interference

that do not suffer from excessive computational burden

3. Performance study of the proposed techniques using simulated and real data

where possible.

1.2 Contributions

The significant contributions made in this dissertation include

1. A characteristic function based goodness-of-fit technique for testing that obser-
vations are from an aS distribution, against the open alternative that they are

not.

2. Tests of the level of impulsive behaviour of &S processes using the characteristic

function and parameter estimates.
3. Application of these tests to human heart rate variability and stock price data.

4. Detectors derived from approximations to the local optimality criterion and cor-
responding rank-based detectors that achieve similar performance with reduced

computational complexity and a constant false alarm rate.



20

1.3 Thesis Scope and Overview

Chapter 2. To begin, an introduction to impulsive processes, and in particular the
a8 distribution is presented. This will establish some definitions and the prop-
erties that motivate the investigation of the problem and will be used later

OIl.

Chapter 3. The first component of Figure 1.1, namely Gaussianity testing is nec-
essary. Particular emphasis is placed on some contributions in characteristic

function based Gaussianity testing.

Chapter 4. These characteristic function based techniques are generalised and ad-
apted in the introduction of a goodness-of-fit test for the alpha-stable distri-
bution. Also in this chapter are two tests on the level of impulsive behaviour.
These three tests form part of the contribution to testing the “Assume other

models” component of the diagram mentioned above.

Chapter 5. Partly for validation of these tests and partly for demonstration of real
life impulsive behaviour, the tests are applied to some impulsive real data

sources.

Chapter 6. After completing the justification stages of Figure 1.1, the problem of
signal detection in the presence of alpha-stable interference is investigated. A

number of parametric and nonparametric detectors are proposed and evaluated.
Chapter 7. Conclusions are drawn and areas for future research are identified.
Chapter A. The characteristic function and some estimators of it are defined.

Chapter B. The parametric bootstrap, used extensively in Chapter 4 is described.
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Chapter 2

IMPULSIVE AND ALPHA-STABLE PROCESSES

Impulsive behaviour is a naturally occurring characteristic of many signals. Observa-
tions that appear far from the mean are sometimes regarded as outliers, a result of a
freak occurrence, a measurement error or resulting from another process with another
statistical distribution. As a result, they may be removed from the sample, censored,
or limited to a lower level. This is often a necessity due to the disproportional effect
an outlier may have on conventional statistical techniques.

However, rather than being disposable anomalies, it may be that these outliers
carry useful information about the generating process, and therefore should be in-
cluded in the statistical analysis. In this case, a unifying model should be used that
appropriately characterises both the more probable observations located around the
mean or median, as well as the less likely, but equally (or sometimes, more) important,
outliers.

Statistical models that incorporate impulsive behaviour have probability density
functions (pdfs) with tails that are heavier than the Gaussian distribution, indicating
the higher likelihood of observations occurring a significant distance from the median.
Such impulsive behaviour has been observed in low-frequency atmospheric noise, fluo-
rescent lighting systems, combustion engine ignition, urban and indoor radio channels,
underwater acoustic channels, economic stock prices, certain biomedical signals and
in computer network traffic 2, 8, 9, 10, 36, 41, 42, 43, 47, 58, 61, 64, 89, 90}. De-
pending on the circumstances producing the impulsive process, the appropriateness
of particular models is generally argued on the statistical physical or an empirical
level.

Statistical physical models can be shown to be appropriate thrbugh detailed anal-
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ysis of the physics or mechanics of the generating process. Perhaps the most widely
known models in statistical signal processing that incorporate impulsive behaviour
are those proposed by Middleton [60, 61] for electromagnetic interference. Physical
interpretation of most parameters of these models can be made. Unfortunately, these
models tend to be highly complicated as necessitated by the complexity of the gen-
erating mechanism. Because of their specialised nature, they may also be difficult or
not suitable to apply to any other impulsive sources.

In some situations the theoretical justification of a model may be unavailable due
to the prohibitively high degree of complexity in the generation process and may only
be mathematically tractable after making broad assumptions or approximations. For
example, it would be very difficult to complete a theoretical justification of a model
for many econometric time series due to the plethora of input variables from diverse
sources, including human psychological factors. It may be that even the widespread
knowledge of such a model may alter the inputs to it and render it inappropriate.

In cases such as these, and in others, a statistical model may be deemed ap-
propriate on the basis of empirical fitting to data — that is, as an empirical model.
Overall, the complexity-performance tradeoff may mean simpler approximate models
may find use above statistical physical models, and where the simplifying assump-
tions are valid, there may be a negligible difference in accuracy. Despite the lack
of a direct physical interpretation of the model parameters, it is certainly true that
intuitive relationships between statistical parameters and physical parameters may
be evident. This is illustrated by example in Chapter 5.

The alpha stable («S) distribution has been prominently promoted as an impulsive
model. While a physical interpretation of the distribution does exist [36] and the
Generalised Central Limit Theorem and the Stability Property give the distribution
importance in the field of mathematical studies, debate still exists on its use as a model
for real-world impulsive behaviour. The simplest argument against its use being that

the infinite variance of the distribution (in all non-Gaussian cases) disqualifies it as a
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model for sources known to possess finite power.

Regardless of this, it is felt that as a broad family of distributions with four
parameters, two for shape and one each for location and scale, in the very least the
aS distribution may find use as an empirical model for many varied impulsive sources

and, thus, statistical techniques must be developed for its justification and use.

2.1 Definition

The aS distribution can be defined in terms of its characteristic function (cf)

¢(t) =exp{jdt—[ct|®[1 - jBsgn(t) wlt, o]} (2.1)

where

_ J tan{an/2), a#l
wit,a) = {j&%mﬂ e 1

and sgn(t) is the signum function [70, 30}, or equivalently
exp{—|ct|*+jdt+j|ct|*Fsgn(t) tan(an/2)} , a#1
¢(t) =
exp{—c|t|+jdt—jcB(2/n)t n|t|} , a=1
See Appendix A for a definition and description of the ¢f. The four parameters of the
distribution are
e o — the characteristic exponent, 0 < a < 2

o 3 — the skewness parameter, —1 < <1

e ¢ — the scale parameter, 0 < ¢, although sometimes the dispersion v = ¢ is

used to indicate scale.

e ¢ — the location parameter, —oo < § < 00
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FIGURE 2.1. Characteristic functions of some symmetric oS distributions.

For a discussion on the sign of 8 when « = 1, please refer to [30]. The cfs for the
symmetric {(§ = 0,¢ = 1,4 = 0} aS distribution are shown for several values of o in
Figure 2.1.

Closed form expressions for the probability density function (pdf) of the distri-
bution only exist for a small number of special cases: the Gaussian (a = 2), Cauchy
(= 1,8 =0) and Lévy (@ = %, 8 = 1) distributions. The only a-stable distribution
to have finite variance is the Gaussian one.

The characteristic exponent, «, controls the impulsive behaviour of the process.
When o = 2, its maximum value, the aS distribution is equivalent to the Gaussian
distribution. As a decreases, the tails of the distribution become heavier and the
process becomes more impulsive, that is, the more outliers occur in an observed
series. In Figure 2.2, numerical approximations to the pdfs of several standardised
symmetric &S distributions are shown for varying «. The change in the weight of the
tails is clearly evident.

An alternative illustration of the effect of & on the tails of the distribution is
shown in Figure 2.3. Presented are the normal probability, or g-¢, plots for standard

symmetric oS distribution when o = 1.6, @ = 1.8 and &« = 2. The Gaussian dis-
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Fi1GURE 2.2. Pdfs of some standard symmetric «S distributions.

tribution (o = 2) appears as a straight line on this type of plot. The non-Gaussian
aS distributions look very Gaussian around the median, that is their plots are quite

linear, yet the difference in the tails is quite pronounced.
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FiGURE 2.3. Normal probability plot of some standard symmetric aS distributions.

2.2 Properties

At the start of this chapter, the Generalised Central Limit Theorem and the Stability

Property were cited as two properties of the aS distribution that gave the distribution
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mathematical importance. They are described here.

Theorem 1 (Stability Property). If, for arbitrary positive numbers a, and ay, there

1 a posilive number a and o real number b such that
a1X1 + a2X2 i aX + b

when X1, Xy and X are independent and identically distributed (iid), then X must
have an « stable distribution [70].

Using a generalisation, the following theorem can be shown.

Theorem 2 (Generalised Central Limit Theorem). The limit of the normalised sum
of #id random variables is a stable distribution. That is, if X1, Xo, ..., X, are iid,

then as n — oo the limit in distribution of
Sp=(X14+Xo+...+Xn)/a, — by
is a stable [64).

The Central Limit Theorem, as defined in [59] imposes the additional condition
that Xy, Xs,..., X, have finite variance — the resulting limiting distribution being
Gaussian rather than the more general aS distribution.

Given the significance of these theorems, it is not surprising that a physical model
can be defined that results in the generation of S random processes. Indeed, it can
be shown [64] that under certain assumptions, the received signal from independent,
Poisson temporally and spatially distributed sources is a symmetric aS distribution.
This same filtered-impulse mechanism, using different, more detailed assumptions,

was used to develop the statistical physical Middleton Class B model [601.

2.3 Parameter estimation

The absence of closed form expressions for the density of general &S distributions may

be seen as an impediment to the estimation of their parameters, especially for tech-
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niques such as maximum likelihood based approaches that rely on this expression.
However, it does provide motivation for using the ¢f domain, where such expres-
sions do exist. While numerical methods exist that mimic these traditional, optimal
techniques, simulation results have shown that a cf based estimation procedure in-
troduced by Koutrouvelis [50] provides better results than these, as well as other cf

based methods.

2.3.1 Regression method proposed by Koutrouvelis

By manipulating the cf of the aS distribution it was shown that estimators of the
parameters could be found through a regression technique. Due to the consistency
of the empirical characteristic function (ecf) as an estimator of the true cf (see Sec-
tion A.1), the parameter estimators were found to be consistent and asymptotically
unbiased. The ecf of a vector of n iid observations, X = [X], Xa,. .., X,]7, is defined
in equation (A.1) and is denoted by gﬁ}(t} Presently, expressions for the asymptotic
distributions of the parameter estimators are unavailable.

To estimate o and ¢, the form of the cf of an oS random variable, ¢(¢), is manip-

ulated to obtain the following relationship
In(—In | ¢(¢) |*) = In(2¢*) + aln | ¢ | . (2.2)

From this, it is possible to estimate the o and ¢ parameters by regressing In(—In |
#(t) |?) on In | ¢ |. Similarly, the following expression was derived for estimating (3

and ¢
arctan {S(¢(t)) /R (¢(t))} = ot — Sc® tan{ma/2)sgn(t) | t |* (2.3)

where S (¢(¢)) and R {¢(¢)) are the imaginary and real components of ¢(t), respec-
tively.
By using the estimates for « and ¢ evaluated using (2.2), estimates for 4 and é may

be found by regressing on ¢ and sgn(¢) | ¢ |*. Note, however, that integer multiples
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of 2r may have to be added to (2.3) to yield a continuous function spanning beyond

the principal domain. The reader is referred to [50] for full details.

2.3.2 Kernel characteristic function estimator

Any technique in the cf domain will be dependent on the accuracy of the estimate of
the cf used. From Section A.1 it can be seen that the ecf, while being a natural choice
and an unbiased technique for estimating the cf of a process from a finite number
of iid observations, suffers from variance that approaches a constant value of 1/2n,
where n is the number of observations available.

It has been shown in [93] that an alternative cf estimator, the kernel characteristic
function estimator (KCFE), is more suited to Gaussianity testing in the cf domain.
Similarly, it was proposed in [15] that the properties of the KCFE may lead to better
parameter estimation performance for oS distributions. See Section A.2 for details
on the KCFE.

Here the fixed KCFE (described in Section A.2) is considered, whereby a fixed
kernel function is multiplied by the ecf. This process is equivalent to convolutive
smoothing as occurs in kernel density estimation [75] and has the effect of reducing
the variation in the tail of the estimator, at the expense of the introduction of a bias.

It has been suggested [31] that if the density being estimated has heavy tails, as
a8 distributions do, then the smoothing kernel should also have heavy tails. Conse-

quently, kernels based on the cf of Student’s-¢ distribution are investigated here.

2.3.3 Truncation of the linear regression

It is significant to note that the regression in the cf domain should only be performed
on a truncated region of the f space. This is due to the non-vanishing variance
properties of cf estimators. In the technique described by Koutrouvelis, a linear

spacing of points in this region is proposed. To define these regions, the optimal
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numbers of such points are tabulated for seven or eight values of a and for sample
sizes of 200, 800 and 1600. Through simulations, it was established that the tabulated
values minimised the mean squared error of the estimates. If the actual number of
observations or the true « differ from those provided in the tables, interpolation or
extrapolation may be required.

An alternative introduced here and in {15] is to define the region of regression in
terms of the variance of the ecf. The variances of the real and imaginary components
of the ecf are given in (A.2) and (A.3). It is proposed that the region of regression
span the values of ¢ where the variance of the ecf is below a threshold. This may
be specified as a proportion of the asymptotic variance of the ecf, that is 1/2n as
[t| = 0.

An obvious advantage is that the regression region may be dynamically calculated,
using the particular operating conditions encountered, rather than by approximation
or interpolation on a table of values. [t also avoids the possibility of including regions
where the variance of the ecf is larger than the asymptotic value — as can occur when
a < 1. In this case, it can be shown that the variance of the ecf, as a function of ¢,
does not rise monotonically to the asymptotic value. In fact, it exceeds this value,
before approaching 1/2n as |t| — oc.

The spacing of points in the region of regression is to be the same as used in [50],
that is, linear with fixed spacing of 7/25 and 7 /50 for (2.2) and (2.3) respectively. It
was suggested that the estimation procedure is relatively insensitive to the spacing of

the points, but rather it is more dependent on the span of the chosen points.

2.3.4 Results and Discussion

For the sake of simplicity, data has been generated from standardised distributions,
that is, ¢ = 1 and 6 = 0. This does not affect the generality of these techniques.

Rather, it has been done to allow more detailed analysis of results into the estimation
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of o and 3, which, being shape parameters, are of the most interest. Each set of
operating conditions was simulated 1000 times, and the mean squared error (MSE)
of the estimates was computed as a measure of the performance of the technique.
The smoothing kernel used for the estimates using the KCFE was a f3 kernel.
Other more Gaussian-like kernels were tried, such as a ¢ kernel with higher degrees of
freedom, however the 3 kernel was found to perform best under the largest number

of conditions.

