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Abstract

This paper considers an optimal boundary control problem for fluid pipelines with termi-

nal valve control. The goal is to minimize pressure fluctuation during valve closure, thus

mitigating water hammer effects. We model the fluid flow by two coupled hyperbolic

PDEs with given initial conditions and a boundary control governing valve actuation.

To solve the optimal boundary control problem, we apply the control parameterization

method to approximate the time-varying boundary control by a linear combination of

basis functions, each of which depends on a set of decision parameters. Then, by us-

ing variational principles, we derive formulas for the gradient of the objective function

(which measures pressure fluctuation) with respect to the decision parameters. Based

on the gradient formulas obtained, we propose a gradient-based optimization method

for solving the optimal boundary control problem. Numerical results demonstrate the

capability of optimal boundary control to significantly reduce pressure fluctuation.

Keywords: Water hammer, Hyperbolic PDEs, Control parameterization, Optimal

boundary control, Method of lines, Variational method

1. Introduction

When gases and liquids are transported over long distances through networked

pipelines, flow impulses and periodic excitations often induce unwanted transient dy-

namics. Such transient dynamics can adversely affect working performance, and can
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even destroy key components in the pipeline network, through the generation of fluid-

structure interactive vibration and noise. Water hammer, also known as hydraulic shock,

is one of the most common transient dynamics in pipelines. It is caused by sudden

changes in the motion state, such as a complete halt or a reversal of flow direction.

The pressure wave caused by water hammer is the main reason for pipeline noise and

vibration. Mitigation strategies for water hammer are numerous and here we refer to

just a few, such as those for oil pipelines [36], air compressor pipelines [18], spacecraft

propulsion systems [17], heat exchange systems in nuclear reactors [12, 32] and even

cardiovascular flow in human blood vessels [28].

This paper models water hammer mitigation by an optimal boundary control problem

governed by hyperbolic PDEs [8]. We consider the benchmark pipeline system shown

in Figure 1, where a pipeline of length L is used to transport fluid from a reservoir to a

terminus. In the literature, fluid flow is typically modeled using the well-known Navier-

Stokes equations; related control studies include mixing, stabilization, and optimal shape

design [5, 1]. For pipelines, the simplified version of the full Navier-Stokes model is

commonly used to analyze and mitigate water hammer phenomena. This simplified

model, known as the pipeline transmission PDE model, is defined by the following

nonlinear hyperbolic PDE system [15, 35]:

∂v

∂t
+

1

ρ

∂p

∂l
+

f

2D
v|v| = 0, (1a)

∂p

∂t
+ ρc2∂v

∂l
= 0, (1b)

where l ∈ [0, L] is the spatial variable, t ∈ [0, T ] is the time variable, v = v(l, t) is the

flow velocity, p = p(l, t) is the pressure drop, D is the diameter of the pipeline, c is the

wave velocity, f is the Darcy-Weisbach friction factor, and ρ is the flow density. This

model is also widely used to simulate hydraulic dynamics in irrigation canals [25, 16, 21].

The initial conditions for system (1) are

p(l, 0) = p̄0(l), v(l, 0) = v̄0(l), l ∈ [0, L], (2)

where p̄0(l) and v̄0(l) are given functions describing the initial pressure and velocity

profiles. Moreover, the boundary conditions are given by

p(0, t) = P, v(L, t) = u(t), t ∈ [0, T ], (3)
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Pipeline

Valve
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︸ ︷︷ ︸

Figure 1: General layout of the pipeline system

where P is the pressure generated by the reservoir, and u(t) is a boundary control

function. System (1)-(3) is called the state system. Note that u(t) = 0 corresponds to

a closed valve (zero flow velocity), and u(t) = umax corresponds to a completely open

valve (maximum flow velocity). Since the valve is initially fully open,

u(0) = umax. (4)

Moreover, since the valve is required to be closed at the terminal time t = T , we impose

the following terminal constraint:

u(T ) = 0. (5)

Finally, to ensure that the valve is not re-opened during the time horizon, we have the

following derivative constraint:

u̇(t) ≤ 0, t ∈ [0, T ]. (6)

Shutting off the valve suddenly will cause an oscillating pressure wave (i.e., water ham-

mer) to propagate through the pipeline at high speed [7]. This pressure fluctuation

must be controlled to avoid serious pipeline damage [3, 30]. Thus, for the pipeline

system shown in Figure 1, our goal is to choose a continuous boundary control u(t),

in accordance with constraints (4)-(6), to minimize the following objective function as

proposed in [4] for open channel flows:

J(u) =
1

T

∫ T

0

[
p(L, t)− p̂(L)

P̄

]2γ

dt+
1

LT

∫ T

0

∫ L

0

[
p(l, t)− p̂(l)

P̄

]2γ

dldt, (7)

where γ is a positive integer, P̄ is a given constant, p̂(l) is a given function expressing the

target pressure profile along the pipeline and p(l, t) is the solution of the state system (1)-

(3). Our optimal boundary control problem is thus stated as: Given the system (1) with
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initial conditions (2) and boundary conditions (3), choose the boundary control u(t)

to minimize the objective function (7) subject to the initial condition (4), the terminal

control constraint (5) and the derivative constraint (6). This problem is referred to as

Problem P0.

