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Abstract 

This paper presents a new methodology for the 
deformable object modelling by drawing an analogy 
between cellular neural network (CNN) and elastic 
deformation. The potential energy stored in an elastic 
body as a result of a deformation caused by an external 
force is propagated among mass points by the non-linear 
CNN activity. An improved autonomous CNN model is 
developed for propagating the energy generated by the 
external force on the object surface in the natural 
manner of heat conduction. A heat flux based method is 
presented to derive the internal forces from the potential 
energy distribution established by the CNN. The 
proposed methodology models non-linear materials with 
non-linear CNN rather than geometric non-linearity in 
the most existing deformation methods. It can not only 
deal with large-range deformations due to the local 
connectivity of cells and the CNN dynamics, but it can 
also accommodate both isotropic and anisotropic 
materials by simply modifying conductivity constants. 
Examples are presented to demonstrate the efficacy of 
the proposed methodology. 

 
1. Introduction 

Virtual reality based surgery simulation is expected 
to provide benefits in many aspects of surgical 
procedure training and evaluation. To this end, a 
significant amount of research efforts have been 
dedicated to simulating the behaviours of deformable 
objects. These research efforts can be divided into two 
classes. One is focused on real-time simulation such as 
mass-spring models [1, 2] and spline surfaces used for 
deformation simulation and visualization [3, 4]. The 
advantage of this method is that the computation is less 
time consuming and the algorithm is easier to be 
implemented. However, the method does not allow 
accurate modelling of material properties, and more 
importantly, increasing the number of springs leads to a 
stiffer system. The other method focuses on deformation 
modelling using techniques such as Finite Element 
Method (FEM) [5, 6] and Boundary Element Method 
(BEM) [7, 8]. In FEM or BEM, rigorous mathematical 
analysis based on continuum mechanics is applied to 
accurately model the mechanical behaviours of 
deformable objects. However, these methods are 
computationally expensive and are typically simulated 
off-line. The pre-calculation [7], matrix condensation 
[9], the space and time adaptive level-of-detail [10] and 
explicit finite element [11] techniques are used to 
enhance the computational performance. 

In general, most of the existing methods for 
deformable object modelling are fully built on a linear 
elastic model to describe the deformation, while the 
behaviours of deformable objects such as human tissues 
and organs are extremely nonlinear [12, 13]. The 
common deformation methods, such as mass-spring, 
FEM and BEM, are mainly based on linear elastic 
models because of the simplicity of linear elastic models, 
and also because linear elastic models allow reduced 
runtime computations. However, linear elastic models 
cannot accommodate the large-range geometric 
deformations and the displacements are only allowed to 
be less than 10% of the deformable object size [12, 14]. 
Although few methods based on the nonlinear elastic 
model can handle the large-range deformations [15], the 
use of quadric strains generally requires a very 
expensive computation for real-time simulation. The 
runtime assembly of all the force terms for every 
element limits the interactivity to only a few hundred 
elements. In addition, only geometric nonlinearity is 
modelled rather than non-linear material properties, 
extra work often needs to be performed for anisotropic 
deformations. 

This paper presents a new methodology for the 
deformable object modelling by drawing an analogy 
between cellular neural network (CNN) and elastic 
deformation. The deformation is formulated as a 
dynamic CNN. The potential energy stored due to a 
deformation caused by an external force is calculated 
and treated as the energy injected into the system, as 
described by the law of conservation of energy. An 
improved autonomous CNN model is developed for 
propagating the energy generated by the external force 
among mass points through the local connectivity of 
cells and the CNN dynamics. The improved CNN model 
provides a natural manner for energy propagation since 
the local connectivity of cells acts as the local 
interaction of heat equation. A heat flux based method is 
presented to derive the internal forces from the potential 
energy distribution established by the CNN. The 
methodology can not only deal with large-range 
deformations due to the local connectivity of cells and 
the CNN dynamics, but it can also accommodate both 
isotropic and anisotropic materials easily through 
simply modifying the conductivity constants. 

