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ABSTRACT 

Global livestock genetic diversity includes all of the species, breeds and strains of domestic 

animals, and their variations. Although a recent census indicated that there were 40 species 

and over 8,000 breeds of domestic animals; for the purpose of conservation biology the 

diversity between and within breeds rather than species is regarded to be of crucial 

importance. This domestic animal genetic diversity has developed through three main 

evolutionary events, from speciation (about 3 million years ago) through domestication 

(about 12,000 years ago) to specialised breeding (starting about 200 years ago). These events 

and their impacts on global animal genetic resources have been well documented in the 

literature. The key importance of global domestic animal resources in terms of economic, 

scientific and cultural heritage has also been addressed. In spite of their importance, there is a 
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growing number of reports on the alarming erosion of domestic animal genetic resources. 

This erosion of is happening in spite of several global conservation initiatives designed to 

mitigate it. Herein we discuss these conservation interventions and highlight their strengths 

and weaknesses. However, pivotal to the success of these conservation initiatives is the 

reliability of the genetic assignment of individual members to a target breed. Finally, we 

discuss the prospect of using improved breed identification methodologies to develop a 

reliable breed-specific molecular identification tool that is easily applicable to populations of 

livestock breeds in various ecosystems. These identification tools, when developed, will not 

only facilitate the regular monitoring of threatened or endangered breed populations, but also 

enhance the development of more efficient and sustainable livestock production systems.  

 

Key words: conservation, diversity, genetic resources, global livestock, FAO, molecular 

techniques, threats, breeds. 
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I. INTRODUCTION 

A large amount of the genetic variation present in wild animal lineages prior to domestication 

has been conserved during the domestication process, and persisted within the respective 

domesticates (Dobney & Larson, 2006). Currently, most of these wild lineages are either 

extinct or critically endangered (Taberlet et al., 2011). Over the 12,000 years since farm 

animals were first domesticated, their genetic make-up has undergone subtle adaptation due 

to both natural (speciation) and artificial (domestication/breeding) selection pressures exerted 

by their specific environments and human activity, respectively (Banik, Pankaj & Naskar, 

2015; Hoffmann & Scherf, 2005; Jensen, 2006; Mignon-Grasteau et al., 2005; Morris, 2006; 

Naskar, Gowane & Chopra, 2015; Price, 1999; Vigne, 2011; Zeder et al., 2006). These 

selection pressures have culminated in the development of a rich global domestic animal 

diversity with thousands of breeds (Ajmone-Marsan & The Globaldiv Consortium, 2010; 

Groeneveld et al., 2010). Each of these breeds is characterised by their unique morphology 

and productivity related to specific environmental and applied farming conditions (Lopes et 

al., 2015; Shand, 1997). A livestock breed can be generally defined as either a homogenous 

group with unique and identifiable phenotypic features that distinguish it from other 

subgroups within the same species, or a homogenous group for which geographical isolation 

from other groups of the same species has resulted in their acceptance as unique entities 

(FAO, 2000; Rege, 2003). Recently, a more refined definition of a breed concept to 

encompass the history of the livestock was proposed by Felius, Theunissen and Lenstra 

(2014) and Tixier-Boichard (2014). The scope of this new definition conforms to current 

practical reality, as not all breeds by definition actually represent unique genetic resources. 
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Breeds can therefore be regarded as the unit of management for livestock instead of the unit 

of conservation so as to make it a more useful instrument for conservation purposes (Felius et 

al., 2014; Groeneveld et al., 2010).  

A recent report on livestock breed diversity stated that there were 7,202 local breeds (breeds 

found in only one country), 509 regional trans-boundary breeds (breeds found in different 

countries within one region) and 551 international trans-boundary breeds (breeds found in 

different countries in different continents) (FAO, 2013). These breed classifications cover the 

seven main mammalian livestock species (sheep, goats, cattle, pigs, buffalo, horses, and 

asses/donkeys), four main avian livestock species (chicken, turkeys, ducks, and geese) and 

eight minor livestock species (alpacas, yaks, llamas, camels, elephants, musk oxen, and 

guinea pigs). However, since the concept of selective breeding only emerged in the last 200 

years, and subsequently through more intensive selection in the last few decades, domestic 

animal diversity has been under sustained threat of significant erosion (Ajmone-Marsan & 

The Globaldiv Consortium, 2010; Köhler‐Rollefson, 1997). In 2012, an analysis of data from 

182 countries by the Global Databank for farm animal genetic resources revealed that 

approximately 8% of all farm animal (local, regional trans-boundary and international trans-

boundary) breeds could already be considered extinct, 22% were at varying degrees of 

extinction risk, and the risk status of 34% was unknown (FAO, 2013). The report, which was 

an update of the previous 2010 edition, brings the total farm animal extinction to a staggering 

12% since 1999. This is quite significant given the fact that a total of only 16% extinctions 

was recorded in the preceding century (1900–1999) (FAO, 2013). The report also indicated 

that only approximately 36% of global farm animal genetic resources were not at any risk of 

immediate extinction.  

This growing threat to the world’s animal genetic resources was recognised by the Food and 

Agriculture Organisation (FAO) of the United Nations (UN) as an emerging global challenge, 
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and this recognition has led to the ratification by 109 countries, in 2007, of the Interlaken 

Declaration on world animal genetic resources (Rischkowsky, Pilling & Commission on 

Genetic Resources for Food Agriculture, 2007). The Interlaken Declaration was the first 

global action plan specifically aimed at conserving our current animal genetic resources. The 

declaration called for urgent and prompt measures to be undertaken to mitigate the risk of 

large-scale loss of defined breeds in the face of challenges such as increasing human 

population, climate change and emerging diseases. It was also envisaged that such 

intervention, when successful, would also make a significant contribution to Millennium 

Development Goals 1 and 7: eradication of extreme poverty and hunger, and ensuring 

environmental sustainability, respectively. The Millennium Development Goals (or agenda) 

are a blueprint of eight goals referred to as the UN Millennium Declaration, which was 

commissioned by the UN general assembly in September, 2000 (United Nations, 2000). The 

objective of the declaration is to galvanize unprecedented efforts from all member countries 

to reverse the poverty, hunger and disease affecting billions of people around the world 

within a 15-year time frame. Despite the historic breakthrough at the Interlaken Summit, little 

progress has been made so far, especially in developing countries, due to several factors, the 

most prominent being a general lack of technical capacity and financial resources (FAO, 

2007).  

The Domestic Animal Diversity Information System (DAD-IS) is an information and 

communication tool that was set up to coordinate management strategies developed for 

domestic animal diversity at global, regional and national levels. This system has challenges, 

especially regarding the quality of entries from developing countries (Tixier-Boichard, 2014). 

Most of the data submitted, especially from Africa, require regular updating to make them 

relevant to the current situation. For example 48% and 53% of mammalian and avian breeds 

recorded in DAD-IS were found to lack sufficient demographic information necessary for the 
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assessment of their precise risk status (Groeneveld et al., 2010). Furthermore, 87% of entries 

regarding breed demographics were found to be based on a survey or census, thus presenting 

a significant limitation, and might be unreliable (Groeneveld et al., 2010).  

In recognition of these and other shortcomings in attempts at addressing global animal 

genetic resource erosion issues, the European Union has recently commissioned a three-year 

global programme named ‘The GLOBALDIV Project’ (Ajmone-Marsan & The Globaldiv 

Consortium, 2010). The GLOBALDIV project also known as ‘Global View of Livestock 

Biodiversity and Conservation’ had representations from the FAO of the UN, the 

International Livestock Research Institute (ILRI), the International Atomic Energy Agency 

(IAEA), and 34 individual international researchers from key institutions that are working in 

areas related to the characterisation of farm animal genetic resources (Globaldiv consortium, 

2010). The main aim of this project is to integrate and disseminate the experience of past, 

large-scale, biodiversity projects and to review the main drivers of biodiversity loss, and then 

to implement strategies for the conservation of farm animal genetic diversity. Notable among 

the recommendations of the GLOBADIV project is the need for amalgamation of the 

disciplines of genetics, socioeconomics and geographic information science for efficient 

valuation of domestic animal genetic resources.  

