
1 
 

From Sliding-Rolling Loci to Instantaneous Kinematics: An Adjoint Approach 1 

Lei Cui    and    Jian Dai 2 

 3 

Dr Lei Cui 4 

Department of Mechanical Engineering, Curtin University, Kent Road, Bentley, WA 6102, 5 

Australia  6 

Email: lei.cui@curtin.edu.au 7 

Tel: +61 8 9266 7594 8 

 9 

 10 

Professor Jian S. Dai 11 

Centre for Robotics Research, King’s College London, Strand, London WC2R 2LS, United 12 

Kingdom 13 

Email: jian.dai@kcl.ac.uk  14 

Tel: +44 020 7848 2321 15 

  16 



2 
 

 17 

Abstract 18 

The adjoint approach has proven effective in studying the properties and distribution 19 

of coupler curves of crank-rocker linkages and the geometry of a rigid object in spatial 20 

motion. This paper extends the adjoint approach to a general surface and investigates 21 

kinematics of relative motion of two rigid objects that maintain sliding-rolling contact. We 22 

established the adjoint curve to a surface and obtained the fixed-point condition, which 23 

yielded the geometric kinematics of an arbitrary point on the moving surface. After time was 24 

taken into consideration, the velocity of the arbitrary point was obtained by two different 25 

ways. The arbitrariness of the point results in a set of overconstrained equations that give the 26 

translational and angular velocities of the moving surface. This novel kinematic formulation 27 

is expressed in terms of vectors and the geometry of the contact loci. This classical approach 28 

reveals the intrinsic kinematic properties of the moving object. We then revisited the classical 29 

example of a unit disc rolling-sliding on a plane. A second example of two general surfaces 30 

maintaining rolling-sliding contact was further added to illustrate the proposed approach. 31 

 32 

Keywords: adjoint, contact, rolling, sliding, kinematics, differential geometry 33 

  34 
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1   Introduction 35 

In classical differential geometry, the adjoint approach is used to study the properties of 36 

a curve or a surface via its companion curve or surface [1, 2]. For example, the properties of 37 

an involute and evolute of a curve are studied using the geometry of the initial curve. Another 38 

example is the Bertrand curves that have common principal normal lines [3]. The famous 39 

cycloid is the locus of points traced out by a point on a circle that rolls without sliding along a 40 

straight line, where the circle is said to be adjoint to the straight line.  41 

The adjoint approach has been applied to mechanical engineering, for example gear 42 

mesh [4]. Wang et al [5] extended the adjoint approach to investigating the coupler-curve 43 

distribution of crank-rocker linkages. The study of the moving centrode adjoint to the fixed 44 

centrode concisely revealed the distribution law of various shapes of coupler curves. They 45 

also applied the approach to the moving axodes adjoint to the fixed axodes, revealing the 46 

intrinsic properties of a point trajectory, a line trajectory, and characteristic lines on the 47 

moving body [6-8]. 48 

The sliding-spinning-rolling motion occurs naturally in many systems such as a robotic 49 

hand manipulating an object [9-11], the interaction between wheeled vehicles and the ground 50 

[12, 13], gear and cam transmission [14-16], and biomechanics [17, 18]. Developing the 51 

kinematic relation between the relative objects facilitates the subsequent dynamics or control 52 

of the systems. 53 

The relative motion between two rigid objects that maintain sliding-rolling contact is a 54 

five degrees-of-freedom (DOFs) sliding-spinning-rolling motion, which can be decomposed 55 

into two translational sliding DOFs, v1 and v2, at the contact point and three rotational DOFs, 56 

ω1, ω2, and ω3, about the contact point, as in Fig. 1. 57 
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 58 

Fig. 1 The two translational sliding DOFs, v1 and v2, at the contact point and three 59 

rotational DOFs, ω1, ω2, and ω3, about the contact point 60 

 61 

Previous literature on sliding-spinning-rolling motion either restricted the shapes of 62 

objects to flat, sphere, or restricted the types of relative motion to rolling contact [19-21]. 63 