Estimation of o. The results shown in Tables 2.1 and 2.2 show the MSE in the
o estimate using the tabulated regression region and the more recently proposed,
variance threshold region [15]. Each table shows results for different values of o and
using both the ecf and the KCFE. Although all distributions were symmetric, 5 does

not affect the estimation of . This should be evident from (2.2).

cf o
n estimator 0.8 1.0 1.2 1.4 1.6 1.8
ect 31.83 3836 4873 5324 4854  33.42
50 KCFE-4; 6144 5257 4784 4120  29.26  19.31
200 ect 813 9.74 1120 1259 1311 10.04
KCFE-4; 2447 1996 1628 1460  10.34 6.38
0 ecf 3.86 .79 5.58 6.92 6.72 5.01
KCFE-t; 1471 1266  10.14 7.93 6.35 3.48

TABLE 2.1. MSE (x1073) of estimates of o using tabulated regression region, 8 = 0.

It can be seen that the use of the KCFE, using a ¢3 kernel, provides increased
accuracy in the estimation of « for higher (true) values of &. For 50 observations, this
technique provided superior results when « > 1.2, while for 200 and 400 observations,
it was superior when a > 1.6.

The results using a threshold to determine the regression region in Table 2.2,

can also be seen to compare favourably with those using the tabulated values in
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cf 0]
7 estimator 0.8 1.0 1.2 1.4 1.6 1.8
ect 3719 4107 5135 5637 5340 3442
50 KCFE-t; 7092 5344 5020 4581  33.38  18.69
oct 748 047 1079 13.06 1394 10.75
200 koFE, 3076 2127 1646 1545 1166 6.83
oot 3.99 147 528 6.33 731 5.38
400 peFEe, 2031 1377 10.25 8.28 7.22 3.78

TABLE 2.2. MSE (x103) of estimates of « using a variance threshold regression
region, 3 = 0.

Table 2.1. This threshold was set at 98% of the asymptotic variance of the ecf. While
little difference in MSE can be observed between Tables 2.1 and 2.2, this confirms that
the variance threshold method of setting regression regions is worthy of investigation
since the tabulated regions were found, by simulation, to be optimal, that is, they

minimised the MSE of the estimators.

Estimation of 3. Although an estimate of « is used in (2.3) for the estimation of 5, it
can be noted from Tables 2.3 and 2.4 that the relative performance of the 3 parameter
estimation procedures are relatively immune to changes in the value of a. Results
for both tables were found for § = 0. While the MSEs varied with «, it can be seen
that the improvement offered by the KCFE over the ecf based estimation technique
appears to be similar for all the values of a tested.

In Table 2.5 the performance under different & is investigated when o = 1.5.
While the threshold in Table 2.4 was again set at 98%, in Table 2.5 three truncated
regression regions have been used: the tabulated values and thresholds set at 80%
and 98% of the asymptotic variance. Here it can be seen that a lower threshold of

80% improves performance for higher values of .
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cf
7 estimator 0.8 1.0 1.2 1.4 1.6 1.8
ool 1503 1664 2022 2759  30.14  55.58
50 KCFE-4, 1132 1409 1555  20.90 2539  35.18
ool 3.70 377 152 633 1097 2818
200 KCOFE-t, 2.04 2.97 3.90 4.96 730 15.16
oo 1.73 911 5,93 3.07 152 1468
00 KCOFE-t, 1.43 1.67 1.83 2.79 3.59 8.75

TABLE 2.3. MSE (x1072) of estimates of 3 using tabulated regression region.

cf
n estimator 0.8 1.0 1.2 1.4 1.6 1.8

- oot 3881 33.04  32.00 3700 4879  64.00
KCFE-t5 7.48 9.53  12.66  18.89 2011  41.42
oct 9.61 7.60 7.0 924 1541 3367
200 KCFE-t, 2.31 2.73 3.49 5.07 889 2085
0 ocf 371 353 3.32 154 670 20.37
KCFE-t, 1.23 1.77 1.91 2.83 422 11.96

TABLE 2.4. MSE (x107%) of estimates of 3 using a variance threshold regression

region.

cf 8
regr. region estimator 0 0.2 0.4 0.6 0.8
ecft 7.70 7.55 7.63 6.02 4.39
tabulated KCFE-t; 5.90 5.76 5.98 564 517
80% of ecf 9.06 8.59 8.56 6.66 4.67
asymp. var KCFE-t3 7.45 7.34 7.28 6.65 2.91
98% of ecf 10.52 10.82 10.18 9.03 6.84
asymp. var KCFE-t;3 5.93 6.31 6.37 6.60 6.52

TABLE 2.5. MSE (x107?) of estimates of 3 for 200 observations, o = 1.5.
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2.3.5 Conclusions

Using the KCFE and a 3 kernel, improvements in the estimation procedure described
in [50] for a were obtained for higher (true) values of & and in the estimation of 3 for
smaller (true) values of | 3 |.

The results using calculated regression regions rather than tabulated values are
more difficult to interpret and statements about their superior or inferior performance
are difficult to make. However, generally, it has been shown that for estimating o,
the performance of a 98% threshold is comparable to the tabulated regression regions.
For the estimation of 3, a smaller threshold (80%) was found to be better for the more
skewed distributions, though still inferior in performance to the tabulated values.

It should not be expected that the variance threshold regression region will out-
perform the tabulated regression region since the tabulated values were found by
extensive simulations to be optimal. However, while the variance threshold technique
can be applied to any sample size and parameter values, the tabulated values are only

available for a small number of settings.

2.4 Summary

An overview of the aS distribution as a model for impulsive processes has been pre-
sented, describing its definition, properties and parameter estimation techniques. Im-
provements to the latter, namely the use of the KCFE and of an automatic method
of finding the regression region have been introduced to overcome some of the restric-

tions placed by current methods.



34

Chapter 3

TESTS FOR (GAUSSIANITY

While it may be argued that strictly speaking “Normality is a myth, there never was
and never will be a Normal Distribution” [27], the importance of the Gaussianity
distribution is still unquestioned. Its unique properties make it the most important
and most used in statistical signal processing.

The assumption that the distribution of a random process is indeed Gaussian may
greatly simplify its analysis and lead to elegant, optimal solutions to signal processing
problems. It is because of the need to justify this assumption that Gaussianity testing
has received such attention and is of such importance.

In this chapter a brief summary of Gaussianity tests is presented, followed by a
more detailed investigation of the merits and deficiencies in characteristic function
(cf) based Gaussianity tests. Extension to the multivariate case is also performed

and discussed.

3.1 Review

Due to the multitude of alternative distributions, there is no single “best” Gaussian-
ity test. Each test utilises a particular property or feature of the distribution, and
hence may be more sensitive to certain alternatives than other tests that use different
properties. The aim of an omnibus test is to provide acceptably high rejection rates
against all reasonable non-Gaussian distributions.

Many tests exist that test for Gaussianity of a stationary process where the data
can be assumed to be independent and identically distributed (iid). These include
Pearson’s x? test, the Shapiro-Wilk test [74] and the D’Agostino test [67]. Others,

including bispectrum and trispectrum [34, 21, 80], entropy [40] and moment and
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cumulant based tests can be used on correlated data. Some of these tests are described

below.

3.1.1 Chi-square (x?) tests

Chi-square (x*) tests have had a long history in Gaussianity testing and were used
by Karl Pearson in 1900. Since then they have been widely adapted and used. After
grouping the observations into bins or cells, the number of observations falling into
each cell is compared to the number expected under the Gaussian distribution.

As information is discarded when observations are grouped, it is generally felt that
these tests should only be used only when complete random samples are unavailable,
for example when the data is censored or truncated [20, 62]. The effect of grouping

is especially problematic for small sample sizes.

3.1.2 Cumulant and Moment based Gaussianity tests

The standardised third and fourth order moments of a Gaussian distribution, the

skewness and kurtosis respectively, are [11]

Y o S
b = =3 (3.2)

where p; indicates the kth order central moment. Another class of tests compares

the moments (or cumulants) of the observed process to that of a Gaussian random
variable [20].

While any process that has v/b; # 0 or by # 3 is certainly not Gaussian, it does
not necessary imply that if /b, = 0 and b, = 3 that the process is Gaussian. In
other words, the values of the higher order standardised moments in (3.1) and (3.2)

are necessary but not suflicient for the Gaussian distribution. It would be necessary



36

to test all higher order moments, rather than just third and fourth orders. However,

in practice, this is not feasible.

3.1.3 Empirical distribution function tests

An intuitively obvious way to test for the goodness-of-fit to the Gaussian distribution
is to use the difference between the empirical distribution function (edf), F,(z) and
the cumulative distribution function {cdf), F'(z). A large number of tests exist that
use different measures of this difference function. The most widely known is the

Kolmogorov-Smirnov test which is based on the statistic [79]
D = max|F,(z)— F(z)|
= max (D+, D_) .

where Dt = sup{F,(z) — F(z}} and D~ = sup{F(z) — F, ()} are the largest positive
X b
and negative differences between the edf and cdf. This statistic is within the class of

supremum statistics. A variation is the Kuiper statistic [79]

V. = max{F,(z) ~ F(z)} + max{F(z) — Fu(z)}
= DY+ D~

Another class of tests integrate a weighted function of the square of the difference

function to yield quadratic statistics of the form

a=n " (Fu) - F@)} $(@)dF ()

The Cramér-von Mises,
Yz)=1 ,

and Anderson-Darling,

Y(@) = {F@)H1- F@)}™
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statistics are perhaps the best known of this class of tests.

These difference measures result in tests which are sensitive to different alterna-
tives, for example, while the Kolmogorov-Smirnov statistic can detect changes around
the median well, its performance in the tails of the distribution is poor. By contrast,
the weighting function of the Anderson-Darling statistic allows more powerful detec-

tion of deviations in tails — these points are confirmed by simulations in Chapter 4.

3.2 Characteristic Function Based Techniques

The characteristic function (cf) has been investigated by Koutrouvelis [49] and Epps
[24], and more recently in [93], as the basis for developing Gaussianity tests. Some of
these techniques are summarised here and related alternatives are proposed. Defini-
tions and estimators of the cf are described in Appendix A.

The cfs for the Gaussian, Uniform and Laplace distributions are shown in Fig-
ure 3.1. All have been standardised to have zero mean and unit variance. Since their

pdfs are real and symmetrically distributed about the origin, their cfs are too.

1
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FIGURE 3.1. The cfs of the Gaussian, Uniform and Laplace distributions.

Like the pdf, the cf completely characterises a random variable. Therefore, by

analogy with empirical distribution function tests, differences between an estimate of
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the cf based on the observations and the Gaussian cf may be used as the basis of a
Gaussianity test. The relationship between the cf and pdf will be used again later as
the motivation behind operations in the cf domain.

In Figure 3.2 are shown the ecfs calculated from 10 independent realisations of
Gaussian data, each with n = 64 observations, along with the true Gaussian cf.
The fluctuations between the realisations at higher values of ¢ are clearly evident. A
poorly chosen test statistic that uses the ecf may be unable to distinguish between
systematic changes to the cf of the generating process and these fluctuations that are

present even under the null hypothesis of Gaussianity, H.
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Ficurre 3.2. The ecls of 10 realisations of n = 64 observations of iid standard
Gaussian data.
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3.2.1 Kernel Characteristic Function Estimator

Despite the fluctuations in the ecf demonstrated above, until recently, cf based Gaus-
sianity tests have concentrated on the use of the ecf as a cf estimator. In [93] the
problems with using the ecf as a characteristic function estimator in goodness-of-fit
tests, namely its non-vanishing variance, were highlighted. It was proposed that the
fixed kernel characteristic function estimator (KCFE), as described in Section A.2,

be used in place of the ecf since its variance can be controlled by the kernel function.

3.2.2 Test statistics

Finding a meaningful single measure of the difference between the estimated cf and
the Gaussian cf is very important to the performance of ¢f based Gaussianity tests.
The cf of every distribution is unique, and therefore the differenice between it and the
Gaussian cf will also be unique. The chosen statistic, along with the chosen set of ¢
values at which to evaluate the statistic, must take into account a wide range of these
distinct cfs in order to produce an omnibus Gaussianity test.

The real and imaginary components of the characteristic function contain dif-
ferent information about the distribution of the variable. A variable symmetrically
distributed around the origin has a real ¢f. Any imaginary component in the esti-
mate of the cf of such a variable will be due to finite sampling only and not to the
distribution of the variable.

Hlustrating this, Figure 3.3 shows 20 realisations of the ecfs of Gaussian (x),
Uniform (o) and x3 () distributed variables, standardised to have zero mean and
unit variance, evaluated at £ = 1.8 and plotted on the complex plane. Both the
Uniform and Gaussian ecf values are scattered around the real line. Also, the Gaussian
ecf values are centred near their true value, shown by a + symbol, at (0.1979,0).
The x2 ecf values, being from an asymmetric distribution, appear to have significant

imaginary components.
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FIGURE 3.3. Realisations of the ecfs of Gaussian, Uniform and x3 distributed data
and the true Gaussian cf evaluated at ¢ = 1.8, plotted on the complex plane.

Consequently, using a test statistic based on only the real component of the cfs
will be powerful against symmetric alternatives, but less powerful against asymmetric
alternatives which have complex characteristic functions. One such statistic that was

found to perform well [93] is

Q% = max R (Ex(t; )| (3.3)

where

ex(tip) = ox(tv) — do(t)px(?)
= [95(t) - 90(0)] ex(® (3.)

is the product of a kernel function and the difference between the ecf and the cf
under H, ¢o(t), that is, the Gaussian cf. The kernel smoothing can also be viewed
as a weighting function, that is, more significance is given to differences between the
cfs in the region where the variance of the estimator is low. An alternative statistic

based on the imaginary component, such as

Q% = max|S (Ex(t; 0))] (3-5)
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will have little or no power against symmetric alternatives.

When the symmetry of the variable’s distribution cannot be assumed, using the
information in both the real and imaginary parts of the cf is necessary. This moti-
vates the use of another statistic based on the magnitude of the smoothed difference

function,

Qx = max | éx(t; ) | - (3.6)

By incorporating the imaginary component of the cf, the (Jx based test will
have slightly less power than the Q% based test for symmetric alternatives, since an
additional source of variation is introduced without the addition of any distributional
information. However, against asymmetric alternatives, the iraginary component is
adding information to the statistic, hence the Q) x based test is expected to be more
powerful than the Q% based test.