Currently, improved geo-referencing methods, for example global positioning systems (GPS), 

are being used as part of a range of measures to provide better production-environment 

descriptors (Groeneveld et al., 2010). However, because of the dynamic nature of domestic 

livestock diversity, it is now obvious that more innovative interventions are required to 

provide precise information on breed structure and status and effectively halt the rapid loss of 

global livestock genetic diversity. For any livestock breed considered to be at risk, it is 

recommended that the monitoring of population trends in terms of population size and 

structure must be carried out at least once per generation (Groeneveld et al., 2010). More 
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recently, it was indicated that currently available data are inadequate for the ascertainment of 

the real extent of domestic animal genetic erosion (Bruford et al., 2015). The development of 

breed-specific identification tools for each characterised livestock breed will not only 

facilitate the process of regular monitoring of population trends and demographics, but also 

promote conservation.  

This review summarises our knowledge of (i) the key importance of domestic animal genetic 

resources, (ii) the threats to this resource diversity, (iii) the current status of domestic animal 

genetic resources, and (iv) conservation methods, with specific emphasis on a molecular 

genetics approach. We conclude with an assessment of the potential development and use of 

reliable breed identification tools for livestock breeds for enhancing modern conservation 

biology studies and preservation of livestock breed diversity.  

 

II. KEY SCIENTIFIC, CULTURAL AND ECONOMIC IMPORTANCE OF GLOBAL 

LIVESTOCK GENETIC RESOURCES 

Domestic livestock are known directly to provide food and livelihoods to more than 90% of 

the 1.97 billion people who live on less than one US$ a day (Anderson, 2003; International 

Livestock Research Institute, 2009). With a total global asset value of US$ 1.4 trillion, 

domestic livestock is reported to contribute 33% and 17% to global protein and kilocalorie 

consumption, respectively (Herrero et al., 2009). In many developing countries, apart from 

the provision of food and income, livestock transactions also develop and foster meaningful 

and emotional social relationships between and among communities (McCorkle & James, 

1996). The so-called minor livestock species, although fewer in population number and 

distribution, are typically of critical importance in terms of cultural heritage and for the 

livelihood of their owners (McCorkle & James, 1996; York & Mancus, 2013). For instance 

draught-animal power plays an essential role in the livelihoods of marginal communities in 
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many developing countries in Asia, sub-Saharan Africa, and Latin America (Barrett, 1992; 

Lawrence & Pearson, 2002; Teweldmehidin & Conroy, 2010). In addition to these traditional 

important uses, several species of animals are now used as models in toxicology studies to 

ascertain the hazard level to humans of prospective drugs (Olson et al., 2000). For example, 

the miniature pig was identified as an ideal non-primate model for chromosomal 

abnormalities, skin cell therapy and neural stem cell studies (Vodička et al., 2005). Also a 

strain of rabbit referred to as ‘Watanabe heritable hyperlipidemic’ was found to be a good 

model for the study of human myocardial infarction (Shiomi et al., 2003). It has been 

recommended that comparative medicine, which entails disease studies across animals and 

human species, holds the key to efficient prevention and control strategies for many zoonotic 

diseases (Kahn, 2006). Livestock diversity should not only be considered on the basis of 

global food security, but also as having critical cultural, economic and scientific importance, 

both currently and into the future.  

 

III. THREATS TO GLOBAL LIVESTOCK GENETIC RESOURCES 

The global domestic animal or livestock genetic resources (AnGR) are defined as the sum 

total of animal species, breeds and strains that currently are, or may be, of future economic, 

scientific and cultural heritage importance to humans. For the purpose of conservation it is 

usually breed diversity rather than species diversity that is of greater importance (Philipsson 

et al., 2011). According to the latest report by the commission on animal genetic resources 

the percentage of local livestock breeds considered to be at risk of extinction increased by 

two percentage points between 2010 and 2012 (FAO, 2013). This outlook on the prevailing 

extinction rate of livestock, although alarming, is likely to be an under-estimation of the 

actual situation, especially in relation to estimates for developing regions of the world such as 

sub-Saharan Africa (Rege & Gibson, 2003).  
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The loss of livestock genetic diversity reduces the range of opportunities available to confront 

the challenges of unpredictable future events, such as climate change, social change, disease 

epidemics, selection errors, and many others (Anderson, 2003; Anderson & Centonze, 2007). 

Some less-common or rare breeds of livestock may also contain rare gene variations that 

provide greater resistance/resilience to disease and parasites. For many years, the Djallonke 

sheep and Ndama cattle breeds of West Africa were regarded as less-desirable livestock 

because of their generally lower productivity, until these breeds were found to possess an 

inherent ability to resist the debilitating African animal trypanosomiasis disease (Dolan, 

1987; Geerts et al., 2009; Goossens et al., 1999; Mwai et al., 2015; Tano et al., 2003). These 

breeds have since gained popularity in the region, particularly in the trypanosomiasis 

endemic areas, prompting their inclusion in strategies for mitigating the effects of the disease 

(Murray et al., 1984; Naessens, Teale & Sileghem, 2002). Several quantitative trait loci 

studies for trypanotolerance in these breeds have been undertaken to facilitate this process 

(Dayo et al., 2011; Gautier et al., 2009; Hanotte et al., 2003; Kemp & Teale, 1998). In 

another example, an approximate 50% increase in weaning rate was attained when the 

Borroola FecB gene of the lower productivity small Garole sheep breed was introgressed into 

the highly productive but low fecundity Deccani sheep breed in India (Marshall et al., 2011). 

Furthermore, behavioural traits such as ability to use a greater range of food sources (which 

may not normally be efficiently digested in the more common commercial breeds), tolerate 

heat and/or cold, and even display differences in mothering abilities are all important 

heritable traits that should be preserved. As many of these uniquely talented breeds are in 

developing countries and are not currently adequately characterised, it is therefore important 

to conserve as much as possible of this existing genetic diversity, because we do not know its 

genetic potential (Mwai et al., 2015). While extinction is a natural process due to the 

presence of inferior traits (for example, the Djallonke sheep breed not being commercially 
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desirable), until these breeds are fully genetically characterised, it is not known what genetic 

potential we are losing for future generations that face different challenges. Many of the 

presently uncharacterised breeds might serve as important genetic reservoirs for future 

selection options (Ciani et al., 2013). A more developed strategy of conservation such as has 

been employed in the preservation of plant germplasm is probably critical for future sustained 

food security (Sachs, 2009). 

There is a wide spectrum of interrelated man-made and natural factors that pose varying 

levels of threats to global AnGR (Philipsson et al., 2011; Rege & Gibson, 2003). The factors 

that are responsible for the erosion of genetic diversity are often a function of the size of the 

population under consideration (Barbato et al., 2015). Generally, the smaller a livestock 

population, the greater is its vulnerability to extinction (Biscarini et al., 2015; Henson, 1992; 

Ramstad et al., 2004). Human factors offer the greatest threat to global livestock diversity 

(Biscarini et al., 2015; Frankham, 1995). The human factors include, but are not limited to; 

intensive selective breeding, overexploitation, political instability and wars (Goe & 

Stranzinger, 2002), indiscriminate crossbreeding (Alvarez et al., 2009; Wollny, 2003) and 

general neglect or lack of breeding programmes (Rege et al., 2011; Wollny, 2003). 

Interestingly, these human factors vary across both developed and developing regions of the 

world. In the developed regions, the threat to livestock diversity is mostly associated with 

overexploitation such as specialised breeding in response to dynamic socioeconomic 

pressures (Groeneveld et al., 2010). This trend is also expedited partially by often misguided 

or inappropriate application of advanced molecular biology technologies (Tisdell, 2003). 

Conversely in developing countries, the main factors are a general neglect of livestock and or 

poorly structured breeding programmes driven in part by lack of technical knowledge and 

financial resources (Alvarez et al., 2009; Biscarini et al., 2015; Philipsson et al., 2011). In the 

face of this clear dimorphism, it is of utmost importance to take measures necessary to 
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minimise the ‘Swanson dominance effect’ (Tisdell, 2003). The Swanson dominance effect 

refers to a phenomenon in which the choices made by the earliest developing societies 

influence the later pattern of development in later societies. There have been reports of 

livestock keepers in parts of sub-Saharan Africa abandoning their locally adapted breeds in 

favour of specialised potentially highly productive, but non-adapted exotic breeds, thereby 

leading to a decline in diversity (Groeneveld et al., 2010; Wollny, 2003). Nonetheless, 

regardless of the region of the world, general increases in human population tend to impact 

negatively on livestock diversity.  