Sliding motion was sometimes singled out for dexterous manipulation [22]. For general 64 

sliding-spinning-rolling motion, the two contact points have different rates and directions, 65 

making the derivation process complicated and unintuitive. Two formulations [23, 24] have 66 

far-reaching effects on later development. The former defined one moving point trajectory 67 

and two contact trajectories to derive first- and second-order kinematics of sliding-spinning-68 

rolling motion via Taylor series expansion. The latter derived a set of first-order kinematic 69 

equations through the velocity relation between three coordinate frames.  70 

The results were applied to manipulations, control, and motion planning. Li, Hsu and 71 

Sastry [25] developed a computed torque-like control algorithm for the coordinated 72 

manipulation of a multifingered robot hand based on the assumption of point contact models. 73 

Sarkar, Kumar and Yun [26] extended Montana’s work to include acceleration terms. By 74 

using intrinsic geometric properties for the contact surfaces, they showed the explicit 75 

v1 

v2 

M ω
1
 

ω
2
 

ω
3
 

Fixed object 

Moving object 



5 
 

dependence on the Christoffel symbols and their time derivatives. Chen [27-31] coined the 76 

term “conjugate form of motion” for kinematics of point contact motion between two 77 

surfaces and developed a geometric form of motion representation. Han and Trinkle [32] 78 

showed all systems variables needed to be included in the differential kinematic equation 79 

used for manipulation planning and further studied the relevant theories of contact kinematics, 80 

nonholonomic motion planning. Marigo and Bicchi [33] derived analogous equations with 81 

Montana’s contact equations, but with a different approach that allowed an analysis of 82 

admissibility of rolling contact.  83 

It is natural to apply the adjoint approach to study the kinematics of the moving object, 84 

since one contact trajectory curve exists on each of the two objects. While the curve on the 85 

moving object is produced solely by rolling motion, the one on the fixed object is generated 86 

by both sliding and rolling motion. In addition, sliding motion and rolling motion are 87 

independent. Hence, there is in general an angle between these two curves. 88 

This paper extends the adjoint approach to a curve adjoint to a general surface by 89 

adopting a purely geometric approach based on the moving-frame method [34-36]. The 90 

velocity of an arbitrary point is derived in two different ways, which yield a set of eight 91 

equations with five variables. Solving this system of overconstrained equations gives the two 92 

linear velocities and the three angular velocities. 93 

The paper is organized as follows. Section 2 extends the adjoint approach to a general 94 

surface. Section 3 derives geometric kinematics of the moving surface in terms of 95 

contravariant vectors and geometric invariants. Section 4 derives the velocities of arbitrary 96 

point in two different ways and the arbitrariness of the point leads to the translational and 97 

angular velocities of the moving surface. Section 5 revisits the classical example of a unit 98 

disc rolling-sliding on a plane. Section 6 applies the proposed approach to general surfaces. 99 

Section 7 concludes the paper. 100 
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2   The Adjoint Approach to a General Surface 101 

The approach of a curve adjoint to a curve and to a ruled surface has been applied to the 102 

research of the properties of coupler curves for a crank-rocker linkage [5] and the 103 

instantaneous kinematic geometry of spatial motions [6-8]. 104 

This paper extends the adjoint approach to a general surface S. A point M traces a curve 105 

ΓM on the surface S and a frame (M-e1e2e3) moves with the point M, where the vector e1 is 106 

tangent to the curve, e3 is the normal vector of the surface S at the point M, and e1, e2, e3 are 107 

row vectors and form a right-handed orthonormal frame, as in Fig. 2. 108 
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Fig. 2   The curve ΓP adjoint to the curve ΓM on the surface S 110 