Several alternative test statistics present themselves for investigation, the most
prominent of which are those based on the integrated squared error of the smoothed
difference function, however, in [93] the statistics in (3.3) and (3.6) were recom-
mended.

As yet, the distribution of the Q% and Qx statistics is unknown. Threshold
setting is performed empirically by evaluating the statistics a large number of times

under H.

3.2.3 Choice of ¢ values

As mentioned in Section 3.2.2, the choice of values of ¢t at which to evaluate the test
statistic can be crucial to the power of the test against a particular alternative. The
cfs of some non-Gaussian distributions may be very close to the Gaussian cf at some
values of ¢, while vastly different at others. The values used must be able to provide

good results against a large number of alternatives.
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If increased sensitivity against a particular distribution were required, it would be
possible to determine at what points the cfs of the distribution and the Gaussian cf
differ the most and evaluate them only at these points. This would be particularly
effective for test statistics that measure, for example, the mean squared error of the
difference function. Evaluation at a small number of points also makes the test easier
to implement and quicker to run.

Since the test statistic of choice here is a supremum statistic, the difference func-
tion should be evaluated at a fine spacing and should cover the range of values where

the kernel function has significantly large values.

3.3 Results and Discussion

Monte-Carlo simulations were run to evaluate the performance of the proposed me-
thod and are shown in Table 3.1. Critical points or thresholds for the tests were
obtained empirically from the distributions of the test statistics when the input data
was known to be Gaussian.

Each test was run 1000 times for each distribution at the 5% level of significance,
with ¢ taking values between 0 and 5, in steps of 0.05. Samples contained n = 64
data points and were standardised by their respective means and variances. Stan-
dardisation was necessary as the cf is dependent on mean and variance. Omitting
this procedure would result in testing for departure from a standard Gaussian dis-
tribution, N(0, 1}, rather than any Gaussian distribution. Some of the non-Gaussian
distributions considered are U: Uniform, L: Laplace, K: K-distribution, LN: Log-
Normal.

Now comparing between the different test statistics in Table 3.1, as expected, it
can be seen that the tests based on statistics of the real component of the differences,
Q% , achieve higher power than the tests based on statistics of the magnitude of the

differences, ?x in the cases of U/{0,1), 5(4,4) and Laplacian distributions — all of
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Distribution Qx Q% Q%
N{0,1) 5.0 5.0 3.0
U(0,1) 93.5 96.4 7.6
X3 99.6 23.6 99.9
Xa 58.8 5.3 67.8
Laplace 30.7 31.8 11.8
K(1,1) 84.4 7.6 88.4
LN(0,1) 100.0 75.6 100.0
3(4, 4) 16.0 22.5 3.3

TABLE 3.1. Rejection rate (in %) for the KCFE based test when testing at the 5%
level.

which are symmetric.

In the 3(4,4) case no test is able to achieve high power against this Gaussian-
like distribution. Against the other, asymmetric distributions, the Q% based test
performs significantly worse than the omnibus (Jx based test.

The Q% based test also appears to be operating as expected and described in
Section 3.2.2. That is, it is ineffective against the symmetric alternatives; U/(0,1),
Laplace and 3(4,4), but effective against the asymmetric alternatives.

The simulations were also run for tests that used statistics not based on the peak
or maximum difference between functions, but using both the mean and MSE of the
difference functions. These results are shown in Table 3.2.

From this table, it can be seen that the peak absolute difference provides the
greatest power for both methods. This confirms the choice of test statistic described
in Section 3.2.2 and used in [93].

When symmetry of the data can be assumed, the Q% based test provides superior
power. If no knowledge about the distribution of the data is available, the () x based
test will generally have higher power. Of course if the alternative is known to be
asymmetric, simple tests for symmetry would be considered.

It should be noted that these methods are not restricted to testing for Gaussianity,
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Distribution Ux mean MSE

N(0,1) 50 4.9 5.0
U(0,1) 80.0 57.8 74.6
X2 99.9 100.0 100.0
X3 67.3 53.3 65.8
Laplace 63.8 55.6 66.1
K(1,1) 894 812  89.0
LN{(0,1) 100.0 100.0 100.0
(4, 4) 8.5 6.6 8.6

TABLE 3.2. Rejection rate {(in %) for the KCFE based test when testing at the 5%
level, comparing the statistics based on the peak absolute difference, mean difference
and MSE.

and may be used to test for any known distribution. As they rely on determining how
closely the ecf, derived from the data, matches the ¢f of the distribution being tested,
only the analytic form of the desired cf is required. This feature will be utilised in

the following chapter.

3.4 Multi-dimensional Gaussianity Testing

Tests for Gaussianity using the characteristic function {cf) have been primarily de-
veloped for independent and identically distributed (iid) data only. It is necessary to
address the issue of testing correlated data for Gaussianity using the cf in order to
apply it to the many real sources of data where correlation is known to exist. Here,
some multidimensional tests for Gaussianity are formulated [96].

Other tests for multivariate Gaussianity have generally lagged similar univariate
tests [63] due to an increase in complexity and have required large numbers of samples
(in the thousands) [19]. Unlike some other techniques, Gaussianity tests based on the
cf are readily extendable to the multivariate case and achieve high power, while not

being limited to large samples.
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Consider a vector valued random variable
X = [X]_,Xg, e 7-X‘m.]

where X = [ X1 4, X2k, --- ,Xn,k]T is the vector of nn observations on the kth variable
for k = 1,2,...,m. Assume correlation exists between the X1, X», ..., Xy,. The

multivariate ecf may be given by
1 ki1 T
5% (tita, .o s tm) = — Z exp (j Zthi,k)
n i=1 k=1
The smoothed difference between the multidimensional ecf and the cf under H is

éX(th tzu e !tm) (PX) =

éx(tl,tg, . ,tm)q_‘)x(tl,tg, e ,tm)

where
éX(t1:t25"- :tm) = ég{(tlatQJ"' )tm)
—qu(tl, to,... ,tm)
and px (¢, %2, ... ,ty,) 18 a multidimensional kernel function.

The multidimensional kernel function related to the univariate kernel function in

(A.5) is

_ 2 m_ t2
{p(tlatZ: s atm) = €xXp (%) (37)

3.4.1 Results and discussion

The power of the test for the bivariate case is investigated through Monte Carlo
simulations. The results are presented in Table 3.3, for n = 20 data points, and
Table 3.4, when 50 data points are used. The power of the proposed test is compared
to bivariate tests based on an adaptation of the Shapiro Wilk W test and Mardia
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and Foster's SZ, test [63]. The bivariate chi-square distributions, x3(», v2; v), are the

joint distributions of W, and W, where W; = V; + V. Each V; is an independent X2

variate with »; degrees of freedom and V is a x? variate with v degrees of freedom,

independent of all the V;.

Distribution Qx 74 S5
2221 633 756 494
2(2,2,2) 518 592 424
2(2,2,3) 43.1 48.1 35.4
t3 54.8 47.6 48.6
Cauchy 97.6 96.9 94.9
0.8N2(0, £) + 0.2N,(0, 95) 60.0 443  57.0
0.9N,(0, ) + 0.1N;(0,165) 595 523  6L9
Log Normal 89.0 87.6 70.2

TABLE 3.3. Rejection rate (in %) for the KCFE, Shapiro Wilk W test and Mardia
and Foster’s S3, test for bivariate Gaussianity at the 5% level of significance for

n = 20.

Distribution Qx w 5%
x5(2,2,1) 96.2 99.7 95.3
x2(2,2,2) 90.2 97.3 88.6
x2(2,2,3) 817 912 83.0
ts 90.7 75.5 86.3
Cauchy 100 100 100
0.8N,(0,X) + 0.2N,(0, 9%) 92.5 78.1 93.6
0.9N,(0, ) + 0.1N,(0, 16%) 89.2 85.8 93.1
Log Normal 99.8 100 99.4
Average 92.5 91.0 924

TABLE 3.4. Rejection rate (in %) for the KCFE, Shapiro Wilk W test and Mardia

and Foster’s S3 test for bivariate Gaussianity at the 5% level of significance for

n = b0.

For this investigation, 5000 replications of each test were performed. The level

of significance was set at 5% and thresholds were derived empirically using bivariate
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Gaussian data with marginal means of zero and covariance matrix M = 05 1

All data was standardised by marginal means and variances, then the correla-

1 0.5]

tion between the two variables, M , was estimated. The bivariate Gaussian cf, with
correlation matrix M , was then evaluated. The difference between this cf and the
magnitude of the ecf was then smoothed by the Gaussian kernel function described in
(3.7). Taking the magnitude of the mean of this function produced the test statistic
(2 x which was compared to the empirically derived threshold.

The results in Tables 3.3 and 3.4 show an increase in average power by the
smoothed difference cf based test, @x, against both the W and S2, tests. Bach
test has some distributions against which it is more powerful, however, none of the
tests performs best for all distributions.

An important feature of the performance of the Q@x test is that of the results
shown, only once was it the worst performing of the three tests — this was for the
x2(2,2,3) distribution when n = 50. Both the W and the S, tests had their relative
strengths and weaknesses, however, the QJx test performed consistently well. For
example, the W test was the best performing for all the bivariate x* distributions,
while the §%, test generally achieved higher rejection rates for the other distributions.

The difference in relative performance of the () x test did not appear to be affected
by a change in the number of data points used, n.

Several other features of cf based tests make them appealing compared to the
other tests available and mentioned. Cf based tests can easily be adapted to test
for any known, fixed distribution, and their sensitivity to certain alternatives can be
adjusted through the choice of test statistic and ¢ values. However, the problem of
dimensionality may mean practical implementation of multivariate testing may be
difficult — the dimensionality of the {-space occupied by the cf increases computation

and storage requirements.
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3.4.2 Conclusions

The KCFE based Gaussianity test has been described and extended to the multi-
variate case, allowing it to be used on correlated data. An empirical power study
and comparison to other tests revealed encouraging results. Further studies into the
performance of this test are certainly possible, as well as detailed investigation into
optimisation of some aspects of the test, namely, the choice of a test statistic and the
range of ¢ values at which to evaluate the cfs. The distribution of the test statistic
under H is difficult to find and is currently unknown. For the purposes of testing,

empirically derived thresholds were used here.

3.5 Summary

A brief summary of current Gaussianity testing techniques was presented, with special
emphasis on characteristic function (cf) based techniques. While there are several
reasons for emphasising these tests in their own right, including the development
here of multidimensional Gaussianity testing, another reason for the inclusion of cf
based testing will become apparent in the following chapter.

Gaussianity testing is the important first step in Figure 1.1. If it can be assumed
that the interference process is (Gaussian, optimal solutions to the signal detection,
and other signal processing problems, already exist in the literature. The remainder

of this dissertation will deal with problems when Gaussianity cannot be assumed.
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Chapter 4

ALPHA-STABLE GOODNESS-OF-FIT TESTS

The presence of and degree of impulsive behaviour in observed processes is often
important in optimising performance. For example in detection problems, it is known
that the optimal detector for additive Gaussian interference, the matched filter, will
perform poorly when the interference is alpha-stable {aS) distributed with a < 2. If
tests reveal impulsive behaviour, significant improvements in detector performance
may be achieved by using a detector designed for that particular type and level of
impulsive interference or by using a robust, nonparametric detector that can operate
in the presence of impulsive interference [18, 17]. Additionally, it may be argued that
if the degree of impulsive behaviour is low, then the additional burden of dealing
with complicated models such as the oS distribution may not be justified, and other
distributions, such as the Gaussian or Generalised Gaussian may be sufficient. For
these reasons, tests are described in this chapter to determine both the presence and
the degree of impulsive behaviour in &S processes.

In Section 4.1, a goodness-of-fit test is described for determining the appropri-
ateness of the assumption that observations come from an oS distribution, a broad
family of distributions that have been used to model some impulsive sources. Fol-
lowing this, in Section 4.2, another test is presented for testing the level of impulsive

behaviour within the aS family.

4.1 Testing for the oS Distribution

The goodness-of-fit test described here is a test for the entire family of stable distribu-
tions, against all other distributions, and not just a test for the non-Gaussian stable

distributions. That is, the Gaussian distribution is included in the null hypothesis.
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The test was first proposed in [13] and was used in [69], but is expanded here.

4.1.1 Method

Differences between the characteristic functions (cf) of random variables have been
used extensively to test for changes in distributions. This has already been discussed
in the context of Gaussianity goodness-of-fit testing, where the technique originated
— refer back to Chapter 3. Much of the motivation for investigating cf based tech-
niques has been its Fourier relationship with the more commonly employed, and more
intuitive, probability density function. Tests and procedures developed for the latter
can often be transformed to equivalent operations for the former.

Aside from this useful relationship, it has also frequently been noted that one of
the major advantages of cf based goodness-of-fit testing is that the cf always exists and
is smooth and well behaved, unlike the pdf. However, it still retains the advantages
of pdf-based goodness-of-fit testing, mainly that it can be adapted to test for almost
any distribution, as long as the cf is specified.

Noting the presence of general closed-form expressions for the aS cf but not the
pdf, this lead to proposals for its application to testing for the a8 distribution, in [51]
and, more recently, in [13].

While, as shown in Section 3.4 and {96], cf based goodness of fit techniques can be
easily extended to multivariate distributions, here emphasis is on univariate distribu-
tions, and more specifically, independent and identically distributed random variables.

Put simply, this test estimates the significance of the difference between the cf of
the generating process, estimated nonparametrically from the data, and the cf of the
“best fitting” oS process. The method is shown in block diagram form in Figure 4.1.
A detailed explanation follows.

It is assumed that the data is independent and identically distributed (iid) with
unknown, but fixed parameters. The hypothesis, H, is that the data is oS distributed
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FIGURE 4.1. Block diagram of the oS goodness-of-fit test method.

against the alternative, K, that it is not. This alternative includes all{ non-stable
distributions. The characteristic function (cf) of an aS process was given previously

in (2.1) and the parameter vector will be denoted here by p = [a 8 ¢ 6]7.

1. Estimate the cf of the process from the observations using the empirical char-

acteristic function (ecf), ¢¢().

2. Estimate the aS parameters of the observations under the assumption that H
holds, p|H. This can be done through a variety of techniques, however, as
discussed in Section 2.3, the cf based parameter estimation procedure proposed
in [50] appears to have good consistency properties compared to other methods

and is used here.

3. Evaluate the cf of the &S distribution having the estimated parameter values,

out; P).

