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Foundations of not necessarily rational Negative Imaginary systems theory: Relations

between classes of Negative Imaginary and Positive Real systems

Augusto Ferrante, Alexander Lanzon, Lorenzo Ntogramatzidis

Abstract—In this paper we lay the foundations of a not necessarily

rational negative imaginary systems theory and its relations with positive

real systems theory. In analogy with the theory of positive real functions,
in our general framework negative imaginary systems are defined in

terms of a domain of analyticity of the transfer function and of a sign

condition that must be satisfied in such domain. In this way, we do

not require to restrict the attention to systems with a rational transfer
function. In this work, we also define various grades of negative imaginary

systems and aim to provide a unitary view of the different notions that

have appeared so far in the literature within the framework of positive
real and in the more recent theory of negative imaginary systems, and

to show how these notions are characterized and linked to each other.

I. INTRODUCTION

The theory of positive real systems is one of the fundamental

cornerstones of systems and control theory, and in particular of

passivity theory. Given the extensive amount of contributions in this

area, dating back from the early 1930s [1], it would be impossible

to quote all of the relevant references. We consequently refer the

readers to two important monographs [2], [3] for a summary of the

historic and recent contributions on this problem. A promising recent

new development has been the introduction of the notion of negative

imaginary systems, see [4], [5], [6] and the references cited therein.

With respect to positive realness, the definition of negative imaginary

system imposes a weaker restriction on the relative degree of the

transfer function and does not exclude all unstable zeros. Negative

imaginary systems theory was found to be very suitable in a range of

applications including modelling and control of undamped or lightly

damped flexible structures with colocated position sensors and force

actuators [7], [8], in nano-positioning control due to piezoelectric

transducers and capacitive sensors (e.g. [9], [10], [11]) and in multi-

agent networked systems (e.g. [12], [13]). The notion of negative

imaginary system specializes also to the important subclass of lossless

negative imaginary systems [14].

In spite of the wealth of results that in just a few years have been

presented and published on negative imaginary systems including

extensions to infinite dimensional systems [15], Hamiltonian systems

[16], descriptor systems [17] and mixtures of negative imaginary and

small-gain properties [18] to mention only a few, so far [20] has been

to the best of the authors’ knowledge the only contribution which

attempted to address the general case of a definition of negative

imaginary system for not necessarily rational transfer functions.

However, several aspects of the core theory of negative imaginary

systems remained unexplored in [20]. For example, the notion of

strictly negative imaginary system has never been defined in the
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general case of a non-rational transfer function. This remaining gap

will also be filled in this paper as it is essential in studying stability

interconnections of negative imaginary systems.

Thus, the main contribution of this paper is to present a general and

foundational perspective of the recent theory of negative imaginary

systems, and their relation with the classical theory of positive real

systems. As pointed out in [3], since the early studies in the 1960s,

there has been a proliferation of definitions of various types of strictly

positive real systems. Our aim is to follow the approach of [3] in the

attempt of defining different notions of strictly negative imaginary

system and establishing a parallel between these definitions and their

positive real counterparts. The standard notion of strictly negative

imaginary system introduced in the literature so far corresponds

to only one of these definitions. We will define, examine and

characterize other notions of strictly negative imaginary functions.

Notation. Given a matrix A, the symbol A⊤ denotes the transpose

of A and A∗ denotes the complex conjugate transpose of A. We

denote by σ(A) the set of singular values of the matrix A and by

σ(A) the smallest of such singular values. Recall that given a real

rational function G(s) and a simple pole p ∈ C of G(s), we have a

unique decomposition G(s) = G1(s)+A/(s− p), where G1(s) is a

rational function which is analytic in an open set containing p and

the (non-zero) matrix A is the residue corresponding to the pole p.

If p is a double pole of G(s), we have the unique decomposition

G(s) = G1(s) + A1/(s − p) + A2/(s− p)2, where the matrix A1 is

the residue corresponding to the pole p. In this case, by analogy,

we define the (non-zero) matrix A2 to be the quadratic residue

corresponding to the pole p. If G(s) has a pole at infinity, it can

be uniquely decomposed as G(s) = G1(s) + P(s), where G1(s) is

a rational proper function and P(s) = ∑k
i=1 Ais

i is a homogeneous

polynomial in s. We refer to Ai as the i-th coefficient in the

expansion at infinity of G(s). The usual notations of ≥ 0 and > 0

are used to denote positive semidefiniteness and positive definiteness

of Hermitian matrices, respectively. Let G : C−→Cm×m be analytic

or harmonic in a certain region Ω of C, then G is said to have

full normal rank if there exists s ∈ Ω such that det[G(s)] 6= 0. Given

complex matrices S1,S2 and complex vectors y1,y2,u1,u2,α,β of

compatible dimension satisfying
[

y1

α

]

= S1

[

u1

β

]

and
[

β

y2

]

= S2

[

α
u2

]

,

let S1 ⋆ S2 denote the Redheffer star product which maps
[

u1

u2

]

to
[

y1

y2

]

. Furthermore, Fl(S1,S
(1,1)
2 ) (resp. Fu(S2,S

(2,2)
1 )) denote the lower

(resp. upper) linear fractional transformation. Finally, let [P,Q] denote

the positive feedback interconnection between systems P and Q.