 111 

 The moving-frame equations [34, 35] give the variations of the attached frame 112 

following the point M 113 
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 (1) 114 

where rOM represents the vector from O to M with respect to (w.r.t.) the fixed frame (O-ijk), s 115 

represents the arc length of the curve ΓM, kg, kn, and τg represent the geodesic curvature, 116 

normal curvature, and geodesic torsion of the frame (M-e1e2e3) respectively.  117 



7 
 

 A point P, meanwhile, traces a curve ΓP w.r.t. the same frame (O-ijk). If each position 118 

of P corresponds to a position of M, the curve ΓP is said to be adjoint to the curve ΓM. Hence 119 

the vector equation of ΓP w.r.t. the frame (O-ijk) is 120 

 
1 1 2 2 3 3OP OM u u u   r r e e e  (2) 121 

where rOP is the vector from O to P w.r.t. the frame (O-ijk), (u1, u2, u3) are the coordinates of 122 

the point P w.r.t. the frame (M-e1e2e3). The derivative of the rOP w.r.t. the arc length s of the 123 

locus ΓM can be obtained by substituting the derivatives in Eq. (1) into Eq. (2) as 124 

 1 1 2 2 3 2
OPd

A A A
ds

  
r

e e e  (3) 125 

where  126 

1
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   

  

  

 127 

The above equation is defined as the adjoint equation [4].  128 

In particular, if the point P is a fixed point w.r.t. the fixed frame (O-ijk), the derivative 129 

drOP/ds equals 0. Consequently the values of A1, A2, and A3 are 0. It follows that 130 
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The point P in this case is called a fixed point and Eq. (4) is defined as the fixed point 132 

condition. 133 
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3   Geometric Kinematics of Sliding-Rolling Contact 134 

Geometric kinematics studies the time-independent kinematics and the parameter 135 

actually being made use of is irrelevant [37]. The freedom to choose parameters results in a 136 

simplified analytic description of the motion. In this section, the arc lengths of the contact 137 

loci are chosen as the parameters to study the geometrical properties of the motion.  138 

 139 

3.1   The Moving Frames on the Contact Loci 140 

Assume that a fixed surface S and a moving surface S' maintain sliding-rolling contact at 141 

any moment. Attach the frames (O-ijk) and (O'-i'j'k') to the surface S and S' respectively. Let 142 

Γ and Γ' represent the contact loci on the surface S and the surface S' respectively, as in Fig. 3.  143 

 144 
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Fig. 3   The moving frames associated with the contact loci 146 

 147 

Note that the contact locus Γ' on the moving surface S' is solely produced by rolling 148 

motion and the contact locus Γ on S is generated by both sliding and rolling motion.  149 

Let M and M' represent the contact point on the surface S and S' respectively. These two 150 

points coincide when the two surfaces maintain point contact. We will use M to denote the 151 

contact point from now on.  152 



9 
 

Set up two right-handed orthonormal moving frames (M-e1e2e3) and (M-
1 2 3
  e e e ) 153 

associated with the contact loci Γ and Γ' respectively, where e1 is the unit tangent vector of Γ, 154 

e3 is the unit normal vector of the surface S, 
1
e  is the unit tangent vector of Γ', 

3
e  is the unit 155 

normal vector of the surface S'.  156 

Generally the direction of sliding is different from that of rolling. This gives an angle φ 157 

between the vectors e1 and 
1
e . The unit normal vectors e3 and 

3
e  can always be made to 158 

coincide when the two surfaces maintain rolling-sliding contact, as in Fig. 3. 159 

