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Abstract- the success of petroleum exploration business depends 
on appropriate design and implementation of seismic 
exploration programs. Volume of seismic data instances 
(deduced for structural interpretation) is used for modeling 
multidimensional data structures in a warehouse environment. 
Several business rules (constraints) are applied to the design and 
development of a data warehouse. Seismic-time horizons, well-
data, reservoir properties and petroleum production as data 
dimensions or classes and their associated attributes, have been 
used for integrating and modeling their data instances with 
numerous hierarchies. Ontology addresses issues of semantics 
and contexts (naming conventions) involved during design of 
business rules and building relationships among several 
hierarchies. Business rules inform the data integration and data 
mining process, especially when heterogeneous data structures 
are denormalized for fine-grained data structuring and facilitate 
the association rule mining process. Several data views have 
been presented for analyzing the effectiveness and deliverability 
of warehouse-modeled information. Design of business rules 
combined with fine-grained ontology structuring appears to 
have a definitive impact on data mining of seismic data 
instances, enhancing seismic data knowledge and improving 
geological interpretation. Petroleum ontology proves to be an 
effective knowledge mapping tool, which can revolutionize the 
petroleum exploration industries. 

I. INTRODUCTION

Structures (either in time- or depth domain) and reservoir 
attributes of multiple hydrocarbon bearing horizons [1]-[6], 
are key ingredients for any petroleum prospect delineation 
and evaluation [1]. These structures and reservoirs possess 
several properties with different magnitudes. These are basic 
data attributes and instances, characterized by different 
seismic events, which are perceivably geological events. The 
physical process of a seismic reflection, as demonstrated in 
Fig.1, establishes movement of ray-paths from successive 
sub-surface layers [1] - [3] (in multiple dimensions) in the 
form of seismograms. The later-arrival of seismic times (data 
instances documented in the database) yield information 
about deeper layers (called sediments in petroleum geology). 
The method is popularly known as common reflection or 
common midpoint, or common depth point (CDP), in which 
sub-surface coverage [1] is one-half of the surface distance 
across the geophone spread (length of survey line along 

which, receivers “geophones” sensors planted). Several 
survey lines laid on the surface are interconnected through 
sub-surface CDP data representation, as described in [1] and 
[3]. S and R are respectively source and receiver (sensor) kept 
on a topographic surface in different domains (Fig.1). CDP is 
a conceptualized domain (a key concept) based on a 
reflecting surface. Domain ontology understands that S and R 
are in different domains. 

Fig. 1: Data presentation in Common Depth Point (CDP)
domain 

Ontologically, all the data instances are inter-related and 
organized in different ways [4]-[12], such as CDP, in which 
case, common midpoint dimension is logically related to 
other dimensions derived from receivers and sources. Similar 
is the case with point dimensions derivable from common 
receiver, common source and common offset domains, as 
discussed in the following sections. 

Authors demonstrate (Fig.1) that a CDP is a logically 
conceptualized data dimension created by half distance (in a 
geometric sense) between sensors (receivers) and sources 
(points at which, shots are taken) located on the surface. But 
these point dimensions appear to have followed a sub-surface 
reflecting plane (in a geological sense, though it is not 
necessary to strictly follow a geometry), which is 
geologically interpreted as a sedimentary layer [1]-[3]. For 
multiple layers (horizons), multiple CDP data dimensions - a 
set of common receiver and source point data dimensions are 
described from the spread of seismic profiles (Fig.2) laid on 
the surface. Logically, different arrays are designed on each 

ⓒ
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seismic profile in the field to remove diverse noise data 
patterns recorded during seismic data acquisition. These data 
are conventionally processed on high speed digital systems in 
processing centers or in the field.   

Seismic data acquired in the producing or remote fields, 
possess multi-dimensional data representations as shown in 
seismograms (Fig.3), which are logically processed for 
interpreting new oil-plays and leads. These data are 
appropriately sampled and stored in high density storage 
devices. 

Fig. 2: Data representation in common offset domain 
Seismograms (Fig.3) representing seismic data instances 

described in terms of amplitude, frequency and phase 
characteristics, illustrate dependence of each data instance 
amplitude value on each other’s coherency attribute data. 