4. Find the difference function ¢u(t; p) — ¢°(t).

5. Test the significance of this difference.

By using the estimated parameter values p|H and the form of the aS cf, the

cf generated in step 3 is a parametric estimate of the cf of the generating process,
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assuming H holds. Therefore, by subtracting the ecf, an unbiased nonparametric cf
estimator, the difference function will give an indication of the validity of H. If the
observed data is aS distributed, then the difference between these functions will be
due to parameter estimation errors and variation in the ecf due to the finite sample
size. However, under the alternative, K, there will be a systematic difference, which,
for reasonable alternatives, should be larger than the random variation described
above.

Drawing on the findings in [93] and Chapter 3 for cf based Gaussianity tests, the

following test statistics are considered:

T, = max|gu(tp) - 6°()| (4.1)

T, = max|R ou(t0) - R $()| (4.2)

It was concluded in Section 3.2.2 that the statistic using the greatest magnitude
difference provided the best omnibus test, here this is the 7, statistic. However, since
the cf of a symmetric distribution is real, it is expected the 7. statistic will be superior
when symmetry can be assumed. This is significant in the study of aS distributions
due to the emphasis, in some areas, towards symmetric members of the aS family.

As the distributions of these test statistics is complicated and unknown, the para-
metric bootstrap [23, 94| is used to determine the significance of the statistics. To do
this, multiple realisations of &S random data are generated using a random number
generator (RNG) with parameters p|H and the corresponding ecfs and test statistics
are calculated.

By using the regression-type procedure in the ¢f domain to estimate the parameters
of the aS distribution in step 2, the cf of the generated oS bootstrap resamples is
“fitted” to the data’s ecf. That is, by some (unspecified) criterion, the cf of the
resamples is the oS cf that best matches or approximates the cf of the data. Therefore,
the distribution of these bootstrap statistics approximate the distribution of the test

statistics under H and can be used to set thresholds. More details on the parametric
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bootstrap as a method to estimate distributions of test statistics can be found in

Appendix B.

4.1.2 Simulation Results and Discussion

To evaluate the power of this test against various alternatives, the following simu-
lations were performed for data lengths of 400 and nominal false alarm rate of 5%.
These values were chosen as this allows the resulting rejection rates to be distinguish-
able — if too few or too many observations are used, all distributions yield similarly
low or high rejection rates. The cfs where evaluated between ¢ = —10 and ¢ = 10
in steps of 0.1 and the number of bootstrap resamples was 500. As well as 7, and
T., the Kolmogorov-Smirnov, Tks, and Anderson-Darling, Tap, tests, as defined in
Section 3.1.3, are included for comparative purposes. However, due to the difficulty in
numerically approximating the pdf of an asymmetric oS distribution, the Tkxg and Tap
tests only test for the symmetric oS distribution, therefore, results for asymmetric
distributions should be viewed with caution.

From Table 4.1 it can be seen that the false alarm rate has been maintained for the
T. and T, tests. High detection rates are achieved for most of the non-asS distributions
in Table 4.2. Exceptions to this are the ¢ distributions. The t3 distribution has enough
degrees of freedom to appear almost Gaussian, and hence is often accepted by the
tests.

Similarly, for lower degrees of freedom the difference between the cf of the t;
distribution and the ¢f of the aS(a = 1.4443,3 = 0,¢ = 0.8668,4 = 0) distribution
is very small, peaking at only 0.0307, as shown in Figure 4.2. In addition, most of
this difference is in the high variance region of the ecf and hence may be masked by
the variability of the ect. Only for very long data lengths will the distributions be
distinguishable.

To illustrate this, a variant on the proposed test was run. Two tests were run



Distribution Ty 1. Tus Tun
aS(1.2,0) 6.0 5.0 68.2 0.6
«@S5(1.2,-0.3) 5.6 4.8 96.0 17.8
«5{1.7,0) 4.8 5.8 7.0 5.0
«@5(1.7,-0.3) 4.6 4.6 19.6 17.4
aS(1.7,0.7) 5.2 5.6 66.4 69.2
a5(1.9,0) 5.0 4.6 0.8 3.8
aS(2,0) 3.8 4.4 0.4 4.6

TABLE 4.1. Rejection rates of the oS goodness-of-fit test for various alpha-
stable(q, 3) distributions (in %) using sample sizes of 400, 5% nominal level and

500 replications.

Distribution T, T, Txs Tap
U0,1) 100.0 100.0 21.2 100.0
X2 100.0 090.8 100.0 100.0
X2 90.0 73.8 100.0 100.0
Laplace 34.2 43.8 24.6 9.6
Log Normal 76.2 77.2 100.0 93.8
to 4.8 5.2 39.2 4.0
ta 5.8 5.0 12.6 5.8
tg 3.2 5.4 1.8 4.8

TABLE 4.2. Rejection rates of the aS goodness-of-fit test for various non-stable
distributions (in %) using sample sizes of 400, 5% nominal level and 500 replications.
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tions.

that tested that the observations are aS{a = 1.4443, 3 = 0, ¢ = 0.8668, § = 0} and ¢,

distributed, respectively. The rejection rates indicate the approximate likelihood that

the ¢ fit is better than the oS. As shown in Figure 4.3, it is difficult to distinguish

between the distributions unless large amounts of data are available.
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FIGURE 4.3. Rejection rates (in %) for the aS(a = 1.4443, 3 =0, ¢ = 0.8668, § = 0)

versus ty distribution goodness-of-fit test.
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4.1.3 Conclusions

A characteristic function based test has been developed for testing the appropriateness
of the assumption that data is aS distributed. The false alarm rate is able to be
maintained through the use of a parametric bootstrap procedure. High rejection
rates have been achieved against a number of alternative distributions. Although low
rates were observed against some distributions, most notably the t;, it is noted that
the difference between these distributions and an oS distribution with appropriately
chosen parameter values, is small.

Later, in Chapter 5, this test is applied to some real sources of impulsive data

where it has been proposed that the oS distribution may be appropriate for modelling.

4.2 Testing the Level of Impulsive Behaviour

As noted in the introduction to this chapter, acknowledging the mere presence of
impulsive behaviour may not be enough - it may be that its level is also important.
This is associated with the likelihood of observing an outlier or “spike”. For the aS
distribution, this is determined by the characteristic exponent, «. In Section 2.1 and
Figure 2.3 it was shown that even non-Gaussian (o < 2) &S distributions appear
very Gaussian around the median, it is really only in the tails that differences are
observable.

Two techniques are presented that test the level of impulsive behaviour of aS
processes based on the work in [95, 14]: testing the parameter o directly and a
characteristic function (cf) based technique. The parametric bootstrap is used in both
cases to estimate the distribution of the test statistics and in the setting of critical
values. A description of the use of the bootstrap for hypothesis testing relevant to
the tests to be described in this section, is provided in Appendix B.

These are not parameter estimation procedures, rather, they test their values.

The procedures here are applicable to the testing of all four parameters of the oS
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distribution, however here the focus will be on testing « only, including the special
case of testing for the Gaussian distribution (o = 2) against non-Gaussian, stable

distributions.

4.2.1 Testing the o parameter

Given the definition and properties of the oS distribution presented in Chapter 2,
testing for the level of impulsive behaviour of oS distributed data may be considered
in terms of testing the parameter o.. Hence adopting the notation of Appendix B,
the hypothesis and alternative formulation used in (B.3) and (B.4) may be rewritten

in terms of the sole parameter of interest, that is § = a,

H:a=q (4.3)
versus the two-sided alternative
Kia#ay . (4.4)
An obvious test statistic is
Tha = Ié?—aol (4.5)
Ta

where & is an estimator of o derived from the observations and &4 is an estimator of
its standard deviation. Under H, T}, , will be small, only deviating from zero due to
finite sample characteristics and the variability of the estimator. This statistic would

be modified to

(31 —
Tn,a = ~

Ta

if the alternative, K,
K:a<a (4.6)

is one-sided. While the emphasis here will be on the two-sided alternative, in some
applications a one-sided alternative may be appropriate, for example if testing to see

if the level of impulsive behaviour exceeds a certain level.
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Fitting this test statistic to the parametric bootstrap procedure in Table B.1, the
parameter of interest, £, is o and the nuisance parameter is @ = [3 ¢ ]T.

In [50] it was shown that the estimator of « depends on the true values of a, 8
and ¢. Since 3 and ¢ are elements of ¥}, the nuisance parameter will affect the test
statistic and justifies the need to re-estimate the distribution of T, , for each 9.

The conditions listed in Table B.2 from [7] are required to prove the asymptotic -
correctness of the test and that the power function may be approximated by a boot-
strap procedure. They concern the convergence of the parameter estimates and of
the distribution of the test statistic [71]. Given the consistency and asymptotic un-
biasedness of the S parameter estimators (as shown in [50}]) and the simple form of
the test statistic, it is assumed that these conditions are met.

Determining critical values for this test is made more complicated by the presence
of nuisance parameters, 3, ¢ and §, and in particular by their effect on the estimation
of the parameter of interest, «.

While § does not affect the estimation of o or of ¢, it does affect the estimator of
(. In the estimation of 3, no extra computational burden is added by the estimation
of 8. Therefore, & is included in the test structure since it adds generality to the
procedure should it be adapted for the case when § is a parameter of interest, rather
than a nuisance parameter.

The proposed parametric bootstrap based procedure for testing the o parameter
is presented in block diagram form in Figure 4.4. Thick arrows indicate the bootstrap
resamples seeded by the &S random number generator.

The distribution of T, , in {4.5) is approximated by the bootstrap statistics

1, =l

o~k
&
where &* are parameter estimates from the resampled data, X*, and &}, are estimates

of its standard deviation.

The estimation of 64 is performed by generating data using the estimated param-
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FIGURE 4.4. Block diagram of the parametric bootstrap test for c.

eters of X, that is X™, and estimating the standard deviation of the o estimates
from these resamples, &*. A similar procedure is followed for each 77 ,, = E:';;_—:—Ol
by estimating the standard deviation of estimates of « derived from resamples gén—
erated using the estimated parameters of X;. Both estimation procedures have been
omitted from Figure 4.4 as it adds unnecessary complexity to the diagram.

With the empirical distribution of 7}, approximating the true distribution of

Tna , appropriate critical values can be chosen determined by the test’s desired level

of significance.

4.2.2 Characteristic function based test

Characteristic function based goodness-of-fit tests have already been described in

Chapter 3 and Section 4.1. While there are similarities between these two appli-
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cations, namely that they determine if a particular statistic model is valid for an
observed process, in this section a cf based distance test is formulated for testing
within the aS model. Consequently, a variation on the previously described tests is

necessary.

Characteristic function estimators. In the cf based tests previously discussed, as well
as in the references cited, statistics were calculated from the difference between a
nonparametric estimate of the cf of X and the cf under the null hypothesis. Generally,
this nonparametric estimator was the empirical cf (ecf), although the use of the
kernel characteristic function estimator (KCFE) was also considered. The use of
nonparametric estimators is appropriate for general goodness-of-fit tests where, under
the alternative, the distribution of X may be any valid distribution.

Here the hypothesis and alternative specify different parameter values for within
the oS distribution. That is, even under the alternative, K, X is aS distributed. To
exploit this knowledge, a parametric cf estimator is used. This estimator uses the
estimated parameter values and the known form of the cf of oS distributions and is
denoted ¢(t; £, 19) This is compared to the cf of the distribution under H, again using
the estimated nuisance parameters, ¢(t; &,, 19)

It is reasonable to expect that if the initial assumption is true that the observations
are from an aS process and a suitably accurate parameter estimation procedure is
available, then a parametric estimator of its cf will be better than a nonparametric

estimator.

Test statistics. In [93] it was found that the peak of the absolute difference between
two cfs provided a good measure of the distance between the two distributions. There
are a large number of measures of the difference between the two functions that may
be used. Each will have strengths and weaknesses against different types of alternative
distributions. However, it was found that the peak absolute difference provides an

omnibus measure that should vield high rejection rates for all reasonable alternatives.
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Drawing on this, the test statistic to be used is defined as

Th,p = max o(t;€,9) — ¢(t;£,,9)] . (4.7)

The parameter vectors, £ = o and 9 = {§ ¢ 4]7, contain all four parameters of
the distribution. This highlights an advantage of this test statistic over the statistic
defined in (4.5), namely, it incorporates all the distributional parameters into the test.
This allows its use in a broader range of problems including the testing of multiple
parameters, compared to T, , that just tests the value of one parameter, namely, a.
The expected cost of this generality is a slight drop in performance when only testing

.

Finding critical values. The distribution of T, 4 is complicated and unknown. In
[93], Monte Carlo simulations were performed to estimate the distribution of the
test statistic under the simple null hypothesis of Gaussianity. From this, empirically
derived thresholds were found.

As stated in Appendix B, due to the presence of nuisance parameters, no such
“once off” Monte Carlo simulation would be appropriate here — it cannot be assumed
that the distribution of the test statistics is independent of the nuisance parame-
ters. Not only do they affect the estimation of the parameter of interest, as was the
case with testing « in Section 4.2.1, they also affect the form of the c¢f. Again the
parametric bootstrap is used to determine critical values. The distribution of T, ; is

approximated by the distribution of the bootstrap statistics
Trp = max |§(t;€, 9) — 6(t; €, 9)

The procedure is presented in block diagram form in Figure 4.5. Its general
structure is similar to that in Figure 4.4 and follows the general procedure described

in Table B.1.
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4.2.3 Simulation Results and Discussion

A simulation study was undertaken to determine the performance of the two tests.
Here ay = 2 and e = 1.6 are considered. In the former, the hypothesis is that the
population is Gaussian distributed against any non-Gaussian oS distributed. This
is probably the most important case to consider as it tests if the observations have
bounded or infinite variance. While two-sided tests have been used here, the minor
changes for one-sided tests are trivial.

Observations were generated from an ¢S random number generator with varying
@, but with ¢ = 1 and § == 0. Of most significance is the symmetric oS case (SaS), 8 =
0, however, results are also shown for 3 = 0.7 and 3 = —0.3. In many applications,
such as some communications systems [64], it is common to consider only the SaS
distribution when modelling naturally occurring impulsive interference. The nominal
significance level for all tests was set at 5%, the sample size was 400 and the number
of bootstrap resamples was 500.

Rejection rates for the tests when 5 = 0 have been estimated for a number of
values of ¢ and are presented in Table 4.3 for ag = 2. As well as the T,,, and T), 4
tests, the Kolmogorov-Smirnov test, Tks, the Anderson-Darling test, Tap, and two of
the cf based Gaussianity tests described in (3.6} and (3.3), Q@x and Q% respectively,

have also been added.