Natural events that have commonly been cited as major causes of erosion of livestock genetic 

resources include tsunamis, earthquakes, hurricanes, droughts, disease epidemics, famine and 

floods (Prentice & Anzar, 2011). In the past two or more decades, climate change has 

emerged as a higher-level driving force for reduction in AnGR (Nardone et al., 2010; 

Thornton et al., 2009). Many reports have described the expected impact of climate change 

on livestock production systems and diversity (Banik et al., 2015; Herrero et al., 2009; 

Hoffmann, 2010; Kantanen et al., 2015; McMichael et al., 2007; Naskar et al., 2015). This is 

mainly because of the direct and indirect implications of climate change on both the 

frequencies and intensities of most of the causative factors for genetic erosion mentioned 

previously (Naskar et al., 2015). The irony, however, is that a few livestock species 

contribute significantly to climate change, as they contribute about a fifth of global 

greenhouse gas emissions (Garnett, 2009; Gavrilova et al., 2010; McMichael et al., 2007; 

Shields & Orme-Evans, 2015).  

Natural and human-made evolutionary forces either directly or indirectly can cause a 

reduction in the effective population size (Ne) of a livestock breeding population. Therefore, 

the genetic variability of subsequent populations is drastically reduced because it is derived 

from the genetic constitution of the few survivors remaining from the original population 



Molecular Identification of Livestock Breeds: A Tool for Modern Conservation Biology 

12 
 

(Allendorf, 1986). In population genetic studies these reductions in population size are 

referred to as bottlenecks. A population that passes through a bottleneck loses alleles and 

usually shows reduced average heterozygosity (Allendorf, 1986; Nei, Maruyama & 

Chakraborty, 1975), but could also lead temporarily, to an increase in heterozygosity if more 

rare alleles are lost in the process (Hundertmark & Van Daele, 2010; Luikart & Cornuet, 

1998). This temporary increase in heterozygosity occurs only if the loss of the rare alleles due 

to the bottleneck event (mutation-drift equilibrium) has more effect on the expected 

heterozygosity of a given set of alleles than what is to be expected for a set of alleles under 

Hardy-Weinberg equilibrium.  However, it is the overall decrease in genetic variation of the 

population post-bottleneck events that is of major relevance. Regardless of the cause of a 

bottleneck, it may take many generations to restore the original level of heterozygosity 

through new mutations (Chakraborty & Nei, 1977). Generally, the impact of a bottleneck is 

logically more profound on small breeding populations because of the larger correlative 

effect of the resultant diminished genetic variability on population fitness compared to large 

breeding populations. In population genetic studies, a bottleneck effect is referred to as a 

founder effect if it is associated with the founding of a new population (Dlugosch & Parker, 

2008; Ramstad et al., 2004; Templeton, 1980). Random events such as founder and 

bottleneck effects that imperfectly eliminate genes and reduce variability within a population 

are also described as genetic drift (Newman & Pilson, 1997; Ramstad et al., 2004). Reduction 

in heterozygosity in a livestock population can be associated with decline in fitness of 

individual members, as is often the case in wild populations (Worley et al., 2010). This is 

because within small populations, the rate of inbreeding is much higher and consequently 

there is higher likelihood of the expression of deleterious recessives in a homozygous state. 

The expression of deleterious alleles has adverse effects on the livestock population, often 

presenting as reduced production, reproduction and survival (Dlugosch & Parker, 2008; Lacy, 
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1997). Frankham (1995) and Lacy (1997) have described the positive correlation between 

inbreeding and risk of extinction. The effective population size model takes into account 

important population variables such as age and structure, inbreeding rates, genetic drift, 

genetic diversity and sex ratio. For example, a population of four males and four females 

constitutes the same effective population size as that of 100 females and only two males 

(Henson, 1992). Therefore, the effective population size is the preferred indicator of livestock 

conservation risk status (Dlugosch & Parker, 2008; Nei et al., 1975). In a breed regeneration 

programme, the effective population size can be enhanced by equalising the male to female 

ratio, and standardising litter size and longevity within the breeding population, so as to 

ensure that each animal contributes equally to the next generation. However, it is apparent 

that the estimation of the effective population size and subsequent determination of its 

conservation status for a given breed is limited by the lack of availability of a reliable breed 

identification tool for any specific breed. 

 

IV. ASSESSMENT OF LIVESTOCK GENETIC DIVERSITY AND CONSERVATION 

STATUS 

In order to manage livestock genetic resources sustainably a comprehensive knowledge of 

diversity within and between breed populations is required (Groeneveld et al., 2010). A major 

step towards standardising the assessment criteria for livestock breed conservation status was 

the establishment of a universal classification framework by the FAO for categorising risk 

status. The current classification of livestock conservation risk status contains seven 

categories: extinct, critical, critical-maintained, endangered, endangered-maintained, not at 

risk, and unknown (FAO, 2013). Regular assessment of genetic conservation status of 

livestock is of fundamental importance to prevent genetic erosion and to preserve diversity.  
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Key to achieving an effective assessment of livestock conservation status is a reliable mode 

of identification of members of a target breed. There are two broad methods for identifying 

individual members of a livestock breed, and their merits and demerits have been discussed 

thoroughly elsewhere (Agaviezor et al., 2012; Ashley & Dow, 1994; Birteeb et al., 2012). 

These methods comprise phenotypic and molecular identification techniques. Traditionally 

phenotypic identification has been used to identify the breed of an individual in livestock 

genetic diversity studies. The phenotypic variables usually used comprise physical features 

(e.g. shape of horn, ears, body measurements, colour, etc.), production traits (e.g. growth 

parameters), reproductive traits (e.g. fecundity) and survival traits (e.g. disease resistance, 

drought resistance) (Brinks et al., 1964; Gwakisa, Kemp & Teale, 1994; Reverter et al., 

2003). These methods are used extensively not only because they are inexpensive and often 

do not require the use of sophisticated equipment, but also may be useful criteria to some 

breed societies. However, the major disadvantage is that the genetic diversity is observed 

only at the phenotypic level and this does not always correspond to actual diversity at the 

DNA level (Felius et al., 2014).  

It is possible to find different phenotypes with similar genotypes, typically due to genotype–

environment interactions, for example as observed in Brazilian sheep breeds (Paiva et al., 

2005) and Egyptian sheep breeds (Ali, 2003). Similar phenotypes with different genotypes 

also occur, as observed between the West African Djallonke sheep and F1 Djallonke–

Sahelian crossbreeds (Alvarez et al., 2012; 2009; Wafula et al., 2005). As a result, the use of 

molecular tools in many assessment studies of genetic diversity in different regions of the 

world revealed varying degrees of unexpected introgression and admixture in livestock 

populations. These studies include the Djallonke sheep breed of sub-Saharan Africa (Alvarez 

et al., 2009; Wafula et al., 2005), Herdwick sheep of the United Kingdom (Bowles, Carson & 

Isaac, 2014) and alpaca and llama of Latin America (Kadwell et al., 2001). This obvious 



Molecular Identification of Livestock Breeds: A Tool for Modern Conservation Biology 

15 
 

shortcoming has rendered the use of phenotypic methods in isolation as unreliable for 

determination of livestock breeds for the purpose of genetic diversity studies.  

In livestock genetic diversity studies, the molecular method for determining breed identity 

entails two main approaches based upon either protein markers or DNA markers (Ferguson et 

al., 1995; McMahon, Teeling & Höglund, 2014). Protein markers, also referred to as 

allozymes, are based on the characteristic polymorphism of the blood group systems, 

leucocyte antigens and enzymes (Dodgson, Cheng & Okimoto, 1997). This molecular method 

employs these protein markers to estimate genetic variability in livestock populations as well 

as phylogenetic relationships between breeds (Pepin & Nguyen, 1994; Witko-Sarsat et al., 

1996). Although better than the phenotypic method, the use of protein markers is too 

expensive for a large number of loci, and lacks the power to resolve differences between 

closely related breeds, because of limits of detection of genetic variation (Engel et al., 1996; 

Ferguson et al., 1995; Toro, Fernández & Caballero, 2009). The use of DNA markers is the 

most reliable molecular method for assessment of genetic diversity (Liu & Cordes, 2004). 