There are several investigations that combine 
neural network with deformable modelling [16, 17]. 
However, in these methods, neural networks are mainly 
used to determine the parameters of mass-spring models. 
To the best of our knowledge, this study is the first to 



directly use neural network techniques to mimic the 
behaviours of deformable objects under externally 
applied loads. The contribution of this paper is that 
non-linear materials are modelled with non-linear CNN 
rather than geometric non-linearity, and CNN 
techniques are used to naturally propagate the energy 
generated by the external force and further to 
extrapolate the internal forces from the natural energy 
distribution for deformations. 
 

2. Design of CNN Model 
2.1 CNN Analogy CNN is a dynamic nonlinear circuit 
composed by locally coupled, spatially recurrent circuit 
units called cells, which contain linear capacitors, linear 
resistors, and linear/nonlinear current sources. One 
significant feature of CNN, as well as the basic 
difference from other neural networks, is the local 
connectivity of cells [18], i.e. any cell in CNN is 
connected only to its neighbouring cells. Adjacent cells 
directly interact with each other. Cells not directly 
connected to each other have indirect effect because of 
the propagation effects of the continuous-time dynamics 
of CNN. The activity of a cell is propagated to other 
cells through the local connectivity of cells and the 
time-continuous dynamics. Therefore, CNN provides a 
manner for modelling the physical process of energy 
propagation. 

Another significant feature of CNN is that the 
individual cells are non-linear dynamical systems, but 
that the coupling between them, i.e. the local 
connectivity of cells, is linear [19]. The feature makes 
CNN very suitable for modelling non-linear materials 
since CNN conserves the physical properties of the 
continuous structure. 

In addition, given the initial state and the external 
environment, CNN activity is only determined by the 
local connectivity of cells. The local connectivity of 
cells is similar to the internal force since the 
deformation is only determined by the internal force 
under the given external force and the initial state. 

Further, CNN offers an incomparable computation 
speed due to the collective and simultaneous activity of 
all cells. The computation advantage of CNN is very 
suitable for real-time the computation requirement of 
deformable object simulation. 

Deformation of deformable objects is actually a 
process of propagating the energy generated by the 
external force. The process of energy propagation can 
be described by a CNN, in which the activity of a cell is 
propagated to others through the local connectivity of 
cells and the CNN dynamics. In the proposed CNN 
analogy, the deformation of deformable objects is 
treated as the activity of a CNN. The object surface with 
locally connected mass points is treated as a CNN with 
locally connected cells. The energy generated by the 
external force is treated as the current source of the 
contact cell. As a result of the CNN activity, the energy 
is propagated among mass points through the local 
connectivity of cells and a potential field is further 
developed on the object surface. The activity of a cell 
always follows the potential change, moving from a 
high potential energy point to a low potential energy 
point. Therefore, such a CNN with the current source, 

the local interaction generated from the local 
connectivity of cells and the activity can be seen as a 
communication medium among an external force, 
internal forces and deformation. 
2.2 CNN Architecture A CNN model can be applied to 
different grid types. Without loss of generality, we 
consider a CNN on a rectangular grid with M rows and 
N columns. Each node on the grid is occupied by a cell. 
The dynamics of the array of M×N cells is described by 
the following equation and conditions [18]: 
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where (i, j) refers to the cell associated with the node 
under consideration, (k,l) to a cell in the neighborhood 
of the cell (i, j), namely Nr(i, j), within a radius r of the 
cell (i, j) (r=1 for simplicity). C is the capacitance of a 
linear capacitor, xR  is the resistance of a linear 
resistor, and I is the current of the independent 
linear/nonlinear current source. A is the feedback 
template and B is the control template. The )(tvuij , 

)(tvxij , and )(tvyij  denote the input, state and output 
of the cell (i,j) at the time t, respectively. )(tvyij  is a 
non-linear sigmoid function of )(tvxij , and it is 
bounded by a constant K , which is equal to or greater 
than one. 

