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Abstract. Global Positioning System ambiguity resolu-
tion is usually based on the integer least-squares
principle (Teunissen 1993). Solution of the integer
least-squares problem requires both the execution of a
search process and an ambiguity decorrelation step to
enhance the efficiency of this search. Instead of opting
for the integer least-squares principle, one might also
want to consider less optimal integer solutions, such as
those obtained through rounding or sequential round-
ing. Although these solutions are less optimal, they do
have one advantage over the integer least-squares
solution: they do not require a search and can therefore
be computed directly. However, in order to be confident
that these less optimal solutions are still good enough
for the application at hand, one requires diagnostic
measures to predict their rate of success. These measures
of confidence are presented and it is shown how they can
be computed and evaluated.
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1 Introduction

Global Positioning System (GPS) ambiguity resolution,
which is the process of resolving the unknown cycle
ambiguities of the double-difference (DD) carrier phase
data as integers, consists of an estimation part and a
validation part. The purpose of the validation part is to
infer, given the data set at hand, whether or not the
actual integer solution is sufficiently consistent with the
GPS model used. The purpose of the estimation part, on
the other hand, is to come up with a procedure for
obtaining an integer solution and to show which quality
this solution is likely to have. In other words, for the
estimation part one has to decide which integer estima-

tor to use, as well as provide a description of its
qualitative properties.

Although GPS research in the last decade or so has
resulted in a variety of different methods and proposals
for estimating integer ambiguities, there is a growing
consensus that the use of the integer least-squares
principle is the preferred approach for integer ambiguity
estimation. There are two main reasons for this. First,
the integer least-squares estimator is optimal in the sense
that it maps the largest probability mass onto the integer
vector of ambiguity means. Second, it has been dem-
onstrated that by means of a least-squares ambiguity
decorrelation adjustment, it is now possible to compute
the integer least-squares solution rigorously and effi-
ciently. The pitfalls associated with some of the more
classical approaches can thus be avoided. For a discus-
sion of these pitfalls, see Teunissen (1997a).

When the ambiguity variance—covariance matrix is
diagonal, the integer least-squares estimator reduces to
the estimator that corresponds to a simple component-
wise rounding of the real-valued least-squares ambiguity
vector. This is not the case, however, when the ambi-
guity variance—covariance matrix is non-diagonal.
Nevertheless, in this case one could still decide to stick to
the simple rounding mechanism in order to obtain an
integer solution. Although the integer estimator so ob-
tained will be less optimal, it might still be ‘optimal
enough’ for the particular application at hand. This re-
quires, however, that one is also able to predict the
success rate of this simple integer estimator. Hence, in
order to evaluate the quality of this estimator, we need
to be able to evaluate its probability of correct integer
estimation. It is the purpose of this contribution to
present these measures of confidence for two simple in-
teger estimators, the one that corresponds to a compo-
nentwise rounding and the one that corresponds to a
sequential rounding of the individual ambiguities.

In Sect. 2 we first give a brief overview of the esti-
mation steps involved in ambiguity resolution. In this
section we also illustrate how to set the size of the am-
biguity search space. The integer vector obtained by



means of either simple rounding or a sequential round-
ing is particularly suited for this, provided the ambiguity
decorrelation process precedes the rounding step. In
Sect. 3, we present diagnostic measures to evaluate
whether or not it makes sense to use the simple rounding
mechanism in order to obtain the integer ambiguity
vector. In Sect.4 this is also done for the integer ambi-
guity vector obtained through a sequential rounding.
We also prove that the probability of correct integer
estimation based on a sequential rounding is larger than,
or at least as large as, the probability of correct integer
estimation based on a straightforward rounding. Final-
ly, we give an upper bound for the probability of correct
integer estimation which is invariant for the whole class
of admissible ambiguity transformations. It is based on
the determinant of the ambiguity variance—covariance
matrix, for which closed-form expressions are available
for a variety of different GPS models.

