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Abstract—In this paper, we investigate the channel estimation
problem for multiple-input multiple-output (MIMO) relay com-
munication systems with time-varying channels. The time-varying
characteristic of the channels is described by the complex-
exponential basis expansion model (CE-BEM). We propose a
superimposed channel training algorithm to estimate the individ-
ual first-hop and second-hop time-varying channel matrices for
MIMO relay systems. In particular, the estimation of the second-
hop time-varying channel matrix is performed by exploiting the
superimposed training sequence at the relay node, while the
first-hop time-varying channel matrix is estimated through the
source node training sequence and the estimated second-hop
channel. To improve the performance of channel estimation, we
derive the optimal structure of the source and relay training
sequences that minimize the mean-squared error (MSE) of
channel estimation. We also optimize the relay amplification
factor that governs the power allocation between the source
and relay training sequences. Numerical simulations demonstrate
that the proposed superimposed channel training algorithm for
MIMO relay systems with time-varying channels outperforms
the conventional two-stage channel estimation scheme.

Index Terms—Channel estimation, MIMO relay, superimposed
training, MMSE, time-varying channel, CE-BEM

I. INTRODUCTION

Wireless communication networks have been a revolution-
ary part in the field of communication, and there is a strong
demand for high speed and reliable wireless communication.
Multiple-input multiple-output (MIMO) relay communication
systems have been identified to be one of the promising
solutions to high rate wireless communication [1], [2]. Many
research works have been carried out to optimize the MIMO
relay communication systems [3]-[12]. The optimal relay pre-
coding matrix that maximizes the mutual information between
the source and destination nodes for a three-node two-hop
MIMO relay communication system has been derived in [3]
and [4]. In [5], the capacity of MIMO relay networks for
Gaussian channel and Rayleigh fading channel has been inves-
tigated. Recently, a survey on transceiver design for amplify-
and-forward (AF) MIMO relay systems has been presented in
[6].

In [7], a simple protocol that adopts the transmit antenna
selection with maximal-ratio combining has been proposed for
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multiuser MIMO relay networks. It has been shown in [7]
that to maximize the performance of multiuser MIMO relay
networks, precise channel state information (CSI) in real time
is required. In [8], transmit antenna selection for MIMO multi-
relay networks with different fading environments has been
investigated. The effect of feedback delay and interference
on AF relay networks using transmit beamforming has been
discussed in [9]. Other works on the optimization of MIMO
relay systems can be found in [10]-[12].

For MIMO relay systems discussed in [2]-[12], the knowl-
edge of the instantaneous CSI is required for the retrieval of the
source information at the destination node and the optimization
of the MIMO relay systems by deriving the optimal source and
relay precoding matrices. However, in practical MIMO relay
communication systems, the instantaneous CSI is not available
at any node, and hence, it needs to be estimated.

A least-squares (LS) channel estimator for MIMO relay
communication systems has been developed in [13], where
the individual source-relay and relay-destination channel ma-
trices are estimated from the observed compound source-relay-
destination channel matrix. This work has been improved in
[14] by applying the weighted least-squares (WLS) fitting
method. In [15], the individual channel matrices are estimated
in two stages based on the linear minimum mean-squared
error (MMSE) criterion, where the relay-destination channel
matrix is estimated in the first stage, while the source-relay
channel matrix is derived in the second stage. A parallel
factor (PARAFAC) analysis based channel estimator has been
developed in [16] for MIMO relay systems.

The channel estimation algorithms in [13]-[16] were de-
veloped assuming that the channels in MIMO relay systems
are quasi-static block fading. However, with the increasing
number of mobile wireless devices, the channels in MIMO
relay systems are more likely to be affected by the changing
environment caused by the movement of users. It is stated
in [17] that in wireless relay systems, the Doppler spread
is doubled when there is a relative motion between any two
nodes. Thus, it is essential to address the channel estimation
issues for MIMO relay systems with time-varying channels.
An MMSE-based estimator for time-varying channels has
been proposed in [18] based on the Gauss-Markov model,
where the channel variation is captured through symbol-by-
symbol updating [19]. In [20], the channel estimation problem
has been investigated for doubly selective wireless fading
channels, where the time-varying characteristic of channels is
represented by the basis expansion model (BEM). In BEM, the
channel is represented by the superposition of the time-varying
basis functions weighted by time-invariant coefficients [21].



Note that the channel estimation algorithms in [18] and [20]
were developed for single-hop single-antenna communication
networks.

Channel estimation in AF relay networks under time-
varying environment has been addressed in [22], with the
derivation of optimal training sequences that minimize the
MSE of channel estimation. However, the algorithm in [22]
focuses on the estimation of the composite channel parameters.
Further works on the estimation of the individual channel
for AF relay networks have been done in [23]-[25]. Channel
estimation and training sequence design for time-varying relay
networks have been discussed in [23], where the complex-
exponential BEM (CE-BEM) [20] was adopted to represent
the time-varying channels in terms of Fourier bases. In [24],
the Bayesian Cramér-Rao lower bounds for the estimation
of individual channel matrices have been derived for time-
varying AF relay networks. A time-multiplexed-superimposed
training scheme for zero-prefixed block transmission has been
proposed in [25] to estimate the individual time-varying chan-
nels in AF relay networks. However, the algorithms in [23]-
[25] were developed for single-antenna relay networks, and
the extension to MIMO relay networks is not straightforward.

