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It is believed that the progression of Stanford type B aortic dissection is closely associated with 

vascular geometry and hemodynamic parameters. The hemodynamic differences owing to the 

presence of greater than two tears have not been explored. The focus of the present study is to 

investigate the impact of an additional reentry tear on the flow, pressure and wall shear stress 

distribution in the dissected aorta. A 3D aorta model with one entry and one reentry tear was 

generated from computed tomography (CT) angiographic images of a patient with Stanford Type B 

aortic dissection. To investigate the hemodynamic effect of more than two tear locations, an 

additional circular reentry tear was added 24 mm above the original reentry tear. Our simulation 

results showed that the presence of an additional reentry tear provided an extra return path for blood 

back to the true lumen during systole, and an extra outflow path into the false lumen during diastole. 

The presence of this additional path led to a decrease in the false lumen pressure, particularly at the 

distal region. Meanwhile, the presence of this additional tear cause no significant difference on the 

time average wall shear stress (TAWSS) distribution except at regions adjacent to reentry tear 2. 

Moderate and concentrated TAWSS was observed at the bottom region of this additional tear which 

may lead to further extension of the tear distally. 

 
Keywords: Aortic dissection; Patient-specific; Computational fluid dynamic 

 
1.  Introduction 

 
Cardiovascular diseases are the major cause of death in both developed and developing 

countries 1.Aortic dissection is one of the most common cardiovascular diseases. Aortic 

dissection can be a life-threatening event which is characterized by splitting of the aortic 

wall by high blood pressure entering the media through an intimomedial entrance tear. 

There is an estimated worldwide prevalence of aortic dissection, which is 0.5-2.95 per 

100,000 people per year 2. The formation of the aortic dissection starts with the tear in the 

aortic intima layer. Blood flows through the tear and subsequently causes the layer to 

divide  into  true  and  false  lumens  3,4.  Dissections  may propagate  either  in  distal  or 

proximal direction from the entry tear 5. The blood from the false lumen may reenter the 

true lumen anywhere along the course of the dissection. Differentiation between true and 

false lumens is important in the planning of percutaneous treatment with endovascular 

stent grafts or surgical repair of aortic dissection 6,7.  It is crucial to identify the lumen of 

origin in major branch vessels such as coronary, carotid, renal and mesenteric arteries 

before treatment because viscera supplied by the false lumen are at risk when the false 

lumen is spontaneously or surgically occluded 8. 

Based on Erbel et al 1, several system of classification for aortic dissection have 

been developed including the Stanford, Debakey and Svensson systems. According to the 

Stanford  system,  aortic  dissection  can  be  classified  into  Type  A  if  it  involves  the 

ascending aorta and Type B if it involves the descending aorta only 1,5,9,10. On the other 

hand, the Debakey system is further classified into three systems  with Type 1 involving 

the entire aorta, Type 2 affecting the ascending aorta only and Type 3 affecting the 

descending aorta only 11,12. The Stanford system is widely used by the physicians as a 

simple guide to decide the urgency of a surgical treatment, while the Debakey system is 

useful to understand the clinical behavior of aortic dissection  9. 

Accepted manuscript of an article published as: Naim, Wan and Ganesan, Poo and Sun, Zhonghua and Osman, Kahar and Lim, Einly. 2014. 
The impact of the number of tears in patient-specific Stanford type B aortic dissecting aneurysm: CFD simulation.  
Journal of Mechanics in Medicine and Biology. 14 (2): 1450017 (20 p.). DOI: 10.1142/S0219519414500171



3 

 

 

 
 

The  Impact of the  Number of Tears  3 

 
The focus of the present study is Type B aortic dissection, which has a high follow-up 

mortality rate 10. The optimal treatment strategy for type B aortic dissection remains 

controversial 13. Due to the high mortality rate associated with the surgical treatment, 

medical  treatment  is  usually  chosen  for  uncomplicated  cases  of  the  type  B  aortic 

dissection 13,14. However, if left untreated, about 30% at clinical presentation suffers from 

hemodynamic instability conditions with a high risk of mortality13. Endovascular 

techniques have become an alternative option in the treatment of Type B dissection 15
 