 160 

3.2   The Fixed Point of the Moving Surface 161 

 Let P represent an arbitrary point on the moving surface S', as in Fig. 3. The position 162 

vector rO'P w.r.t. the frame (O'-i'j'k') can be written as 163 

 1 1 2 2 3 3O P O M u u u 
        r r e e e  (5) 164 

where  1 2 3, ,u u u    are the coordinates of the point P w.r.t. the frame (M-
1 2 3
  e e e ). Since the 165 

point P is fixed w.r.t. the frame frame (O'-i'j'k'), the fixed point condition in Eq. (4) gives 166 
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 (6) 167 

where s' is the arc length of the locus Γ'. The physical meaning of s' is the distance of the 168 

contact point M travels due to rolling motion. The scalars , ,g n gk k     are the geodesic curvature, 169 

normal curvature, and geodesic torsion of the frame (M- 1 2 3
  e e e ) respectively.  170 
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3.3   The Adjoint Curve to the Fixed Surface 171 

The point P generates a curve ΓP when the moving surface S' maintain rolling-sliding 172 

contact with the fixed surface S, as in Fig. 3. Hence the curve ΓP is adjoint to the contact 173 

locus Γ. The adjoint equation (3) gives the geometric velocity of the curve ΓP as 174 

 
1 1 2 2 3 2

OPd
A A A

ds
  

r
e e e  (7) 175 

where  176 

1
1 2 3

2
2 1 3

3
3 1 2

1 g n

g g

n g

du
A u k u k

ds

du
A u k u

ds

du
A u k u

ds





   

  

  

 177 

and s is the arc length of the contact locus Γ. The physical meaning of s is the distance of the 178 

the contact point M travels due to sliding-rolling motion. The scalars (u1, u1, u1) are the 179 

coordinates of the point P w.r.t. the frame (M-e1e2e3) and kg, kn, and τg represent the geodesic 180 

curvature, normal curvature, and geodesic torsion of the frame (M-e1e2e3) respectively. 181 

 182 

3.4   The Relation between u and u' 183 

The frame (M- 1 2 3
  e e e ) can be obtained by rotating the frame (M-e1e2e3) by an angle of 184 

φ about the e3 axis, as in Fig. 4. 185 
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Fig.4   The coordinates of the point P in the two frames 187 

 188 

It follows that 189 
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 (8) 190 

This leads to the coordinates (u1, u1, u1) and  1 2 3, ,u u u    being related by the following 191 

equation: 192 
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Differentiating Eq. (9) w.r.t. the arc length s of the contact locus Γ yields: 194 

 
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2 1 2
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 


 s

 (10) 195 

where λ represents the ratio of rolling rate ds' to sliding-rolling rate ds. Substituting the fix 196 

point condition idu ds   in Eq. (6) into Eq. (10) yields 197 
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    
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       

 (11) 198 

 199 

3.5   The Geometric Velocity of the Point P 200 

 Substituting Eq. (11) into Eq. (7) yields the geometric velocity of the point P as 201 

 1 1 2 2 3 3  OPd
A A A

ds
  

r
e e e  (12) 202 

where 203 

  

  

     

1 2 3

2 1 3

3 1 2

1 cos cos sin

sin sin cos

cos sin sin cos

g g n g n

g g n g g

n g n n g g

d
A k k u k k u

ds

d
A k k u k u

ds

A k g k u k u


      


       

        

  
             

  
              

          

 204 

This gives the geometric velocity of an arbitrary point P w.r.t. the arc length of the contact 205 

locus Γ, in the frame (O-ijk).  206 

4   The Velocity of the Moving Surface: a Velocity of Two Ways 207 

4.1   The General Form of the Velocity of the Moving Surface 208 

An object has six DOFs, including three translational and three rotational DOFs, in 209 

three-dimensional space. When two objects maintain rolling-sliding contact, the constraint 210 

reduces one translational DOF about the direction parallel to the normal vector at the contact 211 
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point. Hence the moving surface has five DOFs, including two translational and three 212 

rotational DOFs. These five DOFs can be expressed in the frame (M-e1e2e3) via a 213 

translational velocity v and a rotational velocity ω (see Fig. 1) as 214 

 
1 1 2 2

1 1 2 2 3 3

v v

  

 