Compared with single-antenna relay networks, channel esti-
mation for time-varying MIMO relay communication systems
is more challenging, as the number of variables to be estimated
is much larger in MIMO relay systems than that of single-
antenna relay networks. To our best knowledge, the problem of
individual channel matrices estimation has not been addressed
for time-varying MIMO relay systems. To fill the niche, in this
paper, we propose a superimposed channel training algorithm
to estimate the individual first-hop and second-hop time-
varying channel matrices for MIMO relay communication
systems. We use the CE-BEM adopted in [23] to capture
the time-varying characteristic of the channel, and apply the
pilot symbol aided modulation (PSAM) technique [26] for
channel estimation. At the source and relay nodes, training
symbols are inserted among information-carrying symbols in
each data frame for channel estimation. In particular, the
estimation of the second-hop time-varying channel matrix is
performed by exploiting the superimposed training sequence at
the relay node, while the first-hop time-varying channel matrix
is estimated through the source node training sequence and
the estimated second-hop channel. We would like to mention
that all channel estimation works are implemented at the
destination node to minimize the amount of signal processing
at the relay node. We derive the optimal structure of the source
and relay training sequences that minimize the MSE of the
channel estimation. We also optimize the amplification factor
at the relay node that determines the power allocation between
the source and relay training sequences.

We would like to note that the algorithm developed in
[23] is only applicable to single-antenna time-varying relay
systems. Our paper investigates the individual channel ma-
trices estimation for MIMO relay systems with time-varying
channels, and proposes a channel estimation approach different
from [23]. Using the PSAM method proposed in [26] as
the fundamental, we superimpose a training sequence at the
relay node to complete the channel estimation process in one

transmission cycle. Note that the superimposed scheme is not
discussed in [26], and the system model in [26] is much
simpler than the one in this paper. Compared with [23], it
is more challenging to derive the optimal training sequences
and the optimal amplification factor due to the large number
of parameters.

The rest of the paper is organized as follows. The system
model of a three-node two-hop MIMO relay system with time-
varying channels is introduced in Section II. The superimposed
channel training algorithm is proposed in Section III, where
the optimal structure of the source and relay training sequences
and the optimal relay amplification factor are discussed.
Section IV shows numerical simulations to demonstrate the
performance of the proposed algorithm. Finally, conclusions
are drawn in Section V.

II. SYSTEM MODEL

We consider a three-node two-hop time-varying MIMO
relay communication system where the source node transmits
information to the destination node through a relay node as
shown in Fig. 1. The source, relay, and destination nodes
are equipped with Ng, N, and N, antennas, respectively.
In this paper, the direct link between the source node and
destination node is assumed to be sufficiently weak and thus
can be neglectedl. For notational convenience, we consider
a narrow-band single-carrier system. However, our results
can be straightforwardly generalized to each subcarrier of a
broadband multi-carrier MIMO relay system.

Fig. 1. Block diagram of a three-node two-hop MIMO relay communication
system.

The relay node can either amplify-and-forward (AF),
decode-and-forward (DF), or compress-and-forward (CF) re-
layed signals. In the AF protocol, the received signals are
simply amplified (including a possible linear transformation)
through the relay precoding matrix before being forwarded
to the destination node. On the other hand, in the DF and
CF protocols, received signals must be either decoded or
compressed, and then re-encoded before being forwarded to
the destination node. Therefore, in general, the AF protocol
has lower complexity, shorter processing delay, and is easier
to implement than the DF and CF protocols. As the optimal
relay strategy is not the focus of this paper, the AF protocol
is chosen for its simplicity in implementation.

We consider that the relay node is operating in the half-
duplex mode, i.e., the relay node does not transmit and receive
signals at the same time. The choice of half-duplex relay
scheme in this paper is motivated by its simpler practical

"When the direct link is strong and cannot be neglected, it can be estimated
through single-hop MIMO channel estimation algorithms such as [27] and the
references therein. The main focus of this paper is to estimate the individual
time-varying channels for MIMO relay communication systems.



implementation, as the transmit and receive signals at the relay
node do not interfere with each other. The change of channels
between two time phases in the half-duplex mode does not
affect the channel estimation process, and subsequently the
retrieval of the source signal. The half-duplex relay scheme
has been widely used in MIMO relay communication systems
[6].