Czermak et al 5  stated that  20%–50% of patients who survived from acute aortic 

dissection develop aneurysms. Several factors have been associated with the development 

and progression of aortic dissection, including hypertension 16,17, genetic factors and 

connective tissue diseases 4,16, old age, previous repair of aortic aneurysm or dissection 9, 

hemodynamic effects, vascular geometry, mechanical properties and composition of the 

aorta wall 4. It has been suggested to do follow up measurement of the aortic diameter to 

predict dilation and rupture 18. However, Rudenick et al 3 reported that dilation is mainly 

triggered by hemodynamic parameters, and geometry of false and true lumen. According 

to Nabaie et al 19, hemodynamics play an important role in the pathogenesis, thrombosis, 

and destabilization or rupture of the aneurysm. Medical imaging modalities, such as 

computed tomography (CT) scan can provide excellent anatomical structures   of the true 

lumen, false lumen as well as the tear in aortic dissection 20, however it lacks the ability to 

provide  information  about  the  hemodynamic  effect  20.  Thus,  computational  fluid 

dynamics (CFD) has been used for the analysis of hemodynamic changes of the blood 

vessel 20. CFD allows for an early detection of abnormal changes and improves the 

understanding of the hemodynamic result in aortic dissection study, so that the prevention 

of potential complications and better patient management can be achieved 20
 

In  the  CFD  study  by Cheng  et  al.
21

,  it has  been  shown  that  geometry plays  an 

important role in determining the nature of the hemodynamic patterns. Increased shear 

stress and chaotic flow was observed in the narrowed arterial lumen. In another study, Tse 

et al.4 showed that vortices occurred in the thoracoabdominal aorta in the dissection case 

due to changes in the cross sectional area and curvature along the vessel. Examination of 

the vorticity field is able to provide an insight into the fluid dynamics of cardiovascular 

disease 22. The information of normal and pathological physiology flow extracted through 

the experimental and simulation studies can be used to evaluate the cardiac status of a 

patient 23. 

To date, numerous experimental and numerical studies have been carried out to 

investigate the effect of tear size, location, and patency within the false lumen on regional 

hemodynamics. Using ex vivo experiments performed on different dissection models, 

Tsai et al 24  demonstrated that diastolic false lumen pressure substantially increases by 

decreasing the proximal tear size and removing the distal tear, which are both important 

determinants of inflow and outflow. Similarly, Cheng et al.21  proposed that the location 

and size of the proximal and distal tear determines the quantity of the blood flowing into 

false lumen which in turn affects false lumen expansion and rupture. In Tang et al 25 and 

Karmonik et al 26, they evaluated the variation of the tear number with and without the 

presence of the reentry tear. Tang et al 25 found that the pulsating pressure waveform for 

closed  end  dissection  is  a  few  percent  higher  than  that  observed  in  the  open  end 

dissection.  In  addition  Karmonik  et  al  26   also  stated  that  the  false  lumen  outflow 

restriction may increase the false lumen pressure. 
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Despite the existence of various literature studies, the hemodynamic differences owing 

to the presence of greater than two tears have not been explored. In a clinical study 

performed by Quint et al 27, different number of tears were found for 52 different patients 

with 10 patients presenting with single tear, 22 patients with 2 tears, 9 patients with 3 

tears, 9 patients with 4 tears,   one patient with 5 and 7 tears, respectively. The study 

shows that a large number of aortic dissection patient with more than two tears. The 

identification of number of tears may be helpful in predicting a pressure differential 

between the true and false lumens, in predicting outcome without treatment, and in 

assisting treatment planning 27. Studies have shown that communications between the true 

and false lumens below the entry tear may help prevent true lumen collapse and 

identification of multiple distal communications between the lumens may be a useful 

predictor for certain patients 
27. Therefore, the aim of the present study is to investigate 

the impact of an additional reentry tear which is in total three tears, on the flow, pressure 

and wall shear stress distribution in the dissecting aorta. 

 
2.   Me t h od ol ogy  

 
 

Aortic Dissection Geometry 
 

 
 

 
 
 
 

Mesh independent test 

Mesh Generation Material and Fluid properties 

- Blood properties 

- Wall properties 
 

 
Control and Environmental 

Parameters setup 

- Boundary 

CFD simulation Conditions 

 
 

Different aortic dissection 

geometry design 

 
Initial Design Stage 

Computational and 
Simulation Conditions 

- Steady/Unsteady 
simulation 

- Governing equation 

 
 
 
 

Final Performance Analysis Stage 
 

Fig. 1: Methodology presentation 

CFD analysis 

 

Fig 1 shows the flow chart presentation of the methodology based on the example given 

by Wong et al 20. The CFD analysis was carried out in two stages consisting of the initial 

design stage and the final performance analysis stage 20. 
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2.1.   Model geometry 

 

A patient diagnosed with Stanford Type B aortic dissecting aneurysm was selected and 

the patient’s computed tomography (CT)  data was post processed to generate a 3D aorta 

model, as shown in Fig. 2a (Case 1). To investigate the effect of more than two tears on 

the hemodynamic, an additional circular reentry tear was added 24 mm above the original 

reentry tear. A total of three cases were studied: (i) original geometry with an entry and a 

reentry tear (Case 1, Fig. 2a); (ii) original geometry with an additional reentry tear of 10 

mm diameter (Case 2, Fig. 2b); and (iii) original geometry with an additional reentry tear 

of 16 mm diameter   (Case 3, Fig. 2c). The diameter of the additional reentry tear is 

comparable to that reported by Quint et al 
27

. 
 