In reference [8], we developed a discretize-then-optimize computational approach for

solving Problem P0. This approach involves first using the finite-difference method to

approximate the PDE model (1)-(3) by a system of ODEs, then applying control param-

eterization [31] to approximate the boundary control by a piecewise-linear or piecewise-

quadratic function. We call this approach the CP-ODE approach, as it involves using

control parameterization to solve a conventional ODE optimal control problem, which

is obtained from the original PDE problem via the finite-difference method.

In this paper, we propose an alternative computational approach in which control

parameterization is applied directly to the original PDE model. We refer to this new

approach as the CP-PDE approach. The advantage of CP-PDE over CP-ODE is that

one layer of approximation is removed: Problem P0 is solved directly using control

parameterization; there is no need to first approximate it by a conventional ODE optimal

control problem. Both CP-PDE and CP-ODE yield finite-dimensional optimization

problems that can be solved using sequential quadratic programming (SQP) methods.

For CP-PDE, finite-difference methods are used in conjunction with SQP to solve the

PDE model; for CP-ODE, Runge-Kutta methods are used to solve the approximating

ODE system. See Figure 2 for a comparison of the two approaches. Our simulation

results indicate that CP-PDE requires significantly less computational effort than CP-

ODE, thus motivating the new approach.

Because of the nonlinear friction term in (1), the pipeline transmission PDE system

belongs to the class of semi-linear systems. Such systems have been widely studied in

the literature. For example, Riemann invariants are applied in [10] to provide feedback

laws for local stability using a Lyapunov function. LaSalle’s invariance principle [2] has

also been applied to yield asymptotic stability conditions for semi-linear systems. Note

that water hammer mitigation can be viewed as a boundary stabilization problem for

the pipeline transmission PDEs. In addition to our new computational optimal control

framework, feedback stabilization techniques, including the Lyapunov method [9, 11],
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Figure 2: Comparing the existing approach in [8] with the new approach described in this paper

the infinite-dimensional backstepping technique [33], and a receding horizon optimal

control method [29], have also been applied to the pipeline transmission PDE system

for open channel flows.

The organization of this paper is described as follows. In Section 2, we introduce the

control parameterization method for approximating the boundary control by a linear

combination of basis functions. Also in Section 2, we derive formulas for computing the

objective function’s gradient with respect to the optimization parameters defining the

control approximation. These formulas depend on the solution of an auxiliary set of

PDEs called the costate system. In Section 3, we use the method of lines to develop

numerical procedures for solving both the state system and the costate system. These

procedures can be combined with standard gradient-based SQP methods to solve the

approximate optimization problem derived in Section 2. In Section 4, we apply the com-

putational approach described in Sections 2 and 3 to an example problem. Simulation

results comparing CP-PDE and CP-ODE are reported. Finally, Section 5 concludes the

paper with summary comments and suggestions for future research.
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2. Control Parameterization

To solve Problem P0, we approximate the boundary control u(t) as follows:

u(t) ≈ uN(t) =
N∑
k=1

ϕk(t,σ
k), (8)

where ϕk : R × Rs → R, k = 1, . . . , N, are given basis functions, s − 1 is the basis

function order (for example, s = 2 for piecewise-linear basis functions), and σk ∈ Rs,

k = 1, . . . , N, are parameter vectors to be optimized. In the standard control parame-

terization method, the two most popular choices for the basis functions are piecewise-

constant basis functions and piecewise-linear basis functions [19]. However, for pipeline

flow control, piecewise-constant basis functions are not appropriate because they yield a

discontinuous control signal. Thus, in this paper, we use piecewise-linear and piecewise-

quadratic basis functions. These basis functions are defined precisely later in this section.

Under the approximation (8), the objective function (7) can be written as follows:

JN(σ) =
1

T

∫ T

0

[
pN(L, t)− p̂(L)

P̄

]2γ

dt+
1

LT

∫ T

0

∫ L

0

[
pN(l, t)− p̂(l)

P̄

]2γ

dldt, (9)

where pN(l, t) denotes the solution of system (1)-(3) with u(t) = uN(t), and

σ =
[
(σ1)>, . . . , (σN)>

]> ∈ RNs.

Furthermore, the initial and terminal constraints (4) and (5) become, respectively,

N∑
k=1

ϕk(0,σ
k) = umax,

N∑
k=1

ϕk(T,σ
k) = 0. (10)

Finally, the derivative constraint (6) becomes

N∑
k=1

∂ϕk(t,σ
k)

∂t
≤ 0, t ∈ [0, T ]. (11)

Thus, under the control approximation (8), in which u(t) is restricted to the form uN(t),

we obtain the following finite-dimensional optimization problem: choose the control

parameter vector σ, in accordance with constraints (10) and (11), to minimize the

objective function (9). We refer to this problem as Problem PN
0 .
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As we will show later, constraints (11) reduce to a finite number of linear inequality

constraints for piecewise-linear and piecewise-quadratic basis functions. In some appli-

cations, it may be necessary to consider more general nonlinear control constraints in

the following form:

h(t, u(t)) ≥ 0, t ∈ [0, T ].