2 The ambiguity search space
2.1 Integer least-squares estimation

In principle, all the GPS models can be cast in the
following conceptual frame of linear(ized) observation
equations:

y=Aa+Bb+e (1)

where y is the given data vector, ¢ and b are the
unknown parameter vectors of order n and p, respec-
tively, and e is the noise vector of order m. The matrices
A and B are the corresponding design matrices of order
m x n and m x p respectively. The data vector y will
usually consist of the ‘observed minus computed’ single-
or dual-frequency DD phase and/or pseudo range (code)
observations, accumulated over all observation epochs.
The entries of vector a are then the DD carrier phase
ambiguities, expressed in units of cycles rather than
range. They are known to be integers. The entries of
vector b will then consist of the remaining unknown
parameters such as, for example, baseline components
(coordinates) and possibly atmospheric delay parame-
ters (troposphere, ionosphere). Note that we have
followed the customary practice of using the DD version
of the code and carrier phase observation equations.
This is, however, not strictly needed. As an alternative
one can also work with undifferenced or single-differ-
enced observations (de Jonge 1998). In that case the
non-integer ambiguities will have to be reparametrized
so as to obtain integer ambiguities again.

When using the least-squares principle, the above
system of observation equations can be solved by means
of the minimization problem

m?@—Aa—mNQj@—Aa—mm
a,
a = integer, b = real (2)

with O, the variance—covariance matrix of the observ-
ables. This is a non-standard least-squares problem, due
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to the integer constraints on the ambiguities. This type
of least-squares problem was first introduced by Teunis-
sen (1993) and has been coined ‘integer least-squares’.
Conceptually, one can divide the computation of Eq. (2)
into three different steps. In the first step one simply
disregards the integer constraints on the ambiguities and
performs a standard least-squares adjustment. As a
result one obtains the (real-valued) least-squares esti-
mates of a and b, together with their variance—covari-
ance matrix

by ®

This solution is often referred to as the ‘float’ solution. If
we assume that the noise vector e of Eq. (1) is normally
distributed with zero mean and variance—covariance
matrix Q,, then 4 is normally distributed with integer
mean « and variance—covariance matrix Q;. Thus

a ~ N(a, Qa),

In the second step the ‘float” ambiguity estimate @ and its
variance—covariance matrix are used to compute the
corresponding integer ambiguity estimate. This implies
that one has to solve the minimization problem

a = integer 4)

a = integer (5)

min(a —a)0;'(a — a),
Its solution will be denoted as a. Since the mapping from
a to a is nonlinear, the distribution of the integer least-
squares estimator will no longer be normal (Gaussian).
In fact, due to the mapping involved, it generally
becomes very difficult to compute the exact distribution.
It can be shown, however, that it is an admissible and
min—max estimator. Approximations or bounds can be
obtained for its probability of correct integer estimation.
Examples can be found in works by Teunissen et al.
(1996) and Teunissen (1997b, ¢) and also in Sect. 4 of the
present paper.

Once the integer ambiguities are computed, they are
finally used in the third step to correct the ‘float’ esti-
mate of b. As a result one obtains the ‘fixed’ solution

b=b-0;0;"(a-a) (6)

The unbiasedness of the integer least-squares estimator
was proven by Teunissen (1998). This implies that, since
the ‘float’ solutions are also unbiased

E{ay=E{a}=a and E{b}=E{b}=b

with E{-} the expectation operator. However, the “fixed’
solution will not be normally distributed, but it is
approximately normal when the probability of correct
integer estimation is sufficiently close to one. In that
case, the ‘fixed’ solution also inherits the very high
precision that corresponds with the case that the integer
ambiguities are non-stochastic. In fact, this is the whole
principle on which GPS ambiguity resolution is based.
From a computational point of view, the most diffi-
cult part in the above three steps is the solution of
Eq. (5). It requires the minimization of a quadratic form



608

over the whole n-dimensional space of integers. In order
to tackle this problem, we first replace the whole space
of integers by a smaller set of integers. This is the so-
called ambiguity search space. It is in this local space
that the search for the integer least-squares solution is
performed. In the case of the GPS, however, this search
is seriously hindered by the fact that the (real-valued)
least-squares ambiguities are usually highly correlated.
To remedy this situation, the least-squares ambiguity
decorrelation adjustment (LAMBDA) was introduced
(Teunissen 1993); for details of its performance see, e.g.
de Jonge and Tiberius (1996) Boon and Ambrosius
(1997), Jonkman (1998), Teunissen et al. (1997). By
using this method, the original DD ambiguities are re-
placed by a set of transformed ambiguities which have
the property of being very precise and largely decorre-
lated; see also the textbooks of Kleusberg and Teunissen
(1996), Hofmann-Wellenhof et al. (1997) and Strang and
Borre (1997). The ambiguity decorrelation process has
the very beneficial effect of moulding the search space
such that it transforms from a highly elongated ellipsoid
to one that corresponds more closely to a sphere.