II. REVIEW OF POSITIVE REAL AND STRICTLY POSITIVE REAL

SYSTEMS

In this section, for the sake of completeness we briefly recall the

most important notions and results of positive real systems.

Definition 1: The transfer function F : C−→Cm×m is positive real

(PR) if

• F(s) is analytic in {s ∈ C : Re{s}> 0};

• F(s) is real when s is real and positive;

• F(s)+F(s)∗ ≥ 0 for all s ∈ {s ∈ C : Re{s} > 0}.
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For real, rational systems, we have the following characterization

of PR systems.

Lemma 1: Let F : C−→Cm×m be a real, rational transfer function.

Then, F(s) is PR if and only if

• F(s) has no poles in {s ∈ C : Re{s}> 0};

• F(iω)+F(iω)∗ ≥ 0 for all ω ∈R such that s= iω is not a pole

of F(s);
• if iω0, with ω0 ∈ R∪{∞}, is a pole of F(s), it is a simple pole

with Hermitian and positive semidefinite residue (recall that if ω0

is finite, the residue is defined by K0

def
= lims→iω0

(s− iω0)F(s),

while if ω0 = ∞, the residue is defined by K∞
def
= limω→∞

F(iω)
iω ).

We now present our definitions of strictly positive real systems. We

warn the reader that there is no consensus in the literature on this

definition and many different definitions have been proposed for this

concept that can be distinguished via several grades of strength, see

e.g. [3], [21] and [22] where various definitions and the relationship

between them are discussed. In this paper, we shall consider two

grades of strength and we shall refer to them as strongly and weakly

strictly positive realness. We must observe, though, that in many past

works systems that we define “strongly strictly positive real” are

simply addressed as “strictly positive real”.

Definition 2: The transfer function F : C −→ Cm×m is strongly

strictly positive real (SSPR) if for some ε > 0, the transfer function

F(s− ε) is PR and F(s)+F(−s)⊤ has full normal rank.

The property of SSPR can be equivalently checked via a strict

sign condition in the domain of analyticity.

Lemma 2: Let F : C−→ Cm×m be a real transfer function. Then,

F(s) is SSPR if and only if there exists ε > 0 such that

(i) F(s) is analytic in {s ∈ C : Re{s} >−ε};

(ii) F(s)+F(s)∗ > 0 for all s ∈ {s ∈ C : Re{s} >−ε}.

The proof of this result can be carried out by adapting the proof of

Lemma 4 in the sequel, and it is therefore omitted.

The following result, see [3, Theorem 2.47] and [21, Lemma 6.1],

shows that in the case of real, rational functions the property of

SSPR is equivalent to an analyticity condition and a sign condition

restricted to the extended imaginary axis.

Theorem 1: Let F :C−→Cm×m be a real, rational, proper transfer

function. Then F(s) is SSPR if and only if

1) F(s) has all its poles in {s ∈ C : Re{s} < 0};

2) F(iω)+F(−iω)⊤ > 0 for all ω ∈ R;

3) one of the three conditions is satisfied:1

• F(∞)+F(∞)⊤ > 0

• F(∞)+F(∞)⊤ = 0 and limω→∞ ω2[F(iω)+F(−iω)⊤]> 0

• F(∞)+F(∞)⊤ ≥ 0 but not zero nor non-singular, and there

exist σ0 > 0 and δ > 0 such that

σ
[

ω2
(

F(iω)+F(−iω)⊤
)]

≥ σ0 ∀|ω| ≥ δ . (1)

Remark 1: Condition (1) has been a source of confusion and

controversy in the literature for more than a decade. Indeed, the

same condition was present in the second edition (published in 1996)

of the book of Khalil (see Lemma 10.1); in the third edition [21]

(published in 2002) this condition was changed with a new condition

(see [21, Lemma 6.1]) that was easier to check. This new condition,

however, has some inconsistencies as pointed out in [23] where the

following further condition was derived that is more elegant and

computationally easier to check:

lim
|ω |→∞

ω2ρ det
(

F(iω)+F(−iω)⊤
)

> 0

1We write this property as three separate conditions to elucidate all the
possible situations that may occur. It is clear, however, that the third condition
is the more general and encompasses the first and the second.

where ρ is the dimension of ker
(

F(∞)+F(∞)⊤
)

. In [24] another

condition was presented that hinges on a state-space realisation of

F(s). Here, we consider condition (1) for which we can establish

a counterpart for negative-imaginary systems. Notice also that

condition (1) is logically very simple and intuitive: it simply says

that for |ω| sufficiently large, the spectral density F(iω)+F(−iω)⊤

is bounded from below by (σ0/ω2)I or, equivalently, that for |ω|
sufficiently large, the spectral density ω2[F(iω) + F(−iω)⊤] is

bounded away from zero.