Under approximation (8), these constraints become

h(t, ϕ(t,σ1) + · · ·+ ϕ(t,σN)) ≥ 0, t ∈ [0, T ].

In general, unlike (11), these constraints cannot be converted into simple linear con-

straints. Nevertheless, they can be handled using the penalty methods in [22, 24, 20].

2.1. Gradient Computation

To solve Problem PN
0 using nonlinear optimization algorithms, we need the gradient

of the objective function (9) with respect to the control parameter vector σ. Computing

this gradient, however, is a major challenge, as the objective function depends on σ

implicitly through the hyperbolic state system (1)-(3). The following result, which is

proved using variational methods [31, 27, 34], gives formulas for computing the required

gradient.

Theorem 1. The gradient of the objective function in Problem PN
0 is given by

∇σkJN(σ) = ρc2

∫ T

0

µ(L, t)
∂ϕk(t,σ

k)

∂σk
dt, k = 1, . . . , N, (12)

where µ(L, t) is obtained by solving the following costate system:

f

D
λ(l, t)|vN(l, t)| − ∂λ(l, t)

∂t
− ρc2∂µ(l, t)

∂l
= 0, (13a)

2γ

LT P̄ 2γ
(pN(l, t)− p̂(l))2γ−1 − 1

ρ

∂λ(l, t)

∂l
− ∂µ(l, t)

∂t
= 0, (13b)

with the boundary conditions

µ(0, t) = 0, λ(L, t) = − 2ργ

T P̄ 2γ
(pN(L, t)− p̂(L))2γ−1, t ∈ [0, T ], (14)

and the terminal conditions

µ(l, T ) = λ(l, T ) = 0, l ∈ [0, L]. (15)

Note that µ(l, t) and λ(l, t) are the Lagrange multipliers (or costates) for Problem PN
0 .
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Proof. Let α : [0, L] × [0, T ] → R denote an arbitrary Lagrange multiplier function.

Furthermore, let H1(l, t) denote the left-hand side of (1a):

H1(l, t) =
∂v(l, t)

∂t
+

1

ρ

∂p(l, t)

∂l
+

f

2D
v(l, t)|v(l, t)|.

Then∫ T

0

∫ L

0

α(l, t)H1(l, t)dldt =

∫ T

0

∫ L

0

α(l, t)vt(l, t)dldt+
1

ρ

∫ T

0

∫ L

0

α(l, t)pl(l, t)dldt

+
f

2D

∫ T

0

∫ L

0

α(l, t)v(l, t)|v(l, t)|dldt.

Using integration by parts,∫ T

0

∫ L

0

α(l, t)H1(l, t)dldt =

∫ L

0

{
α(l, T )v(l, T )− α(l, 0)v(l, 0)

}
dl

+
1

ρ

∫ T

0

{
α(L, t)p(L, t)− α(0, t)p(0, t)

}
dt

+

∫ T

0

∫ L

0

{
f

2D
α(l, t)v(l, t)|v(l, t)| − αt(l, t)v(l, t)− 1

ρ
αl(l, t)p(l, t)

}
dldt.

Since v(l, 0) = v̄0(l) and p(0, t) = P , this equation can be simplified to give∫ T

0

∫ L

0

α(l, t)H1(l, t)dldt =

∫ L

0

{
α(l, T )v(l, T )− α(l, 0)v̄0(l)

}
dl

+
1

ρ

∫ T

0

{
α(L, t)p(L, t)− Pα(0, t)

}
dt

+

∫ T

0

∫ L

0

{
f

2D
α(l, t)v(l, t)|v(l, t)| − αt(l, t)v(l, t)− 1

ρ
αl(l, t)p(l, t)

}
dldt.

Hence, since H1(l, t) = 0 for any pair of state trajectories p(l, t) and v(l, t), we have∫ L

0

{
α(l, T )v(l, T )− α(l, 0)v̄0(l)

}
dl +

1

ρ

∫ T

0

{
α(L, t)p(L, t)− Pα(0, t)

}
dt

+

∫ T

0

∫ L

0

{
f

2D
α(l, t)v(l, t)|v(l, t)| − αt(l, t)v(l, t)− 1

ρ
αl(l, t)p(l, t)

}
dldt = 0.

(16)

To continue, let β : [0, L]× [0, T ]→ R denote another Lagrange multiplier function, and

define H2(l, t) as the left-hand side of (1b):

H2(l, t) =
∂p(l, t)

∂t
+ ρc2∂v(l, t)

∂l
.
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Then again by using integration by parts,∫ T

0

∫ L

0

β(l, t)H2(l, t)dldt =

∫ T

0

∫ L

0

β(l, t)pt(l, t)dldt+ ρc2

∫ T

0

∫ L

0

β(l, t)vl(l, t)dldt

=

∫ L

0

{
β(l, T )p(l, T )− β(l, 0)p(l, 0)

}
dl

−
∫ T

0

∫ L

0

{
βt(l, t)p(l, t) + ρc2βl(l, t)v(l, t)

}
dldt

+ ρc2

∫ T

0

{
β(L, t)v(L, t)− β(0, t)v(0, t)

}
dt.