The pilot symbol aided modulation (PSAM) technique [26]
is applied to estimate the time-varying channels, where pilot
symbols are inserted among information-carrying symbols in
each data frame for channel estimation. Let us denote ¢;, [ =
1,---, L, as the time indexes (locations) of the pilot symbols
within one data frame of duration 7' (I" > L), where L is the
length of the pilot sequences. The channel estimation process
is completed in two time blocks. In the first time block, pilot
symbols s,,(t;) (along with the information-carrying symbols
in each data frame) are transmitted from the mth antenna of
the source node, m =1,--- , Ny, [ = 1,---, L. The received
pilot symbols at the nth antenna of the relay node is given by

N
Yr.n tl Z hnm tl Sm(tl) +Urn<tl)
m=1
n:17"'7NT7 l:177L (l)

where Ay, (t;) is the first-hop time-varying channel from the
mth antenna at the source node to the nth antenna at the relay
node at time ¢;, v, ,,(¢;) is the noise at the nth antenna of the
relay node. In the second time block, the relay node amplifies
Yrn(t)),n=1,--- N, 1l =1,--- L, and superimposes its
own training sequence r,(t;) before retransmitting the signal
to the destination node. The transmitted signal at the nth
antenna of the relay node can be written as

xr,n(tl):\/ayr,n(tl)+rn(tl)u n:L"'uN'm lZlaaL
where o > 0 is the relay amplifying factor.
The pilot symbol received at the kth antenna of the desti-

nation node is given by

N,
e(t) = O gen(t)rn(t) + var(ty),

n=1

]le,"',Nd, l:177L (3)

where gr,(t;) is the second-hop time-varying channel from
the nth antenna at the relay node to the kth antenna at the
destination node at time t;, vgx(f;) is the noise at the kth
antenna of the destination node. All noises are assumed to be
independent and identically distributed (i.i.d.) additive white
Gaussian noise (AWGN) with zero mean and unit variance.
By substituting (1) and (2) into (3), we have

tl \/> Zzgkn tl nm tl Sm tl +Z Gkn tl Tn tl)

m=1n=1
+ﬁ§lmWMAm+mM0
k=1, Ny l=1,-- L )

The complex-exponential basis expansion model (CE-BEM)
is used to represent the time-varying characteristic of channels

as
— Zﬂnm ej271't q— %)/T
17" N87 ﬂ—l, 7N’I”7 t=1 7T(5)
Q
gkn Z >\k71 6] 27rt >/T
n_17"'7NTa k:17"'7Nd7 t=1 aT(6)

where j = v/—1, ptnm(q) and Mg, (q) are the BEM coefficients
that do not change within the duration of one data frame 7',
and @ is the number of bases. The complex exponential terms
in (5) and (6) are the Fourier bases that describe the time-
varying characteristic of channels. Note that the value of )
depends on T and the channel bandwidth f, and should be
at least 2[ fT] [20], where [a] denotes the smallest integer
greater than a. In this paper, we assume that all channel links
have the same number of bases (), and the generalization to the
case where each channel link has a different number of bases is
straightforward. We also assume that the channels A, (t) and
grn(t) are wide-sense stationary (WSS) zero mean complex
Gaussian (ZMCG) random process with constant variances,
tnm(q) and Agy,(q) are random variables with zero mean and
independent with each other.

The idea of the proposed superimposed channel train-
ing algorithm is to estimate the second-hop channels
{9k (1)} = {gen(t),k = 1, \Nayn = 1,--- Nyt =
1,---,T} though estimating {Agn,(q)} {Men(q), k =

,Ngyn =1,---  Np,qg = 1,--- ,Q} using the super-
imposed relay training sequence {r,(t;)} £ {rn(t;),n =
;oo Nyl = 1,---,L}. Then, the first-hop channels
{hom®)} = {hum(t),n = 1,--- \Nyym = 1,--- Nt =
1,---,T} are estimated through estimating {j,n(q)} =
{unm(q)ﬂn = ]-7 aNTam = ]-7 7Nsaq = ]-a aQ}
using the source training sequence {s,,(t;)} 2 {5, (), m =
,Ng,l = 1,---, L} and the estimated {\r,(q)}. An
advantage of the proposed superimposed channel training
algorithm is that the channel estimation process is completed
in one transmission cycle.

III. MMSE-BASED OPTIMAL TRAINING MATRICES

In this section, the optimal training sequences {s,(¢;)} and
{rn(t;)}, and the relay amplifying factor « that minimize the
MSE of channel estimation are derived. From (5) and (6), we
have

127rtz(p+q—Q)/T

Gkn tl nm tl Z Z /\kn Mnm
p= Oq 0
*me )it )
1=0
wherem—l -y Ng,n=1,--- N, k=1,--- ,Ng, |l =
L, 0, é 21(i — Q)/T and

2Q. (8)

-rknm

Z )\kn /J/nm - )7 1=



By substituting (6) and (7) back into (4), we obtain

N. N, 2Q

=Vad > D @hm(i)

m=1n=1 =0

30 tls (tl)

T

Q
+ Z Z )\kn(Q)

n=1¢g=0
k:]_’...