Without inputs, Eq. (1) becomes an autonomous 
CNN; 
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3. Construction of CNN Model  

3.1 Current Source Formulation When a deformable 
object is deformed under an external force, there is a 
displacement observed. The deformation is the 
consequence of the work done by the external force. 
According to the law of conservation of energy, the 
work done by the external force can be transformed into 
an equivalent electric energy at the contact point. 
Therefore, the current source I is 
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where F
r

 is the external force, S
r

 is the displacement 
and FA  is the area on which the external force is 
applied. 

If the external force is applied to a point or the area 
that the force is applied on is small, the current I may be 
regarded as the elastic strain energy density at the 
contact point: 
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where σ  is the stress tensor and ε  is the strain 
tensor at the contact point. The commonly used and 
simple strain tensor is linear Cauchy strain tensor 
described by: 
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A straight forward approach that leads to a linear 
relationship between these two tensors is provided by 
the Hooke’s law: 

εσ C=  (6) 
where C is a tensor approximating the constitutive law 
of a material. For isotropic materials, C has only two 
independent coefficients, i.e. Young’s Modulus and 
Poisson’s Ratio. 

From Eq. (6), we can deduce the displacement 
from the given external force and subsequently the 
current I can be obtained. 

In most of CNN applications, the current source of 
each cell has the same value. For our purpose, the 
energy generated by the external force is treated as a 
current source and propagated to other mass points 
along the object surface. Therefore, the obtained current 
source is set only at the contact cell of the external force, 
and the current source values of other cells are set to 
zero. 
3.2 Heat equation Heat conduction is a natural 
description of energy propagation according to the 
inherent properties of materials, i.e. the thermal 
conductivity. The well known heat equation is 
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where ),,( twuϕ  is the potential of the observed point 
with coordinates u and w  at time t, uk and wk are 
the conductivity of the observed point in the u and w 
directions, respectively. 

For isotropic materials, there is kkk wu == . 
Therefore, Eq. (7) becomes: 

t
twutwuk

∂
∂

=∇
),,(),,(2 ϕϕ  (8)

where 2∇  is the Laplace operator. 
The inherent analogies between the CNN dynamic 

equation and the heat equation have been made evident 
in the CNN literature [18, 20]. Both the CNN and the 
heat equation describe the time-continuous dynamics 
and have the same property that their dynamic 
behaviours depend only on their spatial local 
interactions [18]. Therefore, the local connectivity of 
cells is formulated as the local interaction of the heat 
equation to make the CNN has the similar natural 
behaviour of energy propagation as heat conduction. To 
clarify the local interaction of the heat equation and 
further to draw the analogy between the heat equation 
and the CNN, the heat equation has to be discretized on 
the 3D object surface. 
3.3 Discretization of heat equation on a rectangular 
grid The discretization of the heat equation on a 

rectangular grid is straightforward. The heat equation at 
each internal node can be established by discretizing the 
Laplace operator in Eq. (8) using a finite-difference 
scheme. For the point 

ijP
r  shown in Fig. 2, the discrete 

heat equation is shown in Eq. (9). 

Fig. 1 Heat equation discretization on a rectangular net 
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where )(, tjiϕ  is the potential at point 
jiP ,

r at the time 
t , jiji PP ,,1−  and other similar terms represent the 
magnitudes of the vector jiji PP ,,1− and other similar 
vectors. 

With respect to Eq. (9), the discrete heat equation 
on a rectangular grid for anisotropic materials can be 
easily obtained. 
3.4 Discretization of heat equation on a triangular 
grid 

Fig. 2 Voronoi scheme for the heat equation 
discretization on a triangular net 

 
For the heat equation discretization on a triangular net, a 
finite volume method [21] is used to aid discretizing the 
heat equation at each node. One straightforward finite 
volume method is Voronoi diagram [22], which derives 
the discretized equation at each node from the energy 
conservation law. Fig. 2 shows the finite volume 
constructed by the Voronoi scheme. The finite volume 
of point 

0P
r  is constructed by connecting each 
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centerlines of each edges adjacent to point 
0P
r . The 

discretization equation at point 0P
r

 is shown in Eq. 
(10). 
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where 
nmmn PPL =  is the distance between two points 

mP
r  and 

nP
r , and S is the measure of the finite volume. 