2.2 Setting the size of the ambiguity search space

The ambiguity search space is defined as the set of
gridpoints « that satisfy

(@a-a)'Q;'(a—a)< 7 (7)

The positive constant ¥> is chosen such that it guaran-
tees that the search space contains the solution sought.
This can be achieved by computing the constant as

—a’)'Q;'(a—d")

in which 4° is an arbitrary integer vector. However, in
order to avoid the search space containing an abundance
of unnecessary grid points, it helps if the constant can be
chosen such that the size of the search space becomes
small, while at the same time it remains guaranteed that
it contains the integer least-squares solution sought. For
that purpose a° should be a sufficiently good approxi-
mation to the integer least-squares solution. It may
occasionally even happen that this approximation
coincides with the integer least-squares solution. Of
course, if this happens, a further search is no longer
needed. A simple check as to whether the approximate
solution coincides with the integer least-squares solution
can be performed as follows. Using the cosine-rule-
based decomposition

7= (a

la —a®+ V| =lla - a"| + |V|
+2lla— a0||||V|| coS o

with o the angle between @ — a and the integer vector V
and the norm taken with respect to the metric defined by
the ambiguity variance—covariance matrix, it follows
that a° will coincide with the integer least-squares
solution when the sum of the last two terms is larger
than or equal to zero for any non-zero integer vector V.

This will certainly be the case when ||V > 2|la —a°||
and thus also when 1/y/Anax > 2|la@ — a°||, where Apax
equals the largest eigenvalue of the ambiguity variance—
covariance matrix. Hence, a sufficient check to see
whether a° equals the integer least-squares solution is to
check whether the reciprocal of the square root of the
largest eigenvalue is larger than or equal to twice the
distance between a and a°. In order to obtain looser
upper bounds, one may also replace the largest eigen-
value by the largest variance of a; or by the largest
sequential conditional variance.

There are two easy methods of computing an ap-
proximate integer solution. The first involves applying a
componentwise rounding to the entries of a and the
second a sequential rounding to the entries of a. Results
that show how well these approximate solutions perform
in setting the size of the search space can be found in
Teunissen et al. (1996) and de Jonge and Tiberius (1996).
As is shown in these studies, the approximate solutions
perform far better when they are preceded by the am-
biguity decorrelation process. This also holds true for
their respective probabilities of correct integer estima-
tion. These probabilities will be developed in the fol-
lowing sections.

3 Integer ambiguity rounding

The simplest method of obtaining an approximation to
the integer least-squares solution is to apply a compo-
nentwise rounding scheme to the entries of a. This
approximation may be used to set the size of the search
space, but it can also be used as an integer estimator in
its own right. Although it will be less optimal than the
integer least-squares estimator, for particular applica-
tions at hand it may still perform sufficiently well.
Diagnostics to evaluate whether or not this is the case
are presented in this section.

3.1 The scalar case

Let us start with the simplest case that the ‘float’
solution a is a scalar. Thus we assume that there is only
one single ambiguity. If we denote ‘rounding to the
nearest integer’ by ‘[-]’, the integer nearest to a reads

ag = [a] (8)

where the subscript ‘R’ refers to the fact that the integer
is obtained through rounding. The probability mass
function of this integer estimator is given as

1

(i—a)+3 1
Pan=i)= [ epl-@/dla )
(i—a)—5 V2mo,

where i ranges over the set of integers and a; denotes the
standard deviation of a. Hence, the probabilities are
obtained through an integration of the normal distribu-
tion over intervals of length 1 which are all centred at an
integer. Since the normal distribution is symmetric
about its mean and since the mean of a is an integer, it



immediately follows that the above integer estimator is
unbiased, i.e. its expectation equals the integer a.

In order to infer the quality of the integer estimator
for the purpose of ambiguity resolution, we require the
probability of the event that Eq. (8) coincides with the
true but unknown integer ambiguity a. This probability
reads as

P(ip =a) = P(|la —a| <}) (10)

This probability can be evaluated by means of Eq. (9).
The probability of rounding to the correct integer value
then becomes

P(ﬁR:a):2<D( ! )—1 (11)

20ﬁ

with

O(x) = [ ) le_nexp(—%zz) dz

Note that the probability of rounding to the correct
integer value increases as the standard deviation of a
becomes smaller. This is also what one would expect. By
evaluating Eq. (11) and checking whether the probabil-
ity is sufficiently close to 1, one can now make the
decision as to whether or not to treat the rounded
ambiguity as being deterministic.