€j¢qtl’rn(tl) + ’T}k(tg),

7Nd7 lzlavL (9)

where ¢, £ 27(q — Q/2)/T and

Ny
0) 2V gen(t)ven (t) + van(t),
=1

kzlv"'7Nd7 l:1a7L (10)
is the equivalent noise at the kth antenna of the destination

node.
Let us denote y, =

Sm = diag[sm(tl); Sm (t2)7 ce

[yk(tl)’yk(tQ)a ’ ayk(tL)]T,
75m(tL)L R, % ((iag[rn(tl)

ra(ta), - ra(to)]s Vi 2 [op(t), Ok(ta), - )], and
Akn 2 [Akn(O),Akna) < A (@) (11)
N, T
Xkm £ Zxknm Z-rkn’rn Z-rkn’rn 2Q 3 (12)
n=1
edfots ... 6.792Qt1 e]¢0t1 ... edPet
es| : .. |,®&] Do (13)
elfotn ... cif2qtL eJdot ... pidQtL

where ()T denotes the vector (matrix) transpose and diag]]
stands for a diagonal matrix. Then we can equivalently rewrite
(9) in matrix vector form as

N, N,
YE=vV Y SmOXpm + Y Ry @Ay + Vi

(14)
m=1 n=1
:Abk+‘_’k7 k::la"'7Nd (15)
where

A 21[/aS,0 ,VaSN. O, R, ® , Ry, @]

c CLX[NS(2Q+1)+N7'(Q+1)] (16)
T

bké [lev"' >X£N57A£1"" 7A£N,,v] (17)

Here by, in (17) is the vector of unknowns containing the BEM
coefficients that need to be estimated at the destination node.

We apply a linear estimator at the destination node to
estimate by, due to its simplicity. The estimated by, is given
by

b =Wlyr, k=1 Ng (18)
where Wy, is the weight matrix of the linear receiver and
()" denotes the matrix (vector) Hermitian transpose. From
(16), we have L > N,(2Q 4+ 1) + N,.(Q + 1) since a linear

estimator is used. From (15) and (18), the MSE of estimating

b k=1,

5=t (B o) () ])

_Ztr( [WkA ID)Cbk(WkA_ID)H

, Ng, is given by

+W Cy e Wi]) (19)

where tr(-) denotes the matrix trace, E[-] stands for the
statistical expectation, I,, represents the n x n identity matrix,
D £ Ny(2Q + 1) + N (Q + 1), Cp = E [bpbf] is the
covariance matrix of by, and Cyj, £ E [v;,vf] is the noise
covariance matrix.

To find Cy i, we first compute the covariance matrix of Xp,
using (8) and (12) as

Cla)c:IT = E[kakam]
N, N, il
<Z )‘kn*l’l‘nm> (Z Akn*”’nm)
=1 n=1

N,
Zdlag [opxat ], m=1,--- N, (20)

where a * b denotes the linear convolution between vec-
AQT

2,0
tors a and b, a',i‘n )\: [Oms s oIt ok, =
(ot - oteR]™, and o7 = B[ (9) A, (¢)] and Uﬁf?n:

E[ttnm (g )unm(q)] are the 'Variances of Men(q) and iy (q),
respectively. Here, (-)* denotes complex conjugate. Similarly,
from (11), the covariance matrix of A, can be written as

Cot =Een AL
—diag [o} 0, o?] n=10 N @D

Based on (20) and (21), the covariance matrix C;j can be
rewritten as
Cpr=bd[C{,.Cpr]. k=1, Ny
where bd[] represents a block diagonal matrix and
T z,l z,Ng
bi=bd [Cpt, Cp ]

Ch =bd [Tt O] (22)

Since all noises are assumed to be i.i.d. with zero mean and
unit variance, from (10) we have

N’!"
Cox = (aZagm—i—l) I, k=1,

n=1

7Nd

where az’n = Elgk,n ()95, (t1)] is the variance of g, (1),
l=1,---,L.
The optimal weight matrices Wy, k& = 1,--- Ny that
minimize the MSE in (19) are given by
Wi = (ACyxA™ + Cy) 'ACyy, k=1, Ny
(23)



where (-)~! stands for matrix inversion. Substituting (23) back
into (19), the MSE of channel estimation is given by

Ng -
MSE = tr ([cb; +ATCLA] 1) .
k=1

The transmission power constraint at the source node can be
written as
Ns
H
E SmSm < P,
m=1

where s,, 2 [s;m(t1),5m(t2), -+ ,sm(tr)]” and P, is the
transmission power available at the source node. The trans-
mission power constraint at the relay node can be calculated
from (2) as

N, L
E [Z Z |xr,n(tl)21

n=1 =1

(24)

(25)

N; N, N,

= Z O’Z’mernSm + Z rr, +aN,L < P.(26)
m=1n=1 n=1

where ol = Elhnm(ti)h},,(t)] is the variance of

hnm(t), 0 =1,---, L, P, is the transmission power available
at the relay node, and r,, = [r,,(t1),- -+ , 7 (tn)]".

