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Conventional guidance laws are designed based on Lyapunov theorems on asymptotic stability or exponential

stability. Theywill guide the line-of-sight angular rate to converge to zero or its small neighborhood, however, only as

time approaches infinity. In this paper, new guidance laws with finite convergent time are proposed. The guidance

laws are obtained based on new sufficient conditions derived in this paper for the finite time convergence of the

line-of-sight angular rate. It is proved that, with the guidance laws, the line-of-sight angular ratewill converge to zero

or a small neighborhood of zero before the final time of the guidance process. Furthermore, such guidance laws will

ensure finite time convergence and finite time stability in both the planar and three-dimensional environments.

Simulation results show that the guidance laws are highly effective.

Nomenclature

aMr, aM�,
aM�

= missile acceleration along the line-of-sight axes

ar, a�, a� = relative acceleration along line-of-sight axes
aTr, aT�,
aT�

= target acceleration along line-of-sight axes

N = navigation ratio
q = line-of-sight angle
_q = derivative of q with respect to time
�q = second-order derivative of q with respect to time
r = relative range
_r = derivative of r with respect to time
�r = second-order derivative of r with respect to time
t = time
u = missile acceleration normal to line of sight
ur = missile acceleration along line of sight
VM = missile velocity
VT = target velocity
w = target acceleration normal to line of sight
wr = target acceleration along line of sight
xM, yM, zM = position coordinates of missile in inertial frame
xT , yT , zT = position coordinates of target in inertial frame
� = azimuth
� = elevation
’M = flight-path angle of missile
’T = flight-path angle of target
 M = heading angle of missile
 T = heading angle of target

I. Introduction

P ROPORTIONAL navigation (PN) and its variants have been
widely used as homing guidance laws because they are highly

efficient and easy for implementation [1–10]. The PN guidance law

has the required accuracy to intercept a nonmaneuvering target or a
weakly maneuvering target. Further, a missile under a PN guidance
law has to have advantages in both maneuverability and agility.
However, for the task of intercepting a target with maneuverability
close to that of a missile, PN guidance laws are unable to achieve the
required precision.

An effective approach to deal with maneuverable targets is to
apply a robust guidance scheme. Many existing robust guidance
laws, such as H1 guidance law [11], L2 gain guidance law [12],
Lyapunov-based nonlinear guidance law [13], andfirst-order sliding-
mode guidance laws [14–17] are obtained based on Lyapunov
theorems on asymptotic stability or exponential stability. The crucial
technique to designing the H1 guidance law [11] was to find the
analytic solution of the associated Hamilton–Jacobi partial differ-
ential inequality of the missile guidance problem. Then, the system
describing the missile guidance problem was said to have a L2 gain
less than a given level. Because the L2 gain is an index defined in a
time horizon from zero to infinity, the H1 guidance law is not a
guidance law with finite time convergence, although it exhibited
strong robustness against disturbances from the target’s maneuvers
and variations in initial engagement conditions. The L2 gain
guidance law [12] was also designed to satisfy the L2 gain and not a
guidance law with finite convergent time. In the design of the
Lyapunov-based nonlinear guidance law [13], a compact set, into
which the state of guidance system converges, was obtained by
solving a linear matrix inequalities characterization of the pole
placement problem. Certainly, the convergence rate can be adjusted
by the pole selection. However, theoretically speaking, for non-
maneuvering targets and targets having a constant acceleration, only
asymptotic stability was obtained and demonstrated. Existing first-
order sliding-mode guidance laws [14–17] were all designed with
Lyapunov theorems on asymptotic stability or exponential stability
such that they had not been proved to guarantee a finite time
convergence. In short, the theoretical results only indicated that the
line-of-sight (LOS) angular rate under the aforementioned guidance
laws will converge to zero or a small neighborhood of zero as time
approaches infinity. These theoretical findings are inconsistent with
practical observations. In many applications, the time of termination
is really quite short. For example, in the space interception where a
missile is intercepting a ballistic target, sometimes the time of
terminal guidance is only several seconds such that the guidance law
is required to ensure finite time convergence of the LOS angular rate.