 

 
 

Fig. 2: 3D reconstructed model of aortic dissecting aneurysm. (a) Case 1: original geometry with 1 entry and 1 

reentry tear; (b) Case 2: original geometry with an additional reentry tear of 10 mm diameter; and (c) Case 3: 

original geometry with an additional reentry tear of 16 mm diameter. Note that TL is the true lumen whereas FL 

is the false lumen. 

 
2.2.   Model settings 

 

The  blood  was  assumed  to  be  homogenous,  incompressible  and  Newtonian  with  a 

dynamic  viscosity  of  0.00371  Pa.s  and  a  density  of  1060  kg/m3   4.  Since  blood 

demonstrates non-Newtonian behavior at shear rate lower than 100 s-1, the assumption of 
Newtonian flow in the aorta is reasonable as shear rate in large arteries (e.g. aorta) is 

greater than 100 s-1 4,28. According to Tse et al 4 and Cheng et al21, blood flow is usually 
assumed laminar in large vessels as the mean flow velocity and the Reynolds number is 
low. For a pulsatile, unsteady flow, turbulence occurs at a Reynolds number much larger 
than that expected for a steady flow due to a more stable accelerating flow and a more 
unstable decelerating flow. Flow can be assumed to be laminar if the maximum Reynolds 

number  (Remax)  is  less  than  the  critical  Reynolds  number  (Rec)  
4,29,30.  The  critical 

Reynolds number (Rec) or also called the transition Reynolds number for unsteady flow 

takes the form of Rec=k x Wormersley number 31. The approximation of the k value is 
based on the experimental study on canine aortas by Nerem et al31  with k being the 
constant of proportionality ranging from 250 to 1000. 
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The critical Reynolds number, Rec calculated in this study based on the average 

Wormersley numberranges from 5150 to 20600 for Case 1, 4850 to 19400 for Case 2 and 

4930 to 19700 for Case 3, respectively.   Meanwhile, the maximum Reynolds number 

(Remax) in our model (occurring at the exit tear) for Cases 1, 2 and 3 are 4820, 4530 and 

4590, respectively. Since the maximum Reynolds number, Remax for our models are lower 

than this range of critical Reynolds number, Rec, the flow in our model can be assumed to 

be laminar. The average Reynolds numbers (Reave) along the vessel based on the average 

flow velocity (Vave) and the average hydraulic diameter (Dh,ave) at peak systole for Cases 

1, 2 and 3 are 3200, 2910, and 2910 respectively as shown in Tables 1-3.. The aortic wall 

was assumed to be rigid and no-slip condition was applied at the wall. 

 
Table 1: The Reynolds number and Wormersley number at various vessel cross sections for Case 1 

 
 

 
Section 

 
Velocity 

(mm/s) 

 
Area 

(mm
2
) 

 
Hydraulic 

diameter (mm) 

 
Reynolds 

number 

 
Wormersley 

number 

Inlet 174 1490 43.5 2160 29.2 
Midway Ascending aorta 213 1290 40.5 2480 27.2 

Aortic arch 175 1400 42.2 2110 28.3 

Exit aortic arch (TL) 270 810 32.1 2470 21.5 

Exit aortic arch (FL) 175 1040 36.4 1820 24.4 

Entry tear 494 500 25.2 3560 16.9 

Reentry tear 1 1020 210 16.5 4820 11.1 

Descending aorta (TL) 322 210 16.2 1490 10.9 

Descending aorta (FL) 227 710 30.0 1940 20.1 

Outlet 573 480 24.6 4030 16.5 

Average 364  30.7 3200 20.6 

 
Table 2: The Reynolds number and Wormersley number at various vessel cross sections for Case 2 

 
 

Section 

Velocity 
(mm/s) 

 
Area (mm

2
) 

Hydraulic 
diameter (mm) 

Reynolds 
number 

Wormersley 

number 

Inlet 174 1490 43.5 2160 29.2 
Midway Ascending aorta 213 1290 40.5 2470 27.2 

Aortic arch 175 1400 42.2 2110 28.3 

Exit aortic arch (TL) 270 810 32.1 2480 21.5 

Exit aortic arch (FL) 183 1060 36.7 1920 24.6 

Entry tear 493 500 25.2 3560 16.9 

Reentry tear 1 963 210 16.4 4530 11.1 

Reentry tear 2 311 77 10.0 890 6.7 

Descending aorta (TL) 295 210 16.2 1370 10.9 

Descending aorta (FL) 235 710 30.0 2010 20.1 

Outlet 572 480 24.6 4030 16.5 

   Average   353    28.9   2910   19.4   
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Table 3: The Reynolds number and Wormersley number at various vessel cross sections for Case 3 

 
 

Section 

Velocity 
(mm/s) 

 
Area (mm

2
) 

Hydraulic 
diameter (mm) 