With respect to Eq. (10), the discrete heat equation 
on a triangular grid for anisotropic materials can be 
easily obtained. 
3.5 Formulation for local connectivity of cells The 
right side of the discretized heat equation shows the 
local interaction of the heat equation clearly. The CNN 
templates that define the local connectivity of cells are 
obtained from the local interaction of the heat equation. 
For example, the analogy between the CNN Eq. (2) and 
the discretized heat equation Eq. (9) is evident by 
associating the state of a CNN cell )(tvxij  with the 
heat potential )(, tjiϕ , and the CNN templates can also 
be obtained; 
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With reference to Eq. (11), the corresponding CNN 
templates can also be obtained from the other 
discretized heat equations for isotropic and anisotropic 
materials. 

The solution of the heat equation needs initial 
values and boundary conditions. Therefore, the initial 
values and boundary conditions are also incorporated in 
the CNN model. The initial values of the heat equation 
can be directly associated with the initial state of the 
CNN. The simplest boundary condition is the Dirichlet 
boundary condition, i.e. the given boundary values. The 
Dirichlet boundary condition is realized by using some 
fixed-state cells. 

Since the CNN model has no inputs (i.e. B=0), the 
constraint conditions Eq. (1c) can be easily satisfied by 
setting the initial value is zero. 

 
4. Internal Force Derivation and Model 

Dynamics 
4.1 Internal force derivation Potential functions 
provide an elegant method of describing internal forces 
based on point positions. For a potential functionφ , the 
force exerted on a point iP

r
 is due to the gradient of the 

potential energy φ  with respect to the change in 
position, as described below. 
 

φ
iPf r

r
−∇=  (12)

The potential field developed by the activity of the 
CNN describes the energy distribution on the object 
surface. The associated potential function is the output, 
which can be further written as v(u,w,t) since a cell 
corresponds to a mass point. Since the CNN has the 
similar behaviour with the heat equation, the internal 
force described as the negative gradient of the potential 
with respect to the change in position is actually heat 
flux; 

vkf
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For anisotropic materials, Eq. (13) becomes 
kvf

iP
r−∇=  (14)

The property of the local connectivity of cells is 
inherited by the internal force. An internal force exists 
between any two connected points and the internal force 
at a point is derived from the connected neighbouring 
points of this point. The force between any two 
connected points is calculated as follows: 

Consider two adjacent points iP
r

 and jP
r

, where 

the potentials are 
iPv r  and 

jPv r , respectively. The 

potential at any point P
r

 on the edge between these 
two points is regarded as a function of the distance 
between the point iP

r
 and the point P

r
. Therefore, the 

following relationships can be written: 
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Therefore, the force between the point iP
r

 and the 
point jP

r
 is 
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The internal force igr  at a given point iP
r

 is the 
sum of the internal forces from all connected neighbor 
points of point iP

r
. 

∑
∈

=
)( iPNj

iji fg
r

rr  (18)

 

where )( iPN
r

 is the connected neighbor points of iP
r

, 
ijf
r

 is the force between point iP
r

 and its neighbor 
point jP

r
. 