  

v e e

ω e e e
 (13) 215 

4.2   A Velocity of Two Ways 216 

Now the velocity of the point P can be obtained in two ways. The geometric velocity 217 

in Eq. (12) gives one form of the velocity 218 

  1 1 2 2 3 3  OP OP
P

d dds
A A A

dt dt ds
    

r r
v e e e  (14) 219 

where σ = ds/dt represent the sliding-rolling rate and the values A1 to A3 are identical as those 220 

in Eq. (12). 221 

The translational and the angular velocities of the moving surface give another form 222 

of the velocity 223 

 
   

     

1 1 2 2 3 3 1 1 2 2 3 3

1 1 2 2 2 3 3 2 1 1 3 3 1 2 1 2 2 1 3

OP MP u u u

v v u u u u u u

  

     

         

         

v v ω r v e e e e e e

e e e e e
 (15) 224 

These two forms are equal, since they represent the velocity of the same point P. Hence, three 225 

scalar equations can be obtained by equalling Eqs. (14) and (15) along each of the e1, e2 and 226 

e3 directions:  227 
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 (16) 228 

Since the point P is an arbitrary point, its coordinates, u1, u2 and u3 can take arbitrary values. 229 

Thus, the coefficients of u1, u2 and u3 on both sides of Eq. (16) must be equal. It follows that 230 

the first equation gives 231 
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3
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v
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d
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  
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 (17) 232 

The second equation gives 233 

   
2

1

3

sin

sin cosn g g

g g

v

k

d
k k

ds

 

      


  

 

    

  
       

 (18) 234 

The third equation gives 235 

 
  

  

1

2

sin cos

cos sin

n g g

n g n

k

k k

      

     

    

   
 (19) 236 
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It can be checked that the angular velocity ω1 in Eq. (18) equals that in Eq. (19), ω2 in Eq. 237 

(17) equals that in Eq. (19), ω3 in Eq. (17) equals that in Eq.(18). This completes the 238 

derivation of the velocity of the moving surface. 239 

 240 

4.3   The Translational and Rotational Velocities of the Moving Surface 241 

 Substituting the components of translational and rotational velocity components in 242 

Eqs. (17) to (19) into Eq. (13) gives the translational and rotational velocities of the moving 243 

surface as 244 

 

    

       
1 2

1 2

3

1 cos sin

sin cos cos sin

      

n g g n g n

g g

k k k

d
k k

ds

    

          


 

  

         

   
         

v e e

ω e e

e

 (20) 245 

There are five terms in the above equation. The two terms of the translational velocity, 246 

which are     1 21 cos sin     e e , give the sliding velocity of the contact point M 247 

on the tangent plane.  248 

The first two terms of the angular velocity ω, which are along the directions of e1 and e2 249 

respectively, give the pure-rolling motion of the moving object. The third term of the angular 250 

velocity ω along the direction of e3 gives the velocity of spinning motion about the normal 251 

direction at the contact point M.  252 

The angular and translational velocities in Eq. (20) are coordinate invariant, since all the 253 

entities involved are either scalars or contravariant vectors.  254 

 255 

 256 
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5. The Classical Example Revisited 257 

Consider the classic example of a disc S' of unit radius maintaining sliding-rolling 258 

contact with a plane S while keeping the upright orientation. The contact loci are the circle Γ' 259 

of the disk and Γ on the plane. Let φ represent the angle between the curve Γ' and Γ at the 260 

contact point M; let σ represent the magnitude of the rolling-sliding rate, i.e., the arc length of 261 

Γ, let λ represent the ratio of rolling rate to sliding-rolling rate, as in Fig. 5. 262 

Attach the moving frames frame (M-e1e2e3) and (M-
1 2 3
  e e e ) to the contact loci Γ and Γ' 263 

respectively, where e1 is the tangent vector of Γ, e3 is the upward normal vector the plane S, 264 