Based on (24)-(26), the optimal pilot sequences and the
optimal « design problem can be written as

Ny B
min tr( [Cpt+ATC A > 27
{sm}.{rn},a>0 kZ:1 < b,k B,k

NS
s.t. Z s,Hnsm < P,

(28)
« Z Z Un m msm + Z r,Tn
m=1n=1
+ aN,.L <P, (29)

where {s,,} £ {sp,m = 1,--- Ny} and {r,} £ {r,,n =
1,--+, N,.}. The optimal structures of {s,,} and {r, } as the
solution to the optimization problem (27)-(29) are derived in
the following theorem.

THEOREM 1: The optimal training matrices {s,,} and {r,}

satisfy the following equations for all m,p = 1,---, Ny and
n,q = ]-7 er
(Sm®©)"8,,0 = Bulag i1 (30)
(R, ®)"R,® = 7,104 (31)
($,©)78,0 =0, m#p (32)
(R, ®) R, ®2=0, n#gq (33)
(Sn®) R, ® = (34)

where (3,, = sgsm, m=1,---,Ng, and v, = rffrn, n =
1,---,N,.
PROOF: See Appendix A. (]
One example of achieving (30)-(34) is given as follows.

By exploiting the Vandermonde structure of ® and ®, and

the structure of 6, and ¢,, the conditions (30) and (31) are
satisfied by

i=1,---,L, m= 1 Ns, n=1,--, N, (35)

where s, ; = sm(iT/L) and 7,,; = r,(iT/L). Interestingly,
(35) indicates that it is optimal in terms of the MSE of the
channel estimation to place pilot symbols in each data frame
with equal intervals. Moreover, with a given power allocation
Bm at the mth antennas of the source node and -, at the nth
antenna of the relay node, it is optimal to equally allocate
the power to the pilot symbols. In the following, we solve
(32)-(34) based on t; =iT'/L,i=1,--- , L.
To satisfy the condition (32), there should be

L
Z S:nyleijZﬂl(piQ)/Lsn,leﬂﬂl(qu)/L =0,

p7q:05"'a2Qa mvnzla"'7NS7m#n
which is equivalent to

L

=1

k:_2Q7"'72Q7 m7n:17"'aNS7m7én' (36)

Similarly, to satisfy (33) and (34), we need to have

L
=1
p:_Qv'”va mvn:]-,"'aerm%n (37)
L
Z S:n,lrn,leﬂﬂql/L =0,
=1
g=-3Q/2,---,3Q/2, m=1,---,Ns, n=1,---,N,. (38)
One way to satisfy the conditions (35)-(38) is
Tol = 'Yn/L ej?ﬂl(n—l)(Q-l—l)/L?
n=1,---,N., [=1,---,L (39)
Smi=/Bm/L eJ'Zfrl(Nr(QJrl)JrQ/2+(mf1)(2Q+1))/L7
m=1,---,Ng, [=1,---,L. (40)

The training symbols shown in (39) and (40) have the advan-
tage that they are easy to implement as the elements of s,
(also r,,) have a constant magnitude.
Using Theorem 1 and (53), the MSE function in (24) can
be written as
N,

Ny B
MSE = Ztr <Z [(C;’IT)?I + aﬁmnkI2Q+l} '

m=1
N7

Z [ Cg\k L+ '7n77kIQ+1} _1>

=1
Ny 2Q+1

+

1
Ckym,qg + aBmn
1

+ S — 1)
dk,n,p + Yn Mk



[(Cf I;”) 1}q,q7 dkmm <

[(Cy7)~ Y, and [];.; denotes the jth diagonal element of a
matrix. From (41), the problem (27)-(29) can be equivalently
rewritten as the following optimization problem with scalar
variables

N, 4 2Q+1
{Bm} {'Yn} @ Z ; Ck ,m,q + aﬁmnk

=1k
N, Ng Q+1 1
g kz Zl k KON + Tk

where 7, is defined in (52), ¢k m,q =

(42)
N
s.t. Z (43)
NS N,
QD EmBmt+ Y m+aN.L< P (44)
m=1 n=1
O[>0, /Bmzovm:]-,"'aNsv
Yo 20, n=1--- N, (45)

Where {ﬁm} é {/Bmvm = 1) aNS}’ {’Yn} é {Fynan -

N}, and &, 2 3207 o0
As ¢km,q> dk,n,p, and ny are known variables, when « is
fixed, it can be seen that the first and second set of fractions in
the objective function (42) are monotonically decreasing and
convex with respect to 3, and -y, respectively. Moreover, the
constraints in (43)-(45) are linear inequality constraints when
« is fixed. We can conclude that the problem (42)-(45) is a
convex optimization problem with respect to 3,,, and ~y,, when
« is fixed. The optimal S, and -y, can be efficiently derived
using the Karush-Kuhn-Tucker (KKT) optimality conditions
[28] of the problem (42)-(45), where the gradient conditions
are given by

Ny 2Q+1

ZZ 20K, M=, -, N,(46)
k=1 g=1 Ck,m,q"’aﬁmnk)

Ng Q+1

ZZ— p2, n=1-- N, 47
k=1 p—=1 kn,p“—’)/nnk)

where 111 > 0 and po > 0 are Lagrange multipliers such that
the complementary slackness conditions given by

N,
] (PS -y ﬁm> =0
"N n,
2 (Pr_azﬁmﬁm_z’yn_aNrL> =0
m=1 n=1

are satisfied.