Reynolds 
number 

Wormersley 

number 

Inlet 174 1490 43.5 2160 29.2 
Midway Ascending aorta 213 1290 40.5 2470 27.2 

Aortic arch 175 1400 42.2 2110 28.3 

Exit aortic arch (TL) 261 810 32.1 2390 21.5 

Exit aortic arch (FL) 182 1060 36.7 1910 24.6 

Entry tear 500 500 25.2 3600 16.9 

Reentry tear 1 973 210 16.5 4590 11.1 

Reentry tear 2 226 190 15.7 1020 10.5 

Descending aorta (TL) 296 210 16.2 1370 10.9 

Descending aorta (FL) 234 710 30.0 2010 20.1 

Outlet 573 480 24.6 4030 16.5 

   Average   346    29.4   2910   19.7   

 

 

2.3.   Boundary Conditions 
 

A flat velocity profile with a pulsatile flow applied at the entrance of the ascending aorta 

has been taken from Tse et al 4and Olufsen et al 32 as shown in Fig. 3 (a). The use of a flat 

velocity profile at the aortic inlet is justified based on Wen et al 28   and Shahcheraghi et al 
33  in which in-vivo measurements using the hot film anemometry technique on various 

animal models have been carried out. The outlets for the flow are at three aortic arch 

branches with different outlet diameter, i.e. left subclavian artery, left common carotid 

artery and brachiochepalic artery and at the descending aorta. The pulsatile inlet velocity 

profile was scaled and applied at the outlet of each of the three aortic arch branches with 

an assumption that five percent of the flow volume is diverted  to each branch outlet, as 

observed in a healthy aorta 4,32, see Fig. 3c. Note that negative velocity refers to the outlet 

condition. On the other hand, a pulsatile pressure waveform as shown  in  Fig. 3 (b) 

(adapted from Tse et al 4and Olufsen et al 32) was applied at the exit of the descending 

aorta. 

 

 
 

Fig. 3: Inlet and outlet boundary conditions: (a) Pulsatile inlet velocity profile; (b) Pulsatile outlet pressure 

profile; (c) Pulsatile outlet velocity profile at the three aortic aortic branches, i.e. left subclavian artery (v1), left 

common carotid artery (v2) and brachiochepalic artery (v3). 
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2.4.   Governing equations 

 

Mass continuity (“Eq. (1)”) and Navier Stokes equation (“Eq. (2)”) was used to govern 

the blood flow in the current study. 

(1) 

(2) 

The symbol       is the velocity vector, p is the pressure, ρ is the density and µ is the 

viscosity. 

 
2.5.   Numerical Methods 

 

The finite volume method in the ANSYS FLUENT package (ANSYS, Inc.) was used to 

run the simulations. Discretisation of “Eqs. (1) and (2)“ was achieved using the Second 

Order  Upwind  Scheme.  The  PISO  (Pressure  Implicit  with  Splitting  of  Operators) 

algorithm was used for the coupling of the pressure-velocity terms. 

A steady state solution at the maximum flow rate was first obtained which was then 

used as an initial condition for unsteady solution. The periodic natures of the flow based 

on 4 cardiac cycles were simulated. All the results presented in the current study from the 

4th  cardiac cycle. During the post processing stage, the results were taken at two time 

instants, i.e. at t = 3.25 (peak systole) and at t = 3.47s (early diastole) to represent the 

systolic and diastolic phase. 

 
2.6.   Mesh  Independent Test 

 

The geometry was meshed with 4 nodes tetrahedral elements using Meshing tool in 

ANSYS CFD (ANSYS, Inc.), with a total number of 250841 elements. The spatial 

localized mesh independent test was applied in Case 1, where the numbers of elements 

were increased at the reentry tear 1 region (an increase of 130029 numbers of elements). 

In addition, global refinement has been performed to the whole geometry in Case 1. This 

mesh has 1.7 million numbers of elements, which is about seven times higher than that of 

the original mesh. Wall shear stress (WSS) and pressure values from the both local and 

global refinements at t = 3.20s and t = 3.38s are shown in Table 4 and Table 5, 

respectively. 

 
Table 4: Local and global refinement of wall shear stress at t= 3.20 s and t = 3.38 s 

 
Mesh  Time 3.20 s  Time 3.38 s  

 Re-entry tear 1 Entry tear Re-entry tear 1 Entry tear 

(a) 250841 mesh elements (Pa) 35.5   13.3 28.3 1.8 

(b) Local refinement (380870) 
(Pa) 

32.8    29.1  

(c) Global refinement 

(1716400 ) (Pa) 

33.2   15.2 27.9 1.73 

Percentage difference (a) and (b) 7.6 %    2.7 %  
Percentage difference (a) and (c) 1.3 %   12.6 % 1.3 % 1.6 % 