In recent years, the finite time stability for feedback control
systems (i.e., the states of the systems converge to their equilibrium
point and then stay there) has become an active research area. Finite
time control, which is related to finite time stability, was first pro-
posed in [18] in 1986. It has since generated many research activities
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in the following two decades; see, for example, [19–31]. The
fundamental tool for analyzing the finite time stability of control
systems is the second method of Lyapunov. Many related results are
reported in the literature. Examples include 1) finite time stability
based on Lyapunov and converse Lyapunov results involving scalar
differential inequalities [21], 2) finite time stability of a guidance
system [22], 3) arbitrary-order sliding-mode controls with finite time
convergence [23], and 4) guidance laws with finite time convergence
based on second-order sliding-mode controls [28–31]. For guidance
laws with finite time convergence based on second-order sliding-
mode controls, they are naturally obtained by applying second-order
sliding-mode controls to guidance law design, but rather complex
in structure. In this paper, a guidance scheme with finite time
convergence based on Lyapunov scalar differential inequality is
proposed. Its complexity is just comparable to that of a first-
order sliding-mode guidance law. Moreover, the proposed guidance
scheme covers the first-order sliding-mode guidance law [16]; in
other words, the first-order sliding-mode guidance law is also able to
guide the LOS angular rate to converge to zero in a finite time. To
ensure finite time convergence of the LOS angular rate, the proposed
guidance scheme will involve a nonsmooth signum function. In
practical applications, we usually use a saturation function in lieu of
the signum function for the purpose of removing the chattering.

In practice, an actual target-to-missile motion occurs in a three-
dimensional environment. In a spherical coordinate, the motion is
governed by three second-order nonlinear and coupling differential
equations. When the LOS angles and the LOS angular rates are
small, the three-dimensional missile–target relative motion can be
simplified into two planar relative motions, in which the cross
couplings between the elevation and the azimuth are ignored. With
such simplifications, the design and analysis of guidance laws
become much easier. However, such an approach is ad hoc in nature.

Although many three-dimensional PN guidance laws for control
systems described by equations of three-dimensional relative motion
have been proposed and analyzed (see, for example, [32–37]), some
major deficiencies remain. For example, such three-dimensional PN
guidance laws are ineffective to overcome unfavorable influences of
target maneuvers. Consequently, many guidance laws, which are
robust against target maneuvers, are studied for systems described by
the equations of the planar relative motion (see, for example, [11–
17,28–31]). However, no results on the design of guidance laws with
finite time convergence in a three-dimensional environment are
available in the literature.

In this paper, we consider a system described by the equations of a
planar relative motion. Design methods for guidance laws with finite
time convergence, and ensuring finite time stability of the guidance
process, will be obtained in Sec. II. Then, the planar guidance laws
with finite time convergence are applied to a three-dimensional
engagement model. The finite time convergence of the LOS angular
rates, in both the elevation loop and the azimuth loop, is established.
Finally, some simulations are carried out. The simulation results
show the effectiveness of the finite time convergent guidance laws so
obtained.

II. Planar Finite Time Convergent Guidance Laws

A. Equations of Planar Missile-Target Engagement

The geometry of planar interception is depicted in Fig. 1. The
corresponding equations of motion are given by

_r� VT cos�q � ’T� � VM cos�q � ’M� (1)

r _q��VT sin�q � ’T� � VM sin�q � ’M� (2)

Differentiating Eqs. (1) and (2) with respect to time yields

�r� r _q2 �wr � ur (3)

�q�� 2_r

r
_q� 1

r
w � 1

r
u (4)

By accepting the intuition that zeroing the LOS angular rate will
lead to interception, a desired guidance law can be obtained as
follows.

Achieving the convergence of _q by adjusting u and then defining
x� _q, Eq. (4) can be written as

_x�t� � � 2_r�t�
r�t� x�t� �

1

r�t� u�t� �
1

r�t�w�t� (5)

where the starting time of the guidance process is taken to be zero
(i.e., t� 0). The initial values of the state variables in the guidance
system are denoted as r�0�, _r�0�, and x�0�. At time t, they are denoted
as r�t�, _r�t�, and x�t�.