Toa Tha Tho Tks Tap Qx Q%

o (one-sided) (two-sided)
1.7 99.8 99.8 99.8 7.4 95.0 97.0 98.0
1.8 95.8 95.8 95.8 2.8 69.4 78.1 83.0
1.9 67.8 67.8 67.9 1.4 23.7 34.1 39.3
1.95 34.4 34.4 34.4 0.5 9.8 16.6 19.1
2 4.8 4.8 4.6 0.5 5.1 5.4 4.4

TABLE 4.3. Rejection rates (in %) of tests on the level of impulsive behaviour of
standard SoS distributed data with 3 = 0 where o = 2, estimated from 1000 repli-
cations.
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Table 4.4 shows results for cig = 1.6. Here the two-sided and one-sided alternatives
differ, and consequently two 7, , tests have been included, although only one-sided
Tks and Tap tests. For obvious reasons, the c¢f based Gaussianity tests have been -

removed for this hypothesis.

T Th o Too Tks Txp
o (one-sided) (two-sided)
1.2 99.8 99.8 99.8 68.0 77.4
1.4 79.2 68.9 72.5 34.6 28.2
1.6 4.7 4.7 4.5 12.2 5.1
1.8 0.0 70.8 66.7 2.6 0.7
1.9 0.0 98.0 97.5 0.8 0.1
2 0.0 100.0 100.0 0.1 0.0

TABLE 4.4. Rejection rates (in %) of tests on the level of impulsive behaviour of
standard SaS distributed data with 3 = 0 where o = 1.6, estimated from 1000
replications.

Very little difference can be detected between the T, , and T, 4 tests, especially
when ap = 2. Remembering that the T,, 4 test implicitly tests the two-sided alterna-
tive, the results in Table 4.4 also show that the T, 4 test is comparable to the two-sided
Tna test. The one-sided T,, , was more powerful when a < ag but obviously should
not be used when o > . It is also significant to note that the levels of significance
have been maintained at the nominal 5% level for these tests — validating the use of
the parametric bootstrap for threshold setting.

It is significant to note the difference in power between the Jx and T, , tests,
especially for near alternatives, that is, when the actual, true parameter value o
is close to ag. The main difference between these tests is the use of a parametric
estimator of the cf of the observed process for 7, 4, as opposed to the nonparametric
estimator for (}x. Here, the assumption about the distribution of the process is
utilised. Of course if this assumption does not hold, we would expect the reverse

situation to be true.
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For far alternatives, the difference between parametric and nonparametric esti-
mates of the cf of the generating process becomes less significant compared to their
underlying differences with the cf under H. The Q% test performs slightly better than
the (Qx test since only symmetric distributions are considered.

A more disappointing, though not completely unexpected, result is the poor per-
formance of the Kolmogorov-Smirnov test. This test is not sensitive to deviations
in the tails of distributions, concentrating more on deviations near the median. A
quick inspection of the normal probability plot in Figure 2.3 reminds us that oS dis-
tributed random variables appear very similar and Gaussian-like around the median
and that their level of impulsive behaviour only becomes evident when inspecting
their tails. Thus the Kolmogorov-Smirnov test is poorly suited to this problem, un-
like the Anderson-Darling test that was specifically included in this simulation study
since it is known to be a good test for deviations in the tail. While its rejection rates
were better than the Kolmogorov-Smirnov, they were still noticeably less than those
of T o and 1T}, 4.

Tables 4.5 and 4.6, again test oy = 1.6, however, the generated data was from an
asymmetric «S distribution with 8 = 0.7 and 5 = —0.3 respectively. As discussed in
Section 4.1.2, there is greater difficulty in numerically approximating asymmetric oS
pdfs for these tests, therefore the Kolmogorov-Smirnov and Anderson-Darling tests

have been omitted, as have the cf based Gaussianity tests, for obvious reasons.

Tn,a Tn,a Tn,rﬁ
o (one-sided) (two-sided)
1.2 99.8 99.6 99.8
14 77.4 66.8 70.2
1.6 4.2 5.0 4.6
1.8 0.0 73.4 68.2

TABLE 4.5. Rejection rates (in %) of tests on the level of impulsive behaviour of
standard SaS distributed data with 3 = 0.7 where ay = 1.6, estimated from 500
replications.
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Tn,a Tn,a Tn,¢a
o (one-sided) (two-sided)
1.2 100.0 100.0 100.0
i4 82.2 71.2 73.4
1.6 3.8 6.2 5.0
1.8 0.0 : 72.6 68.2

TABLE 4.6. Rejection rates (in %) of tests on the level of impulsive behaviour of
standard SaS distributed data with § = —0.3 where op = 1.6, estimated from 500
replications.

Although individual rejection rates corresponding to a particular a may change
slightly, the bootstrap tests still perform acceptably and their relative performances
are similar. These results vindicate the use of estimated nuisance parameters in the
estimation of critical values as they indicate the level is maintained in spite of the

effect # has on the estimation of a.

4,2.4 Conclusions

Two tests have been presented for testing the parameter values of an oS distribution.
While the emphasis has been on testing impulsive behaviour through the o param-
eter, the techniques are general enough to be applied to any of the distributional
parameters.

The parametric bootstrap procedures implemented have been shown to allow the
appropriate setting of critical values for the tests and resulted in them maintaining
the nominal level of significance. Although testing the « parameter directly presented
the flexibility in being able to test both alternatives, o < ap and o # o compared to
the cf based procedure, it is to be noted that only minor differences in performance
were noted. It should also be noted that the latter procedure has a higher degree of
generality in being able to be easily adapted to test more than one parameter.

The cf based test has also been shown to be a more powerful variation to existing
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cf based goodness-of-fit tests through the use of knowledge that the distribution of
the observed process is within a particular parametric family. Simulation results show
that the two presented tests reject the alternatives tested with rates varying depending

on the degree of impulsive behaviour and the number of observations available.

4.3 Summary

Tests for the goodness-of-fit of an « stable (S) distribution, using the characteristic
function (cf), and for their level of impulsive behaviour, using the cf and parameter
estimates, have been presented. The parametric bootstrap has been used to ensure
levels of significance are kept. These contributions serve to answer the “Assume other
models” component of the signal detection scheme in Figure 1.1 when considering o5

interference.
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Chapter 5

TESTING REAL SOURCES OF IMPULSIVE BEHAVIOUR

The development of the tests described in the previous chapter was initially motivated
to validate the modelling of heart rate variability (HRV) signals by oS processes
[13, 69]. However, modelling by oS processes has been suggested for a number of
impulsive sources. In this chapter, the goodness-of-fit tests from Chapter 4 are applied
to naturally occurring HRV (a “man-made” series in the literal sense), as well as to
stock price data, a process that is inherently governed by the conscious, and sub-

conscious, actions of people.

5.1 Heart Rate Variability

Analysis of a patient’s HRV may be useful in identifying a number of pathological
heart conditions [45]. Figure 5.1 shows an HRV data segment. Observable are a
number of premature beats (PB) appearing as spikes or outliers. The number and
type of PBs may be significant in identifying and monitoring pathological heart con-
ditions [35]. Current clinical evaluation of arrhythmias (abnormal heart rhythms)
only identifies and counts the PB events on an ECG (electrocardiogram) signal.
This could be acceptable when few PB events are present, however in the case of
extrasystolic arrhythmias, where there is a large number of PB, the signal should be
considered in its entirety and an integrated analysis approach would be needed. The
features of the aS distribution encouraged investigation of its use in [69] to further

develop methods of clinical analysis of HRV signals.
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FIGURE 5.1. Segment of HRV signal from patient with ventricular tachycardias.

5.1.1 Alpha-Stable modelling of HRV

While it is not being proposed that the aS distribution is an exact model for HRV
with arrhythmia, it is suggested that as an impulsive model with four parameters,
the aS distribution may be broad enough to be a suitable empirical model that may
allow a unified, statistical approach to the task of HRV analysis. In this context, the
aS parameters do not have a direct physical interpretation, however, their effect on

the distribution is well known and can be associated with HRV events as follows

e o— as a measure of the level of impulsive behaviour or the frequency of spikes,
this parameter will be related to the amplitude of PBs and how frequently they

occur

¢ - the degree of symmetry characterises the mixture of PB types, for exam-

ple, ventricular premature beats (VPB) and supraventricular premature beats

(SPB).

e ¢ the dispersion may be a better measure of spread for impulsive observations

than the standard deviation
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e 4~ the mean may not be a good measure of central tendency due to the impulsive

behaviour, § may give a better indication of the underlying heart rate.

5.1.2 Results and Discussion

A detailed explanation and discussion of the use of &S modelling of HRV signals is
given in [69] and a summary of the findings is given here.

HRYV signals from 24-hour Holter ECG tapes, chosen randomly from a patient
group with arrhythmias, were divided into segments of 500 samples with 50% overlap.
Before analysis, the data was prewhitened by an inverse aS autoregressive (AR} model
of order 11 (Section 7.12 of [70] describes ARMA processes with stable innovations,
as well as their invertibility), which generalizes the (implicit) Gaussian AR{11) model
used predominantly in HRV studies [82]. The test was applied to the prewhitened
segments. Results of applying the oS tests, T, and 7}, defined in equations (4.1} and
(4.2), as well as the Gaussianity tests, Qx and Q%, defined in (3.6) and (3.3), are
shown in Table 5.1.

Goodness- File

of-fit test 1 2 3 4 5
T, 5.62 7.55 20.3 9.11 5.47
T, 6.37 7.81 13.3 7.03 5.73
Qx 94.0 17.9 98.7 93.5 83.8
Q% 92.5 17.1 98.8 92.7 84.1

TABLE 5.1. Rejection rate (in %) of goodness-of-fit tests for the &S distribution and
the Gaussian distribution at the 5% level on five HRV data files.

Significantly, the Gaussianity hypothesis could be confidently rejected in a number
of cases, but not the oS hypothesis. This would suggest that the aS model i1s more
appropriate than the Gaussian model. In the absence of a better alternative, the oS

model can be used with some degree of confidence.
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The mean of the oS parameter estimates, as well as their standard deviation (in
brackets) are shown in Table 5.2 along with the number of ventricular and supraven-
tricular premature beats, VPB and SPB respectively, occurring in each data file. The
relationship hypothesised previously between aS parameter estimates and the type
and frequency of PB appears to hold to some degree, the lower values of « indicate

more impulsive behaviour and a higher PB count.

File
Feature 1 2 3 4 )

VPB 153 6 4967 239 130
SPB 180 10 93 230 1026
« 1.645 1.943 1.406 1.554 1.615
(0.203) {0.063) (0.186) (0.232) (0.238)

I} 0.401 0.191 0.040 0.06 0.282
(0.325) (0.787) (0.534) (0.09) (0.283)

0% 2.53 1.733 4.476 2.62 3.89
(1.525) (1.349) (1.495) (2.529} (1.291)

) 0.459 0.023 1.33 1.72 0.775

(0.897)  (0.075)  (27.69)  (0.445)  (7.125)

TABLE 5.2. Conventional analysis of five HRV data files and estimated aS parame-
ters.

It is difficult to confirm the relationship between 3 and the proportion of VPBs
(asymmetric) to SPBs (symmetric) since the variability of the estimates is quite
high. It was noted in [57] that the effect of 5 on the distribution is reduced as
a — 2. Inspection of the cf of the aS distribution in (2.1} confirms that the factor
tan{amr/2) — 0, thus reducing the weighting of the 3 parameter.

Given the smooth parametric transition from the existing implicitly Gaussian
models (o = 2) to the more general, proposed, S models, as well as on the weight
of the mentioned results, a clinical study to evaluate the physiological significance of

aS modelling of HRV is being undertaken.
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5.2 Stock Prices

It was hypothesised by Mandelbrot [58] that the logarithm of stock price changes
follows an oS distribution. It is not surprising, therefore, that stock market data
have been used in a number of prominent contributions to aS parameter estimation,
specifically by Fama and Roll, Leitch and Paulson and Koutrouvelis in [25, 57, 50].

If the price of a stock at the end of the month is p;, and the dividend paid is d;,
then the adjusted rate of return is

pi —DPim1 — d;
Pi1

Ty =
and the logarithmic price change used is
z; = log(r; + 1)

The author was unable to obtain the data sets used by any of the previously
mentioned authors, however historical monthly data for a number of stocks was ob-
tained from http://chart.yahoo.com/t covering more recent time periods. The
oldest records were for IBM and started in January 1962. The stocks chosen were
generally from the lists used in the references above, although some other randomly
chosen stocks were also included. The one criterion applied to choosing stocks was
that sufficiently large data was available, and herce, the stocks tended to be larger,
well established companies.

The stocks are listed in Table 5.3, along with the significance or p value associated
with the cf based aS goodness-of-fit test described in Section 4.1. Also tabulated are
the sample sizes and the estimated oS parameters.

From the p values shown, it would appear that the fit of the aS distribution to
this type of data is very good. None of the sets would reject the null hypothesis that
the data is aS distributed at any reasonable level.