Nuclear and mitochondrial DNA marker analyses have revealed detailed information on 

many domestication events, such as their timing and location (Bruford, Bradley & Luikart, 

2003; Zhao et al., 2013). DNA marker analyses provide an added opportunity for 

investigating the genetic composition of both extinct and endangered breeds without 

destructive sampling.  

There are seven principal DNA marker techniques commonly used for livestock diversity 

studies (Sunnucks, 2000). These seven DNA marker techniques have been discussed 

thoroughly and their advantages and disadvantages are well documented. These techniques 

are: restriction fragment length polymorphism (RFLP) (Beckmann & Soller, 1983; 1986; 

Thurston et al., 2002), mitochondrial DNA barcoding (mtDNA) (Avise et al., 1987; Avise & 

Ellis, 1986; Harrison, 1989; Kocher et al., 1989; Zhang & Hewitt, 1996), random amplified 



Molecular Identification of Livestock Breeds: A Tool for Modern Conservation Biology 

16 
 

polymorphic DNA (RAPD) (Ali et al., 2004; Dodgson et al., 1997; Koh et al., 1998; Levin, 

Crittenden & Dodgson, 1993), amplified fragment length polymorphism technique (AFLP) 

(Blears et al., 1998; Parsons & Shaw, 2001; Savelkoul et al., 1999), Y-chromosome 

technique (Bruford et al., 2003; Zeder et al., 2006), variable number of tandem repeats 

(VNTR) (minisatellite and microsatellite markers) (Chistiakov, Hellemans & Volckaert, 

2006; Fan & Chu, 2007; Lopes et al., 2015; Zane, Bargelloni & Patarnello, 2002) and single 

nucleotide polymorphism (SNP) based techniques (Andersson & Georges, 2004; Liu & 

Cordes, 2004; McMahon et al., 2014; Morin, Luikart & Wayne, 2004; Tixier-Boichard, 2014; 

Vignal et al., 2002).The latter two DNA techniques are the most popular. 

The advancement of DNA technologies during the past three decades, and particularly since 

2007 when high-throughput next-generation sequencing became readily available, is 

revolutionising livestock population genetics studies (Helyar et al., 2011; Schlötterer et al., 

2014a). This revolution is expedited by the concomitant advancement in bioinformatics tools 

and pipelines (Kofler, Nolte & Schlötterer, 2015). DNA markers have been used not only for 

diversity studies but also for molecular characterisation of numerous livestock breeds 

worldwide (Agaviezor et al., 2012; Al-Atiyat, Salameh & Tabbaa, 2014; Alvarez et al., 2012; 

Bowles et al., 2014; Chenyambuga et al., 2004; Mukesh et al., 2004). The dramatic reduction 

in the cost of use of DNA markers has facilitated their greater use by researchers. AFLP and 

RAPD markers are both bi-allelic and dominant in nature, and hence are less informative and 

also have low reproducibility compared to the other markers (Vignal et al., 2002). These 

characteristics have rendered them less popular for most animal-based molecular genetic 

studies. RFLP markers are bi-allelic and co-dominant, and were famously used in the first 

large-scale mapping of the human genome. However, RFLPs have now been superseded by 

the more informative microsatellite markers, a type of VNTR for both animal and human 

genome studies. In turn, microsatellite markers have been largely supplanted by single 
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nucleotide polymorphism (SNP) arrays. mtDNA along with microsatellite markers were once 

popular molecular genetic techniques of choice for evolutionary and ecological studies, 

however the molecular information provided by mtDNA markers is limited to only 

maternally inherited loci (Morin et al., 2004). The use of mtDNA techniques, in combination 

with archaeological data, has provided precise information on most of the important centres 

of domestication for the main livestock species around the world (Bruford et al., 2003; 

Globaldiv consortium, 2010; Guo et al., 2006; Zeder et al., 2006). Similarly limited, the use 

of Y-chromosomal haplotype markers elucidates specific molecular information only on 

paternally inherited traits (Luikart et al., 2006). The VNTR and the SNP techniques will be 

discussed in greater detail below because of their current wider application compared with 

the other molecular markers. 

 

(1) Variable number of tandem repeats (VNTRS) 

The application of VNTRs for assessment of genetic variation, sub-structuring and 

hybridisation in natural populations has been reviewed in great detail previously (Bruford & 

Wayne, 1993; Chistiakov et al., 2006; Fan & Chu, 2007; Sunnucks, 2000). The VNTR 

technique is based on the abundance of tandem repeats of simple sequences of nucleotides 

throughout the eukaryotic genome (Takezaki & Nei, 2008). These VNTRs have been 

categorised into minisatellites and microsatellites according to the number of nucleotides per 

motif of repeats. VNTRs of between 1 and 6 nucleotide base pair units are referred to as 

microsatellites (Ashley & Dow, 1994; Chistiakov et al., 2006; Fan & Chu, 2007), whereas a 

range of between 10 and 60 nucleotide base pair units is regarded as a minisatellite (Ashley & 

Dow, 1994; Wasko & Galetti, 2003). Whereas minisatellites are concentrated towards the 

telomere of chromosomes, microsatellites are randomly distributed in chromosomes. 

Microsatellite markers are highly polymorphic, co-dominant markers of relatively small size, 
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and hence are more amenable to polymerase chain reaction (PCR) typing than are 

minisatellites (Zane et al., 2002). Also, in comparison to the RFLP and RAPD techniques, the 

genetic basis of variability is readily apparent for microsatellites. Most microsatellites are 

located in non-coding regions of the genome (Chistiakov et al., 2006). Generally, 

microsatellite primers developed for one species of livestock are broadly applicable to other 

closely related species. For example, microsatellite markers developed for studies in bovine 

species are applicable to caprine and ovine species (Engel et al., 1996). This versatility has 

led to the popularity of microsatellite maps for economically important livestock species 

(Sunnucks, 2000).  

Microsatellites have been used in linkage mapping in diverse organisms, for example in the 

bovine genome (Barendse et al., 1997), porcine genome (Rohrer et al., 1994), human genome 

(Dib et al., 1996), and ovine genome (Maddox et al., 2001). Microsatellites have also been 

employed for the identification of quantitative trait loci (QTL) in major livestock species, for 

example, carcass composition and growth rate in cattle (Casas et al., 2000), back fat thickness 

and intramuscular fat in pigs (Rohrer & Keele, 1998) and intestinal parasitic infection in 

sheep (Davies et al., 2006). Other population genetics studies accomplished with 

microsatellite markers include the determination of evolutionary relationships (Alvarez et al., 

2012; Buchanan et al., 1994; Vanhala et al., 1998), estimation of pedigree errors (Visscher et 

al., 2002) and determination of genetic diversity among livestock populations (Alvarez et al., 

2012; Alvarez et al., 2009; Curković et al., 2015; Marletta et al., 2006; Medugorac et al., 

2011; Wafula et al., 2005). The genetic distance between individuals within a livestock 

population indicates the suitability of an individual for conservation purposes. Individuals 

within the same breed with the widest differences in genetic distances are deemed most 

suitable candidates for conservation programmes. The estimates of genetic distances are also 

relevant for the determination of divergence time and construction of phylogenies (Takezaki 
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& Nei, 1996). Prior to the use of SNP markers, microsatellites were the most popular and 

efficient technique for genetic-diversity investigation, not only in livestock but also in 

humans. Microsatellites continue to be seen as a method of choice for many researchers in 

breeding programs, particularly in third-world and developing countries, due to their low 

cost, relative ease of analysis and requirement for relatively unsophisticated scientific 

equipment (Rege et al., 2011). Whereas newer technologies offer better prospects, the 

enabling supporting infrastructure is often not available in developing regions of world. For 

example, the analyses of large-scale genomic data require ready internet access for web-

based reference sequence information, which currently cannot be guaranteed in many sub-

Saharan African countries (Gulati, 2008; Oyelaran-Oyeyinka & Lal, 2005). The same can 

also be said of the availability and reliability of electric power supplies necessary to support 

cryobanking of important genetic materials (Deichmann et al., 2011; Wolde-Rufael, 2006). 