For given «, p1, and g, the non-negative {3,,} and {v,}
can be found by applying the bi-section search, since the left-
hand side (LHS) of (46) and (47) are monotonically decreasing
functions of (3, and ~,, respectively. To find the optimal f;
and po, we apply an outer bi-section search as the LHS of
(43) is an increasing function of f3,,, and the LHS of (44) is
an increasing function of (,, and ~,, while in (46), £3,, is a
monotonically decreasing function of pq and ps, and +y, is a
monotonically decreasing function of psy in (47).

03 04 0d5 06 07 08 09 1
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Fig. 2. NMSE versus « for different Ps and P = 20dB with N = 2 and
Q=4

When « is not fixed and needs to be optimized, the problem
(42)-(45) as a whole is not a convex optimization problem.
However, it is proven in the following theorem that (42) is a
unimodal function of a.

THEOREM 2: The objective function (42) with the con-
straints (43)-(45) is a unimodal (quasi-convex) function with
respect to a.

PROOF: See Appendix B. ]

A plot of the MSE value over a range of feasible value of
« is shown in Fig. 2 to validate Theorem 2. We consider the
case where all the nodes have the same number of antennas,
ie, Ny =N, = Ny =N = 2, and Q = 4. We obtain the
normalized MSE (NMSE) by dividing the objective function
(42) with L = Ns(2Q + 1) + N,.(Q + 1). Fig. 2 shows the
NMSE versus « for different P; and P, = 20dB. It is obvious
from Fig. 2 that the objective function (42) is a unimodal
function with respect to «. Moreover, the optimal value of «
varies with Py, where the optimal « has a smaller value when
P, increases. The minimum value of a unimodal function can
be efficiently found by using the golden section search (GSS)
method [29]. Thus, we can apply the GSS method described
in Table I to obtain the optimal « for the problem (42)-(45),
where ¢ > 0 is the reduction factor and ¢ is a positive constant
close to zero. It is shown in [29] that the optimal ¢ = 1.618,
which is also known as the golden ratio.

TABLE I
PROCEDURE OF APPLYING THE GOLDEN SECTION SEARCH (GSS) TO FIND
THE OPTIMAL « IN THE PROBLEM (42)-(45).

1) Set a feasible bound [a, b] on a.
2) Define c; = (¢ —1)a+ (2 —¢)band ca = (2 — ¢p)a+ (¢ — 1)b.
3) Solve the problem (42)-(45) for o = cy;
Compute the MSE value defined in (42), fysg(c1) for a = ;.
4) Repeat Step 3 for o = c2.
5) If fMSE(Cl) < fMSE(CQ), then assign b = ca.
Otherwise, assign a = cj.
6) If |b — a| <e, then end.
Otherwise, go to step 2.

Once the estimated xg,,, and Ap, are obtained from (14),



we can estimate p,,,,, as follows. From (8) we have

N,
Xkm = § Akn * Honm

n=1

N,
= Cen)ty, k=1,-+-Nay, m=1,---, N,(48)
n=1

where C(a) is a (2Q + 1) x (Q + 1) column-wise circulant
matrix taking [aT’, 015g|T as its first column. We can rewrite
(48) in matrix vector form as

'I',um:xm, m:l, aNs (49)
where
C(A1) -+ C(an,) Him
T2 : . : T :
C(An,1) -+ C(Anyn,) KN, m
X1im
A
Xy =
XNgm
Then, from (49), the estimated p,,,,, is given by
fl, = X%, m=1,--- N, (50)

where () denotes the matrix pseudo-inverse. Since Y is an
Ng(2Q + 1) x N,.(Q + 1) matrix, the estimation (50) holds if
Nd(2Q + 1) > NT(Q + 1).

Once the estimated {fn,(¢)} and {A,(q)} are obtained,
an estimation of the time-varying channels {h,,(t)} and
{grn(t)} can be obtained using (5) and (6), respectively.

IV. NUMERICAL EXAMPLES

In this section, we study the performance of the proposed
superimposed channel training algorithm for time-varying
MIMO relay systems through numerical simulations. We con-
sider a three-node two-hop MIMO relay system where the
source, relay, and destination node are equipped with Ny, N,.,
and N, antennas, respectively. For simplicity, it is assumed
that all BEM coefficients have unit variance. We use the
shortest training sequence possible, i.e., L = Ng(2Q + 1) +
N, (Q + 1). For all scenarios, we compute the NMSE of
channel estimation at the destination node.