Being unable to dismiss this hypothesis, it is now possible to test for the level

of impulsive behaviour using the 7,,, and T; 4 tests. Shown in Table 5.4 are the p
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Company Samples P & Jo; ¢ &

Am. Home Prod. 213 0.60 1.862 0.519 0.039 -0.014
American Exp. 270 0.90 1.907 0.942 0.053 -0.014
Boeing 357 0.32 1.866 0.296 0.061 -0.010
BHP 149 0.78 1.944 -1.000 0.053 -0.011
Colgate-Palm. 273 0.47 1.827 1.000 0.043 -0.010
General Motors 357 0.68 1.907 -0.545 0.046 -0.010
Goodyear 357 0.31 1.824 -0.206 0.051 -0.009
IBM 453 0.55 1.929 -0.084 0.045 -0.007
Intel 159 0.37 1.942 1.000 0.079 -0.025
J. P. Morgan 357 0.66 1.927 (0.308 0.048 -0.010
Litton Ind. 214 0.60 1.891 0.287 0.048 -0.006
3M 357 0.42 1.814 (0.180 0.038 -0.008
PepsiCo. 263 0.51 1.822 (0.343 0.042 -0.015
Pfizer 213 0.47 1.962 1.000 0.051 -0.018
Vintage Petr. 110 0.58 1.670 0.167 0.077 -0.005

TABLE 5.3. Sample sizes, p values and estimated «S parameter values for the log-
arithmic price changes of some stocks, when testing the goodness-of-fit of the aS

distribution.
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values of the two tests for two different hypotheses, g = 1.8 and o = 2. While the
ag = 2 is obviously testing for Gaussianity, the og = 1.8 hypothesis was included due

to the assertion in [65] that post-war monthly stock returns would have o close to

this value.
ap = 1.8 ap =2

Company & Tha Trs Tha The
Vintage Petr. 1.670 0.16 (.59 0.00 0.06
3M 1.814 0.56 0.87 0.00 0.00
PepsiCo. 1.822 0.58 0.82 0.00 0.01
Goodyear 1.824 0.61 0.79 0.00 0.01
Colgate-Palm. 1.827 0.63 0.72 0.00 0.00
Am. Home Prod. 1.862 0.67 0.56 0.03 0.03
Boeing 1.866 0.83 0.51 0.01 0.06
Litton Ind. 1.891 0.83 0.46 0.04 0.09
American Exp. 1.907 0.87 0.21 0.05 0.02
General Motors 1.907 0.92 0.26 0.02 0.03
J. P. Morgan 1.927 0.94 0.16 0.06 0.13
IBM 1.929 0.98 0.14 0.04 0.11
Intel 1.942 0.89 0.20 0.21 0.09
BHP 1.944 0.87 0.21 0.21 0.15
Pfizer 1.962 0.97 0.10 0.27 0.20

TABLE 5.4. Estimated o and p values for the tests of impulsive behviour. Four p
values are shown for each company, two each for the T, , and T, 4 tests and two each
for ap = 1.8 and gy = 2.

While broad conclusions from this table on stock price data are difficult to make
considering the range of stocks, it is encouraging to note that generally the stocks with
larger o achieved higher significance levels than the other stocks when testing o = 2
and for the one-sided T, ,, test when oy = 1.8, while they had lower significance levels
compared to other stocks for the two-sided T,, 4 test when ¢ = 1.8. Conversely, the
Vintage Petroleum stock, & = 1.67, had lower significance levels for oy = 2 and for
Th.a when g = 1.8

This apparent relationship between & and the p values is to be expected, though,
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with the presence of nuisance parameters, it is not surprising that some stocks with

lower values of & achieved higher p values.

5.3 Summary

The oS goodness-of-fit test and tests of the level of impulsive behaviour have been
applied to heart rate variability and stock price variations. The encouraging results

give weight to the argument that the oS distribution may be used to model these real

data sets.
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Chapter 6

SIGNAL DETECTION IN IMPULSIVE INTERFERENCE

Signal detection is an extensively studied and analysed topic. Detectors for a known
signal in additive interference of unknown power have been derived for a number of
interference distributions — the most famous and widely used being the matched filter
(MF) for Gaussian interference.

Sources of impulsive interference, particularly those that follow a stable distribu-
tion, has presented some interesting problems for detection. Many conventional sta-
tistical and optimal detection techniques, such as likelihood ratio procedures, require
a closed form expression for the pdf of the interference. As discussed in Section 2.1,
there is no general expression for the pdf of the a-stable (aS) distribution. For this
reason, it is necessary to investigate alternative strategies for the detection of signals
in aS interference.

Consider the model

X=0s+W (6.1)
where X = [X|,Xo,...,X,]7 is the model for the real-valued observations, # is
a positive, real, unknown parameter, s = [s1,...,5,]7 is the known, deterministic

signal to be detected and W = [Wy, W,... ,W,]" is a stationary, iid, symmetric
a-stable (SaS) interference process. To determine the presence of s in X, the tested

hypothesis is
H:8=0 against K:0>0 (6.2)

The focus here is on the case where the SaS distribution provides an adequate

model for the impulsive interference, W. This model assumption should be validated
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from the physics of the process or empirically through the fitting of observations, as
was described in Chapter 4 and performed in Chapter 5.

In the following sections, signal detection in SaS interference using correlation and
rank-based detectors is discussed. Following that, simulation results are presented,
compared and discussed, and finally conclusions are drawn. Some of this work was

introduced in [17].

6.1 Optimal and Suboptimal Detectors

Since numerous references are available for detection theory, for example [56, 68, 88],
only a brief introduction to conventional and classical detection will be presented here
and is only to serve to justify the alternative procedures proposed later in this section
and chapter. Of main interest here are generalised correlation detectors [44], which
include locally optimum (LO) and locally suboptimum (LSO) detectors, although the

Cauchy detector and some other alternatives are discussed later.

6.1.1 Optimum Tests

Before comparing tests it is necessary to define what is “best”. The Neyman-Pearson
criterion is used here to define optimality, that is, the optimum test maximises the
probability of detection within the class of tests that maintain a certain, fixed false

alarm rate (the probability of an error of Type I). If K is simple,
H:0=0 against K:8=20

then by the Neyman-Pearson lemma, the likelihood ratio test is optimal for detection

in the model (6.1). The test has the form
" fw(Xi — Bps) K
TX)= E — 2k 6.3
(X) —~  fw(X) N (6.3)

for some x and where fu(w) is the pdf of the additive interference, W.
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When K is composite, as in (6.2), a uniformly most powerful (UMP) test must
have the highest probability of detection (“most powerful”) under all alternatives
(“uniformly”). This is a very strong and difficult condition to prove. Common al-
ternatives when no UMP test can be found include generalised likelihood ratio tests,
where maximum likelihood estimates of parameters are used in (6.3), and locally

optimum tests.

6.1.2 Locally Optimum Detectors

Locally optimum (LO) [76, 77] tests attain the best detection performance amongst
the class of detectors of the same size for weak signal conditions, that is, they max-
imise the slope of the detector power function at # = 0. Considering weak signal
performance is an important criterion in comparing detectors since, typically, many
detection schemes can be designed for high detection rates at high signal strengths.

A UMP test has maximal power for all parameter values, including the weak-signal
case. Therefore a UMP, if it exists, will also be 1,O. While the converse relationship
cannot be inferred in the general case, local optimality is clearly a highly desirable
feature.

A LO detector for the detection of a signal in additive noise uses the test statistic

[44]
Tro(X} = E si gro(Xi) (6.4)
i=1
where the nonlinear score function is

__fw()
gro(r) = (@) (6.5)

and fi,(z) is the first derivative of fi{z), see Figure 6.1. It is simple to show that
when the interference is Gaussian, gio{z) = z, producing the well known matched

filter.
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Nonlinearity Correlator

—>  gio() Z gro(Xi)si
i=1

]

Ficurre 6.1. Structure of the LO Detector.

Due to the absence of closed form expressions for fy (x) when it is &S, the non-
linear score function, gro(x), cannot be found exactly. In [64], gro was found numer-
ically for some SaS cases and plotted for a number of values of ¢. These results are

reproduced in Figure 6.2.

[»]
2 T T T T ™

1.5F

FIGURE 6.2. Locally Optimum score functions for various SaS distributions.

While these numerical approximations can be made to be extremely accurate,
practical implementation requires coarser approximation, especially in applications
where « is not constant. These approximations invalidate the “locally optimum”

feature of the detector, and yield locally suboptimum (LSO) detectors.
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6.1.3 Locally Suboptimum Detectors

Approximations to the computationally complex gro have been suggested in [3, 53,
87]. While the hole-puncher nonlinearity has been proposed as a simple approxima-
tion, it is seen as providing poor approximation to gy o for larger values of z. Here two
other nonlinear functions are considered that have the same apex as the hole-puncher,
but decay at different rates. Since only the SaS case is considered, the nonlinearities

are odd functions, and they are shown in Figure 6.3 for z > 0 only.

1.2

[— Lo
== hole—puncher
-~ = triangular

FiGURE 6.3. LSO nonlinear score functions when o = 1.6.

The triangular nonlinear function decays to zero at the same linear rate with
which the hole-puncher rose, while the LSO-power nonlinearity decays at the same

asymptotic rate as gro, [64]

1
gro(x) — % , a8 T — koo . (6.6)

The apex of the LSO nonlinearities is found by numerically locating the peak of
the gro nonlinearity, and are therefore dependent on «. All of these approximation
functions have low computational complexity as each is specified in terms of a single
apex point and follow simple algebraic expressions. However, it is expected that

the introduced functions, especially LSO-power, will provide better approximations
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to gzo than the hole-puncher. This should be apparent even upon simple visual

inspection of Figure 6.3.

6.1.4 Cauchy Detector

Besides the Gaussian case, one of the few special cases where a closed form expression

for the pdf of an oS random variable exists is the Cauchy distribution (o = 1, 3 = 0),

flz) = % —1 +‘ (lm__i)z

Using the Maximum Likelihood criterion, the optimal detector for testing the

hypothesis H : @ = 0 against K : § = l; when the interference is Cauchy distributed

is given by
- X,;—G.S,'
i=1 '
n Xi—6
1+ (Xf)

= Zﬂ:log 7+ (X = ) (6.7)

Although this detector is optimal only for the Cauchy distribution, it has been shown
[17, 64, 87] that, unlike the matched filter, it maintains a high level of performance
for o # 1.

6.1.5 Other Detectors for SaS interference

Some detection techniques and receivers for SaS interference have been proposed
using other estimators or approximations to the impulsive density or using limiters
and other nonlinearities, while others have exploited Fractional Lower-Order Moments

[73] or characteristics of the oS distribution. For example, in [84], the detection of
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impulsive transients in a background of Gaussian noise is considered by using the form
of the pdf of the sum of two stable distributions with different parameters. While
[3, 37, 38] consider detection in a mixture of Gaussian and stable noise.

Other nonlinearities and the Cauchy detector are analysed in [72, 85, 87, 86].

Zero-memory nonlinearities (ZMNL) have many similarities with LSO score func-
tions. The ZMNL used in [81] is similar to the score functions presented here, in
particular with the LSO-power nonlinearity. Specifically, both are linear at low-
amplitude, while using different analytical functions to describe the high-amplitude
decay. The primary difference between them is that the ZMNL does not incorporate
the characteristic exponent, o, and has an exponential tail, rather than the algebraic
rate of decay of the LSO-power nonlinearity.

Rather than impose a distributional family on the noise, [91] uses a nonparametric
estimate of the impulsive density, while [52, 54] approximate the aS density as a scale

mixture of Gaussian processes.

6.2 Rank-Based Detectors

Detection using the ranks of observations, rather than just their magnitude, has a
long history. Though sometimes overlooked in favour of conventional methods, it
has long been accepted that by using a weak set of assumptions, rank-based tests can
achieve robust performance while often only suffering slight losses in efficiency against
parametric tests. The literature on rank-based or nonparametric tests is extensive

and well established, see for example [12, 28, 29, 55, 66, 83].

6.2.1 Locally Optimum Rank Detectors

Using the methodology that developed LO detectors, the corresponding locally opti-

mum rank detectors {LOR) when fi is symmetrically distributed can be shown to
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use the following test statistic [33, 78]

Tror(X) = i $; sgn(X;) gror(ri) (6.8)
i=1
where
gror(8) = En [gr0 (1 X16)] (6.9)
r; is the rank of | X;| in the set [ |X1], | Xz|,-..,|Xa|] and | X|y) is the set’s ¢th small-

est member. Ep[-] denotes the expectation operation under the hypothesis H. The
similarity between (6.8) and (6.4) should be evident — both correlate the signal to be
detected with a function of the observations. The structure of the LOR detector is
shown in Figure 6.4.

Sign

eyl SgN(X5)

Correlator
X n n Tror(X)
. Zu(|X5| ~ X1} |l gLOR(T:) Zs.: sgn(X:) gror(ri) —=
i=1 =1
Ranking Nonlinearity T
a

FicUuRrE 6.4. Structure of the LOR Detector.

While, by definition, the LO detector is the optimum detector for vanishing signal
strength, it can be shown that, asymptotically as n — oo, the LOR and LO detectors
become equivalent. Furthermore, the advantages in using rank based detectors are
well documented [28, 29].

Rank based techniques require weak assumptions about the distributional prop-
erties of the interference — in this case only the symmetry of fi is assumed. The
ranking operation replaces distribution-dependent magnitude information with a dis-

crete rank, determined by the relative position of the data sample amongst the other
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observations. Assuming the weak assumptions are met, this enables them to main-

tain a constant false alarm rate, independent of the interference distribution and is

of particular interest when the exact form of the distribution is unknown.

As for LO detectors, for each symmetric distribution there exists a rank score

function that will yield a LOR detector. However, unlike LO detectors, the same

rank-based detector should still maintain its false alarm rate and achieve high (though

not locally optimal) detection power against any symmetric distribution.
Ranking has additional benefits when outliers or spikes are encountered. By dis-

carding magnitude information, ranking removes the very feature that makes some

other tests overly sensitive to outliers. As a result, rank tests do not require the
agsumption of finite variance.

These properties make rank-based detection attractive when impulsive, and espe-
cially S&S, interference is encountered.

6.2.2 Score functions

The LOR nonlinearities, grog, for a number of SaS distributions have been approxi-

mated numerically and are shown in Figure 6.5. While g.or is dependent on the LO
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FIGURE 6.5.

Locally Optimum Rank score functions for various SaS distributions.
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score function, g;¢, there are several compelling arguments for implementing a LOR

detector over a LO detector:

e The “usual” advantages of rank-based methods over parametric detectors apply,
including a constant false alarm rate and higher detection rates when deviations

in the distributional assumptions or errors in parameter estimates occur.

e While neither gy o nor gror have closed form expressions, for a fixed distribution
and sample size, n, g;or need only be evaluated at n points. The results may be
found once to a high degree of accuracy off-line and stored for on-line detection.
By contrast, due to the slow rate of decay of gro and its infinite span, there
may be great difficulty in providing sufficiently accurate and compact records

of g0 for on-line detection.

e If off-line estimation of gzog is not possible, for example, if o varies significantly,
then on-line approximation of grog is assisted by noting the smooth nature of
the function and that its limiting values, gror(1) and gror(n), approach zero
rapidly (see Figure 6.5). By contrast, while gr0(0) = 0, for large |z| there is
a very slow decay of gro{z) to zero, as shown in (6.6). An exception to this

behaviour is when o = 2.