Given the levels of existing infrastructure and human technical capacity in many developing 

countries, significant investment is required to implement some of the recent genomic 

technologies for sustainable livestock production and conservation (Rege et al., 2011). 

 

(2) Single nucleotide polymorphism (SNP) markers 

The growing importance of SNP marker applications in molecular genetics has been 

reviewed in detail by Barbato et al. (2015), Broxham (2015), Goddard and Hayes (2009), 

Vignal et al. (2002), Hamblin, Warburton and Buckler (2007) and Morin et al. (2004). SNPs 

represent a location within a DNA sequence for which more than one nucleotide type is 

present within a given population (Morin et al., 2004). In a strict molecular sense, SNPs are 

base substitutions within nucleotide sequences, and the very high density of their occurrence 

in the genomes of eukaryotes, including livestock, has been of great significance in 

population genomics studies (Goddard & Hayes, 2009; Vignal et al., 2002). Although SNPs 
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are bi-allelic (sometimes tri-allelic or quadri-allelic) co-dominant molecular markers, their 

high density permits, more than any other technique, very detailed information to be 

elucidated on genome dynamics within a study population (Hamblin et al., 2007; Morin et 

al., 2004). Furthermore, they provide deeper insight than microsatellites with respect to 

linkage disequilibrium and haplotype diversity, pedigree information and past demographic 

events, such as bottlenecks within a target population (Clarke et al., 2014; Gautier et al., 

2007; Helyar et al., 2011; Morin et al., 2004; The Bovine HapMap Consortium, 2009; Vignal 

et al., 2002). SNP markers also allow for standardised data recording, and are stable over 

generations if selected from neutral genomic loci (Tixier-Boichard, 2014). These features of 

SNP markers are opening opportunities for wider applications of SNP markers in 

understanding of livestock genetic architecture, such as precise identification of genomic 

regions that control traits of economic and survival importance (Kohn et al., 2006; 

Matukumalli et al., 2009) and ultimately genomic selection (Choi et al., 2015; Clarke et al., 

2014; Goddard & Hayes, 2009). These advances in genetic marker application for use in 

population genetic studies will not only enhance the development of improved livestock 

production systems, but most importantly will facilitate the development of efficient 

conservation strategies.  

 

V. GENOMIC METHODS FOR BREED PREDICTION 

The unique genetic structure of livestock breeds, shaped by their demographic history of 

natural and artificial selection, provides a basis for the assignment of an individual to a 

particular breed (Bertolini et al., 2015). The large numbers of SNPs identified in various 

domestic animal species have been used to develop species-specific standard technology 

products referred to as BeadChips or SNP chips (Wilkinson et al., 2011). These SNP chips 

are commercially available, and have been designed to amplify genome-wide SNP loci 

rapidly in an automated platform to generate large-scale genomic SNP data for analysis. 



Molecular Identification of Livestock Breeds: A Tool for Modern Conservation Biology 

21 
 

Examples are the Illumina ovine SNP 50 BeadChip and the Illumina bovine SNP50 

BeadChip developed for sheep and cattle, respectively (Bertolini et al., 2015; Dodds et al., 

2014). An analysis of the data generated using SNP chip technologies has shown that it is 

possible to assign an individual animal correctly to a specific breed (Table 1). Moderate- to 

high-density SNP genotyping assays are frequently used to capture common genomic 

variations within breed populations (Bertolini et al., 2015; Broxham, 2015; Dodds et al., 

2014; Frkonja et al., 2012; Kijas et al., 2009; Lewis et al., 2011; Rolf et al., 2014; Sasazaki et 

al., 2007; Suekawa et al., 2010; Wilkinson et al., 2011). Bioinformatics and statistical tools 

such as STRUCTURE, principal component analysis (PCA) and discriminant analysis have 

been widely applied to these SNP data sets with varying levels of success (Gilbert et al., 

2012; Herrero-Medrano et al., 2013; Hubisz et al., 2009; Schwartz & McKelvey, 2009). 

Unlike STRUCTURE and PCA, discriminant analysis is not considered a multivariate 

statistical method for assignment of individuals to a population. Furthermore, the 

discriminant analysis does not permit the fractional or mixed prediction of individuals in a 

subject population (Dodds et al., 2014). This is a major limitation for studies that require 

multiple predictors, making it less suitable for breed predictions (Dodds et al., 2014). 

However, with continuous advances in bioinformatics tools, many more tools are becoming 

available for this kind of analysis. Recently, two different analyses of Illumina OvineSNP50 

genotyped data were used to assign four New Zealand sheep breeds correctly with high 

prediction accuracy (0.85–0.97) (Dodds et al., 2014). The two methods used were a 

regression analysis with a genomic selection algorithm that employed allele frequencies, and 

genomic Best Linear Unbiased Prediction (gBLUP) estimates respectively, derived from a 

pure-bred subset of each sheep breed population. These estimates were then used as the 

training data set for respective breed predictions in each of the four populations. The two 

methods produced different prediction accuracies that depended upon the breed structure of 
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the subject populations. It was concluded that the accuracy of breed prediction was enhanced 

if the composition of the training set is representative of the breed diversity within a subject 

population (Dodds et al., 2014). A recent study of the genomics of cattle in the USA beef 

industry has supported this conclusion, particularly for predictions in multi-breed beef cattle 

populations (Rolf et al., 2014). The accuracy of predictions obtained from both methods was 

similar to that recorded with STRUCTURE (Dodds et al., 2014). However, unlike these two 

methods, STRUCTURE does not provide a prediction equation for subsequent breed 

prediction in a subject population (Dodds et al., 2014). STRUCTURE analysis of data also 

has low reproducibility (Gilbert et al., 2012). In spite of these drawbacks, the STRUCTURE 

algorithm has been used extensively in clustering of genetic data (Falush, Stephens & 

Pritchard, 2007; Hubisz et al., 2009; Schwartz & McKelvey, 2009).  

Principal component analysis (PCA) is also a powerful multivariate tool that facilitates the 

elicitation of unknown population clusters (Lewis et al., 2011). When applied to genomic 

data, it has been found to group individuals of the same breed together (Dodds et al., 2014). 

The use of a combination of ancestry-informative marker metrics and PCA using 30,501 

SNPs on the Bovine HapMap accurately predicted 19 cattle breeds (Lewis et al., 2011). This 

result led to the conclusion that a carefully selected panel of 250–500 SNPs from the Bovine 

HapMap data set was sufficient for correct breed assignment. Justifiably, Lewis et al. (2011) 

also conceded that the sensitivity and the resolving power of their approach would be higher 

if applied to denser genomic data than the Bovine HapMap data set used. This view is also 

supported by Wilkinson et al. (2011). However, the PCA result does not readily translate to 

the actual breed proportion estimates in mixed breeds. Hence, it is more suitable for the 

verification of a pure-breed member (Dodds et al., 2014). Nonetheless, this combined tool 

approach is said to be suitable for the reliable tracing of breed-specific branded products in 

the meat industry (Lewis et al., 2011). Prior to this study, SNP-based markers derived from 
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the AFLP technique were used for distinguishing between Australian and Japanese beef 

(Sasazaki et al., 2007). Although the AFLP-derived markers were of low resolution, the 

power was sufficient to discriminate cattle breeds from the two countries. A more stringent 

breed-specific SNP marker panel was later developed from Bovine 50K SNP BeadChip data 

and this was able to discriminate between Japanese and America cattle products (Suekawa et 

al., 2010). The higher efficiency marker panel was developed in response to an outbreak of 

bovine spongiform encephalopathy (BSE) in the USA, and comprised only six highly 

informative breed-specific SNPs (Suekawa et al., 2010). More recently, the use of 48 and 96 

highly informative SNP markers derived from a combined PCA in combination with a 

ranking algorithm (random forests) of Illumina Bovine SNP50 BeadChip genotyped data, 

correctly assigned four Italian cattle breeds (Bertolini et al., 2015). A few of the highly 

informative SNPs used in that study were found to be located in loci associated within 

important quantitative traits for some cattle breeds. A systematic assessment of the efficiency 

of four different methods for identifying population-informative SNPs from the SNP50 