In some situations the concept of SSPR is too restrictive: indeed

in the real, rational case where there are finitely many poles and

zeros, it is useful to introduce the following weaker definition.

Definition 3: Let F : C −→ C
m×m be a real, rational, proper

transfer function. Then, F(s) is weakly strictly positive real (WSPR)

if the first two properties of Theorem 1 hold.

Remark 2: If in the definition of SSPR we removed the full normal

rank condition on F(s)+F(−s)⊤, we would have that functions such

as F(s) = 1
s+1

[

1 1

1 1

]

is SSPR so that a result like Theorem 1 would

not hold. An example of a transfer function which is WSPR but not

SSPR is the following:

F(s) =
s+3

(s+1)(s+2)
.

Indeed, 1) in Theorem 1 is satisfied. Moreover, given ε > 0, a simple

calculation gives

F(iω − ε)+F(iω − ε)∗ = 2
6+6ε2 − ε3 − ε (11+ω2)

[

ω2 +(2− ε)2
][

ω2 +(1− ε)2
] , (2)

which is strictly positive on the imaginary axis (i.e., when ε = 0),

so that 2) in Theorem 1 also holds. On the other hand, 3) in

Theorem 1 is not satisfied. In fact, in this case F(∞)+F(∞)⊤ = 0,

but limω→∞ ω2[F(iω)+F⊤(−iω)] = limω→∞
12ω2

(ω2+4)(ω2+1)
= 0. This

result is consistent with Definition 2. In fact, (2) shows that for any

arbitrarily small ε > 0, by taking a sufficiently large ω > 0, the

numerator of F(iω − ε)+F(iω − ε)∗ can be rendered negative. In

other words, F(iω)+F(−iω)⊤ is positive definite for all ω > 0, but

no matter how small we choose ε > 0, if ω > 0 is sufficiently large

we can find F(iω − ε)+F(iω − ε)∗ < 0, and therefore F(s− ε) is

not PR for any ε > 0.

The difference between SSPR and WSPR has also been discussed

in [19], where however only the scalar case is considered.

III. NEGATIVE IMAGINARY AND STRICTLY NEGATIVE

IMAGINARY SYSTEMS

We start this section by introducing the following standing

assumption, that will be used throughout the rest of the paper.

Assumption 3.1: We henceforth restrict our attention to only

symmetric transfer functions.

As discussed in [20], the case of symmetric transfer function is the

most important and interesting one, because it encompasses both the

scalar case, and the case of a transfer function of a reciprocal m-port

electrical network.2 Moreover, to the best of the authors’ knowledge,

all the negative imaginary transfer functions considered or studied

in the literature so far are symmetric (see e.g. the transfer functions

from a force actuator to a corresponding collocated position sensor

— for instance, a piezoelectric sensor — in a lightly damped or

undamped structure), even though the real, rational definitions of

negative imaginary systems in [4], [5], [6] allow for non-symmetric

2The only way to obtain a non-symmetric transfer function of an m-
port electrical network is to employ gyrators, whose physical implementation
requires the use of active components.
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transfer functions. Assumption 3.1 is essential for, and underpins,

the theory presented in this paper. How to capture the concept of

an NI transfer function in the non-rational case without Assumption

3.1 is an open problem.

Definition 4: The real transfer function G :C−→Cm×m is negative

imaginary (NI) if

(i) G(s) is analytic in {s ∈ C : Re{s}> 0};

(ii) i [G(s)−G(s)∗]≥ 0 for all s ∈ {s ∈ C : Re{s}> 0, Im{s}> 0};

(iii) i [G(s)−G(s)∗] = 0 for all s ∈ {s ∈ C : Re{s}>0, Im{s}=0};

(iv) i [G(s)−G(s)∗]≤ 0 for all s ∈ {s ∈ C : Re{s}>0, Im{s}<0}.

The following result, which was proven in [20], provides a

characterisation of real, rational NI systems in terms of a domain of

analyticity and conditions referred to the imaginary axis.

Lemma 3: Let G : C −→ Cm×m be a real, rational, symmetric

transfer function. Then G(s) is NI if and only if

(i) G(s) has no poles in {s ∈ C : Re{s}> 0};

(ii) i [G(iω)−G(iω)∗] ≥ 0 for all ω ∈ (0,∞) except for the values

of ω where iω is a pole of G(s);
(iii) if s= iω0, with ω0 ∈ (0,∞), is a pole of G(s), then it is a simple

pole and the corresponding residual matrix3 K0 = lims→iω0
(s −

iω0) iG(s) is Hermitian and positive semidefinite;

(iv) if s = 0 is a pole of G(s), then it is at most a double pole.