B. Finite Time Stability of Nonlinear Systems

In the design of finite time convergent guidance laws, we need
some results on the finite time stability of nonlinear systems. The
definition offinite time stability for a time-invariant nonlinear system
given in [25] is extended to a time-varying nonlinear system as
follows.

Definition: Consider a nonlinear system in the form of

_x� f�x; t�; f�0; t� � 0; x 2 Rn (6)

where f: U0 � R! Rn is continuous onU0 � R, andU0 is an open
neighborhood of the origin x� 0. The state of the system is said to
converge to its local equilibrium x� 0 in finite time if, for any given
initial time t0 and initial state x�t0� � x0 2 U, there exists a settling
time T � 0, which is dependent on x0, such that every solution of the
system (6), x�t� � ��t; t0; x0� 2 U=f0g, satisfies

(
lim

t!T�x0�
��t; t0; x0� � 0; t 2 �t0; T�x0��

��t; t0; x0� � 0; t � T�x0�
(7)

Moreover, if the system (local) equilibrium x� 0 is Lyapunov stable
withfinite time convergence in a neighborhood of the originU 	 U0,
then the system equilibrium is called finite time stable. If U� Rn,
then the origin is a global finite time stable equilibrium.

The following lemma provides a useful result for the study of finite
time convergent guidance laws.

Lemma 1: Consider the nonlinear system described by Eq. (6).
Suppose that there is a C1 (continuously differentiable) function

V�x; t� defined in a neighborhood U
_

	 Rn of the origin, and that
there are real numbers � > 0 and 0< � < 1, such that V�x; t� is
positive definite on U

_

and that _V�x; t� � �V��x; t� 
 0 on U
_

. Then,
the zero solution of system (6) is finite time stable.

Proof: By assumption, _V�x; t� � �V��x; t� 
 0 on U
_

. Thus, it is
clear that

_V�x; t� 
 ��V��x; t�; 8 t � 0 (8)

Fig. 1 Planar interception geometry.
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Since V�x; t�> 0 on U
_

, solving Eq. (8) yields

V1���x; t� 
 V1���x0; 0� � ��1 � ��t; 0 
 t 
 tr (9)

and

V�x; t� � 0; 8 t � tr (10)

The settling time, depending on initial state x0, is given by

tr 

V�x0; 0�1��
��1 � �� (11)

□

Remark 1: Note that ifU
_

� Rn and V�x; t� is radially unbounded,
then the origin is globally finite time stable.

C. Finite Time Convergent Guidance Laws

Based on the preceding finite time stability theory, we can prove
sufficient conditions for the finite time convergence of the guidance
system (5).

Theorem 1: Consider the guidance system (5). If there exists a
control u such that the system state satisfies

x

�
_x� �jxj

�sgn x

r�t�

�

 0; 8 t � 0 (12)

where �� const: > 0 and �1< �� const: < 1, then the LOS
angular rate x converges to zero in finite time. The convergence rate
increases as the value of � is increased. Furthermore, under the
situation that jx�0�j< 1 rad=s, the convergence rate also increases as
the value of � is decreased.

Proof: Choose a continuously differentiable positive-definite

function in the neighborhood of origin U
_

	 Rn as

V1 � x2 (13)

The derivative of V1 along the trajectories of Eq. (12) satisfies

_V 1 
 �
2�

r�t�V
1��
2

1 ; 8 t > 0 (14)

During the time horizon of the guidance process, we have

_r�t�< 0; 0< r�t�< r�0�; 8 t > 0 (15)

Combining Eqs. (14) and (15), we obtain

_V 1 <�
2�

r�0�V
1��
2

1 ; 8 t > 0 (16)

According to the condition �1< �� const: < 1, there exists
0< �1� ��=2< 1. Now, by Lemma 1, the LOS angular rate x
converges to zero in finite time, and the settling time is given by

tr1 <
jx�0�j1��r�0�
��1 � �� (17)