   Percentage difference (b) and (c)   1.2 %      4.1 %    

Accepted manuscript of an article published as: Naim, Wan and Ganesan, Poo and Sun, Zhonghua and Osman, Kahar and Lim, Einly. 2014. 
The impact of the number of tears in patient-specific Stanford type B aortic dissecting aneurysm: CFD simulation.  
Journal of Mechanics in Medicine and Biology. 14 (2): 1450017 (20 p.). DOI: 10.1142/S0219519414500171



9 

 

 

 
 

 
 
 
 
 
 

The  Impact of the  Number of Tears  9 

 
Table 5: Local and global refinement of pressure at t= 3.20 s and t = 3.38 s 

 
Mesh  Time 3.20 s  Time 3.38 s  

 Re-entry tear 1 Entry tear Re-entry tear 1 Entry tear 

(a) 250841 mesh elements (kPa) 16.3   17.1 15.1 14.7 

(b) Local refinement (380870) 

(kPa) 

16.4    15.0  

(c) Global refinement 

(1716400 ) (kPa) 

16.5   17.2 14.9 14.4 

Percentage difference (a) and (b) 0.1 %    0.9 %  
Percentage difference (a) and (c) 0.9 %   0.8 % 1.5 % 2.0 % 

Percentage difference (b) and (c) 0.7 %    0.6 %  
 

The WSS distribution is similar for all three meshes conditions. The differences 

between the 250841 number of mesh (Mesh (a)) with the local refinement (Mesh (b)) and 

global refinement (Mesh (c)) are small being less than 5.0 %. Exception seen for WSS of 

Mesh  (a)  and  Mesh  (c)  at  entry tear  1  (Table 1)  with  a  difference of 12.6  %.  To 

investigate this, the pressure difference has been checked and found to be less than 1.0%. 

Therefore, the original mesh settings (with 250841 numbers of elements) were used for 

the present simulations to compromise between the accuracy and the limitation of the 

computer resources. The number of elements for Cases 2 and 3 were 251176 and 250964 

respectively. A workstation with Intel Core i7 with 3.9 GHz speed and 12 Gbyte memory 

was used in the current study. Based on the computer processing capability, an optimum 

total number of mesh elements has been used without significantly affecting the results 

presented. 

 
2.7.   Numerical validation 

 

The mass flow rate at the aortic inlet is consistent with the sum of the mass flow out at the 

four outlets (3 branches at the proximal region and descending aorta), i.e.1.04 x 10-4kg/s. 

This shows that the present simulation obeyed the mass conservation law. 

 
3.  Results 

 
3.1.   Flow  Distribution 

 
Fig. 4 shows the flow distribution using the velocity vector plot at the regions near the 

entry tear at the proximal location and the reentry tears at the distal location of the true 

and false lumens during both systole and diastole. The flow is accelerated and no flow 

separation is observed during systole. It can be observed that the blood from the aortic 

arch flows from the true lumen to the false lumen through the entry tear in all cases 

relatively at a high velocity. At the same time, blood flows from the proximal to the distal 

part in both the true and false lumens. At the distal region of the vessel, blood returns to 

the true lumen through reentry tear 1 (for all cases) and 2 (for Case 2 & 3). Highest 

velocity is found at the bottom region of the reentry tear 1 in all cases. 
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During the diastolic phase, recirculation and retrograde flow is observed in all 

cases, with obvious recirculation flow everywhere near the tears. The recirculation flow 

rotates in both the clockwise and the counterclockwise directions. As compared to the 

systolic phase, directionally opposite blood flow occurs. Blood enters the false lumen 

from the true lumen through reentry 1 (for all cases) and 2 (for Case 2 & 3), with the 

highest velocity at the bottom region of the reentry tear 1. It then flows up to the proximal 

region and return to the true lumen through the entry tear. 

 

 
 

Fig. 4: The flow distribution at the proximal (near the entry tear) and distal locations (near the reentry tears) of 

true lumen and false lumen during systole and diastole for Case 1, Case 2 and Case 3. The arrows indicate the 

directions of the velocity vectors. Note: A is the true lumen region whereas B is the false lumen region. 

 
10 
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3.2.   Pressure Distribution 

 
Fig. 5 illustrates the pressure contour plot along the true lumen and false lumen for Case 

1, 2 and 3 during the systolic and diastolic phase. Table 6 gives the range and mid values 

of pressure in the true and false lumen during the systolic and diastolic phase, at the three 
regions which are below the entry tear (A); above reentry tear 2 (B); and below reentry 

tear 1(C). For comparison, such results from Tse et al 4  and Cheng et al 21  are used. 
Pressure gradient decreases in the flow direction and this is consistent with the literature 
findings. The highest pressure of about 16.61 kPa is in the aortic root for Cases 1, 2 and 3, 
while region of low pressure is at the descending aorta during systole. This pressure is 

relative to the outlet pressure of 15.69 kPa at peak systole. Therefore the highest pressure 
difference between the inlet and the outlet is about 0.90 kPa 