Moreover, both its residual and its quadratic residual (when present)

are positive semidefinite Hermitian matrices;

(v) if s = ∞ is a pole of G(s), then it is at most a double pole.

Moreover, both the coefficients in the expansion at infinity of G(s)
are negative semidefinite Hermitian matrices.

Remark 3: We observe that 1
s

and 1
s2 are negative imaginary,

whereas − 1
s2 is not. When there are poles on the imaginary axis,

the Nyquist D-contour is indented infinitesimally to the right and

hence the Nyquist plot changes phase rapidly at large magnitudes

around the frequency of the pole(s) on the imaginary axis. From

the complete Nyquist plot it is evident that 1
s

and 1
s2 are negative

imaginary, but − 1
s2 is not.

We recall the following important result, which established a

relationship between PR and NI transfer functions, see [4], [5], [20].

Theorem 2: Let G(s) be a real, rational, proper, symmetric negative

imaginary transfer function matrix. Then F(s)
def
= s[G(s)−G(∞)] is

positive real. Conversely, let F(s) be real, rational, symmetric positive

real transfer function matrix. Then G(s)
def
=(1/s)F(s)+D is symmetric

negative imaginary for any symmetric matrix D.

A. Strongly strictly negative imaginary systems

We now define strongly strictly negative imaginary functions in

the same spirit of the definition of SSPR.

Definition 5: Let G : C −→ Cm×m be a real transfer function.

Then, G(s) is strongly strictly negative imaginary (SSNI) if for some

ε > 0, the transfer function G(s− ε) is NI and i [G(s)−G(−s)⊤]
has full normal rank.

Remark 4: The full normal rank condition is essential in the

above definition, as this class of systems will be needed for internal

stability of positive feedback interconnections of NI and SSNI

systems. If we were not to impose the full normal rank condition on

the SSNI class, then the feedback interconnection of a NI system

and an SSNI system would not be internally stable as demonstrated

via the following simple example: Let P(s) =
[

1 1

1 1

]

which is clearly

NI and let Q(s) = 1
s+1

[

1 1

1 1

]

which fulfils all properties of SSNI

3Notice that the residual matrix K0 is the product of the imaginary unit i

by the residue at ω0.

except for the full normal rank condition. The positive feedback

interconnection of P(s) and Q(s) is not internally stable as there

exists a closed-loop pole at s = 3.

Next, we consider an example of NI non-rational transfer function

introduced in [20] and show that it is not SSNI. We also introduce

an example of a non-rational transfer function that is SSNI

Example 3.1: Let G(s) = −s(e−sT + 1), with T ∈ R+ being a

positive delay. As shown in [20], G(s) is negative imaginary. On the

other hand G(s) is not SSNI. In fact, let Gε (s)
def
= G(s− ε) and let

s = σ + iω . A direct calculation yields

i [Gε(s)−Gε (s)
∗] = 2

[

ω +e(ε−σ)T (ω cos(ω T )− (σ − ε) sin(ω T ))
]

so that, it is immediate to check that for all ε > 0, i [Gε (s)−Gε (s)
∗]

is negative for s = ε/2+ jπ/T .

Consider now G(s) = e−s+4
s+1 . To show that G(s) is SSNI, we set

ε = 1/2. Clearly, G(s) is analytic for Re{s} >−ε , so that Gε(s)
def
=

G(s− ε) is analytic for Re{s}> 0. A direct calculation yields

i [Gε(s)−Gε (s)
∗] =

2 [Aω +Bsin(ω)]

|s+1/2|2

where A
def
= (4 +

√
ee−σ cos(ω)) > 2 for all positive σ and

B
def
=

√
e(σ + 1/2)e−σ is easily seen to be in the interval (0,2) for

all positive σ . Therefore, it is easy to check that i [Gε(s)−Gε(s)
∗]

satisfies all the prescribed sign conditions so that Gε(s) is NI and

G(s) is SSNI.

Next, we show that SSNI can be checked via conditions on the

imaginary axis. To this aim, we need some preliminary results.

Lemma 4: Let G : C−→ C
m×m be a real transfer function. Then,

G(s) is SSNI if and only if there exists ε > 0 such that

(i) G(s) is analytic in {s ∈ C : Re{s} >−ε};

(ii) i [G(s)−G(s)∗]> 0 for all s∈{s∈C : Re{s}>−ε, Im{s}> 0};

(iii) i [G(s)−G(s)∗] = 0 for all s∈{s∈C : Re{s}>−ε, Im{s}= 0};

(iv) i [G(s)−G(s)∗]< 0 for all s∈{s∈C : Re{s}>−ε, Im{s}< 0}.