It is revealed in Eq. (17) that the convergence rate increases as the
value of � is increased. Moreover, in practice, the absolute value of
the initial LOS angular rate jx�0�j must be much less than 1 rad=s,
and so the convergence rate increases as the value of � is increased.□

A proper choice of � will depend on whether the target accelera-
tion w will have been compensated in the succeeding guidance law
design. If so, � can be chosen as a relatively small constant;
otherwise, � should be relatively large so as to deal with the target
acceleration and to ensure the finite time convergence of the LOS
angular rate. However, in practical applications, � should not be too
large to induce the chattering.

Substituting Eq. (5) into Eq. (12) gives

x

�
� 2_r�t�
r�t� x �

u

r�t� �
w

r�t� �
�jxj�sgn x
r�t�

�

 0 (18)

Thus, by choosing the guidance law as given by

u��N _r�t�x�w� �jxj�sgn x; N � const: > 2 (19)

we obtain the results presented in the following theorem.
Theorem 2: Consider the guidance system (5). The guidance

law (19) nullifies the LOS angular rate in infinite time. The con-
vergence rate of the LOS angular rate increases as the value of �
is increased and, furthermore, it also increases as the value of � is
decreased when jx�0�j< 1 rad=s. A reasonable range of � is
0 
 � < 1. If the target-to-missile relativevelocity is approximately a
constant, the LOS angular rate, under the guidance law (19),
converges to zero before the final time of the time horizon of the
guidance process.

Proof: Substituting Eq. (19) into Eq. (5) yields

_x� �N � 2� _r�t�
r�t� x � �jxj

�sgn x

r�t� (20)

Then, by substituting Eq. (20) into Eq. (12), we obtain

x

�
_x� �jxj

�sgn x

r�t�

�
�� �N � 2�j_r�t�j

r�t� x2 
 0 (21)

By Theorem 1, the LOS angular rate converges to zero in finite time
and the convergence rate increases as the value of � is increased and,
furthermore, when jx�0�j< 1 rad=s, it also increased as the value of
� is decreased.

In view of Eq. (19), we see that, if �1< � < 0, there exists a
singularity at x� 0. Hence, a reasonable range of � is 0 
 � < 1.
As �� 0, the guidance law (19) is just the first-order sliding-
mode guidance law [16] which contains a proportional navigation
guidance (PNG) term, a compensation term for the target accelera-
tion, and a variable structure term. This fact indicates that the first-
order sliding-mode guidance law is also a guidance law with finite
time convergence. Moreover, in the guidance law (19), the target
accelerationw has been compensated, so that even if�was chosen as
a relatively small constant, the guidance law would ensure the finite
time convergence of the LOS angular rate.

Suppose that the target-to-missile relative velocity is approxi-
mately a constant, say,

_r�t� � �c; c� const: > 0 (22)

Then, at time t, the relative range can be calculated as

r�t� � r�0� � ct (23)

Combining Eqs. (21) and (23) produces

x

�
_x� �jxj

�sgn x

r�0� � ct

�

 0 (24)

SolvingEq. (24), we obtain the settling time of xwhen it converges to
zero as follows:

tr2 

r�0�
c
�1 � e� c

��1���jx�0�j
1�� � (25)

Define thefinal time of the time horizon of the guidance process as tf .
Then, r�tf� � r�0� and the following equation holds:

tf �
r�0� � r�tf�

c

 r�0�

c
(26)

Comparing Eq. (25) with Eq. (26), we obtain

tr2 < tf (27)

Equation (25) shows that the convergence rate of the LOS angular
rate increases as the value of � is increased and, furthermore, it also
increases as the value of � is decreased when jx�0�j< 1 rad=s. □
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In practical applications, the target accelerationw is unknown and
is usually difficult to estimate, but its upper bound can be estimated
a priori. Suppose the target acceleration satisfies

kwk1 
 f; f� const: > 0 (28)

where kwk1 is the maximum value of jwj. Then, by appropriate
modification of the guidance law (19),we obtain the results presented
in following theorem.