4.2 Model dynamics When an external force is applied 



to a deformable object, the contact point of the external 
force is replaced with a new position. As a result, the 
other points not influenced by the external force are in 
an unstable state. The energy generated by the external 
force is propagated among mass points through the local 
connectivity of cells to establish a new equilibrium state 
by generating the corresponding internal forces. Based 
on the equilibrium state, the new position of each point 
is obtained. The dynamic behaviour is governed by the 
Lagrangian equation of motion of each node: 
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where 
iP
r

 is the position vector of the node i, im and 
iγ  are the mass and damping constant of the node i, 

respectively. igr is the net internal force applied to the 
node i at time t, and 

iF
r  is the external force applied to 

the node i at time t. 
The solution of Eq. (19) can be computed either by 

an implicit integration scheme or an explicit integration 
scheme. Although the implicit integration has the 
advantage of being unconditionally stable, which means 
it allows large time steps to be used, it is 
computationally intensive and requires inverting a 
sparse matrix at each iteration [23]. Therefore, the 
explicit integration scheme [11, 15] is used to solve the 
Eq. (19). The advantage of the explicit scheme is that no 
matrix inversion is required for updating each vertex 
position. 
 
5. Implementation Results and Discussions 

A prototype system has been implemented for 
interactive deformable object simulation. A PHANToM 
haptic device is configured with the system to carry out 
the deformations of deformable objects with force 
feedback. Graphical and haptic rendering sre achieved 
by the OpenGL graphics library and the OpenHaptic 
Toolkit from Sensable Technologies, respectively. 
Experiments are conducted to investigate isotropic 
deformation, anisotropic deformation and the non-linear 
load-deformation of the model. 

Fig. 3 illustrates the deformations of two isotropic 
material modelled with 400 mass points (conductivity = 
0.4 and the damping = 10). Fig. 3(a) and (b) shows the 
deformation of an elliptic sphere. Fig. 3(c) and (d) 
shows the deformation of a cylindrical object. 

The behaviours of anisotropic materials can be 
easily simulated by the proposed model through simply 
setting different conductivity values. Fig. 4 illustrates 
the deformations of anisotropic materials, where the red 
parts have a different conductivity value from the green 
part. As shown in Fig. 4(a) and (b), some of the red 
parts are also deformed correspondingly during the 
deformation process. Fig. 4(c) and (d) show that the red 
parts with a very low conductivity are not deformed by 
the external force. 

The proposed method has been tested to determine 
if it exhibits non-linear load-deformation relationship. 
Eight materials that are modelled with different 
damping constants (from right to left in Fig. 5, the 
damping is 1.0, 2.0, 4.0, 5.0, 6.0, 7.0, 9.0 and 10.0, 
respectively) are tested.  The deformation is calculated 

when the force applied to the model is increased at a 
constant rate. The results in Fig. 5 demonstrate that 
deformation varies non-linearly with the applied force. 
 

  
                (a)                      (b) 

  
           (c)                         (d) 

Fig. 3  Deformations of isotropic materials 
 

  
(a)                         (b) 

  
             (c)                         (d) 

Fig. 4 Deformations of anisotropic materials 

Fig. 5 Non-linear load-deformation relationship 
 

Compared with most of the existing deformation 



methods such as mass-spring, BEM and linear FEM, the 
methodology can perform large-range displacements 
through its non-linear load-deformation relationship. 
Compared with non-linear FEM such as [15], the CNN 
model is more easier to be formulated than the complex 
non-linear elastic model, and only surface mass points 
are involved in computation and rendering without any 
inside points while the interior has to be meshed and 
calculated in FEM. In addition, the methodology can 
easily accommodate anisotropic materials by simply 
setting conductivity constants while extra work has to 
be performed in both mass-spring and FEM. 

 
6. Conclusions 

This paper presents a new methodology to mimic 
the behaviours of deformable objects by establishing an 
analogy between CNN and elastic deformation. The 
contribution of this paper is that non-linear materials are 
modeled with non-linear CNN rather than geometric 
non-linearity, and CNN techniques are established to 
propagate the energy generated by the external force for 
extrapolating internal forces. An improved autonomous 
CNN model is developed for propagating the energy 
generated by the external force on the object surface in 
the natural manner of heat conduction. A method is 
presented for deriving the internal forces from the 
potential energy distribution. This proposed 
methodology can not only deal with large-range 
deformations due to the local connectivity of cells and 
the CNN dynamics, but also can accommodate both 
isotropic and anisotropic materials through simply 
modifying the conductivity constants. 
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