Proof: Definition 5 trivially gives equivalence to the existence of ε >
0 such that conditions (i)-(iv) are satisfied with non-strict inequalities

in (ii) and (iv) on i [G(s)−G(s)∗]. We hence only need to show that if

G is SSNI, then the inequalities in (ii) and (iv) are indeed strict. We

prove only that (ii) is strict since (iv) follows by symmetry. Let G be

analytic in C−ε
def
= {s∈C : Re{s}>−ε} and assume by contradiction

that there exist s0 ∈ {s ∈ C : Re{s} > −ε and Im{s} > 0} and a

nonzero vector v such that v∗(i [G(s0)−G(s0)
∗])v = 0. Let ε1 < ε be

such that Re{s0} > −ε1. Since G is analytic in C−ε , v∗(i [G(s)−
G(s)∗])v is harmonic in the same domain so that, by considering an

arbitrarily large real number M and the compact set C
def
= {s∈C : M ≥

Re{s} ≥ −ε1 and M ≥ Im{s} ≥ 0} ⊂ C−ε , if v∗(i [G(s)−G(s)∗])v
restricted to C attains its minimum at a point s0 in the interior of C ,

then v∗(i [G(s)−G(s)∗])v is constant. Clearly, v∗(i [G(s)−G(s)∗])v≥
0 for all s ∈C and, by taking M sufficiently large, s0 is in the interior

of C so that v∗(i [G(s)−G(s)∗])v is constantly equal to 0. This is a

contradiction, since Definition 5 requires that i [G(s)−G(−s)⊤] has

full normal rank.

Lemma 5: Let g : C −→ C be a scalar, real, rational, strictly

proper transfer function. Assume that g(s) is a NI function. Then,

the relative degree of g(s) is at most 2 and all the finite zeros of g(s)
are in the closed left half-plane. Moreover, if i [g(iω)−g(iω)∗]> 0

for all ω ∈ (0,∞), then all the finite zeros of g(s) are in the open

left half-plane.

Proof: As a consequence of [20, Theorem 3.1] we have that f (s)
def
=

sg(s) is PR. Then, the relative degree of f (s) is at most 1 and all the

finite zeros of f (s) are in the closed left half-plane. Therefore, the

relative degree of g(s) is at most 2 and all the finite zeros of g(s)
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are in the closed left half-plane. Moreover, if i [g(iω)−g(iω)∗]> 0,

the only point of the imaginary axis in which g could vanish is 0. If,

however, g(0) = 0 then f (s) would have a double zero at the origin

which is in contrast with positive realness.

Remark 5: Note that the strictly proper assumption in Lemma 5 is

essential to this observation. Indeed, it is possible to have bi-proper

transfer functions such as g(s) = 1−s
1+s

that have zeros in the open

right half-plane and are still SSNI and hence also NI. This is

a crucial difference between PR functions (that are necessarily

minimum phase) and NI functions.

Lemma 6: Let g : C −→ C be a scalar, real, rational, proper

transfer function. Assume that g(s) is a SSNI function. If g(0) = 0,

then the multiplicity of the zero in the origin of g(s) is equal to 1.

Proof: Since g(s) is a SSNI function, it has no poles in zero and

we can expand g(s) at the origin as

g(s) =
∞

∑
k=h

rksk,

where h is the multiplicity of the zero at the origin of g. Let s = εeiθ ,

0 < θ < π . If ε is sufficiently small, i[g(s)−g(s)∗] has the same sign

of −2rhεh sin(hθ ), so that it can be positive for any θ ∈ (0,π) only

if h = 1.

We now present necessary and sufficient conditions on the

imaginary axis for a system to be SSNI.

Theorem 3: Let G : C −→ Cm×m be a real, rational, proper,

symmetric transfer function. Then G(s) is SSNI if and only if

(i) G(s) has all its poles in {s ∈ C : Re{s} < 0};

(ii) i [G(iω)−G(iω)∗]> 0 for all ω ∈ (0,∞);
(iii) there exist σ0 > 0 and δ > 0 such that

σ [ω3i [G(iω)−G(iω)∗]]> σ0 ∀ω ≥ δ ; (3)

(iv)

Q
def
= lim

ω→0+
(1/ω)i [G(iω)−G(iω)∗]> 0. (4)

Proof: Necessity of (i) and (ii) is trivial from Lemma 4. We now

show necessity of condition (iii). Essentially, we need to show that

for any vector v the relative degree of i[g′(iω)− g′(iω)∗], where

g′(s) def
= v⊤G(s)v, is at most 3. Assume by contradiction that this is

not the case so that g(s)
def
= g′(s)−g′(∞) is a rational strictly proper

SSNI function such that i[g(iω)−g(iω)∗] tends to zero, as ω → ∞,

faster than 1/ω3 . Then, it is easy to check that the relative degree of

g is at least 2 and, in view of Lemma 5, the relative degree of g is

exactly 2. In view of Lemma 5 we can write g(s) as

g(s) = K
n(s)

d(s)
= K

sn−2 +an−3sn−3 + · · ·+a0

sn +bn−1sn−1 + · · ·+b0

,

with ai and bi strictly positive. By imposing that i[g(iω)− g(iω)∗]
tends to zero, as ω → ∞, faster than 1/ω3 , we get that n ≥ 3 and

an−3 = bn−1. Now, we can compute

i [g(iω − ε)−g(iω − ε)∗] =
−4Kεω

|d(iω − ε)|2 [(ε
2 +ω2)n−2 +T2n−6]

with T2n−6 being a polynomial in ω of degree equal to 2n − 6.