Theorem 3: Consider the guidance system (5). The following
guidance law

u��N _r�t�x� f sgn x� �jxj�sgn x
N � const: > 2; 0 
 � < 1 (29)

nullifies the LOS angular rate in finite time. The convergence rate
of the LOS angular rate increases as the value of � is increased and
the value of � (when jx�0�j< 1 rad=s) is decreased. If the target-to-
missile relative velocity is approximately a constant, then the LOS
angular rate, under the guidance law (29), converges to zero before
the final time of the time horizon of the guidance process.

Proof: Substituting Eq. (29) into Eq. (5) gives

_x� �N � 2� _r�t�
r�t� x � �f� �jxj

��sgn x � w
r�t� (30)

Then, by substituting Eq. (30) into Eq. (12), it follows from Eqs. (15)
and (28) that

x

�
_x� �jxj

�sgn x

r�t�

�
� �N � 2� _r�t�

r�t� x2 � " sgn x � w
r�t� x 
 0 (31)

The remaining proof is similar to that given in the proof of
Theorem 2, and hence is omitted here.

Now, we have proposed a planar finite time convergent guidance
scheme. However, because most practical guidance processes are
applied in a three-dimensional environment, we will study whether
the planar guidance schemewill ensure thefinite time convergence of
the LOS angular rates when it is applied to the equations of three-
dimensional relative motion.

III. Three-Dimensional Finite Time Convergent
Guidance Laws

A. Formulation of a Three-Dimensional Missile-Target Engagement

Consider the spherical LOS coordinates �r; �; ��with origin fixed
at the missile’s gravity center. Let �er; e�; e�� be the unit vectors
along the coordinate axes (see Fig. 2). By virtue of the principles of

kinematics, the three relative acceleration components �ar; a�; a��
can be expressed by the following set of second-order nonlinear
differential equations [33–35]:

�r � r _�2 � r _�2cos2�� aTr � aMr � ar (32a)

r �� cos�� 2_r _� cos�� 2r _� _� sin�� aT� � aM� � a� (32b)

r ��� 2_r _��r _�2 sin� cos�� aT� � aM� � a� (32c)

The purpose of designing a guidance law is to nullify the LOS

angular rates _� and _�. To design such a guidance law, we consider
Eqs. (32b) and (32c). Obviously, there exist cross couplings between

them. Define state variables as x1 � _�, x2 � _� and control variables
as u1 � aM�, u2 � aM�. Then, the coupling equations of the LOS
motion can be rewritten as

_x 1 ��
2_r

r
x1 � 2x1x2 tan��

u1
r cos�

� aT�
r cos�

(33a)

_x 2 ��
2_r

r
x2 � x21 sin� cos ��

u2
r
�
aT�
r

(33b)

During the time horizon of the guidance process, x1 and x2 are small
variables.When� is also a small variable, it gives�
 1. By omitting
the third-order small amounts in Eqs. (33a) and (33b), they
decoupled into

_x 1 ��
2_r

r
x1 �

u1
r
� aT�

r
(34a)

and

_x 2 ��
2_r

r
x2 �

u2
r
�
aT�
r

(34b)

Comparing Eq. (34) with Eq. (5), we find that the decoupled three-
dimensional LOS angular motion is equivalent to two planar LOS
angular motions.

By virtue of the results obtained in Sec. II, we note that, if the
target acceleration can be estimated, then the two planar finite time
convergent guidance laws can be designed as

u1 ��N _rx1 � aT� � �jx1j�sgn x1
u2 ��N _rx2 � aT� � �jx2j�sgn x2 (35)

where N � const: > 2, �� const: > 0, and 0 
 �� const: < 1.
Suppose that only the upper bound of the target acceleration is

available. Then, the two planar finite time convergent guidance laws
can be designed as

u1 ��N _rx1 � f1sgn x1 � �jx1j�sgn x1
u2 ��N _rx2 � f2sgn x2 � �jx2j�sgn x2 (36)

where N � const: > 2, �� const: > 0, and 0 
 �� const: < 1.