First, let us compare all cases during systole. The pressure in the true lumen is 
slightly higher than that in the false lumen at region A, which is the proximal part of the 

dissection in all cases, with a difference around 0.20 kPa. At the region above reentry tear 

2 (B), no significant pressure difference is observed between true and false lumen for 
Case 2 and 3. In contrast, in the absence of reentry tear 2 in Case 1, the pressure in the 

false lumen is approximately 0.20 kPa higher than that in the true lumen. At region C, 

which is the distal part of the vessel, the pressure in the false lumen is higher than that in 

the true lumen, with a difference of up to 1.00 kPa. Comparing the different cases, the 
largest difference occur in Case 1, with a difference magnitude of approximately 1.00 

kPa. The highest pressure is obtained at the region below reentry tear 1 (C) in the false 

lumen for Case 1 (16.61 kPa). 

As compared to the systolic phase, less significant difference is observed between 

pressure in the true and false lumens during diastole. Generally, the false lumen pressure 

is slightly higher than true lumen pressure throughout the aorta. The greatest difference 

occurs at the region below reentry tear 1 (C), with a magnitude of approximately 0.10 

kPa. 

 
Table 6: Range and mid value of pressure in the true and false lumen during the systolic and diastolic phase, 

taken at (A) the region below the entry tear; (B) the region above reentry tear 2; and (C) the region below 
reentry tear 1. 

 

Case   Systole (kPa)   Diastole (kPa)  

  True lumen  False lumen  True lumen  False lumen  
  Range Mid Range Mid Range Mid Range Mid 

1 A 16.52-16.70 16.6 16.33-16.5 16.4 14.30-14.3 14.3 14.30-14.35 14.33 

 B 16.12-16.33 16.2 16.33-16.5 16.4 14.43-14.5 14.4 14.33-14.35 14.34 

 C 15.60-15.78 15.7 16.52-16.7 16.6 14.13-14.4 14.2 14.33-14.35 14.34 

2 A 16.52-16.70 16.6 16.33-16.5 16.4 14.28-14.3 14.3 14.30-14.33 14.32 

 B 16.33-16.52 16.4 16.33-16.5 16.4 14.33-14.4 14.4 14.30-14.35 14.33 

 C 15.60-15.78 15.7 16.33-16.5 16.4 14.15-14.4 14.4 14.30-14.33 14.32 

3 A 16.52-16.70 16.6 16.33-16.5 16.4 14.28-14.3 14.3 14.30-14.33 14.32 

 B 16.33-16.52 16.4 16.33-16.5 16.4 14.33-14.4 14.3 14.33-14.35 14.34 

   C   15.60-15.78   15.7   16.33-16.5   16.4   14.08-14.4   14.3   14.33-14.35   14.34   
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Fig. 5 : Pressure distribution along the true lumen and false lumen for case 1, 2 and 3 during the systolic and 

diastolic phase. 
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3.3.   Time  average wall  shear  stress  distribution (TAWSS) 

 
Time average wall shears stress (TAWSS) is presented to show the spatial variation of 

wall shear stress (WSS) 34.  The highest WSS is found at reentry tear 1 in all cases, i.e 
Case 1: 55.7-58.6 Pa; Case 2: 52.7-55.7 Pa; Case 3: 49.8 – 52.7 Pa during systole. During 
diastole, high WSS was also found around the reentry tear, 1 i.e Case 1: 14.6 -15.5  Pa; 
Case 2: 15.5 – 16.3 Pa; Case 3: 13.8-14.6 Pa. The WSS value during systole is higher as 

compared  to  that  during  diastole.  Fig.  6  shows  the  contour  plot  of  the  TAWSS 
distribution along the true and false lumens in all cases. The highest TAWSS is found at 
reentry 1 in all cases i.e Case 1: 8.47-9.83 Pa; Case 2: 8.07 -8.97 Pa; Case 3: 7.52 - 8.35 

Pa. Other moderate and concentrated TAWSS regions can be observed at the posterior 
false lumen region at entry tear 1 and bottom part of reentry tear 2 (for Case 2 & 3). 
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Fig. 6: Time average  wall shear stress (T AWSS) distribution along the true and false lumen for Case I, 2 and 3 
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4.   Discussion 

 
4.1.   Flow  Distribution 

 
Our CFD simulation results showed that blood travels into the entry tear from the true 

lumen during systole with a high velocity in all cases and this is consistent with that 

reported in Cheng et al 21and Karmonik et al 35. At the distal region, the blood returns to 

the true lumen through the reentry tears. High velocities were observed at the tear regions 

due to the narrow pathway provided by their small cross sectional areas. No flow 

separation observed during systole and this is consistent with findings by Siauw et al36
 

During  diastole,  the  absolute  magnitude  of  the  flow  velocity  was  reduced, 

leading to a change in the pressure distribution along the vessel. As compared to the 

systolic phase, directionally opposite blood flow occurs, where blood enters the false 

lumen through the reentry tears. Consequently, recirculation and retrograde flow patterns 

were observed in all cases, particularly adjacent to the posterior region of the proximal 

false lumen. This is consistent with published experimental and simulation results3,21,35,37. 