Fig. 3: Description of amplitudes and their variations on 
multiple seismic traces, showing trace coherency attribute 

(amplitude data instances dependency) 
Ontology organizes and maintains the multidimensional 

data in different domains based on the contents and contexts. 
Another interesting domain is geology, in which all petro-
facies that are interpreted (through relational ontology from 
seismic domain) by all seismic facies. Interestingly, these 
seismic facies possessing several amplitudes and polarities 
are classified to specific litho-facies or lithology (in a sub-
domain of geology). Further relevant domains of geology are, 

structure, petrology and stratigraphy.  Structural, lithology 
and stratigraphic [1] data patterns are interpreted in multiple 
data dimensions as on seismograms (as shown in Figs. 3 and 
13) after logically organizing the horizon data in time and 
depth domains. 

The seismic data are processed in other domains such as 
common offset, common receiver and common source, in 
order to see improvements in attributes of lateral, longitudinal 
and horizontal dimensions and their data instances. As shown 
in Figs. 4 and 5, depth points are typically ontologically 
conceptualized, so that relationships among multiple 
dimensions are intelligently organized and stored in a 
warehouse environment for integration purposes. 

Fig. 4: Relational ontology - common depth point data 
instances representation (CDP ontology) 

Different domains of similar (or dissimilar) ontologies can 
be described based on different geological and geophysical 
(seismic is the present context) data situations of different 
petroleum provinces, under investigation. 

Fig. 5: Relational ontology - common source point data 
instances representation (CSP ontology) 

II. ONTOLOGY MODELLING 

A. Domain Ontology - design of data acquisition, 
processing and interpretation entities 

Several hierarchies are narrated in a high level dimension, 
exploration from basin level to CDP or survey point level 
(Fig. 6). 

Data acquisition is a first stage of any exploration activity, 
involving the different data acquisition procedures on the 
ground in the prospective area. Ontology DB checks for 
appropriate semantics, contexts, and thus informs the building 
of relationships among several parameters [2], [4] and [5] 
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contributing to seismic signals (traces), and ground and 
source generated noises [1] – [3]. Source and geophone 
sensors and arrays are needed on the ground for suppressing 
the random, coherent and other ambient noises, before 
seismic data are recorded in the field vehicle.  

Fig. 6: Hierarchy Ontology modeling – Basin and 
Exploration data entities 

Seismic data processing is the next domain, in which all the 
seismic traces are sorted and stacked (in multiple dimensions) 
after applying both static and dynamic corrections (in terms 
of milliseconds, ms), time or space varying filters and 
deconvolution processing. Migration is the final stage of 
seismic data processing, in which the true positions of sources 
are represented on the ground. Ontology [7] – [12] replaces 
all these processing (in terms of data mining) steps, 
reorganizing and regrouping all the traces based on the 
positions of the sources designed on the surface of the earth. 
Last stage of exploration is data interpretation, in which 
mined data are interpreted for exploring data patterns, 
correlations and trends, which enhance the geological 
perception and topography of individual sub-surface layers 
(petroleum bearing sediments, commonly represented in 
layers [1] and [2]). These are further elaborated in the next 
sections.   

B. Ontology based Seismic Designs 
The generation and recording of seismic data involve 

several issues. Acquisition requires many different receiver 
configurations (sensor dimension), including laying 
geophones or seismometers (sensor arrays) on the surface of 
the earth or seafloor, towing hydrophones [1] – [5] behind a 
marine seismic vessel, suspending hydrophones vertically in 
the sea or placing geophones in a wellbore (as in a vertical 
seismic profile, VSP ontology, [6] and [13]) to record the 
seismic signal. A source (source or shot dimensions), such as 
a vibrator unit, dynamite shot, or an air gun (array of shots), 
generates acoustic or elastic vibrations that travel into the 
Earth, pass through strata with different seismic responses 
and filtering effects, and return to the surface to be recorded 
as seismic data. Ontology maintains optimal acquisition of 
restructuring data-array patterns and adapts according to local 
conditions. It involves employing the appropriate source type 
and intensity, optimal configuration of receivers, and 
orientation of receiver lines with respect to geological depth-
domain features and required seismic signals in seismic time-
domain. This ensures that the best signal-to-noise ratio can be 
achieved with appropriate resolution [3] and extraneous 
effects such as air waves, ground roll, multiples and 
diffractions, all sources of unwanted noise, are minimized, 
distinguished, and removed through processing. Ontology 
understands and maintains signal and noise data patterns, 
separating them for data mining enhancements. 
C. Ontology based Processing Designs 