1
e  is the tangent vector of the circle of the disc, and 

3
e  is the normal of the circle, pointing to 265 

the center of the disc. 266 

 267 
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 268 

Fig. 5   A disc of unit radius sliding-rolling on a plane 269 

 270 

5.1   The Moving-Frame Equations of the Two Loci 271 

Let s represent the arc length of the contact locus Γ on the plane S. The moving-frame 272 

equations of the frame (M-e1e2e3) can be calculated as below. 273 

 274 
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1 1

2 2

3 3

0 0

0 0

0 0 0

k
d

k
ds

     
     

 
     
          

e e

e e

e e

 (21) 275 

where k is the curvature of the plane locus Γ.  276 

Let s' represent the arc length of the contact locus Γ' on the plane S'. The moving-frame 277 

equations of the frame (M-
1 2 3
  e e e ) is  278 

 

1 1

2 2

3 3

0 0 1

0 0 0

1 0 0

d

ds

      
      
     
           

e e

e e

e e

 (22) 279 

where 1 in the matrix represent the curvature of the unit circle Γ'. 280 

 281 

5.2   The Velocity Formulation of the Disc 282 

Substituting the curvatures of the two contact curves in (21) and (22) into the first 283 

equation in (20) yields the translational velocity of the disc as 284 

     1 21 cos sin      v e e  (23) 285 

where σ is the rolling-sliding rate and λ the ratio of rolling rate ds' to sliding-rolling rate ds.  286 

Substituting the curvatures of the two loci in Eqs (21) and (22) into the second equation 287 

in (20) gives the angular velocity of the disc as 288 

    1 2 3sin cos
d

k
dt


    

 
     

 
ω e e e  (24) 289 

At first sight, the above equation appears violating the geometric constraints of the 290 

disc’s maintaining upright, since the angular velocity in the direction of e1 is not 0. However, 291 

the above angular velocity can be expressed in the frame (M- 1 2 3
  e e e ) via coordinate 292 
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transformation by multiplying a rotation matrix: 293 

   2 3

d
k

dt


 

 
     

 
ω e e  (25) 294 

It can be seen that the angular velocity is 0 in the direction of 
1
e  and thus it does not 295 

violate the constraint of the disc’s being upright. 296 

The coordinates of the centre point P in the frame (M-e1e2e3) is (0, 0, 1). The velocity of 297 

the point P can be obtained as 298 

  3 11P    v v ω e e  (26) 299 

It is clear that the velocity of the circle center P is only affected by the sliding-rolling rate and 300 

the direction of it is parallel to the tangent vector of the locus Γ. 301 

 302 

5.3   Numerical Simulation 303 

Suppose the contact locus Γ on the plane S is a circle of curvature 0.25, the rolling-304 

sliding rate σ is 1, the ratio of rolling rate to the sliding-rolling rate λ is 0.8, the angle φ 305 

between rolling and sliding is a constant π/6, as in Fig. 6.  306 
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 307 

Fig. 6   A unit disk rolling-sliding along a circle of curvature 0.25 308 

Set up a fixed frame (O-ijk) in such a way that the k-axis is perpendicular to the plane, as 309 

in Fig. 6. Suppose the angle between the i-axis and OM is θ and at the starting time t0 = 0 the 310 

disc is at the intersection between the circle and the i-axis. The angle θ can be obtained as 311 

4sk t   , where s = σt is the arc length covered in the period of time t and k is the 312 

curvature of the curve Γ.  313 

It follows that the vectors e1, e2, and e3 w.r.t. the fixed frame (O-ijk) are 314 

 

   

   

 

1

2

3

sin 4 cos 4 0

cos 4 sin 4 0

0 0 1

t t

t t

   

    



e

e

e

 (27) 315 

The angular velocity of the disc and the velocity of the centre point P can be obtained 316 

from Eqs. (24) and (26) w.r.t. the frame (O-ijk). The velocity components are plotted in Fig. 7. 317 
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 318 