Hence, since p(l, 0) = p̄0(l) and v(L, t) = u(t), we have∫ T

0

∫ L

0

β(l, t)H2(l, t)dldt =

∫ L

0

{
β(l, T )p(l, T )− β(l, 0)p̄0(l)

}
dl

−
∫ T

0

∫ L

0

{
βt(l, t)p(l, t) + ρc2βl(l, t)v(l, t)

}
dldt

+ ρc2

∫ T

0

{
β(L, t)u(t)−β(0, t)v(0, t)

}
dt.

Furthermore, since H2(l, t) = 0 for any pair of state trajectories p(l, t) and v(l, t), we

have∫ L

0

{
β(l, T )p(l, T )− β(l, 0)p̄0(l)

}
dl + ρc2

∫ T

0

{
β(L, t)u(t)−β(0, t)v(0, t)

}
dt

−
∫ T

0

∫ L

0

{
βt(l, t)p(l, t) + ρc2βl(l, t)v(l, t)

}
dldt = 0.

(17)

We now evaluate the gradient of JN from (9) at a fixed point σ ∈ RNs , where

σ =
[
(σ1)>, . . . , (σN)>

]>
.

Let θ ∈ RNs be an arbitrary vector partitioned as follows:

θ =
[
(θ1)>, . . . , (θN)>

]>
.

We consider the perturbed control vector σ+εθ, where ε is a constant of sufficiently small

magnitude. Let pN(l, t), vN(l, t) denote the state trajectories of (1)-(3) corresponding

to σ, and let pN,ε(l, t), vN,ε(l, t) denote the state trajectories corresponding to σ + εθ.

Then

pN,ε(l, t) = pN(l, t) + ε
N∑
k=1

〈∇σkpN(l, t),θk〉+O(ε2), (18a)

vN,ε(l, t) = vN(l, t) + ε

N∑
k=1

〈∇σkvN(l, t),θk〉+O(ε2), (18b)
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where O(ε2) denotes higher-order terms such that ε−1O(ε2)→ 0 as ε→ 0. For notational

simplicity, define

η1(l, t) =
N∑
k=1

〈∇σkpN(l, t),θk〉, η2(l, t) =
N∑
k=1

〈∇σkvN(l, t),θk〉.

Since γ is a positive integer, it follows from the binomial theorem that[
pN,ε(l, t)− p̂(l)

P̄

]2γ

=

[
pN(l, t) + εη1(l, t)− p̂(l)

P̄

]2γ

+O(ε2).

Hence, the objective value at σ + εθ can be expressed as follows:

JN(σ + εθ) =
1

T

∫ T

0

[
pN,ε(L, t)− p̂(L)

P̄

]2γ

dt+
1

LT

∫ T

0

∫ L

0

[
pN,ε(l, t)− p̂(l)

P̄

]2γ

dldt

=
1

T

∫ T

0

[
pN(L, t) + εη1(L, t)− p̂(L)

P̄

]2γ

dt

+
1

LT

∫ T

0

∫ L

0

[
pN(l, t) + εη1(l, t)− p̂(l)

P̄

]2γ

dldt+O(ε2).

By substituting (18a) and (18b) into (16) and (17) (evaluated at p(l, t) = pN,ε(l, t) and

v(l, t) = vN,ε(l, t)), this equation can be written as

JN (σ + εθ) =

∫ L

0

{
α(l, T )[vN (l, T ) + εη2(l, T )]− α(l, 0)v̄0(l) + β(l, T )[pN (l, T ) + εη1(l, T )]− β(l, 0)p̄0(l)

}
dl

+

∫ T

0

∫ L

0

{
1

LT

[
pN (l, t) + εη1(l, t)− p̂(l)

P̄

]2γ
−
[

1

ρ
αl(l, t) + βt(l, t)

]
(pN (l, t) + εη1(l, t))

+
f

2D
α(l, t)(vN (l, t) + εη2(l, t))|vN (l, t) + εη2(l, t)| −

[
αt(l, t) + ρc2βl(l, t)

]
(vN (l, t) + εη2(l, t))

}
dldt

+

∫ T

0

{
1

T

[
pN (L, t) + εη1(L, t)− p̂(L)

P̄

]2γ
+

1

ρ
α(L, t)[pN (L, t) + εη1(L, t)]

− P

ρ
α(0, t) + ρc2β(L, t)

N∑
k=1

ϕk(t,σk + εθk)−ρc2β(0, t)[vN (0, t) + εη2(0, t)]

}
dt+O(ε2).