Ontology understands, examines and investigates all the 
CDPs and their dimension representations. As per ground-
geometries, ontology identifies seismic signals in multiple 
directions. Seismic data are manipulated to suppress noise, 
enhance signal and migrate seismic events to the appropriate 
location in space-domain. Processing steps [1] typically 
include analysis of velocities and frequencies, static 
corrections, deconvolution, normal move-out, dip move-out, 
stacking, and migration, which can be performed before or 
after stacking of seismic traces. Seismic processing, 
synonymous to data mining, facilitates interpretation of 
exploration data, because subsurface structures of horizons 
and seismic reflection geometries are processed more 
apparently based on field-layouts and geological inputs. 
D. Ontology based Seismic Interpretation 

Interpretation of data, mined from warehoused (processed) 
data is key for generating petroleum prospects and risk 
evaluating them. In seismic geophysics [1], analysis of data is 
part of exploration to generate precise geological models and 
then predict the reservoir properties and structures of the 
subsurface. Interpretation of seismic data is the primary 
concern of petroleum geophysicists or geologists for locating 
wells and well-drill planning. All the seismic horizons (in 
seismic-domain) and geologically derived depth horizons (in 
well-domain) are analyzed and integrated to get consensus 
geological models (reservoir models), which are analyzed for 
hydrocarbon plays, maintaining productivity from well and 
health of the horizon (formation). 
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III. ISSUES OF DATA MANAGEMENT IN PETROLEUM
INDUSTRY 

Seismic data acquired in the field, represent in general, 
numerous dimensions. Exploration companies archive large 
data (multiple dimensions) in different servers, but they are 
poorly organized at times with redundancy and difficult to 
retrieve. Large volumes of datasets are loaded and distributed 
among PC and Unix/Linux based workstations for processing 
and interpreting the petroleum exploration data. Specialized 
software and hardware modules are used for carrying out the 
specialized tasks in these commercial companies. Data 
processing and interpretation qualities depend on easy 
accessing and handling of volumes of datasets emanating 
from different operational units of the company without any 
loss of information and value. Today, organizing the data 
intelligently for effective knowledge discovery is an art of 
database management. Intelligent storage of data [14]-[18] by 
different data structuring methods [8], [19]-[23] is much 
needed for more precise and rapid data manipulation. Reuse 
and interoperability are other issues that need to be addressed 
in large commercial petroleum companies, where there are 
service and smaller operational units, delivering commercial 
products. Data structures are reused [15] and with more 
flexibility on integrated software and hardware modules.    

Ontology based data warehousing and mining technology 
is a solution [9], which can not only structure the data more 
intelligently, but also integrate and store the data for mining 
and analysis. Shared ontologies [14] play a vital role during 
intelligent integration of petroleum data. 

IV. WAREHOUSING OF EXPLORATION DATA
INSTANCES – METADATA DOMAIN 

Data instances extracted from the field are reorganized at 
the data modeling centre into different data structures in 
multidimensional formats. One popular structure is a star-
schema, logically stored in a warehouse environment for data 
integration, addressing the interoperability issue. These data 
organized in 2D/3D grids are spread across an exploration 
area in vertical, horizontal and lateral dimensions. These data 
are in the form of several dimensions (attributes), such as 
location of survey, latitude and longitude, seismic times, 
velocities and computed depths are data instances for several 
horizons or reservoirs (formations). Ontology resolves issues 
of naming conventions and semantics among data attributes.  

Metadata serves to identify the semantic content and 
location (geographic dimension) of data in the seismic data 
warehouse and is a bridge between the data warehouse and 
decision support application, derived through conceptual 
domain ontology modeling. In addition to providing a logical 
linkage between data and application, Metadata pinpoints 
access to the information across the entire warehouse and can 
enable development of applications to automatically update 
themselves and look for data warehouse content changes or 
updates.  

In a traditional database, a schema is described as a 
conceptual or logical data organization [19] of all dimensions 

(objects or entities) that describe all relationships between 
known attributes. In such a well-defined concept, the 
difference between Metadata and data disappears – metadata 
is simple data. In the context of data warehouse, metadata is 
needed to describe data relationships without any further 
ambiguity of interpreting multiple dimensions (for example, 
attributes from seismic, wells and reservoirs (horizons) as 
described in [1] and [2]). 