Although the computation of Eq. (11) by means of
the function ®(x) is straightforward, it is also helpful if
we can approximate the probability by means of simple
analytical expressions. There are several such approxi-
mations, one of which is

V1= exp{—4} < P(ag = a) < /T — exp{—’}

with x = 1/20;; see e.g. Johnson et al. (1994).

3.2 The vectorial case

We now assume that a is a vector of order n, normally
distributed with integer mean a and variance—covariance
matrix Q;. Componentwise rounding to the nearest
integer gives the integer ambiguity vector

dR:([&l}a"'a[dn])T (12)

The probability of rounding to the correct integer
ambiguity vector a now reads

Plag = a) = P(Mi_{lai — ai| <4}) (13)

It is the probability that a lies in the n-dimensional cube,
centred at ¢ and having sides of length 1. This
probability is easy to evaluate when the ambiguities
are fully decorrelated, i.e. when the ambiguity variance
matrix is diagonal. In that case the problem decouples
into n independent scalar problems of the type of Eq.
(10). The probability Eq. (13) then equals the product of
n probabilities of the type of Eq. (11). The exact
evaluation of the probability Eq. (13) becomes very
difficult when the ambiguity variance—covariance matrix
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is non-diagonal. Unfortunately, this is the case in actual
practice. However, although it is difficult to evaluate Eq.
(13) exactly in the correlated case, it is possible to
formulate a lower bound for it. This lower bound is
given by the probability corresponding to the decorre-
lated case. Thus we have

ﬁ(zm( 1 )_1)gp(aR:a> (14)

i1 204,

This lower bound can now be used to check whether the
simple estimator ‘round to the nearest integer’ guaran-
tees sufficient success of obtaining the correct integer
ambiguity vector. One simply has to evaluate the lower
bound and check whether it is sufficiently close to 1.

Note that the lower bound is only dependent on the
diagonal entries of the ambiguity variance—covariance
matrix. Hence, this lower bound is not invariant for the
class of admissible ambiguity transformations (Teunis-
sen 1995). Since the precision of the individual DD
ambiguities is usually rather poor, the lower bound of
Eq. (14) will usually be rather loose when applied to the
DD ambiguities. However, the lower bound becomes
much sharper when it is applied to ambiguities which are
almost decorrelated. This shows that, for an actual ap-
plication, the above lower bound should be evaluated
for the decorrelated ambiguities obtained through the
LAMBDA method. Since the transformed ambiguities
obtained by this method are far more precise than the
original DD ambiguities, the lower bound becomes
sharper due to its increase in value.

4 Integer ambiguity bootstrapping

Another easy method of obtaining an approximation to
the integer least-squares solution is to apply a sequential
rounding scheme to the entries of a. This approximation
may also be used as an integer estimator in its own right.
In this section we will present its probability of correct
integer estimation and show how it is related to the
results of the previous section.

4.1 Probability of correct integer estimation

The integer estimation scheme of componentwise round-
ing does not take the ambiguity correlations into
account. It simply treats the multivariate integer esti-
mation problem as if it were a problem consisting of n
independent scalar estimation problems. A method
which does take some of the correlation into account
is the ‘sequential integer rounding’ method, which also is
referred to as the ‘integer bootstrapping’ method, see
e.g. Blewitt (1989) and Dong and Bock (1989). This
method is a generalization of the ‘integer rounding’
method, and it goes as follows. If n ambiguities are
available, one starts with the first ambiguity a; and, as
before, rounds its value to the nearest integer. Having
obtained the integer value of this first ambiguity, the
real-valued estimates of all remaining ambiguities are
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then corrected by virtue of their correlation with the first
ambiguity. Then the second, but now corrected, real-
valued ambiguity estimate is rounded to its nearest
integer. Having obtained the integer value of the second
ambiguity, the real-valued estimates of all remaining
n — 2 ambiguities are then again corrected, but now by
virtue of their correlation with the second ambiguity.
This process is continued until all ambiguities are taken
care of. In essence this ‘bootstrapping’ technique boils
down to the use of a sequential conditional least-squares
adjustment (Teunissen 1993, 1996), with a conditioning
on the integer ambiguity values obtained in the previous
steps. The components of the integer ambiguity vector
so obtained therefore read

[a] = [a]

lay] = a2 — G4,0,0;7 (@1 — [ai])]
) (15)