BeadChip data set showed no gain of further assignment power beyond the use of more than 

200 SNPs in a panel, for all the approaches (Wilkinson et al., 2011). Wilkinson et al. (2011) 

also showed that a panel of 60 SNP markers was the minimum required for successful 

prediction of the cattle breeds investigated. However, more genetic markers (in excess of 

200) will be required successfully to assign closely related breeds and far fewer for distantly 

related breeds. Hence, Wilkinson et al. (2011) provided evidence that the number of SNPs 

required for correct assignment of an individual to a breed is directly proportional to the 

genetic heterogeneity or homogeneity of the sampled population. In a more recent study, two 

separate panels of SNPs derived from 21 different sheep breeds from Italy and Slovenia were 

used to assign all the sheep correctly to the breeds (Dimauro et al., 2015). This study 

combined three different types of discriminant analyses on an Illumina Ovine SNP50 



Molecular Identification of Livestock Breeds: A Tool for Modern Conservation Biology 

24 
 

genotyped data set from all 21 breeds to produce a reduced panel of 108 and 110 SNP 

markers. Further advances in genomics have also shown that the use of SNP chip technology 

is prone to ascertainment biases because the discovery SNP panels are derived from small 

numbers of individuals from selected populations that are not representative of all the species 

populations (Albrechtsen, Nielsen & Nielsen, 2010; Foll, Beaumont & Gaggiotti, 2008). The 

bias in sheep was particularly evident for African and Asian breeds as the SNPs were 

originally identified from European breeds (Kijas et al., 2012). Such ascertainment biases are 

likely to skew inferences determined from genotyped data such as allele frequency spectra 

and genetic differentiation of subject populations. 

Next-generation sequencing (NGS) of genomic DNA will provide denser SNP data than the 

Illumina OvineSNP50 BeadChip or any medium-density marker set that has previously been 

used in this type of study, and does not suffer from ascertainment bias. It is important to note 

that NGS data have inherent challenges arising from alignment and sequencing errors, but 

these are smaller in comparison to the biases of the SNP-chip genotyped data (Albrechtsen et 

al., 2010). For example, a whole genome of an animal from a Korean cattle breed that was 

sequenced on the Illumina HiSeq 2000 platform resulted in more than 10 million SNPs being 

identified, 54% of which were novel (Choi et al., 2014). Furthermore, another study showed 

a reduction in prediction accuracy when a SNP data set derived from Illumina Bovine SNP50 

was replaced with that derived from an Illumina SNP3K genotyped data set (Kuehn et al., 

2011). The higher resolving power of NGS has been shown to capture more rare breed-

specific polymorphisms or more informative polymorphisms (with higher confidence) than 

bovine SNP50 BeadChip genotyping (Choi et al., 2015; 2014; Lee et al., 2013).  

Collectively, these studies suggest that the use of high-density data will enable the real 

possibility of developing a smaller panel containing the most informative breed-specific 

SNPs having the highest sensitivity for resolving breed differences. Therefore, analyses and 
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use of such NGS data will lead to more accurate breed predictions, and the NGS of individual 

genomes at high coverage has been referred to as the ‘gold standard’ for generating quality 

data (Schlötterer et al., 2014b). In spite of the dramatic reduction in the cost of NGS, the cost 

of sequencing the large number of individuals required for population studies of this nature, 

at high coverage, is still economically prohibitive. However, it has also been shown that NGS 

of pools of individuals at a moderate coverage could provide a cost-effective and efficient 

alternative technique for generating very high density SNP data sets across a genome, 

compared with NGS of non-pooled individuals (Gautier et al., 2013; Kofler et al., 2015; 

Schlötterer et al., 2014b). Another promising cost-effective approach that was applied 

successfully to some plant species is referred to as genotyping by sequencing (GBS), and is 

based on the sequencing and analysing of more informative regions of the genome rather than 

the whole genome (Elshire et al., 2011). GBS is fast, highly specific and exceedingly 

reproducible, and could be used to complement the pool-sequencing approach through 

confirmatory testing where the need arises. For association-mapping studies, the analysis of 

pooled-sequenced data has more statistical power than SNP arrays (Futschik & Schlötterer, 

2010; Gautier et al., 2013; Kofler, Pandey & Schlötterer, 2011). The high-density SNP data 

generated by this pool strategy was shown to facilitate the discovery of more accurate allelic 

frequency estimates across a genome (Futschik & Schlötterer, 2010). The advantages of a 

pooled-sequencing technique over individual sequencing have been reviewed previously 

(Schlötterer et al., 2014b). NGS sequencing of pools of unrelated individual purebreds from a 

subject population therefore will enable the identification the most informative breed-specific 

SNPs. The rationale for sampling unrelated animals instead of related ones is to enable the 

capturing of a wide spectrum of within-breed genetic diversity of the subject population. This 

strategy is necessary to minimise the introduction of ascertainment bias into the subsequent 

breed identification tool (McTavish & Hillis, 2015). A carefully selected panel of SNPs 
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derived from the identified breed-specific SNPs can serve as an efficient breed identification 

tool. 

 

VI. CONSERVATION METHODS FOR DOMESTIC ANIMAL GENETIC 

RESOURCES 

Conservation of AnGR comprises all the management practices carried out to preserve the 

pool of genetic diversity of livestock for the purposes of meeting current and future needs of 

humans (Rege & Gibson, 2003). The relevance of conservation of AnGR has been discussed 

from several different perspectives, including economic evaluation as a basis for AnGR 

conservation decisions (Drucker, Gomez & Anderson, 2001), the role of cryopreservation, 

reproductive technologies and genetic resource banks for AnGR conservation strategies 

(Hiemstra, van der Lende & Woelders, 2006b; Holt & Pickard, 1999; Mara et al., 2013), 

information on population kinships as a basis for AnGR conservation decisions (Eding & 

Meuwissen, 2001) and the challenge of conserving indigenous AnGR diversity (Mendelsohn, 

2003). Each breed of livestock consists of unique sets of genes resulting from evolutionary 

events and diverse selection pressures imposed by the environment combined with the 

activities of humans over time. It is therefore difficult, if not impossible, to replace lost 

breeds of livestock, because those unique evolutionary processes cannot be re-created. There 

has been a general consensus on three critical approaches regarding the conservation of 

domestic livestock breeds: sustainable utilisation of available livestock breeds; appropriate 

diversity-based improvement strategies for livestock breeds; and development of appropriate 

assessment and preservation strategies (FAO, 2000; Hammond, 1999; Koehler-Rollefson & 

Meyer, 2014; Notter, Mariante & Sheng, 1994; Thornton et al., 2007). In addition to these 

approaches, the FAO has also recommended the regular monitoring of livestock breed 

conservation status (FAO, 2013). Currently the two main methods of AnGR conservation 
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applied are the in situ and the ex situ methods. The applicability of both conservation 

methods, and their respective merits and demerits has been reported extensively (Boettcher et 

al., 2010; Hammond, 1994; Henson, 1992; Mara et al., 2013; Rege & Gibson, 2003). In situ 

conservation can best be described as the sustainable breeding of an endangered livestock 

breed in their normal adaptive production environment, or as close to it as practically 

possible, to conserve genetic diversity over a long period (Andrabi & Maxwell, 2007; 

Henson, 1992). Notable features of in situ conservation therefore include selection and 

mating programmes that retain genetic variation within the target group, as well as 

management of the ecosystem to sustain their production. The basic requirements for in situ 

conservation programmes are generally readily available and affordable globally. There is a 

distinct difference between developed and developing countries regarding the minimum 

number of individuals required to commence an in situ programme. This is typically due to 

general differences in the efficiency of management of their respective livestock production 

systems. For example, whereas the minimum number for major livestock breeds (i.e. cattle, 

sheep, goats, pigs) required for in situ conservation is 100–1,000 breeding females in 

developed countries, no fewer than 5,000 breeding females is recommended for developing 

countries (Signorello & Pappalardo, 2003). Simon (1999) reported 500 breeding females for 

pigs and goats, 750 for cattle, and 1,500 for sheep for European breeds. It has been 

recommended that, ideally, for unrelated animals a minimum of 25 males and 50 females is 

sufficient to commence an in situ conservation programme, because the possible loss of 

genetic variability is estimated to be less than 1% per generation (Henson, 1992; Mara et al., 

2013). However, recent advances in the field of genomics have enabled the elucidation of 

abundant genomic information via high-throughput sequencing technologies and analysis, so 

a re-evaluation of these recommended numbers required for conservation programmes is 

overdue. This is because more accurate population genetic parameters such as allele 
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frequencies can be computed for target populations to allow for more precise determination 

of these numbers.  