A. Description of exploration data types 
Seismic and well-data are typical surface and sub-surface 

domains discussed in the ontologies and integration of these 
ontologies depends on its effective conceptualization and 
integration of respective relationships (an integrated 
framework - Fig. 7) among multiple dimensions and their 
associated attribute properties. Data structure, representing 
super-type dimension, such as seismic, has several related 
multiple dimensions, which are supposed to be logically 
intelligible within a schema that narrates a focused seismic 
ontology. In seismic ontology, time dimension and its 
attribute properties are described and previously unknown 
relationships are built. Attribute properties of time dimension, 
are dynamic, depending upon type of structuring, within 
which time dimension is interpreted. Data instances of time
dimension are extracted from different domains of data 
representation, such as CDP, COP (common offset point) 
dimension, CSP (common source point) dimension and CRP 
(common receiver point) dimension [1], which are structured 
in a relational ontology. To further explain interpretation of 
time dimension in different knowledge domains, several 
hierarchical and relational structuring of CDP, COP, CSP and 
CRP dimensions are ontologically conceptualized.  

Similar to seismic domain ontologies, well-base ontology is 
described, narrating all the relationships among dimensions, 
such as drilled well, formation top, depth and horizon. One or 
two dimension IDs of this well-domain ontology must match 
with seismic-domain ontology. This will enable building of 
relationships and integration of these two different entities or 
dimensions. Attribute properties of these domain ontologies, 
are also important, since these may vary spatially with 
horizontal, vertical and lateral (direction) dimensions (Fig. 7). 

B. Business rules and constraints for building ontology models 
Data interpretation and knowledge discovery depend on 

how business rules and constraints [19] and [20] are framed 
and described during design of particular domain ontology 
and its implementation in a warehousing environment. 

As narrated in Fig. 6, a hierarchy represents that each 
sedimentary basin has several petroleum fields and each field
must have possessed one or more drilled-well. Each field
possesses several seismic surveys, including volume of 3D 
datasets. Each oil-field dimension should have one or more 
surveys or wells dimensions. Each drilled-well must have one 
or more horizon dimensions identified for modeling and 
interpretation purposes. 
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Fig. 7:  Ontology-based warehouse framework for 
integrating exploration data instances and storing them 

intelligently for data mining 
It is not mandatory to possess a producing horizon, but one 

must have survey and well dimensions. Besides these, 
1. Each receiver or source point dimension has unique 

spatial identity, implying that for different coordinates, 
there may be similar or dissimilar seismic data instances 
in any direction (such as horizontal or vertical or lateral). 

2. Each shot or source location may have been described 
with one or more CMP/CDP dimensions. 

3. Each horizon (geological formation) dimension has 
several seismic and well data instances. 

4. Horizon and source or receiver location identifiers 
must be unique. 

Fig. 8: Integrating seismic data instances from several 
seismic (or integrated from wells data) horizons 

5. Dimensions derived from conceptualization (true 
geological realizations) of horizon properties, such as 
structural-high and structural-low may repeat, so data 
instances of these properties interpreted for each horizon 
may be repetitive, but with different magnitudes. 

6. Attributes and their instances, such as amplitude,
frequency and phase of seismic time events, for each 
horizon (geological formation) may be repetitive 
elsewhere in other structure with similar data instances. 

C. Ontology-base data model -  CDP domain 
Seismic data instances distributed from one domain among 

several field grids are also associated with well placement in 
a different domain. Common depth points (CDP) is a 
vertically varying data distribution, a widely implemented 
modeling procedure in seismic prospecting and exploration, 
for exploring and exploiting depth information. Authors 
interpret these data distribution, as ontology 
conceptualization in which each depth point, varying with 
depth, has its association with other depth points. Both 
horizontally varying surface grid and vertically varying data 
building blocks (Figs. 7 - 9) are used. As demonstrated in Fig. 
8, data instances gathered at several hierarchies (parent and 
child levels) are integrated, as in our case, exploration, a high 
level dimension, integrates child ontologies of seismic and 
well domains. 

Fig. 9: a 3D seismic field layout – representation of seismic 
data instances in different directions (each characterizing a 

particular dimension) 
As examined in Fig. 9, CDP data dimensions from 3D field 

layout area are ontologically interconnected in horizontal, 
vertical and lateral dimensions. All the data instances, falling 
in vertical blocks (as shown in Figs. 4, 5 and 7) and varying 
vertically, are aligned and integrated to get a particular data 
alignment that can classify to specific attributable structural 
data instances. 

V. RESULTS AND DISCUSSIONS

Several strati–surfaces (horizons) are explored from 
processed seismic data. These horizons existing in a 
geological era, are not static, but are part of a dynamic 
petroleum ecosystem [13]. Warehoused data have been 
implemented, interpreting several geological structures which 
are used for prospect generation and evaluation. As shown in 
Figs. 10-15, several seismic and well data instances have 
been integrated using multiple dimensions. In-lines, cross-
lines, point and polygon dimensions have been used for 
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gathering different domain data and thus constructing a 
metadata set. 