~ ) ~ n—1 ' 2/ A ~

[an‘N] = [an - Zizl Gd,,d;‘l O-&j(ai\l - [ai\l])]

where the shorthand notation @;; stands for the ith least-

squares ambiguity obtained through a conditioning on

the previous I ={l,...,(i — 1)} sequentially rounded

ambiguities. The integer bootstrapped solution therefore

reads

dB:([&lL"'a[dn\NDT (16)

Note that this integer estimator is a generalization of the
previous one [Eq. (12)]. The two integer estimators are
identical in the case that the variance—covariance matrix
is diagonal and they differ when this matrix is non-
diagonal. In the non-diagonal case, however, the
bootstrapped estimator still makes use of the simple
‘integer rounding’ operation, but now by taking the
(sequential) correlations into account as well. The
bootstrapped probability of correct integer estimation
is given as

Plag = a) = P(M_ {|ay — ail <1}) (17)

In contrast with Eq. (13), this bootstrapped probability
has a useful property in that it can be computed exactly
in a rather straightforward manner. This follows from
applying the chain rule of conditional probabilities

Plas = @) = [ [ Pla] = aflar] = .

s lageng-n] = aiz) (18)

Each of the probabilities in this chain is of the type of
Eq. (11), but now with the ambiguity standard devia-
tions replaced by the sequential conditional standard
deviations. Hence, the bootstrapped probability of
obtaining the correct integer ambiguity vector reads as

y 2 1
P(ap = a) = [ J(2® (20_&”> -1) (19)

i=1

This probability can now be used to infer whether or not
it makes sense to use the integer bootstrapped solution.

Note, that since each of the individual probabilities in
the product of Eq. (19) is smaller than one, the overall
probability has the tendency to get smaller as the
dimension n increases. Hence, for a particular applica-
tion it could well be that the overall probability is too
small, while the product of the first j < n terms is still
large enough to render successful fixing of the first j
ambiguities possible. In that case Eq. (19) can be used to
study the success rate of a partial fixing of the
ambiguities. Also note that the probability is not
invariant against a reparametrization of the ambiguities.
In fact, the bootstrapped solution and its corresponding
probability are not even invariant against a reordering
or permutation of the ambiguities. Hence, as was the
case with the previous integer estimator, it also makes
sense for the bootstrapped estimator to first transform
the ambiguities to a new set of more precise ambiguities
before commencing with the bootstrapping.

4.2 The probability of bootstrapping and rounding

The relative performance of the ‘integer bootstrapping’
estimator and the ‘integer rounding’ estimator can be
evaluated if we compare their respective probabilities of
correct integer estimation. Since the bootstrapped solu-
tion takes part of the correlation structure into account,
whereas the solution obtained through rounding does
not, one will be inclined to think that the bootstrapped
probability of correct integer estimation is larger than or
at least as large as the probability that corresponds with
rounding. Hence, the conjecture is that the inequality

P(dg = a) < P(ap = a) (20)

holds true. In order to prove this inequality we will start
with the probability of correct rounding. It reads

P(éR:a

A=

1
= e
X exp{—%(& —a)" 0 (a - a)}da (21)
with the region of integration

., eR”

|d;a[|§%,i—l,...,n}

This region is a cube having all side lengths equal to 1.
The above integral is parametrized in terms of ;. In
order to obtain a link with the bootstrapped probability
of correct integer estimation, we will reparametrize the
integral in terms of d;;. The corresponding transforma-
tion reads

i—1
d,-:di‘l—i—Zad,&ivagj(&ju—aj) for i= 1,...,1’[
J=1

(22)
In order to apply this transformation to the integral of

Eq.(21), we need the general transformation formula for
integrals. This reads (Fleming, 1977)



frwa= [ s

By letting Eq. (22) play the role of y = g(x), we obtain,
noting that the matrix of transformation (22) is unit
triangular and therefore that the determinant of the
Jacobian equals one

with the region of integration

gil(R) = {(&lvdZ\la'“v&nW)T € Rn|Si7i: 1,...,71}
where

- g

This region of integration is now no longer a cube.
However, due to the product form of the integral and
the sequential form of the intervals in g~'(R), it follows
that when we write the integral as

—1
P(E‘R:“)‘/ F”Hmo—

\I_al +§ O-aau a‘; a]\J_a/)

,\1

2
1 A,y —a
. 1 n|N n ~
E, 7/ ————exp{ —3| ———— dayy
Sn \% 27T0-dn\N aan\N

the dependence on 4,y is completely captured in F, We
are now in a position to formulate an upper bound.
Note that the interval S, is not centred at the mean a,,.
Hence, this integral of the standard normal distribution
will increase in value if the interval S, is replaced by the
interval B, = {|a,y — a,| < 1/2}. This shows that

1
Ez S 20 -1
( (20(2)“,\,) )

By repeating these steps for the other variables also, we
finally obtain the upper bound

o< lfv() )

which concludes the proof of Eq. (20). Note that when
the upper bound Eq. (20), is combined with the lower
bound, Eq. (14), we have an easy-to-compute interval
that completely bounds the probability of correct integer
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rounding. To reduce the length of the interval, the
bounds should be evaluated with the transformed and
decorrelated ambiguities.