Therefore,

∂JN (σ + εθ)

∂ε

∣∣∣∣
ε=0

=

∫ L

0

{
α(l, T )η2(l, T ) + β(l, T )η1(l, T )

}
dl −

∫ T

0

ρc2β(0, t)η2(0, t)dt

+

∫ T

0

∫ L

0

{[
2γ

LT P̄ 2γ
(pN (l, t)− p̂(l))2γ−1 − 1

ρ
αl(l, t)− βt(l, t)

]
η1(l, t)

+

[
f

D
α(l, t)|vN (l, t)| − αt(l, t)− ρc2βl(l, t)

]
η2(l, t)

}
dldt

+

∫ T

0

{[
2γ

T P̄ 2γ
(pN (L, t)− p̂(L))2γ−1 +

1

ρ
α(L, t)

]
η1(L, t) + ρc2β(L, t)

N∑
k=1

〈
∂ϕk(t,σk)

∂σk
,θk
〉}

.
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Recall that α(l, t) and β(l, t) are arbitrary Lagrange multiplier functions. Choosing

α(l, t) = λ(l, t) and β(l, t) = µ(l, t) as the solutions of the costate system (13)-(15)

yields
N∑
k=1

〈
∂JN(σ)

∂σk
,θk
〉

=
∂JN(σ + εθ)

∂ε

∣∣∣∣
ε=0

= ρc2

N∑
k=1

∫ T

0

µ(L, t)

〈
∂ϕk(t,σ

k)

∂σk
,θk
〉
dt.

Thus, by taking θk as the standard unit basis vectors in Rs, we obtain

∇σkJN(σ) = ρc2

∫ T

0

µ(L, t)
∂ϕk(t,σ

k)

∂σk
dt, k = 1, . . . , N.

This completes the proof.

2.2. Piecewise-Linear Control Parameterization

For piecewise-linear control parameterization, we first choose temporal knot points

tk, k = 0, . . . , N , such that

0 = t0 < t1 < t2 < · · · < tN−1 < tN = T.

Then the basis functions in (8) are defined as follows:

ϕk(t,σ
k) = (σk1 t+ σk2)χ[tk−1,tk)(t), k = 1, . . . , N, (19)

where σk1 and σk2 are optimization parameters and

χ[tk−1,tk)(t) =

1, if t ∈ [tk−1, tk),

0, otherwise.

The corresponding gradient formulas in Theorem 1 are

∇σk
1
JN(σ) = ρc2

∫ tk

tk−1

tµ(L, t)dt, k = 1, . . . , N,

∇σk
2
JN(σ) = ρc2

∫ tk

tk−1

µ(L, t)dt, k = 1, . . . , N.

Note that, for pipeline flow control, uN(t) must be continuous. Thus, we impose the

following continuity constraints on the basis functions (19):

σk−1
1 tk−1 + σk−1

2 = σk1 tk−1 + σk2 , k = 2, . . . , N. (20)

11



With the basis functions (19), the initial and terminal conditions in (10) become

σ1
2 = umax, σN1 T + σN2 = 0. (21)

Moreover, the derivative constraint (11) becomes

σk1 ≤ 0, k = 1, . . . , N. (22)

For piecewise-linear basis functions of the form (19), Problem PN
0 can be solved with

the additional contraints (20)-(22). These constraints are linear constraints and can be

easily handled using standard SQP techniques.

2.3. Piecewise-Quadratic Control Parameterization

For piecewise-quadratic control parameterization, the basis functions in (8) are de-

fined as follows:

ϕk(t,σ
k) = (σk1 t

2 + σk2 t+ σk3)χ[tk−1,tk)(t), k = 1, . . . , N, (23)

where tk, tk−1, and χ[tk−1,tk)(t) are as defined in Section 2.2, and σk1 , σk2 , and σk3 are

optimization parameters. The corresponding gradient formulas in Theorem 1 are

∇σk
1
JN (σ) = ρc2

∫ tk

tk−1

t2µ(L, t)dt, k = 1, . . . , N,

∇σk
2
JN (σ) = ρc2

∫ tk

tk−1

tµ(L, t)dt, k = 1, . . . , N,

∇σk
3
JN (σ) = ρc2

∫ tk

tk−1

µ(L, t)dt, k = 1, . . . , N.

To ensure that uN(t) with basis functions (23) is continuously differentiable, we impose

the following linear constraints:

σk−1
1 t2k−1 + σk−1

2 tk−1 + σk−1
3 = σk1 t

2
k−1 + σk2 tk−1 + σk3 , k = 2, . . . , N, (24)

and

2σk−1
1 tk−1 + σk−1

2 = 2σk1 tk−1 + σk2 , k = 2, . . . , N. (25)

The initial and terminal conditions specified in (10) become

σ1
3 = umax, σN1 T

2 + σN2 T + σN3 = 0. (26)

12



Moreover, the derivative constraint (11) becomes

2σk1 t+ σk2 ≤ 0, t ∈ [tk−1, tk), k = 1, . . . , N.

These constraints are clearly equivalent to

2σk1 tk−1 + σk2 ≤ 0, 2σk1 tk + σk2 ≤ 0, k = 1, . . . , N. (27)

For piecewise-quadratic control parameterization, Problem PN
0 must be solved with the

additional linear constraints (24)-(27).

3. Numerical Implementation

To solve the PDE model (1)-(3), we will use the method of lines to approximate

the PDEs by a system of ODEs. This method has proven very effective for solving

the nonlinear pipeline transmission PDE model [6, 13]. Let m be an even integer.