B. Finite Time Convergence in Three-Dimensional Model

For the guidance law (35), we have the following theorem.
Theorem 4: Consider the nonlinear system (33). The equations of

three-dimensional relative motion, under the guidance law (35),
nullify the LOS angular rates in finite time. The convergence rate of
the LOS angular rate increases as the value of � is increased and,
furthermore, it also increases as the value of � is decreased when
x21�0�cos2��0� � x22�0�< 1 rad=s.

Proof: By choosing an appropriate inertial reference coordinate
system, we can ensure that�0:5� < � < 0:5�. Thus, there exists a �
such that cos� > 0. Substituting Eq. (35) into Eq. (33) givesFig. 2 Three-dimensional interception geometry.
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_x 1 �
�N= cos�� 2� _r

r
x1 � 2x1x2 tan��

�jx1j�sgn x1
r cos�

(37)

_x 2 �
�N � 2� _r

r
x2 � x21 sin� cos��

�jx2j�sgn x2
r

(37b)

Construct a continuously differentiable positive-definite function as

V2 � x21cos2�� x22 (38)

Differentiating V2 with respect to time along the trajectories of
Eq. (37) gives

1

2
_V2 �

�N= cos� � 2� _r
r

x21cos
2�� �jx1j

��1

r
cos�

� �N � 2� _r
r

x22 �
�jx2j��1

r

 ��

r
�jx1j��1 cos�� jx2j��1�


 ��
r
�jx1 cos�j��1 � jx2j��1� 
 �

�

r
�x21cos2�� x22�

��1
2

���
r
V
��1
2

2 (39)

Taking into account Eq. (15), we obtain

_V 2 
 �
2�

r
V
��1
2

2 
 �
2�

r�0�V
��1
2

2 (40)

By the application of Lemma 1, we conclude that the guidance
system is finite time convergent and the settling time satisfies the
inequality

tr3 

r�0�V2�0�

1��
2

��1 � �� ; V2�0� � x21�0�cos2��0� � x22�0� (41)

where x1�0�, x2�0�, and ��0� are the system’s initial states.
It is revealed in Eq. (41) that the convergence rate of the LOS

angular rate increases as the value of � is increased. In practice,
the initial LOS angular rates of a terminal guidance process are small.
In fact, x1�0� and x2�0� are much less than 1 rad=s. Thus, V2�0�< 1
holds and the convergence rate increases as the value of � is
decreased. □

For the interception of nonmaneuvering targets, the finite time
convergent guidance law (35) can be rewritten as

u1 ��N _rx1 � �jx1j�sgn x1 u2 ��N _rx2 � �jx2j�sgn x2 (42)

where N � const: > 2, �� const: > 0, and 0 
 �� const: < 1.
For intercepting maneuvering targets with acceleration being

difficult to estimate in real time, the guidance law (36) is a finite time
convergent guidance scheme in a three-dimensional interception.

Theorem 5: Consider the nonlinear system (33). If only the upper
bounds of the target accelerations are available, that is, f1 � kaT�k1
and f2 � kaT�k1, where f1 and f2 are known constants, then the
guidance law (36) guarantees the finite time convergence of the LOS
angular rates. The convergence rate increases as the value of � is
increased and, furthermore, it increases as the value of � is decreased
when x21�0�cos2��0� � x22�0�< 1 rad=s.

Proof: The proof is similar to that given for Theorem 4, and hence
is omitted.

In view of Theorems 4 and 5, we see that the planar finite time
convergent guidance laws (35) and (36) ensure the finite time
convergence of the LOS angular rates in the three-dimensional
model.