4.3 An invariant upper bound

We have already observed that the bootstrapped
probability [Eq. (19)] depends on the chosen ambiguity
parametrization. Hence, by using more precise trans-
formed ambiguities instead of the DD ambiguities, one
can increase the probability of correct integer estima-
tion. Although this probability can be computed exactly
for every chosen parametrization, it would still be
helpful if we could come up with an upper bound which
is easy to compute and at the same time invariant for the
choice of parametrization. Such an upper bound can be
found as follows. Note that Eq. (17) equals the integral
of a normal distribution over an n-dimensional box.
When the side lengths are taken equal to the reciprocal
value of the sequential conditional standard deviations,
the normal distribution takes its standard form of
having zero mean and a unit variance—covariance
matrix. This implies, if we vary the side lengths but
constrain the volume of the box to be constant, that this
probability reaches its maximum for a cube. Since this
cube must have the same volume as the original box, its
side lengths are all equal to the geometric average of the
reciprocal sequential conditional standard deviations.
Hence, we have

In this expression we recognize on the right-hand side
the ADOP (Ambiguity Dilution of Precision) which was
introduced by Teunissen (1997b) as

4/ det Qa'l‘ (cycle)

It measures the average precision of the ambiguities and
it is invariant for the class of admissible ambiguity
transformations (Teunissen and Odijk 1997). The above
upper bound can thus be formulated in a compact way as

Plas =a) < (2@(2 A]l) 0P> - 1)n (24)

Since the ADOP is invariant for all admissible ambiguity
transformations, this also holds true for the above upper
bound. The upper bound can now be used, indepen-
dently of which parametrization is used, to check
whether it makes sense to consider the bootstrapping
method as a viable option for integer estimation. The
bootstrapping method should not be used when the
upper bound is too small. Closed form expressions for
the determinant of the ambiguity variance—covariance
matrix are given by Teunissen (1997c). By means of

ADOP =
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these closed form expressions it becomes obvious in
what way the various factors such as number of satellites
tracked, number of observation epochs used, type of
observables used and amount of change in relative
receiver—satellite geometry, contribute to the above
bound.

5 Conclusions

In this contribution we have studied two simple
alternatives of the integer least-squares estimator. Al-
though they are less optimal, they have the advantage
that no search at all is needed for their actual
computation. However, before the choice is made to
opt for one of these two integer estimators, one should
make sure that their probability of correct integer
estimation is sufficiently close to one. This is especially
of importance for GPS ambiguity resolution, where in
all subsequent processing steps the integer ambiguity
solution is treated as non-stochastic.

The first integer estimator considered was the one
that corresponds to a componentwise rounding of the
‘float” solution. Although it is difficult to compute its
probability of correct integer estimation exactly, it was
shown that this probability is bounded as

[(20(5,) 1) = Pa=o)

i=1

RUSER)

Since the probability (as well as its two bounds) is
dependent on the choice of ambiguity parametrization,
one should apply this estimator only after the ambiguity
decorrelation process has been applied.

The second integer estimator considered was the
bootstrapped one. It follows from a sequential rounding
of the entries of the ‘float” solution. Since the variance—
covariance matrix of the sequential conditional least-
squares solution is diagonal, the probability of correct
integer estimation of the bootstrapped solution can be
computed exactly. It was shown that

H(m <2l> ) 1) = Plas = a)
< (2(1) (ﬁ) - 1>n

Hence, with the bootstrapped solution one has a better
chance of obtaining the correct integer ambiguities.
Here, the remark that the evaluation should be based on
the reparametrized and decorrelated ambiguities again
applies. Although the probability of correct integer
estimation can be computed exactly for the boot-
strapped solution, the above given upper bound is still

very useful. First, it is invariant for the choice of
ambiguity parametrization, and second, simple closed-
form expressions are available for evaluating the ADOP
of the ambiguity variance—covariance matrix.
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