Fig. 7(a)   Angular velocity components along the i-, j-, and k-axes    319 

 320 

Fig. 7(b)   Translational velocity components of the centre point P along the i-, j-, and k-321 

axes  322 

 323 

6   Application to Contact Trajectory Curve with Variable Curvatures 324 

The proposed approach can be applied to curves and surfaces with variable geometric 325 

invariants. Consider a ball of radius r maintaining sliding-rolling contact with a paraboloid 326 

along a small circle on the sphere and a meridian on the paraboloid as in Fig. 8. 327 
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 328 

Fig. 8   A sphere sliding-rolling on a paraboloid 329 

 330 

Suppose the paraboloid is formed by rotating a parabola z=1/2y
2
 around z axis. A 331 

convenient reference frame can be chosen to parameterize the surfaces and contact trajectory 332 

curves. The meridian Γ can be parameterized as 333 

    2 2

0 0

1
, , ,

2
u v u v u v

 
  
 

r  (28) 334 

Attach the moving frames frame (M-e1e2e3) and (M-
1 2 3
  e e e ) to the contact loci Γ and Γ' 335 

respectively, where e1 is the tangent vector of Γ, e3 is the outward normal vector of the 336 

surface S, 1
e  is the tangent vector of the locus Γʹ, and 3

e  is the normal of the sphere, pointing 337 

to the sphere center. 338 

 The geodesic curvature, normal curvature, and geodesic torsion of the locus Γ can be 339 

computed [38] as 340 
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 

 

  

0

3
2 2 22

0

2 2 2

0

0

2 2 2

0

1 1

1

1 1

1 1

g

n

g

v
k

u u v

k
u u v

uv

u u v





  


  


  

 (29) 341 

The geodesic curvature, normal curvature, and geodesic torsion of the locus Γ' can be 342 

computed as 343 

 
cot 1

, , 0g n gk k
r r


       (30) 344 

where δ is the half cone-angle as in Fig. 8. Substituting the curvatures of the two loci in Eqs. 345 

(29) and (30) into (20) yields the motion of the sphere as 346 

 

   

  

 

 

1 2

0
12 2 2

0

2
2 2 2

0

0
33

2 2 22
0

cos sin

1 1

      
1 1

cot
       

1 1

uv
s

r u u v

c
r u u v

v d

r dt
u u v

    




 


  


  

 
    
   
 

 
  
   
 

 
 

  
   
 

v e e

ω e

e

e

 (31) 347 

 348 

This example once again illustrates the coordinate-invariant nature of the proposed 349 

approach. It can be seen from Eq. (28) that first a convenient frame is chosen to parameterize 350 

the paraboloid and the meridian. From this local frame, the curvatures of the contact curve 351 

can be readily computed. Then the curvatures of the two contact curves are used to generate 352 

the coordinate-invariant kinematic formulation of the moving object. 353 
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7 Conclusions 354 

This paper presented the kinematic formulation when two objects maintain sliding-355 

rolling contact. Starting from a curve adjoint to a general surface, the paper first established 356 

the velocity of the curve and presented the fixed point conditions in terms of the arc lengths 357 

and curvatures. This adjoint approach was subsequently applied to the kinematics of two 358 

objects maintaining sliding-rolling contact. Two moving-frames were attached to the contact 359 

loci respectively, leading to the geometric velocity of an arbitrary point on the moving object. 360 

Then the velocity of this arbitrary point was derived in two various ways: one was from the 361 

previously derived geometric velocity and the other was from the translational and rotational 362 

velocity of the object. The arbitrariness of the point required these two forms of velocity to be 363 

equivalent, yielding an overconstrained system of eight equations with five variables. The 364 

angular and translational velocities were subsequently obtained by solving this 365 

overconstrained system of equations. The paper ended with two examples presented to 366 

demonstrate the proposed approach. 367 
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