Therefore for a sufficiently large ω , i [g(iω)− g(iω)∗] is negative

for any positive ε .

We now show necessity of condition (iv). Assume that G is SSNI.

Then clearly the limit Q defined in (4) exists and is positive semi-

definite. Assume by contradiction that Q is singular and let v∈ kerQ.

Let g′(s) def
= v⊤G(s)v. Clearly, g′(s) is a rational proper SSNI function

and g(s)
def
= g′(s)− g′(∞) is a rational strictly proper SSNI function

such that

lim
ω→0

(1/ω)i [g(iω)−g(iω)∗ ] = 0. (5)

In view of Lemma 5 we can write g(s) as

g(s) = K
n(s)

d(s)
= K

1+a1s+a2s2 + · · ·+amsm

1+b1s+b2s2 + · · ·+bnsn
, m < n

with ai and bi strictly positive. Then (5) implies a1 = b1. Now

g(s)−K = K
n(s)−d(s)

d(s)

is SSNI as well, so that the multiplicity of its zero in the origin is at

most equal to 1. Therefore a1 6= b1.

As for sufficiency, assume that G(s) is real symmetric and rational

and that it satisfies (i), (ii), (iii) and (iv). We now show that we can

choose ε > 0 in such a way that

i [G(−ε + iω)−G(−ε + iω)∗]> 0, ∀ ω ∈ (0,∞). (6)

In view of condition (ii), we have that for all ω2 > ω1 > 0, there

exists ε > 0 such that

i [G(−ε + iω)−G(−ε + iω)∗]> 0, ∀ ω ∈ [ω1,ω2], (7)

so that it is sufficient to show that given an arbitrarily small ω1 and

an arbitrarily large ω2, there exists ε > 0 such that

i [G(−ε + iω)−G(−ε + iω)∗]> 0, ∀ ω ∈ (0,ω1) (8)

and

i [G(−ε + iω)−G(−ε + iω)∗]> 0, ∀ ω ∈ (ω2,∞). (9)

As for (8), let δ
def
= iω −ε and consider the following expansion of

G(δ ):

G(δ ) = D0 +δD1 +δ 2D2 + . . .

which clearly converges for δ sufficiently small (if we considered

a minimal realization G(s) = C(sI − A)−1B + D, we would have

D0

def
= D −CA−1B and Di

def
= −CA−i−1B, for i > 1). Since G(s) is

real symmetric by standing assumption, Di = D⊤
i . Moreover, Q

def
=

limω→0+ (1/ω)i [G(iω)− G(iω)∗] = −2D1, so that by assumption

(iv), we have D1 < 0. Now a direct calculation gives

i [G(−ε + iω)−G(−ε + iω)∗] =−ω 2D1 + i
∞

∑
j=2

[δ j − (δ ∗) j]D j.

Now we observe that

i
∞

∑
j=2

[δ j − (δ ∗) j]D j =−2ω
∞

∑
j=2

j−1

∑
k=0

[δ k(δ ∗) j−1−k]D j,

so that

‖i
∞

∑
j=3

[δ j − (δ ∗) j]D j‖ ≤ 2ω
∞

∑
j=2

jε j−1‖D j‖

= 2ω ε
∞

∑
j=2

jε j−2‖D j‖ ≤ 2ω σε

for a certain σ which does not increase as ε tends to zero. Since,

by choosing a sufficiently small ε we can make −D1 > σεI, we

have (8). Now we prove (9). Let G(s) = C(sI − A)−1B + D be a

a minimal realization so that G(−ε + iω) = G(iω)+ ε∆(iω), with

∆(s)
def
=C(sI−A)−1(sI−εI−A)−1B. We expand ∆ around infinity as

∆(iω) =
CB

(iω)2
+

∆3

(iω)3
+

∆r(iω)

(iω)4

where ∆3 remains bounded as ε tends to zero and ∆r(iω) remains

bounded as ε tends to zero and ω tends to +∞. Then, we have

i [G(−ε + iω)−G(−ε + iω)∗] =

= i [G(iω)−G(iω)∗]+
ε(−∆3 −∆⊤

3 )

ω3
+

i

ω4
[∆r(iω)−∆r(iω)∗]
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so that, in view of condition (iii), (9) holds.