Seismic and well-data domains are key ontologies in the 
present study for data modeling. Warehousing approach 
integrates [9]-[14] dimensions along with attributes, besides 
building relationships and exploring useful data views for 
further interpreting them in terms of structural connectivity 
among multiple oil fields. 

Fig. 10: Seismic and well-data instances showing with spatial 
dimensions 

Spatial dimensions are very significant in the present study, 
where point, lines and contour surfaces characterize a 
framework, and are responsible for connectivity among 
fields. But these dimensions and attributes are independent of 
structural attributes of seismic time, depth and velocity 
dimensions. Figs 11-12 represent maps in seismic domain and 
well domain, inherently described in an ontologically 
integrated domain (Fig. 7).   

Structural relationships have been built and interpreted 
along these spatial data grids, again categorizing and 
separating structural high and low anomalies (structure 
domain with high and low dimensions). These are important 
relationship attributes between seismic and well domain 
ontologies (integrated from relational and hierarchical 
ontology domains). 

Fig. 11: Seismic data instances in 3D grid and well-data 
instances

Seismic line, point and polygon representing field and 
country boundaries shown in Figs.10-12 are used in the grid 
processing. Contours are generated based on grid data. Each 

field is interpreted and identified within a structural data 
contour pattern, supposedly having all structural high data 
instances. Seismic structural high and low data values are 
representative of geological structures, depending upon the 
velocity data attributes [6]. Other attributes such as seismic 
amplitudes are presented in different color patterns as 
narrated in the Fig. 13. 

Fig. 12: Seismic – well - data domain and integration of 
attribute instances for – Metadata 

Ontologically, each field interpreted within a petroleum 
system cannot be isolated, but conceptually and logically, in a 
strict geological sense, fields are interconnected and 
communicative to each other by different structural patterns. 
Ecologically [13], if there is any change in the structural 
pattern within a field, there is a corresponding affect on the 
other field or data pattern. 

Another significant feature within an implementation of 
warehoused metadata is the separation of all structural-highs 
possessing lower seismic data values, but with different 
magnitudes as represented, for example, in red-green color 
data patterns. Structural-lows possess definite higher (deeper) 
seismic values, represented as blue color data patterns. These 
structural data patterns are valuable clues for any prospect 
generation and evaluation. Fig 13 is an example of a map 
showing oil field structural data attributes drawn from an 
integrated Metadata model (Fig. 7). 

Fig. 13: Data integration - connecting fields through 
relational ontology (after applying constraints) 
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VI. CONCLUSIONS AND RECOMMENDATIONS

1. Ontology based design of data acquisition; data 
processing and interpretation are more effective 
in extracting knowledge on structural and 
petroleum geology domains. This is indeed a 
revolutionary concept in the fields of exploration 
and development of petroleum fields, which has 
more future scope of commercial research.  

2. Data instances from CDP, COP, CRP, CSP 
dimensions can easily be structured and 
integrated in a warehouse environment for the 
purpose of interpreting seismic signals and their 
attributes as required by geologists, well 
planners, reservoir and production engineers.  

3. Framing of business rules, constraints among 
usage of attributes within the integration process, 
and design of business rules have definite impact 
on correlation and mapping and thus on data 
mining.  

4. Ontology based data structuring has definite 
advantage, especially when attributes and their 
relationships are conceptualized using 
appropriate semantics and contexts.  

5. Integrating ontologically structured data in a 
warehousing environment has more flexibility 
and consistency in attribute mapping and 
interpretation during data mining stage. 

6. Structural data views taken from implemented 
warehoused metadata follow definite structure 
shapes, in terms of seismic high and low data 
instances, depicting geological knowledge. 

7.  Integration of exploration data, modeled from 
different hierarchically derived multiple 
dimensions; facilitate the data mining process, 
thus extracting knowledge of commercial 
petroleum plays. Issues of reuse and 
interoperability of denormalized fine-grained 
exploration data structures have also been 
emphasized in the context of implementing 
ontology based warehousing in petroleum 
exploration industries. 

This research work addresses new methodologies, which 
have the potential to revolutionize the exploration and 
resources industries worldwide. This is an on-going 
commercial research work at Curtin Business School, 
Curtin University of Technology, Australia. Industry 
collaboration is accommodated through the University’s 
commercialization arm – contact the second named author. 
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