We partition the pipeline spatial domain into m equally-spaced intervals [li−1, li], i =

1, . . . ,m, as shown in Figure 3, where li = i∆l, i = 0, . . . ,m, and ∆l = L/m.

Let vNi (t) = vN(li, t), i = 0, . . . ,m, and pNi (t) = pN(li, t), i = 0, . . . ,m. Then, using

finite differences, we can approximate (1)-(3) by the following system of ODEs:

v̇N0 (t) =
1

ρ∆l
(P − pN1 (t))− f

2D
vN0 (t)|vN0 (t)|, (28a)

v̇Ni (t) =
1

ρ∆l
(pNi (t)− pNi+1(t))− f

2D
vNi (t)|vNi (t)|, i = 1, . . . ,m− 1, (28b)

ṗNi (t) =
ρc2

∆l
(vNi−1(t)− vNi (t)), i = 1, . . . ,m− 1, (28c)

ṗNm(t) =
ρc2

∆l

{
vNm−1(t)−

N∑
k=1

ϕk(t,σ
k)

}
. (28d)

From the initial conditions (2), we obtain

pNi (0) = p̄0(li), vNi (0) = v̄0(li), i = 0, . . . ,m. (29)

Equations (28) and (29) constitute an initial value problem that can be readily solved

(using, for example, Runge-Kutta methods) to determine approximate trajectories for

vN(l, t) and pN(l, t).
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vN0 (t)

pN0 (t)

vN1 (t)

pN1 (t)

vN2 (t)

pN2 (t)

vN3 (t)

pN3 (t)

vNm−1(t)

pNm−1(t)

vNm(t)

pNm(t)

l0 = 0 l1 l2 l3 · · · lm−1 lm = L︸ ︷︷ ︸
L

Figure 3: Spatial discretization for the state system using the method of lines, where pNi (t) = pN (li, t)

and vNi (t) = vN (li, t)

λ0(t)

µ0(t)

λ1(t)

µ1(t)

λ2(t)

µ2(t)

λ3(t)

µ3(t)

λm−1(t)

µm−1(t)

λm(t)

µm(t)

l0 = 0 l1 l2 l3 · · · lm−1 lm = L︸ ︷︷ ︸
L

Figure 4: Spatial discretization for the costate system using the method of lines, where µi(t) = µ(li, t)

and λi(t) = λ(li, t)

Now, let λi(t) = λ(li, t), i = 0, . . . ,m, and µi(t) = µ(li, t), i = 0, . . . ,m, as shown

in Figure 4. In a similar manner to the state system, we can derive the following

approximate ODEs for the costate system:

λ̇0(t) =
f

D
λ0(t)|vN0 (t)| − ρc2

∆l
µ1(t), (30a)

λ̇i(t) =
f

D
λi(t)|vNi (t)| − ρc2

∆l
(µi+1(t)− µi(t)), i = 1, . . . ,m− 1, (30b)

µ̇i(t) =
2γ

LT P̄ 2γ
(pNi (t)− p̂(li))2γ−1 − 1

ρ∆l
(λi(t)− λi−1(t)), i = 1, . . . ,m− 1, (30c)

µ̇m(t) =
2γ

T P̄ 2γ

[
1

∆l
+

1

L

]
(pNm(t)− p̂(L))2γ−1 +

1

ρ∆l
λm−1(t). (30d)

Moreover, the costate terminal conditions (15) imply

µi(T ) = λi(T ) = 0, i = 0, . . . ,m. (31)

Given the state trajectories pNi (t) and vNi (t), i = 0, . . . ,m, the costate ODEs (30) can be

solved backward in time starting with the terminal conditions (31). To solve Problem

PN
0 , the key point is to compute the objective function (9) and its gradient (12). Once

we have obtained pNi (t), vNi (t), λi(t) and µi(t), i = 0, . . . ,m, we can calculate the ob-

jective function and its gradient by applying the Composite Simpson’s rule [14]. Using
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this approach, standard gradient-based optimization techniques can be applied to solve

Problem PN
0 numerically.

4. Numerical Simulations

For numerical testing, we implemented three solution methods in MATLAB: the

new CP-PDE approach described in Sections 2 and 3, the previous CP-ODE approach

described in [8], and the particle swarm optimization (PSO) method described in [26].

These MATLAB implementations use ODE23 to solve the differential equations. The

CP-PDE and CP-ODE implementations use the intrinsic subroutine FMINCON to per-

form the optimization steps. The PSO implementation incorporates the constraints

(20)-(22) and (24)-(27) into the objective using a penalty function.

Our test scenario is based on a 200 meter stainless steel pipeline connected to a

reservoir of height 20 meters [8, 38]. The corresponding parameters in the PDE model

(1)-(3) are: L = 200 m, D = 100 mm, ρ = 1000 kg/m3, c = 1200 m/s, f = 0.03 and

P = 2×105 Pa. As in [8], we assume that the pipeline fluid flow is initially in the steady

state with constant velocity v̄0(l) = 2 m/s. Thus, from (1a),

1

ρ

∂p̄0(l)

∂l
+

2f

D
= 0.

Since p̄0(0) = P , this differential equation can be solved to yield

p̄0(l) = P − 2ρf

D
l.