There are a number of flagship in situ conservation programmes in place to conserve and 

improve some disease-resistant breeds of livestock in some African countries, for example, 

Ndama cattle in the republic of Guinea (Yapi-Gnaoré, Dagnogo & Oya, 2003), Djallonke 

sheep in Ghana and Cote D’Ivoire (Kosgey & Okeyo, 2007), and Tswana sheep in Botswana 

(Henson, 1992). The unique advantage of the in situ conservation method is that the target 

livestock breed continues to be utilised in the process. However, the danger is that the target 

livestock breed remains susceptible to uncertain demographic threats such as natural disasters 

and disease epidemics. 

 The ex situ livestock conservation method is the preservation of endangered livestock 

outside their normal production systems (Henson, 1992; Hiemstra et al., 2006a). This method 

is normally applied to target groups that are faced with imminent extinction, and hence 

requires the use of high-level expertise and technology. The three main ex situ methods are 

cryopreservation, farm park conservation, and breed pools or composite preservation. 

Cryopreservation, also referred to as in vitro ex situ is undoubtedly the most popular of the ex 

situ approaches to conservation of AnGR (Hiemstra et al., 2006a). This approach involves 

the cryopreservation of eggs, semen and or embryos of endangered or threatened animals in 

genome banks for use in managing diversity or regenerating the population decades, or even 

centuries, later (Chen, Zhang & Yu, 2008; Hanks, 2001; Russo et al., 2007; Xiao-Yong et al., 

2008). Cryogenic storage of carefully evaluated genetic material from a target breed 

population is also seen as an insurance policy against future loss. The merits and demerits of 

using these approaches have been discussed previously (Boettcher et al., 2010; Munro & 

Adams, 1991; Philipsson, Rege & Okeyo, 2006; Pintado & Hourcade, 2011; Ruane & 

Sonnino, 2011). The application of cryopreservation formerly depended only on assisted 
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reproductive techniques such as artificial insemination and embryo transfer technologies. 

However, recent advances in reproductive biotechnologies including semen sexing, embryo 

micromanipulation and in vitro fertilisation have the potential to revolutionise the livestock 

cryopreservation approach (O’Brien, Steinman & Robeck, 2009; Prentice & Anzar, 2011). 

Cryopreserved genetic materials are shielded from the influence of unfavourable 

environmental conditions in existence in the normal production ecosystems. Regeneration of 

a breed through only preserved semen requires a number of back crosses (Andrabi & 

Maxwell, 2007). However, the exact genetic composition of an original breed after going 

through adaptive selection is not recoverable with only cryopreserved semen that was 

collected before the adaptation process. In practice, the in situ and ex situ conservation 

methods are not mutually exclusive because the cryopreservation approach can be used to 

complement the in situ method to achieve better regeneration of endangered populations. A 

range of combinations of in situ and ex situ conservation methods are being applied in a now-

popular integrated conservation approach (de Souza et al., 2011; Hiemstra et al., 2006a). It 

has been recommended that a stock of cryopreserved semen from 25 unrelated sires is 

sufficient to provide a reasonable diversity for an endangered population (Bruns & Glodek, 

1999; Mara et al., 2013).  

The farm-park ex situ conservation approach is similar to the in situ conservation approach, 

except that the targeted breeds are preserved outside their normal production environment in 

a specialised institutional setting, also referred to as an Ark-farm (Simon, 1999). Farm-park 

animals are usually also subjected to more stringent management regimes to conserve natural 

levels of genetic variability within each species (Chesser, Smith & Brisbin, 1980). A notable 

feature of the farm-park approach is its popularity in attracting tourists, and hence creating 

awareness of the need to conserve endangered animals. The Cotswold farm park in the UK is 

an example where rare breeds of sheep, goats, cattle, pigs and horses are being conserved, 
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and it attracts more than 100,000 visitors yearly (Henson, 1992). The breed-pool preservation 

programme is unique in the sense that it involves the breeding together of a pool of two to 

four rare breeds with similar characteristics, and subsequently managing their offspring to 

conserve genetic variation (Henson, 1992). It is, however, recommended that the breed 

characteristics of each of the rare breeds is well ascertained prior to commencing a breed-

pool programme (Santos et al., 2013). This method is particularly suitable for genes that 

control obvious morphological traits and extreme quantitative traits such as coat colour and 

prolificacy, respectively. Although this approach conserves useful genes from the pool, 

individual breeds are lost in the process. An example of the breed-pool approach is the 

conservation programme of four rare desert goat breeds in the north eastern part of Brazil 

(Henson, 1992). 

Given that no single conservation method is capable of solving the myriad of challenges of 

domestic animal genetic resource erosion, an integrated conservation approach has been 

advocated to provide greater efficiency (Rege & Gibson, 2003). 

 

VII. MODELLING: THE WAY FORWARD 

The successful domestication of animals represents a pivotal historic event in the cultural and 

demographic development of humans. The importance of global domestic livestock diversity 

to human wellbeing is now well appreciated. This is evident from the globally coordinated 

efforts directed at halting the decline in AnGR as well as the sustainable utilisation of 

available livestock resources as discussed herein. These global initiatives have yielded 

several interventions which are being implemented at the international, regional and local 

level (Ajmone-Marsan & The Globaldiv Consortium, 2010; FAO, 2013). The main global 

body is the DAD-IS that coordinates regional bodies, for example the European Farm Animal 

Biodiversity Information System (EFABIS) and the Domestic Animal Genetic Resource 
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Information System (DAGRIS) for European and African regions, respectively. The regional 

bodies in turn coordinate the local or national bodies, which essentially are the individual 

member states of the FAO of the UN. These efforts are being supplemented by the activities 

of other important organisations, prominent members including the GLOBALDIV, the 

International Society for Animal Genetics (ISAG), the SAVE foundation and several 

livestock breed societies worldwide (Broxham, 2015). Some notable progress has been made 

towards reducing the rate of erosion of global AnGR. For example, the status information for 

global mammalian and avian livestock breeds in the DAD-IS has increased from 43% and 

39%, respectively in 2009, to 57% and 48%, respectively, in 2012 (FAO, 2013). The 

effective monitoring of breed conservation status of livestock requires at least one census per 

generation of that target breed (FAO, 2007; Groeneveld et al., 2010). A specific breed 

identification tool for each livestock breed will expedite this exercise. However, pivotal to the 

success of these conservation efforts is the reliability of genetic identification of individual 

members within a target breed. The advancement in molecular technology in the last two 

decades has significantly increased our understanding of the population genetics of domestic 

animals. It is apparent that the molecular characterisation of all domestic livestock breeds, 

particularly in developing countries, is a pre-requisite for their sustainable utilisation and 

conservation. This is because characterisation at the molecular level provides precise 

information for determination of the actual population characteristics such as genetic 

variation and effective population size (Luikart et al., 2003). Currently, many domestic 

livestock breeds, particularly those in the developing countries, have yet to be characterised 

due to myriad issues including the lack of financial and technological capacity. A recent 

report indicated that the risk status of 36% of all populations of the local livestock breeds still 

remains unknown (FAO, 2013).  
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The main molecular technique used for most livestock genetic characterisation was 

microsatellite markers [for example, in Spanish native cattle breeds (Martín-Burriel, García-

Muro & Zaragoza, 1999), Aberdeen Angus cattle breeds (Vasconcellos et al., 2003), Austrian 

sheep breeds (Baumung et al., 2006) and indigenous goats in sub-Saharan Africa 

(Chenyambuga et al., 2004)]. Although highly informative, the current panels of 

microsatellites used for analyses are not capable of elucidating all the information required 

regarding breed variation in livestock (Toro et al., 2009). Recently, it is becoming more 

evident that SNP analysis is more suited for the high-throughput genotyping that is required 

to elucidate greater molecular insights such as historic signatures of selection (Qanbari et al., 

2014), phenotypic variations within livestock breeds (Groenen et al., 2011) as well as linkage 

disequilibrium over short physical distances (Kijas et al., 2014). The availability and 

accessibility of comprehensive databases of genomic data for various uses has also facilitated 

population genetic studies globally, for example the National Centre for Biotechnology 

Information (NCBI) (Sayers et al., 2011), the Livestock Animal Quantitative Trait Loci 

database (Hu et al., 2013), and the University of California Santa Cruz (UCSC) genome 

browser (Dreszer et al., 2012).  