Unless explicitly mentioned, we assume that all nodes are
equipped with the same number of antennas, i.e., Ny = N, =
Ng = N, and the source and relay nodes have the same
transmission power, i.e., Ps = P, = P. Then the shortest
training sequence possible is given by L = N(3Q +2). In the
first example, we study the impact of o on the performance of
the proposed superimposed channel training algorithm. Fig. 3
shows the NMSE of the proposed algorithm versus P for
different « when N = 2 and @ = 4. We apply the GSS
technique in the superimposed channel training algorithm to
obtain the optimal « for different P, and thus the optimal
a curve in Fig. 3. It can be observed from Fig. 3 that the
optimal « curve always has the lowest MSE value for all
P, and hence proves the efficiency of the GSS method in

NMSE

—*— Optimala
10| ——a=0.01
—A—a =0.03
——a =0.05
—=—a =0.08
a=0.12

5 10 15 20 25 30
P (dB)

Fig. 3. Example 1: NMSE versus P for different o with N = 2 and Q = 4.

obtaining the optimal « for different P. Moreover, it can be
seen from Fig. 3 that the optimal « at low P level is smaller
compared with the optimal « at high P level. This indicates
that the use of a constant « is strictly suboptimal. Note that
the starting point for the curves associated with o = 0.08
and o« = 0.12 is at P = 10dB, as these values of a have
exceeded the upper bound limit of the o for P = 5dB. The
optimal « is used for the following numerical simulations of
the superimposed channel training algorithm.

In the following simulation examples, we compare the per-
formance of the proposed algorithm with the conventional two-
stage MMSE-based channel estimation algorithm. At the first
stage of the two-stage channel estimation algorithm, a training
sequence is transmitted from the relay node to estimate the
relay-destination channel matrix, while at the second stage,
the source-relay channel matrix is estimated by using the
training sequence sent from the source node [15]. To the best
of our knowledge, no other channel estimation algorithm has
been proposed to estimate the individual time-varying channel
matrices of the source-relay and relay-destination links in
MIMO relay systems. The conventional two-stage channel
estimation algorithm is chosen as a benchmark due to its
simple implementation. We would like to note that to make
a fair comparison, we have extended the two-stage channel
estimation algorithm in [15] from block fading MIMO relay
channel to time-varying MIMO relay channel.

In the second example, we investigate the performance of
the two algorithms at various number of antennas. Fig. 4 shows
the NMSE performance of both algorithms versus P for dif-
ferent N when Q = 4. As expected, the NMSE of the channel
estimation increases when the number of antenna increases due
to a larger number of unknowns to be estimated. It can also be
observed from Fig. 4 that the proposed algorithm consistently
has better NMSE performance compared with the conventional
two-stage channel estimation algorithm, especially at high P
level.

In the third example, we study the effect of the number of
bases () on the performance of the proposed superimposed
channel training algorithm and the conventional two-stage
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Fig. 5. Example 3: NMSE versus P for different @ and N = 2.

channel estimation algorithm. Fig. 5 shows the NMSE of both
algorithms versus P for different () when N = 2. It can be
seen that when @ increases, the NMSE of both algorithms also
increases, with our proposed algorithm performing better than
the conventional two-stage channel estimation algorithm. This
is because with larger (), there are more BEM coefficients
to be estimated. The selection of () is beyond the scope of
this paper. However, it has been stated in [23] that the time-
varying channels are more accurately represented by the CE-
BEM when a larger @) is used.

In the fourth example, we consider that the power available
for transmission at the source node and relay node is different.
Fig. 6 demonstrates the NMSE performance of the proposed
algorithm and the conventional two-stage method versus P;
for different fixed P, when N = 4 and ) = 4. As expected,
it can be seen from Fig. 6 that the NMSE performance of both
algorithms improves when the power at the source and/or relay
node increases, and our proposed algorithm outperforms the
conventional two-stage method for all scenarios.

In the fifth example, we study the performance of the
proposed superimposed channel training algorithm and the
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10'
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)
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— o — Conventional, P= 10 dB . il
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5 10 15 20 25 30
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Fig. 6. Example 4: NMSE versus Ps for different P, with N = 4 and
Q=4.
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Fig. 7. Example 5: NMSE versus P for different number of antennas at each
node and Q = 4.

conventional two-stage channel estimation algorithm when the
nodes in the relay system have different number of antennas.
Fig. 7 shows the NMSE performance of both algorithms versus
P for different Ny, N,, and N; when Q = 4. It can be
observed from Fig. 7 that the proposed algorithm consistently
has a better NMSE performance than the conventional two-
stage channel estimation algorithm for various combinations
of Ng, N,., and Ny.