Now we can apply Lemma 3 to the function G(s− ε) and we

immediately see that it is NI so that G is SSNI

Remark 6: In view of the symmetry, we have the following

expansion at infinity: i [G(iω)−G(iω)∗] = (1/ω)P1+(1/ω3)P3+ . . . ,
so that it is easy to see that condition (3) may be equivalently

rewritten, in the same spirit of the condition obtained in [23], as

lim
|ω |→∞

ωm+2ρ det (i [G(iω)−G(iω)∗])> 0

where ρ is the nullity of P1 = lim|ω |→∞ iω [G(iω)−G(iω)∗].

In the scalar case, condition (4) has an intuitive interpretation as

a departure gradient on the phase of the frequency response (see

Lemma 3.7 in [25] for details).

The following result is the counterpart of Theorem 2 for SSPR

and SSNI transfer functions.

Theorem 4: Let F : C −→ Cm×m be a real, rational, symmetric

SSPR transfer function. Then, there exists ε > 0 such that

G(s)
def
=

F(s)
s+ε +D is SSNI for any symmetric matrix D. Conversely, let

G : C−→Cm×m be a real, rational, proper, symmetric SSNI transfer

function. Then, there exists ε > 0 such that (s+ ε)(G(s)−G(∞)) is

SSPR.

Proof: We start proving the first statement. Since F(s) is SSPR, a

value ε > 0 exists such that F(s−ε) is PR. Then, by Theorem 2 it is

found that Ĝ(s)
def
=

F(s−ε)
s is NI. On the other hand, this implies that

G(s) = F(s)
s+ε is SSNI.

We prove the second statement. Since G(s) is SSNI, there ex-

ists ε > 0 such that G(s − ε) is NI. Thus, by Theorem 2 we

find that s [G(s− ε)−G(∞)] is PR. This in turn implies that (s+
ε) [G(s)−G(∞)] is SSPR.

B. Weakly strictly negative imaginary systems

Reference [26] and earlier results use a weaker definition of strictly

negative imaginary systems to obtain robust stability results. This

weaker notion imposes only conditions (i) and (ii) of Theorem 3. In

light of this, we introduce the following definition.

Definition 6: The real, rational, proper, symmetric transfer function

G : C −→ Cm×m is weakly strictly negative imaginary (WSNI) if it

satisfies conditions (i) and (ii) of Theorem 3.

Equation (16) in [11] gives a MIMO example of a SSNI system,

which is hence also a MIMO example of a WSNI system.

Notice that this concept of WSNI is only defined for the rational

case. It coincides, in the symmetric case, to the concept of “strictly

negative imaginary system” used in [27]. The following two

examples show that conditions (iii) and (iv) in Theorem 3 are not

implied by the first two, i.e., the notion of WSNI is indeed a weaker

notion than that of SSNI.

Example 3.2: Consider the transfer function

G(s) =
2s+1

(s+1)2
.

It is easily seen that G(s) is NI. A simple calculation shows that

i [G(iω − ε)−G(iω − ε)∗] =
4ω

[

ω2 +(1− ε)2
]2
(ω2 − ε + ε2), (10)

which proves that conditions (i), (ii) and (iii) in Theorem 3 are

satisfied; in particular, this means that G(s) is WSNI. However, it is

not SSNI, because in this case (4) yields Q = limω→0+
4ω2

(ω2+1)2 = 0.

This result is consistent with Definition 5. Indeed, for any ε > 0,

there always exists a sufficiently small ω > 0 such that the numerator

in (10) is negative.

Example 3.3: Consider the transfer function

G(s) =
s+3

(s+1)3
.

Again, G(s) is NI, and in this case

i [G(iω − ε)−G(iω − ε)∗] =
4ω

[

4+6ε2 − ε3 − ε (ω2 +9)
]

(1+ ε2 −2ε +ω2)3
. (11)

Thus, conditions (i), (ii) in Theorem 3 are satisfied, which means

that G(s) is WSNI. Condition (iv) in Theorem 3 is also satisfied,

since in this case (4) gives Q = limω→0+
16

(ω2+1)3 = 16 > 0. However,

G(s) is not SSNI because (iii) in Theorem 3 is not satisfied. Again,

this result is consistent with Definition 5, since for any ε > 0, there

always exists a sufficiently large ω > 0 such that the numerator in

(11) becomes negative.

The next theorem shows that the definition of WSNI corresponds

to a sign property on the closed right-half plane.

Theorem 5: Let G : C−→Cm×m be a real, rational, proper transfer

function. Then, G(s) is WSNI if and only if there exists ε > 0 such

that

(i) G(s) is analytic in {s ∈ C : Re{s} >−ε};

(ii) i [G(s)−G(s)∗]> 0 for all s∈ {s ∈C : Re{s} ≥ 0, Im{s}> 0};

(iii) i [G(s)−G(s)∗] = 0 for all s∈ {s∈C : Re{s}≥ 0, Im{s}= 0};

(iv) i [G(s)−G(s)∗]< 0 for all s∈ {s∈C : Re{s}≥ 0, Im{s}< 0}.