The changes of the cross sectional area from the small cross sectional area of the tear into 

the bigger area of false lumen region as well as the reducing of velocity during diastole 

causes the recirculation. This condition has been observed in the left ventricle studies by 

Khalafvand et al 38,39  and in stenosis study by Cheung et al 40. The recirculation flow 

rotates both in the clockwise and the counterclockwise direction, as reported in the 

experimental study by Wong et al 23 and simulation study in the left ventricle by 

Khalafvand et al 39. The aortic dissection geometry is complex due to the narrowing, 

dilation, and bending of the vessel 21 The flow in the dissecting aneurysm may introduce 

recirculation as well the interaction between the blood and the wall. Recirculation has 

been reported to cause a deposition of the platelet 41  that will result in the formation of 

thrombus. 

The presence of an additional reentry tear as created in the current study, in 

overall, does not significantly change the direction of the blood pathway and the 

magnitude of the flow  velocity.  However,  at  the micro level,  the extra reentry tear 

provides an extra return path for the blood to return to the true lumen during systole, and 

an extra outflow path into the false lumen during diastole. This investigation shows that 

the additional tear may give a detrimental effect at the diastolic phase by enhancing the 

flow to false lumen. On the other hand, it may give good effect at systolic phase by 

providing a pathway for the blood to return to the true lumen from the false lumen. 

 
4.2.   Pressure Distribution 

 
Elevated false lumen pressure has frequently been associated with lumen expansion and 

rupture 
3
. Generally, pressure in the true lumen decreases along the flow direction, but 

lesser degree of variation exists for the false lumen 3. Low pressure regions were observed 

near the reentry tears due to the coarctation of the tears. 
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Our simulation results are consistent with those reported by Tse et al. 4, who 

observed that while true lumen pressure was higher than false lumen pressure at the 

proximal  region  during  systole,  opposite  phenomena  occurred  at  the  distal  portion. 

Highest pressure difference between true and false lumen is obtained at the region below 

reentry tear 1 in the false lumen, which may cause further tear progression, false lumen 

rupture and collapse of the true lumen 3
 

Based on an ex-vivo experimental study of chronic type B aortic dissection, Tsai 

et al.24 reported that the lack of distal tear results in a significant increase in the diastolic 

pressure due to an impairment of the outflow from the false lumen to the true lumen. 

Specifically, that study showed the increase of the pressure in the case of 2 tears and this 

is consistent with the finding in the current study.  Similar findings were also reported by 

Karmonik et al. 42 during systole in their simulation study, who found an increase in the 

pressure difference between true and false lumens in the absence of a reentry tear. 

Comparing with the different cases, our simulation results demonstrated the presence of 

an additional reentry tear not only decreases the false lumen pressure at the distal region 

during systole, but also reduced the pressure difference between the true and false lumens. 

Based  on  the  previous  findings  24,42   and  our  simulation  results,  the  presence  of  an 

additional reentry tear increases the number of outflow from the false lumen back to the 

true lumen, thereby reduces the  pressure at the distal region of the false lumen during 

systole. On the other hand, no significant difference is observed between cases 2 and 3 

(with different reentry tear diameters) with regards to the pressure distribution in the true 

and false lumen, possibly due to the fact that the difference in tear sizes (37.5%) between 

the two cases is not sufficient to cause a notable effect on the simulation results. 

 
4.3.   Time  average wall  shear  stress  (TAWSS) Distribution 

 
In all cases, the highest TAWSS was found at reentry tear 1 due to high velocity at that 
region. The simulated TAWSS magnitude is higher than that reported for the normal 

arterial  walls which  is in  the range of one to seven  Pa 43,  which  may promote the 
extension and progression of the reentry tear. This finding is in line with Sheard et al. 

reported study. The endothelial cells are sensitive to changes in the wall shear stress 19 

and elevated levels of WSS may induce damage of the endothelium 37. Elevated TAWSS 

has been associated with the extension of the tear in a post-aneurismal aorta model 4 and 
is considered a reliable indicator of rupture in the case of abdominal aortic aneurysm 

(AAA) 44. Based on the WSS values of the current study, hemolysis is unlikely to occur 

since the values are still below the critical WSS that has been reported by Hellums et al 45. 