6.2.3 Locally Suboptimum Rank Detectors

While it has already been noted that the g or function may be evaluated off-line to
sufficient accuracy for a fixed sample size and «, in circumstances where this cannot
be assumed and a useful approximation to the LOR nonlinearities is required, a
triangular function may suffice. In Figure 6.6 are shown a triangular score function
(LSOR-tr) along with the LOR and linear score functions for o« = 1.6. As was the
case with some of the LSO nonlinearities, the apex of the LSOR-tr score function

was the peak of the LOR score function, evaluated numerically. From inspection of
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Figure 6.5 it can be seen that a triangular function could be fitted to all of the grog

shown, with the exception of the Gaussian case.

1.2
— LOR
1 |- Wilcoxen
- == rark triangular

0 20 40 60 80 100

FIGURE 6.6. Rank score functions used for LOR and LSOR detectors when o« = 1.6
and sample size of 100.

The linear score function is referred to as the Wilcoxon score function. It is inter-
esting to note that the Wilcoxon function is the locally optimal score function for the
logistic distribution and not the Gaussian distribution. Following the naming con-
vention introduced earlier, the rank score function approximations to gror produce

locally suboptimum rank (LSOR) detectors.

6.2.4 Signed Quadratic Rank-Based Detector

In [1], Adichie proposed a signed quadratic rank detector using the statistic

2
- n+14+mn
o (Erme ()

(Zl s?) [ ¢wa

The statistic is proportional to the square of the correlation between the signal,

(6.10)

s, and a function of the ranks of the magnitude of the observations, £(-) being similar

to the rank score functions defined previously.
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Under certain regularity conditions it can be shown that, as n increases, asymp-
totically, M+ has a %3 distribution. Hence, an appropriate threshold can be set for a
detector of specified level. This distributional approximation is sufficiently accurate
for the operating conditions used in this paper. Although tedious, the exact distribu-
tion may be calculated, however since it is dependent on 8, tabulated values are not
available.

The relationship between the linear correlation rank detector in (6.8) and this
quadratic rank detector should be evident [18]. The score functions developed and
described previously should be able to be used in the quadratic statistics to achieve
similar effect. The M™ test is a quadratic rank-based detector with an additional

scaling factor.

6.3 Distribution of Test Statistics

Although the LO, LSO, LOR and LSOR. detectors all use different score functions,
the similarity in their structure as correlators means the distribution of their test
statistics are very similar. As will be discussed later, an exception to this is the

matched filter due to its linear score function.

6.3.1 LO and LSO Detectors with Nonlinear Score Functions

Recall that the linear correlation statistics have the form
n
T(X)=> s g(X:)
i=1

that is, the test statistic is the sum of independent random variables, assuming the
X; are iid and s; is some bounded, known sequence. Under H, the summed vari-
ables have similar distributions, differing only in the non-constant scale, s;. If g{x)
has finite variance, the Central Limit Theorem may be invoked, meaning T(X) is

asymptotically Gaussian.



88

Since the score functions considered here are anti-symmetric, and the random

variables, X, are SaS, then under H, E [¢(X)] = 0. Consequently,
E[T(X) = 0 (6.11)
var[T(X)] = var[g(X)]x Y s? . (6.12)
To determine if g(X) has finite variance, an asymptotic expansion of the pdf of a

standardised SaS random variable when o« < 2 and as |z| — oo, as given by [64] is

used

K
fla) = Z |:c ak+1 +O (JejFD)

1= 1)* . { kam
where by = — ['(ak + 1) sin -
This series may be approximated by its first term as this is the term with the slowest

rate of decay for |z| — oo,
b

Referring to Figure 6.3 and (6.6), of the nonlinear score functions considered, the

LO and LSO-power nonlinearities decay at the slowest rate. Therefore to determine
if

o0

varlgzo(X)] = [ ghola) fz) ds <o,

—0Q

consider the integral

I = [ o
and its approximation using its highest order term as z — oo

/(a+1)2 b i

3’,‘2 $1+a

I

&

= (a+1)° blfx_s_adx

2
- _ (a + 1) bl E—Z—a
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The highest order term of I does not diverge to oo as ¢ — oo, and therefore,
neither will . Furthermore, both gro(z) and f(z) are bounded functions, therefore
it can be concluded that evaluation of the integral, I, between —oc and +oc, that is,
the variance of gro(X), is finite.

Any further terms taken from the asymptotic expansion of the pdf will have faster
rates of decay, as will any of the nonlinear score functions considered here, therefore
it can be taken that the variance of the nonlinear score functions is finite and the
corresponding test statistics are asymptotically Gaussian with mean and variance

given in {6.11) and (6.12).

6.3.2 Matched Filter

While the above is true of the detectors considered with nonlinear score functions,

the matched filter's test statistic
[
TMF(X) = ZX,;S,;
i=1

is the sum of n scaled independent SaS random variables. Assuming a # 2, they do
not have finite variance and the Central Limit Theorem cannot be invoked. Therefore,
rather than an asymptotically Gaussian test statistic, Ty r(X) is an SaS random
variable.

Consider the case
Z =aX; +bX,

where X and X, are iid SaS random variables (3 = § = 0) with oy = ap = « and
¢1 = ¢3 = ¢ > 0, then by the Stability Property, Theorem 1, Z is also SaS with

oz = . Therefore its cf is

¢z(t) = Efexp(j Zt)] = exp {—[ez[*}
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and by substitution

dz(t) = Elexp(j{aX;+ bX>)t)]
= Elexp(jaX1)] E[exp(bX2)t)]
= ¢x,(at)dx,(bt)

= exp(=|eat* — |esbt[*)
= exp (—[ct|®(la[* + [6]%)) er,c=c¢

= exp (- ‘ c{|al® + b)) ¢ ‘Q)
Therefore the scale parameter of Z is
cz = ¢ (la]* + [b*)"/ (6.14)
or in terms of the dispersion v = ¢%,
vz = (la]* + [8[%)

By generalising this result, it can be shown that under H, the Ty #(X) statistic
is SaS with the same characteristic exponent, «, as X, centred around 0 and with

dispersion
n
Yrurx) = Tx 3 |8:]*
i=1
6.3.3 LO and LOR Detectors
Now consider the general form of a linear rank-based detector statistic
n
Tr(X) = si sgn(X:) gr(r:)
i=1

where r; is the rank of | X;|. While sgn(X;) is independent of sgn(X;), % # j, the same
cannot be said of the ranks. If the possibility of ties is neglected, each r; is an integer

between 1 and n and each rank integer occurs only once, that is r; # r; if ¢ # j.
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Then it is clearly seen that the ranking procedure introduces dependence between
the terms. However, as n — oo, this dependence becomes negligible, and therefore
asymptotically these terms are independent. Again, the Central Limit Theorem can
be used to assert the asymptotic Gaussianity of Tr(X).

If |gr(ri)| < oo foralli=1,... ,n then
. 1 n .
Elgr(r)] = n ZQR('&) and
i=1
I o,
Elm)] = 0
i=1

will be finite for finite n. For the signum function the following trivial results can be

found when X is symmetrically distributed

E[sgn(X)] = 0
E [sgn’(X)] = 1

The distribution of the test statistic Tr(X) under H is independent of the distri-
bution of X, provided it is symmetric. While its exact distribution may be calculated
for any gp and s, in practice, this is tedious and a suitably accurate approximation

can be made using the Gaussian distribution with

E[Tp(X)] = 0
wrlfu(X)] = =3 0320 - (6.15)

j=1
6.3.4 Quadratic detectors

When considering the score functions that yielded asymptotically Gaussian test statis-
tics, the signed quadratic rank detector in (6.10) can be seen to be the square of the
test statistic, normalised by its variance, see (6.12) and (6.15). It is well known that

the square of a standard Gaussian random variable is x? distributed.
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6.3.5 Cauchy detector

The test statistic in (6.7} is, again, the sum of independent random variables with
finite variance and thus is asymptotically Gaussian for large n. Its expected value

and variance can be evaluated numerically for particular oS distributions.

6.4 Performance Analysis

For the simulation results in this section, interference was generated from an SaS
distribution with unit dispersion and centred around zero. The signal to be detected,
s, was a sinusoid with unit amplitude. Observation samples were of length 100, the
nominal false alarm rate was 5% and 1000 Monte Carlo simulations were performed to
estimate detection rates. These operating conditions were chosen to ensure detection
rates were neither too high nor too low since this would make comparison between
detectors difficult.

The results for the LO and LSO detectors described previously, as well as the
Cauchy detector are shown in Table 6.1. Also included are the quadratic forms of the
correlation detectors in Table 6.3. They have been included to allow a comparison
with the quadratic rank tests. Additionally, the Receiver Operating Characteristic
(ROC) curves for a number of detectors are shown in Figure 6.7 and Figure 6.8.

A number of observations can be made

e All of the tests appear to maintain or closely maintain their false alarm rate.
This encourages the continued use of the asymptotic distributions of the test

statistics derived earlier.

e As expected, there is little difference in performance between the LO and LOR
detectors. However, for practical implementation, if off-line evaluation of g10

and gror were made, the storage requirements of an accurate approximation to
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LO & LSO detectors

a«  LO MF hp triangular LSO-power Cauchy
1 76.7 4.6 48.1 67.4 80.1 80.8
(5.9) (4.7) (4.9) (4.5) (4.4) (5.4)
1.2 73.3 7.2 54.3 71.0 74.3 75.0
(4.9) (4.9) (5.5) (4.8} (6.7) {(4.1)
1.4 73.1 11.4 h5.8 72.1 73.6 71.0
(6.7) (5.9) (4.5) (4.1) (5.0) (4.8)
1.6 74.2 31.7 65.8 76.5 74.4 68.3
(5.4) (3.5) (5.7) (4.7) (5.9) (5.0)
1.8 77.1 56.9 71.8 75.6 77.9 64.5
(5.8) (4.8) (5.1) (6.0} (4.8) (3.9)
2 81.5 79.4 79.1 80.4 81.8 64.3
(5.3) (5.5) (4.7) (5.2} (4.8) (4.4)

TABLE 6.1. Detection and false alarm (bracketed) rates in % for linear correlation
detectors of signals in SaS interference, # = 0.5.

LOR & LSOR detectors

o LOR Wilcoxon LSOR-tr
1 75.4 h8.4 75.7
(3.8) (6.9) (6.2)
1.2 75.3 65.3 71.9
(4.8) (6.6) (4.8)
1.4 71.2 69.2 70.3
(5.2) (4.3) (6.7)
1.6 74.5 70.9 73.1
(6.0) (6.2) (4.5)
1.8 77.0 77.3 77.1
(3.6) (4.1) (6.0)
2 79.4 79.5 78.7
(4.1) (5.8) (4.3)

TABLE 6.2. Detection and false alarm (bracketed) rates in % for linear rank-based
detectors of signals in SaS interference, ¢ = 0.5.
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LO & LSO detectors

o LO MF hp triangular LSO-power Cauchy
1 65.6 5.3 32.9 57.3 64.0 80.8
(5.2) (4.4) (4.4) (5.1) (5.6) (5.4)
1.2 62.1 4.5 38.3 b7.7 63.3 75.0
(5.1) (5.2) (5.9) (4.1) (4.6) (4.1)
1.4 61.8 6.3 45.6 59.9 61.7 71.0
(5.4) (4.8) (3.5) (4.9) (5.0) (4.8)
1.6 63.1 12.0 52.7 63.6 64.2 68.3
(5.4) (5.3) (4.9) (5.7) (6.0) (5.0)
1.8 66.4 39.0 59.8 67.8 66.4 64.5
(4.8) (4.5) (5.1) (5.4) (4.4) (3.9)
2 70.9 68.9 69.4 70.9 71.8 64.3
(5.2) (5.0) (3.8) (5.3) (4.2) (4.4)

TABLE 6.3. Detection and false alarm (bracketed) rates in % for quadratic correlation
detectors of signals in SaS interference, ¢ = 0.5.

LOR & LSOR detectors

o LOR Wilcoxon LSOR-tr
1 65.8 45.2 65.1
(4.3) (5.4) (4.9)
1.2 62.1 48.0 60.2
(5.7) (4.2) (5.5)
1.4 62.7 56.4 62.2
(4.3) (6.2) (4.6)
1.6 59.4 62.6 60.8
(5.8) (5.0) (5.0)
1.8 63.4 61.9 62.4
(4.4) (5.3) (5.0)
2 68.50 66.9 66.8
(5.4) (5.3) (4.4)

TABLE 6.4. Detection and false alarm (bracketed) rates in % for quadratic rank-based
(Adichie) detectors of signals in SaS interference, # = 0.5.
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FIGURE 6.7. Receiver Operating Characteristics for some linear correlation detectors
when o = 1.6.
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FIGURE 6.8. Receiver Operating Characteristics for some linear rank-based detectors
when a = 1.6.
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910 would be very large since it extends from —oo to oc, while the gror can be

stored without further approzimations in an array of length n.

The matched filter, achieves its highest detection rate for the Gaussian case

a = 2, where it is optimal, however it deteriorates rapidly as a decreases.

The Cauchy detector is optimal when a = 1 and its high detection rates, com-
pared to other detectors, extends around a = 1. However, it does decrease
compared to the other detectors when o departs significantly from 1. It is im-
portant to note that this detector tested the simple alternative K : ¢ = 0.5,

rather than the more general case of 8 > 0 that the other detectors used.

The LSO-power nonlinearity appears to yield the best LSO detector of the
nonlinearities tested here for non-Gaussian SeS distributions, in fact, little dif-

ference is noticeable compared to the LO detector.

Similarly, the LSOR detector using the triangular nonlinearity, LSOR-tr, ap-
pears to follow the performance of the LOR and LO detectors very closely across

the entire range of « values tested.

Variations in the relative performance of the detectors may be attributable
to the usual variation in estimating probabilities of detection and false alarm
through a finite number of Monte Carlo simulations. It should also be re-
membered that the optimality of the LO detector is only for vanishing signal
strength. These may be the reasons why it can occasionally be seen that LSO

detectors achieve higher detection than the LO detector.

The linear detectors appear to outperform the quadratic detectors. The quad-
ratic detectors implicitly test the two-sided alternative, # # 0, while the linear

detectors test the one-sided alternative, 8 > 0.
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While these observations were based on results for # = 0.5 under K, since these
detectors were designed to meet or approximate the locally optimum criterion, it is
significant to note that similar results could be obtained for other values of 6. This
is confirmed by the detection power graph in Figure 6.9 which shows that while the
detection rate of the best performing detectors varies with signal strength, &, their
performance relative to the other detectors is similar. The power graphs for other

detectors show similar resulis.