The maximum flow velocity is umax = 2 m/s and the terminal time is T = 10 seconds.

Moreover, as suggested in references [4, 8], we choose γ = 2, P̄ = 1 × 105 Pa, and

p̂(l) = P = 2× 105 Pa in the objective function (7), since once the valve is fully closed,

the pressure along the pipeline is the same as the pressure generated by the reservoir.

4.1. Piecewise-Linear Control Parameterization

We applied piecewise-linear control parameterization (see Section 2.2) to obtain

the corresponding Problem PN
0 . This approximate problem was then solved using

the CP-PDE, CP-ODE, and PSO methods. Table 1 gives the corresponding com-

putation times and optimal objective values for N = 10 temporal subintervals and
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Figure 5: Optimal piecewise-linear control for N = 10 and m = 24 (note that the controls from CP-PDE

and CP-ODE are almost identical)

m ∈ {16, 18, 20, 22, 24} spatial subintervals. For each method, the initial guess for the

control parameters was chosen as (σk1 , σ
k
2) = (−0.2, 2), k = 1, . . . , N . This initial guess

corresponds to the “constant closure-rate” control strategy defined by

u(t) = umax −
umax

T
t = 2− 1

5
t.

For this example, CP-PDE, CP-ODE and the PSO algorithm produce similar results in

terms of optimal objective value, but CP-PDE converges much quicker than both CP-

ODE and PSO. Indeed, as the number of spatial intervals is increased, the computation

time for CP-PDE tends to increase at a much slower rate than the other methods.

In addition, the objective value corresponding to the constant closure-rate strategy is

6.8555×10−2, which is 166% higher than the best objective value in Table 1. The optimal

piecewise-linear controls produced by CP-PDE and CP-ODE are virtually identical. We

plot the optimal piecewise-linear control for m = 24 in Figure 5, along with the constant

closure-rate strategy. The corresponding pressure profiles at the pipeline terminus are

shown in Figure 6. Finally, Table 2 gives the optimal control parameters for CP-PDE

with m = 24.
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Method m CPU Time [s] Objective Value

CP-PDE 16 158 2.6708× 10−2

CP-ODE 16 526 2.6687× 10−2

PSO 16 1281 2.6721× 10−2

CP-PDE 18 165 2.6420× 10−2

CP-ODE 18 804 2.6405× 10−2

PSO 18 1599 2.6438× 10−2

CP-PDE 20 172 2.6161× 10−2

CP-ODE 20 930 2.6160× 10−2

PSO 20 1856 2.6183× 10−2

CP-PDE 22 182 2.5937× 10−2

CP-ODE 22 992 2.5944× 10−2

PSO 22 2042 2.5931× 10−2

CP-PDE 24 192 2.5750× 10−2

CP-ODE 24 1339 2.5752× 10−2

PSO 24 2096 2.5738× 10−2

Table 1: Comparing the CP-PDE, CP-ODE, and PSO methods with piecewise-linear control parame-

terization

k 1 2 3 4 5

σk1 −0.3536 −0.3827 −0.2049 −0.2034 −0.1805

σk2 2.0000 2.0291 1.6736 1.6690 1.5773

k 6 7 8 9 10

σk1 −0.1464 −0.1460 −0.1284 −0.1317 −0.1223

σk2 1.4070 1.4045 1.2817 1.3078 1.2235

Table 2: Optimal control parameters for CP-PDE with piecewise-linear control parameterization, N =

10 temporal subintervals, and m = 24 spatial subintervals
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Figure 6: Pressure at the pipeline terminus corresponding to the boundary controls in Figure 5

4.2. Piecewise-Quadratic Control Parameterization

We also applied piecewise-quadratic control parameterization (see Section 2.3) to

solve the boundary control problem. For CP-PDE, we considered both smooth and

non-smooth piecewise-quadratic boundary controls. The smooth boundary control is

obtained by solving Problem PN
0 with constraints (24)-(27); the non-smooth bound-

ary control is obtained by including constraints (24), (26), (27) and omitting (25).

Note that CP-ODE is only capable of producing smooth piecewise-quadratic control-

s. The computation times and optimal objective function values for N = 10 and

m ∈ {16, 18, 20, 22, 24} are reported in Table 3. As with piecewise-linear control param-

eterization, the computation times for CP-PDE are much less than those for CP-ODE

and PSO. The results also suggest that the non-smooth piecewise-quadratic approxima-

tion scheme yields less pressure fluctuation. The optimal piecewise-quadratic boundary

controls for N = 10 and m = 24 are shown in Figure 7 and the corresponding pressure

profiles at the pipeline terminus are shown in Figure 8. Table 4 and 5 give the optimal

control parameters produced by CP-PDE (smooth and non-smooth boundary control)

for N = 10 and m = 24, respectively. Finally, Figures 9-12 show the pressure evolutions

along the pipeline for the constant closure-rate, optimal piecewise-linear, and optimal
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Figure 7: Optimal piecewise-quadratic controls for N = 10 and m = 24

piecewise-quadratic control strategies.