Finally, we compare the complexity of the proposed su-
perimposed channel training algorithm with the conventional
two-stage channel estimation algorithm. The complexity of
the proposed superimposed channel training algorithm can be
estimated as O(cqccpy Na(Ns(2Q+1)+ N, (Q+1))), where
Co, 18 the number of GSS iterations required to obtain the
optimal «, ¢, represents the number of loops in the outer bi-
section search to obtain the optimal 1; and p2, and cg., stands
for the number of bi-section operations required to obtain
the optimal (,, and ~,. The complexity of the conventional
two-stage channel estimation algorithm can be estimated as
O(Ng(Ns(2Q +1) + N,(Q+1))). It can be clearly seen that



the proposed algorithm has a similar computational complexity
order as the conventional algorithm. However, the performance
of the proposed algorithm is much better than the conventional
two-stage channel estimation algorithm.

V. CONCLUSIONS

We have proposed a superimposed channel training algo-
rithm to estimate the time-varying channels in MIMO relay
communication systems. The proposed algorithm takes into
account the time-varying characteristic of the channels and
can efficiently estimate the individual CSI for MIMO relay
communication systems. The optimal structure of the source
and relay training sequences and the optimal power allocation
between the source and relay training sequences are derived.

APPENDIX A
PROOF OF THEOREM 1

Let us define ¥g 2 [S;0,9,0, - ,Sy. O] and ¥y =
[R1®, R, ® , Ry, ®]. From (27), the MSE can be rewrit-
ten as

|
(fawh
J ol

Ng

MSE :Z tr
k=1

Ci, O
0 Cp

)(fws,m)]

(S1)
where

N, -1

n=1

Na.  (52)

From (20)-(22), Cf,, and Cp are all diagonal matrices.
Hence, the MSE in (51) is minimized only if all off-diagonal
matrices of the second term are zero, i.e.,

viws =D, Ay, =D,, vHwL =0

where Dy £ diag[Ds1,Ds9,,Dsn,] and D, =
diag[D,1,D, 2, -+ ,D, n,] are diagonal matrices, and O de-
notes a zero matrix. From the definition of g and Wi, we

have that for m,p=1,--- ,Ngand n,q=1,--- , N,
(Sm®)78S,,0 =D, ., (Sn©®)78,0 =0, m#p
(]-:{'nq:.)j—ll:{n(P = DT',na (:R"n(I’)H]-:{'q(P = 07 n 7é q

(Sm®) R, ® = 0.

Then we can rewrite the MSE in (51) as
N,

MSE = Ztr (Z [ Cf”;n)_l + ankDS)m} o

m=1
—1

+Z{

Moreover, due to the structure of ® and ® in (13), we have
D¢ = BmI2g+1 and Dy, = v,1g41. This indicates that

H
S;Sm = ﬁ’rru mzlv' )

(53)

Ng, rnHr n=1,--,N,.
(54)
We would like to note that the transmission power constraints

in (28) and (29) are not affected by (54).

n= Tn,

APPENDIX B
PROOF OF THEOREM 2

Let us denote &, = afy, m = 1,---
(42)-(45) can be rewritten as

, N, the problem

N, N 2Q+1

{ﬁm} {%} @ Z Z Z

Ckym,qg + gvrznk

m=1k=1 g=1
N, Ng Q+1 1
LD DD DD D ey (55)
n=1k=1 p=1 dknp"_'ynnk
Ns
s.t. Z fm < ozPS (56)
m:l
Zﬁmfm-FZ%SP —aN,L (57)
m=1
a >0, fmZO,m_L -, N,
’YnZO,n:]_7~~.7NT (58)

where {¢,,} £ {&n,m = 1,---, Ng}. We first ignore the
effect of o on all 7, by assuming them as known variables.
Then the problem (55)-(58) is a convex optimization problem
as the objective function (55) is convex with respect to {&,,}
and {~, }, and (56)-(58) are linear inequality constraints. From
(56) - (57), we can see that when « is sufficiently small, the
objective function (55) is strongly governed by (56), as (57)
is inactive in this case. The increment of o from a small value
results in a decrement of (55), as the feasible region specified
by (56) expands. On the other hand, when « is large, i.e., close
to P./(N, L), the objective function (55) strongly depends on
the constraint (57), as the constraint (56) is inactive in this
case. When « decreases from a large value, (55) also decreases
as the feasible region specified by (57) expands.

Now we investigate the effect of o on 7. From (52), it
can be seen that 7, is a monotonically decreasing function
of «, and the objective function (55) increases when 7
decreases. Then, from the discussion above, we can see that
when « increases from a significantly small positive number,
the objective function (55) decreases since the potential decre-
ment of (55) caused by the expanded feasible region of (56)
dominates the potential increment of (55) due to the decreasing
of 7. The objective function (55) continues to decrease till a
‘turning point’ where the constraint (56) loses its dominance.
After such turning point, the value of (55) is monotonically
increasing with an increasing «. Thus, we can conclude that
the objective function (42) with the constraints (43)-(45) is a
unimodal function with respect to a.
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