The challenge now is to use these enhanced insights and understanding of molecular methods 

to develop breed-specific identification tools that are easily applicable to populations of 

livestock in different ecosystems. Such a breed-specific tool can be developed through 

identification and characterisation of unique phylogenomic SNPs in next-generation 

sequenced pooled genomic DNA from a selected representative small group of pure-bred 

individuals. The lessons derived from the ascertainment bias of genetic markers indicate that, 

for the purpose of conservation, it will be more suitable to develop a robust specific 

identification assay for each target breed rather than one assay for the identification of 

different breeds. This assertion does not discount the continued relevance of the use of 
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common marker sets across multiple breeds or even species in other molecular studies such 

as investigation of QTL for economically important production and disease-resistant traits. 

However, for a target breed population the selection of breed-specific SNPs from neutral 

regions of the genome would guard against loss of efficiency of the SNP assay developed 

over time through direct selection or hitchhiking effects. It is important to add that it is not 

always obvious which regions of the genome are under the influence of selection. In a recent 

study, an annotation of SNPs derived from the WGS Korean cattle breed using the bovine 

reference genome led to the suggestion that fixed, breed-specific SNPs might be useful for 

breed identification (Choi et al., 2015). That study described breed-specific fixation of many 

SNPs. 

 A growing number of software tools are being developed for the analysis of pooled-

sequenced data (Kofler et al., 2015; Li & Durbin, 2010; Li et al., 2009). Read alignment of 

next-generation sequenced pooled genomic data to reference genomes has been achieved 

using the Burrows–Wheeler Tool (Kofler et al., 2011; Li & Durbin, 2010). The aligned reads 

are converted to a compatible pileup file format with SAMtools for subsequent analyses with 

the PoPoolation algorithm (Kofler et al., 2015; Li et al., 2009). Pooled-genomic sequenced 

data have been successfully analysed with PoPoolation accurately and efficiently to identify 

allele frequencies and population differentiation parameters of subject populations (Kofler et 

al., 2015; Kofler et al., 2011). Other analytical methods successfully applied include 

modified versions of popular genetic estimators such as the Watterson’s θ and Tajima’s π 

analyses (Futschik & Schlötterer, 2010; Gautier & Naves, 2011). 

These tools enable the efficient analyses of whole-genome sequenced SNP data sets such as 

mapping to appropriate reference genomes, SNP calling and annotation. Additional benefits 

of such data sets include use for the investigation of traits of economic and adaptive 

importance for the breed (Choi et al., 2015; Qanbari et al., 2014). Information from 
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discovered phylogenomic SNPs can then be used to develop breed-specific SNP assays for 

the easy and precise identification of pure-bred members from mixed populations of breeds in 

various ecosystems. These tools will not only facilitate the timely diagnosis of the 

conservation status of livestock breeds, but will also permit the regular monitoring of 

endangered breed populations, particularly in developing countries where the lack of 

technical and financial capacity is reported to be a major impediment. 

 

VIII. CONCLUSIONS 

(1) Maintaining global domestic animal genetic diversity is important to human wellbeing.  

(2) Breed-specific molecular identification tools are urgently needed to allow the reliable and 

expeditious identification of individual members of any given breed; this is a pre-requisite for 

sustainable utilisation and conservation of any breed. 

(3) A growing number of studies have established that whole-genome sequencing of pools of 

individuals within a group or breed provides a great deal of information on genetic variation 

across the whole genome even when performed at relatively low coverage, but also at 

considerably lower cost (Clarke et al., 2014; Gautier et al., 2013; Kim et al., 2010; Kofler et 

al., 2015). This will be a cost-effective technique for the identification of breed-specific 

phylogenomic SNPs within a target breed for the purposes of developing breed-specific 

molecular identification tools. 

(4) The knowledge and technological gap between the developed and developing worlds need 

to be addressed through the strengthening of collaborations of existing regional institutions to 

take up the mandate of developing molecular identification tools for regional breeds. 

(5) It is important for countries that have livestock breeds in common such as international 

and regional trans-boundary breeds to work together for the purposes of standardisation and 

cost sharing. 
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(6) Special funds could be set aside for developing breed-specific molecular tools in 

disadvantaged regions of the world, to be managed by a global body such as the FAO. 
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Table 1. Present status of efforts to identify livestock breeds using genomic methods.  

 

Species Genotyping platform Method Reference 

Italian sheep breeds Illumina OvineSNP50 Stepwise discrimant 

analysis 

Canonical discrimant 

analysis 

Discrimant analysis 

GENECLASS 2 software 

POWERMARKER 

software 

(Dimauro et al., 2015) 

Italian cattle breeds Illumina Bovine50 

BeadChip 

Principal components 

analysis, random forest 

regression 

(Bertolini et al., 2015) 

New Zealand sheep 

breeds 

Illumina OvineSNP50  Regression and genomic 

BLUP 

STRUCTURE algorithm 

(Dodds et al., 2014)  

Korean native and 

Holstein cattle breeds 

Illumina HiSeq 2000 Mapping of Reads to 

Bovine Genome Assembly 

UMD 3.1 

Samtools–0.1.18 

MPILEUP 

GATK ver. 2.4 

(Choi et al., 2014) 

Yunnan (South China) 

chicken breeds 

Microsatellite markers Nei’s genetic distance  

Hardy Weinberg analysis 

GENALEX 6 Software  

Weir & Cockerham’s FST,  

 (Huo et al., 2014) 

Swiss cattle breeds Illumina Bovine50 

BeadChip 

STRUCTURE algorithm 

BayesB 

Partial least squares 

regression  

(Frkonja et al., 2012) 

19 worldwide cattle 

breeds 

Bovine HapMap data set 

SNP marker 

Principal components 

analysis 

Nearest neighbour 

classification Algorithm  

(Lewis et al., 2011) 

European cattle breeds Illumina Bovine50 

BeadChip 

Weir & Cockerham’s FST,  

Delta, Wright’s FST 

Principal component 

analysis methods 

(Wilkinson et al., 2011) 

Japanese and USA cattle 

breeds 

Illumina Bovine50 

BeadChip 

Allelic frequency method 

BLAST programs  

PCR restriction fragment 

length polymorphism 

(Suekawa et al., 2010) 

Italian cattle breeds Microsatellite markers STRUCTURE algorithm 

Wright’s F–statistics 

MolKin V3.0 software 

(Bozzi et al., 2009) 

Local European and 

Asian chicken breeds 

Microsatellite markers Nei’s genetic distance  

Hardy Weinberg analysis 

GENECLASS 2 software 

Multiple CO–inertia 

analysis  

(Berthouly et al., 2008) 
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Weir & Cockerham’s FST, 

Japanese and Australian 

cattle breeds 

Microsatellite markers Polymerase chain reaction–

amplified fragment length 

polymorphism 

(Sasazaki et al., 2007) 

Iberian pig breeds Microsatellite markers PHYLIP software package 

Markov chain Monte Carlo 

methods 

(Fabuel et al., 2004) 

Asian and European pig 

breeds 

Mitochondria DNA D–

loop assay 

Polymerase chain reaction 

Clustal W software 

(Kim et al., 2002) 

 