Proof: Sufficiency is trivial by restricting on the imaginary axis.

Necessity can be proven as follows: if G is WSNI, then (i) is satisfied

and G is NI (from Lemma 3). Moreover, if G is NI, then (ii)-(iv) in

Definition 4 are satisfied. Appending the imaginary axis properties of

G to the conditions (ii)-(iv) in Definition 4 (since G is WSNI) yields

(ii)-(iv) since G fulfils (i).

C. Interconnections of negative imaginary systems

The following result shows under what circumstances are NI,

WSNI and SSNI properties preserved when such systems are

interconnected in feedback.

Theorem 6: Let S1 : C → Cm1×m1 be NI (resp. WSNI or SSNI)

and S2 : C → Cm2×m2 be NI (resp. WSNI or SSNI). Let 0 < a,b ≤
min{m1,m2} and suppose the feedback interconnection correspond-

ing to the Redheffer Star product S1 ⋆S2 be internally stable.4 Then

S1 ⋆S2 is NI (resp. WSNI or SSNI).

Furthermore, if

• a = b = m2 < m1, then S1 ⋆S2 = Fl(S1,S2);
• a = b = m1 < m2, then S1 ⋆S2 = Fu(S2,S1);

• a = b = m2 = m1/2, S1 =

[

P Ia

Ia 0

]

and S2 = Q, then S1 ⋆S2 =

P+Q;

• a = b = m2 = m1/2, S1 =

[

0 Ia

Ia P

]

and S2 = Q, then S1 ⋆S2 =

Q(Ia −PQ)−1;

• 2a = 2b =m1 =m2, S1 =

[

0 Ia

Ia P

]

and S2 =

[

Q Ia

Ia 0

]

, then S1 ⋆

S2 =

[

−P Ia

Ia −Q

]−1

=

[

Q(Ia −PQ)−1 (Ia −QP)−1

(Ia −PQ)−1 P(Ia −QP)−1

]

which

corresponds to the positive feedback interconnection [P,Q].

Proof: Given S1(s),S2(s) and complex vectors y1,y2,u1,u2,α,β

of compatible dimension satisfying

[

y1

α

]

= S1(s)

[

u1

β

]

and

[

β
y2

]

=

4This is the standard meaning of “internal stability”, i.e. add two extra
exogenous input signals to the internal signals and ensure that all output
signals and all internal signals are energy-bounded for any energy-bounded
exogenous input excitation.
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S2(s)

[

α
u2

]

, it follows that

[

y1

y2

]

= S1(s) ⋆ S2(s)

[

u1

u2

]

. Then, for all
[

u1

β

]

∈ Cm1 ,

[

α
u2

]

∈ Cm2 :

[

u∗1 u∗2
]

[i([S1(s)⋆S2(s)]− [S1(s)⋆S2(s)]
∗)]

[

u1

u2

]

= i
[

u∗1 u∗2
]

[

y1

y2

]

− i
[

y∗1 y∗2
]

[

u1

u2

]

= i
[

u∗1 β ∗]
[

y1

α

]

− i
[

y∗1 α∗]
[

u1

β

]

+ i
[

α∗ u∗2
]

[

β
y2

]

− i
[

β ∗ y∗2
]

[

α
u2

]

=
[

u∗1 β ∗] [i(S1(s)−S1(s)
∗)]

[

u1

β

]

+
[

α∗ u∗2
]

[i(S2(s)−S2(s)
∗)]

[

α
u2

]

.

Since the Redheffer star interconnection is internally stable, the three

respective results (NI, WSNI, SSNI) then follow by applying Defi-

nition 4, Theorem 5 or Lemma 4 respectively on the corresponding

domains of s ∈ C for S1(s) and S2(s).
The five cases where a,b,S1 and S2 are restricted are trivial

consequences of a Redheffer calculation.

Notice, that this result holds for the general — possibly non-

rational — case.

Example 3.4: This example shows that it is not possible to mix

and match properties of S1 and S2 for the strict results in Theorem 6

to hold. Let S1 =





(

1 0

0 1

) (

1

0

)

(

1 0
)

0



 which is clearly NI and let

S2 = 1
s+1 which is SSNI (and also WSNI and hence NI). Then S1 ⋆

S2 =

[

1+ 1
s+1 0

0 1

]

which is only NI (and not WSNI nor SSNI).

CONCLUDING REMARKS

We have drawn a full picture which illustrates the various grades

of strictly negative imaginary systems and the relationships that exist

between the notions of positive real and negative imaginary systems.

The approach followed in this paper hinges entirely on properties of

the transfer function matrix and is founded on general definitions that

do not require the transfer functions to be rational.
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