80

—_ 10
----- LSQ-power
-«= LOR

------ LSOR-triangular

-~
L=

2

o
[=]

&

Probabitity of Detection (in %)
8 =]
=

10p

(] 0.1 0.2 0.3 0.4 0.5
9

FIGURE 6.9. Detection power functions for the LO, LSO-power, LOR and LSOR-tr
detectors for sample sizes of 100, 5% level of significance and SaS interference with
a=1.6.

The detectors used in the results above assumed true knowledge of the parameter
values to determine the shape of their nonlinearities and in the setting of thresholds.
In Table 6.5 the detection and false alarm rates are shown for a selection of detectors
when there is an error in the estimation of the parameter «. The interference was
generated using o = 1.6, however, the detectors were designed for 1 < o < 2.

As was discussed previously, the rank tests should maintain a constant false alarm
rate when the interference is symmetrically distributed, while no such statement can
be made about the LSO detectors. This is confirmed by the results shown, although

the LO detectors’ false alarm rates is close to the nominal level of 5%.
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Selection of detectors

o LO LSO-power LOR LSOR-tr
1 69.8 69.3 59.3 57.8
(5.6) (7.4) (5.2) (5.0)
1.2 73.3 75.3 69.2 64.8
(5.8 (4.8) (5.3) (3.1)
1.4 75.8 74.9 73.1 70.7
(5.2) (4.9) (5.7) (4.2)
1.6 74.7 74.1 74.9 72.9
(5.2) (5.9) (4.1) (6.2)
1.8 74.9 75.0 72.6 74.0
(4.5) (5.7) (4.1) (5.8)
2 58.2 70.3 65.9 70.5
(29.2) (19.0) (4.4) (4.9)

TABLE 6.5. Detection and false alarm (bracketed) rates in % for a selection of
detectors of signals in SaS {« = 1.6) interference where the detector is designed for
another a, § = 0.5
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6.5 Conclusions

While the matched filter and Cauchy detectors are optimal when o« = 2 and 1 re-
spectively, their performance deteriorated for other values of . The LOR detector
has been seen to achieve similar performance to the LO detector. It also has inherent
computation and storage advantages for on-line detection. Additionally, the LSOR
detector using the triangular rank score function, LSOR-tr, and the LSO detector
using the LSO-power nonlinearity have been successfully introduced, showing similar
performance to the LO and LOR detectors across all values of o tested. This has
been achieved while maintaining computational simplicity. This is especially true of
the LSOR-tr detector which, as a rank-based test, can also maintain a constant false

alarm rate and high detection rates when parameter estimation errors occur.

6.6 Summary

The use of detectors approximating the locally optimum criterion has been investi-
gated for the detection of known signals in impulsive interference modelled by an Sa:S
process. The form of the LOR score functions fpr this interference has been provided.
A number of nonlinear score functions for both correlation (LSO) detectors, as well as
rank-based correlation detectors {LSOR) have been developed and their performance
compared to the LO, LOR, matched filter and Cauchy detectors.

Only known signal detection was considered here in order to illustrate that the
deterioration in performance when rank-based detectors are used may be small and
may be outweighed by gains in computational simplicity and constant false alarm
rates. The extension to the unknown signal case can be performed through parameter
estimation and the adoption of a generalised approach. This is considered beyond
the scope of this thesis. Rank-based detectors similar to those detailed here have also
been considered for correlated interference [16, 4, 46, 48], multiplicative interference

[5, 6] and random signals [78].
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Chapter 7

CONCLUSIONS AND FUTURE DIRECTIONS

Impulsive behaviour can be observed in many naturally occurring and man-made
processes. Much more attention has been paid in recent engineering literature to
dealing with it. Many models for this behaviour have been presented, including the
alpha-stable (aS) family. Even in the absence of strong evidence to support the aS
distribution as a statistical-physical model of the process, the properties and broad
nature of this distribution may often warrant its investigation as an empirical model.

Based on the signal detection scheme in Figure 1.1, this dissertation discussed
and addressed several of the unique problems surrounding the use of S processes to

model impulsive behaviour. Specifically

1. Investigation of aS parameter estimation procedures was performed and re-
sulted in a proposal to dynamically determine the regression region for the

extensively used Koutrouvelis [50] estimation procedure.

2. Tests for Gaussianity using the kernel characteristic function estimator (KCFE)
were investigated and extended to the multivariate case — contributing to the

body of literature answering the “Assume Gaussianity” block of Figure 1.1..

3. Drawing on characteristic function (c¢f) based Gaussianity tests, a goodness-
of-fit test for the oS distribution was described. The parametric bootstrap

procedure was utilised to estimate the distribution of the test statistic.

4. A variation of the above test was formulated that tested the level of impulsive
behaviour of aS processes through changes in the ¢f. This test was compared

to testing the parameters of the oS distribution directly. In both cases, the
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parametric bootstrap was used to determine critical values. This and the pre-
vious item can be used to determine if it is possible to “Assume other models”,

namely the aS model.

5. Rank based tests were designed to meet or approximate the locally optimum
criterion and were compared to existing locally optimum and some novel sub-
optimum detectors of known signals in symmetric aS interference. Results and
analysis show strong arguments for the use of rank tests in this scenario based
on detection performance and computational complexity. While these detectors
have been designed to achieve local optimality or suboptimality for symmetric
aS interference, the rank-based detectors may be readily applied when other
symmetric interference is encountered, particularly if it is impulsive. Thus they

contribute to “Nonparametric detection”.

The contents of this dissertation have covered several topics, although most is
concentrated on goodness-of-fit testing and rank-based signal detection. It is noted

that extensions to the work are possible in the goodness-of-fit testing

e using the KCFE or other cf estimators in place of the empirical cf to reduce

fluctuations due to limited sample sizes

e determining appropriate test statistics to increase sensitivity to particular classes
of alternatives — as has been done in empirical distribution function based

goodness-of-fit tests

e other test statistics may have distributions that can be found exactly or approx-
imately, thus removing the need for the computationally expensive parametric

bootstrap procedures
and detection

e the investigation of different detection scenarios are possible, including the pres-

ence correlated or multiplicative interference and unknown or random signals
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e validation of the presented procedures on real data.
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CHARACTERISTIC FUNCTIONS AND THEIR ESTIMATION

The characteristic function (cf) of a random variable, X, is

dx(t) = E [¢*¥]

where E [-] is the expectation operator. By replacing E[-], an alternative expression,

and interpretation, of the cf is

x(t) = /m fx(z)e’™dx

That is, the cf is the Fourier transform of the pdf, the only difference being a reversal

of the sign of ¢. The cf has the advantage that it always exists, has a smooth form

and is well behaved.

A.1 Empirical Characteristic Function

The sample or empirical characteristic function (ecf) is a classical, unbiased cf esti-

mator. The ecf of independent and identically distributed (iid) observations, X =

[Xl,XQ, e ,XH]T, 15

E 9% (0] = éx(t)
var [?R.(Ag((t)) = L{1—1—3‘3 (6x(20)) — 2 (R (dx(£)*}
war[3 (85 0)] = 5 {1-R6x(20) - 23 (6x0)?)

(A1)
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The ecf is an unbiased cf estimator, however it has high variance that does not decay
to zero with large ¢. Since ¢x(¢) — 0 as |t| — oo, equations (A.2} and (A.3) approach

5 as |t| — oo, see Figure A.1.

o

-

— var(® ecf)
== var(3 ecf)

Variance
Py

FIGURE A.1. The variance of the real and imaginary components of the ecf of 64
observations from a Gaussian process.

A.2 Kernel Characteristic Function Estimator

The development of the KCFE was motivated by the analogy with the theory of kernel
density estimation of pdfs [75]. While kernel density estimation involves convolving a
kernel function with the zero-width histogram, due to the Fourier relationship between
the pdf and cf, the KCFE, ¢x (t; ), is produced by multiplying the ecf by a kernel,
wx(t), that is

~ ~

dx(t;v) = ok (thox(t) . (A.4)
An appropriate kernel function should satisfy
* px(0)=1

o ox(t) < px(0), for —oo <t < oo
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o ox(t} — 0, as |t| = oo.
One choice, as used in [93], is the Gaussian function itself

pt) = et/ (A.5)

0.97cn%2

It

Ty

where o2 is the variance of the observed process.
By multiplying the ecf by a kernel in (A.4} the magnitude of the variations in the
large ¢ region of the KCFE are reduced, see Figure A.2. A bias is introduced since

the expected value of the KCFE is also reduced by this operation

E [dxttiv)] = E[8x() ox(t)]

= éx(t) px(t)
1 e .
. — o
U KCFE
0.8l )\ . - =~ kernel
b Me
L) \\
L \‘
L ~
go.6f »
E] kY hee
5’ "\ \\‘
<0 s hES
= 0.4} X .
\ S
N, o
S Y
0.2f A J
0 L
0 1 2 3 4

FIGURE A.2. The effect of multiplicative smoothing on the ecf of one realisation of
a Gaussian process with n = 64 observations.
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Appendix B

HyPOTHESIS TESTING WITH THE PARAMETRIC
BOOTSTRAP

The bootstrap is a versatile computation statistical tool for estimating the sample
distribution of statistics. Since being introduced by Efron [22], it has been applied in
a significant number of problems when difficulties arise in applying standard methods.
Examples include when large sample methods are inapplicable due to small sample
sizes, or, as in the considered cases here, when complexity of the problem makes
analytical solutions unfeasible.

With the dramatic increases in computational power available to researchers and
engineers in recent years, the bootstrap has found application in a range of problems
which would otherwise be too difficult with traditional statistical analysis.

A well designed bootstrap procedure can replace intensive mathematical analysis
with computational load. Random resampling of the data is performed and the
statistic of interest is recalculated. When repeated a large number of times, the sample
distribution of the recalculated statistics will approximate the true distribution. In
this way, the bootstrap procedure repeats the “experiment”, just as a researcher
would.

Here, the statistics of interest are test statistics T,, = T,(X) calculated from a
finite set of random data, X = [X|, X,...,X,;]7 . The data has a joint distribution
Pfs and is parameterised by the unknown parameter vectors £ € = and ¥ € ©. The
form of T, will depend on the hypothesis to be tested.

It may be that 7, will depend on only some of the parameters of the distribution of
X. These parameters of interest shall be deemed to be the elements of the parameter

vector €, while the other, nuisance, parameters are contained in 9.
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The null and alternative hypotheses can be expressed in terms of the distribution

P¢s and the parameter values
H: X ~ Py &€EZ, D€ (B.1)
versus
K: X ~PFy, E€B, &£#E, V€O (B.2)

or alternatively, by assuming X ~ Fg,, & € E, ¥ € O the hypothesis and alternative

become

H:£=¢, (B.3)

versus

K:€#6& . (B.4)

By comparing 7T, to an appropriately chosen critical value, d,(7, &, f?), the out-
come of a test denoted by the test function ¢, (X), is determined by

1, if T, > du(y,&,9)

. (B.5)
0, otherwise

vn(X) ={

(7, &ps 19) is chosen such that the test has a level, or probability of Type I error, (.

When there is difficulty in finding the distribution of 7,,, and in the consequent
setting of d, (7, &, f?), the parametric bootstrap tests may be used. The bootstrap
procedure appropriate to the conditions and hypotheses described previously is out-
lined in Table B.1.

When designing powerful bootstrap tests, it is critical to determine the best form of
resampling to use in order to best approximate the distribution of 7;,. The resampling
scheme used will depend on the hypothesis to be tested. In the procedure described
above, note that resampling was performed by a random number generator using the

. n
distribution Pﬁo, e
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TABLE B.1. The parametric bootstrap procedure for testing the hypothesis H : § =
£, against K : £ # &.

Step 1. Parameter estimation : Estimate the parameters £ and ¥ from the
sample X and denote them £ and 4, respectively.

Step 2. Calculate test statistic . Evaluate T, = T,,(X).

Step 3. Resampling : Using a pseudo-random number generator, generate
B independent resamples X; = [X},,..., X', 6 =1,....B
from the distribution P* ..

Eo!ﬂ

Step 4. Calculate bootstrap statistics : Evaluate T}, = T, (X3) for b =
1,...,B.

Step 5. Ranking : Rank the collection 7 ,, T

n2rce

OI‘dEl‘ tO Obtain T’l’:,(l) S TT:,(Q) S e S T;,(B}'

b .
, Ty p into increasing

Step 6. Critical value : Set d,(7,&y,9) = Tn(c), where C = [((B +1)].

Step 7. Test : Compare T, to dn(v, &y, ?) in (B.5).

In the absence of nuisance parameters, a fixed, simple H will completely specity
the distribution of X under the nuil and consequently, the distribution of T), is fixed,
though maybe unknown. When this is the case, it may be possible to approximate
the distribution of 7,, under H through a “once off” Monte Carlo simulation.

However, when nuisance parameters are present, they may affect the distribution
of T,, and make it necessary to estimate this distribution for each distinct 9. In the
special cases where it can be proven that T,, is independent of ¥, it may be possible
to revert to a Monte Carlo simulation to determine critical values, since, again, the
distribution of 7}, is fixed under H.

Beran [7] has proven two important properties of bootstrap tests, which supports

the approach just described. Under some assumptions, described in Table B.2, on the
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convergence of the parameter estimates 9 and of the distribution of the test statistic
T, it can be shown that the test is asymptotically correct, and its power can be

consistently estimated by a related bootstrap power estimator.

TABLE B.2. Beran’s conditions to prove the asymptotically correctness of a bootstrap
test and that its power can be consistently estimated [7].

BERAN’S CONDITIONS: Suppose Z is R* and the following requirements
are met

1. Py |limd=9] =1

TE-—» 00

2. lim sup Pgﬂ{mg(@, ?) > ¢] = 0 for every positive ¢, where mg is a
n—oo ¢ ’

metric on ©.

3. If {(€,, %) € Q;n > 1} is any sequence such that le vn(E, —
£,) = h for some h € R* and lim 9, = 9, then K, 7(£,,9,) =

n—oo
K}h} (&0, D), a limit distribution which ts continuous and does not
depend upon the particular sequence {(&,,0,)} chosen. Moreover,

K;P )(.ﬁo,'l?) has a strictly monotone survivel function.

4 If {(€,,9,) € Q,n > 1} is any sequence such that lim/nl€, —
=00
€| = oo and le B, = 9 then lim K, p(z;€,,,9.) = 1 for every
finite real .

These results present a very powerful argument and validation for bootstrap hy-
pothesis tests. The principle of hypothesis testing using the bootstrap is discussed in

more detail in [32, 92].
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