On the other hand, moderately high concentrated TAWSS can be found at the 
posterior surface of the false lumen in all cases due to the impingement of jet flow 
passing through  the entry tear  region  onto the posterior  false lumen  region.  Similar 

findings have been reported in the literature 3,21
. As proposed by Rudenick et al 3, slight 

increase in the TAWSS at the false lumen wall may lead to wall weakening and a 
subsequent increase in the lumen diameter, as false lumen only consists of the outer 

media and adventitia layer of the aortic wall 
10

. 
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Generally,  with  the  presence  of  an  additional  reentry  tear,  no  significant 

difference can be found with regards to TAWSS distribution as well as magnitude, except 

at regions adjacent to reentry tear 2. Moderate and concentrated TAWSS was observed at 

the bottom region of the reentry tear 2 in cases 2 and 3, which may lead to further 

extension of the tear distally, until it is connected to reentry tear 1. On the contrary, low 

TAWSS was observed at the upper region of the reentry tear 2 for case 2 and case 3 due 

to low velocity at that region. As proposed by Borghi et al. 46 and proven by Dake et al.  15 

in their study of AAA models, low TAWSS is associated with the formation and 

propagation of thrombus. 
 

 
4.4.   P r a c t ic a l a p p l i c a t i o n o r c l i n i c a l v a l u e 

 
Endovascular stent grafting that covers the entry tears 15 is being used as one of the 

effective  treatment  for  type  B  aortic  dissection.  The  purpose  of  the  endovascular 

treatments is to induce the thrombus formation and close the false lumen.  In 201 number 

of aortic dissection cases, 3 years mortality rate for patients with false lumen patency was 

13.7 ± 7.1%, false lumen partial thrombosis was 31.6 ±12.4% and false lumen complete 

thrombosis was 22.6 ±22.6% 26. This shows that endovascular stent grafting treatment 

that try to form the thrombus in the false lumen shows high mortality compared to the 

patent false lumen. Tsai et al 24  investigated the influence of covering entrance/exit tear 

on the pressure difference and the results showed that covering either the entry or reentry 

tear will results in significant increase of the pressure. Meanwhile, our results showed that 

the presence of three tears reduce the pressure compared to the two tears. Therefore, the 

use of the endovascular stent grafting that covers the tear in order to induce the thrombus 

formation needs to be considered if the covering will lead to the pressure increment and 

eventually cause aortic expansion and rupture. 

In addition, one of the recently developed treatments for chronic aortic dissection 

is fenestration treatment. The concept of this treatment is to create a reentry tear for the 

dead-end false lumen and let the flow back into the true lumen with the aim of preventing 

thrombosis of the false lumen and relieve malperfusion syndromes from true lumen 

collapse 22,47. This concept is similar into our study, showing that presence of the tear will 

lead the flow back to the true lumen and increase of the tear will decrease pressure and 

finally prevent the false lumen expansion and reduce the possibility of the true lumen 

collapse. However, according to Nienaber et al 47, this treatment is a lack of clinical proof 

and in long term there is a risk of rupture as a large reentry tear promotes flow in the false 

lumen and cause of the false lumen expansion. 

. 
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4.5.   Model limitations 

 
In the present study, the aortic wall was assumed to be rigid although it should be 

compliant in a real scenario. However, this is justified to be a reasonable assumption 

given the fact that the compliance of an aneurysmal blood vessel is significantly reduced 

due to the lack of elastin 48. Furthermore, Boussel et al. 48  found that no appreciable 

motion of the vessel wall over a cardiac cycle using cine images. In another study on 

aortic dissection, Karmonik et al 42 also observed low intimal flap mobility through cine 

MRI  images.  The  two-way  transient  fluid  structure  interaction  (FSI)  is  considered 

valuable for investigation of the interaction of artery and blood 
49  50

, , and this will be 

studied in the future experiments.  In addition, the flow was assumed to be laminar.  This 

is based on similar approach used in Tse et al 4, Lam et al 29 and Morris et al 30. It would 

be interesting to compare the results from laminar and turbulent flow cases, however, this 

will be considered in our future study. 

Only one sample patient was selected in this study. This study provides the basic 

insight into the hemodynamic effect to the presence of the two and three tears in the aortic 

dissection  case. Although  different reentry tear  location was simulated in this study, 

further research with inclusion of more patients with different aortic dissection 

configuration is needed to verify our models. Furthermore, this study can be further 

validated using the flow visualization using the clinical data51
 

 
5.   Conclusion 

 
Although the presence of an additional reentry tear neither changes the direction and 

magnitude of the blood flow, the extra reentry tear provides an extra return path for blood 

back to the true lumen during systole, and an extra outflow path into the false lumen 

during diastole. As a result, the false lumen pressure, particularly at the distal region, is 

decreased. The decrease of false lumen pressure is believed to minimize the risk of false 

lumen expansion. In terms of TAWSS distribution, no significant difference is found with 

the presence of an additional reentry tear, except at regions adjacent to reentry tear 2. 

Moderate and concentrated TAWSS found at the bottom region of the additional reentry 

tear may cause further extension of the tear distally, leading to the fusion between the two 

reentry tears. 
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