5. Conclusion

In this paper, we have proposed a new computational method for active boundary

control of water hammer in fluid pipelines. The method involves parameterizing the

boundary control function in terms of a finite number of decision parameters, each of

which must be chosen optimally to minimize the deviation between actual and desired

pressure profiles. We call this approach the CP-PDE approach because it involves ap-

plying control parameterization directly to the hyperbolic PDE system describing the

pipeline fluid flow. In contrast, the CP-ODE approach proposed in [8] involves applying

control parameterization to an approximate system of ODEs, instead of the original PDE

model. The numerical results in Section 4 show that CP-PDE and CP-ODE produce

almost identical control strategies, but CP-PDE is far more efficient at computing the

optimal solution. This is because CP-PDE only requires solving 4m ODEs (see Sec-

tion 3), much less than the 2mN ODEs required for CP-ODE (see reference [8]). The

CP-PDE approach is also far more efficient than the PSO method for the examples in

Section 4. We conclude by mentioning an interesting link between Problem P0 and the
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Method m CPU Time [s] Objective Value

CP-PDE (smooth) 16 223 2.7408× 10−2

CP-PDE (non-smooth) 16 302 2.5027× 10−2

CP-ODE 16 622 2.6571× 10−2

PSO 16 1319 2.9461× 10−2

CP-PDE (smooth) 18 231 2.7299× 10−2

CP-PDE (non-smooth) 18 306 2.4804× 10−2

CP-ODE 18 638 2.6550× 10−2

PSO 18 1444 2.927× 10−2

CP-PDE (smooth) 20 239 2.7254× 10−2

CP-PDE (non-smooth) 20 332 2.4542× 10−2

CP-ODE 20 923 2.6539× 10−2

PSO 20 2249 2.8867× 10−2

CP-PDE (smooth) 22 252 2.7211× 10−2

CP-PDE (non-smooth) 22 356 2.4378× 10−2

CP-ODE 22 995 2.6532× 10−2

PSO 22 2567 2.8841× 10−2

CP-PDE (smooth) 24 276 2.7181× 10−2

CP-PDE (non-smooth) 24 441 2.4098× 10−2

CP-ODE 24 1774 2.6522× 10−2

PSO 24 2861 2.8819 ×10−2

Table 3: Comparing the CP-PDE, CP-ODE, and PSO methods with piecewise-quadratic control pa-

rameterization
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k 1 2 3 4 5

σk1 −0.0814 0.0677 0.0842 −0.0241 0.0126

σk2 −0.2772 −0.5754 −0.6415 −0.0083 −0.2853

σk3 2.0000 2.1491 2.2152 1.2404 1.8277

k 6 7 8 9 10

σk1 0.0032 0.0066 0.0057 0.0085 0.0095

σk2 −0.1269 −0.2444 −0.2330 −0.2776 −0.2945

σk3 1.4317 1.7843 1.7443 1.9228 1.9986

Table 4: Optimal control parameters for CP-PDE with piecewise-quadratic control parameterization

(smooth), N = 10 temporal subintervals, and m = 24 spatial subintervals

k 1 2 3 4 5

σk1 −0.0319 0.1117 0.1045 −0.0165 0.0383

σk2 −0.3321 −0.7349 −0.7145 −0.0743 −0.5294

σk3 2.0000 2.2593 2.2490 1.4151 2.3586

k 6 7 8 9 10

σk1 0.0122 0.0183 0.0119 0.0180 0.0096

σk2 −0.2811 −0.3826 −0.3081 −0.3149 −0.2980

σk3 1.7695 2.1586 1.9479 2.0719 2.0210

Table 5: Optimal control parameters for CP-PDE with piecewise-quadratic control parameterization

(non-smooth), N = 10 temporal subintervals, and m = 24 spatial subintervals
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Figure 8: Pressure at the pipeline terminus corresponding to the boundary controls in Figure 7

Figure 9: Pressure evolution corresponding to the constant closure-rate control strategy
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Figure 10: Pressure evolution corresponding to the optimal piecewise-linear control strategy for N = 10

and m = 24 (CP-PDE approach)

Figure 11: Pressure evolution corresponding to the smooth piecewise-quadratic control strategy for

N = 10 and m = 24 (CP-PDE approach)
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Figure 12: Pressure evolution corresponding to the non-smooth piecewise-quadratic control strategy for

N = 10 and m = 24 (CP-PDE approach)

class of optimal control problems considered in reference [23], which incorporate penal-

ties on the total variation of the control signal. The aim in such problems is to minimize

control fluctuation, thereby reducing wear and tear on the system. We speculate that

this “minimal variation” framework could indeed be applied to water hammer suppres-

sion by minimizing the total variation of the pressure profile. The aim in this context

would be to eliminate highly volatile pressure profiles that could cause serious damage

to the pipeline structure. This direction will be explored in future work. Another di-

rection to pursue is real-time implementation of the open-loop parameterized control

by suitable scheduling of the valve operation sequences. It is possible to use feedback

control techniques to track the optimal control target if the external perturbations are

reasonably small. Another option is FPGA-based (Field Programmable Gate Array)

implementation combined with model reduction techniques [37].
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