In the guidance law (36), �N _rx1 and �N _rx2 are proportional
navigation terms, whereas f1sgn x1 and f2sgn x2 are variable struc-
ture terms for dealing with the target accelerations. Moreover,
the guidance law involves finite time convergent terms �jx1j�sgn x1
and �jx2j�sgn x2. When �� 1, the finite time convergent terms are
transformed into proportional navigation terms. On the other hand,
when �� 0, they are transformed into variable structure terms, and
Eq. (36) can then be rewritten as

u1 ��N _rx1 � "1sgn x1 u2 ��N _rx2 � "2sgn x2 (43)

where "1 � f1 � � > kaT�k1, "2 � f2 � � > kaT�k1.
For the case in which the finite time convergent guidance law (43)

is equivalent to the first-order sliding-mode guidance law [16], if the
gain of its variable structure term is larger than themaximumvalue of
the target acceleration, the first-order sliding-mode guidance law
steers the LOS angular rate to converge to zero in finite time, either in
planar guidance or in three-dimensional guidance. The convergence
rate increases as the gain of the variable structure term is increased.

The finite time convergent guidance laws, which are nonsmooth
controllers, guarantee fast convergence and robustness of the guid-
ance system. They involve a signum function, which indicates that
the control variable will switch. In a practical system, the occurrence
of a switching cannot be completely instantaneous. The delay of the
occurrence of the switching induces the chattering effect. To remove
the chattering, we may smoothen the signum function, usually
replacing sgn x with a saturation function sat	�x� expressed as

sat 	�x� �

8<
:
1; x > 	
x=	; jxj 
 	
�1; x < �	

(44)

where 	 is small positive constant.
Remark 2: For Eq. (44), when jxj> 	, sat	�x� is equivalent to

sgn x. Thus, the guidance lawswith finite time convergence guide the
LOS angular rate to converge into a boundary layer jxj 
 	 in finite
time.

IV. Simulation Results

We investigate a space interception problem. Define an inertial
reference coordinate system which is parallel to the coordinate
systemMXYZ, as shown in Fig. 2. This system is inertially fixed and
is centered at the launch site at the instant of the launch. In this
system, the X axis is taken to be in the horizontal plane and in the
direction of the launch, the positiveZ axis is in the vertical plane, and
the Y axis is chosen in such a way that the coordinate system forms a
right-handed coordinate system. The interceptor’s initial position
coordinates are xM0 � 0 m, yM0 � 0 m, and zM0 � 0 m. Its initial
velocity is VM0 � 3000 m=s and its initial flight-path and heading
angles are ’M0 � 19 deg and  M0 � 56 deg, respectively. The
target’s initial position coordinates are xT0 � 80 km, yT0 � 24 km,
and zT0 � 40 km. Its initial velocity is VT0 � 7000 m=s and its
initial flight-path and heading angles are ’T0 ��25 deg and
 T0 � 180 deg, respectively. It is easy to calculate the initial
elevation and azimuth, �0 � 16:7 deg and �0 � 25:6 deg, and their

initial angular rates, _�0 � 0:0172 deg =s and _�0 � 0:015 deg =s.
Because these initial values are not small, there exist cross coupling
effects between the elevation loop and the azimuth loop. The inter-
ceptor’s maximum translation acceleration is 30 m=s2, and the
sampling period of its target seeker is 15 ms. In both the elevation
loop and the azimuth loop, we apply the finite time convergent guid-
ance scheme. In the guidance laws with finite time convergence,
it is required that N > 2. Because N is a parameter of the PNG com-
ponent and we are quite familiar with it (usually 3� 5), we just set it
to be three and investigate the other parameters � and �. We simulate
the following cases.

Case 1: Suppose that the target does not maneuver. We apply the
guidance law (42) with�� 1 and �� 0, 0.05, 0.2, and 0.8. The LOS
angular rate and the missile acceleration in the elevation loop are
plotted in Figs. 3a and 3b, respectively. The LOS angular rate and the
missile acceleration in the azimuth loop are plotted in Figs. 4a and 4b,
respectively. For all these various values of �, the miss distances are
less than 0.01 m.

It is clear from Figs. 3 and 4 that the LOS angular rates in both the
elevation loop and the azimuth loop converge to zero in finite time,
and the convergence rate increases as the value of � is decreased.
However, the chattering of the missile acceleration also increases as
the value of � is decreased. In particular, when �� 0, the finite time
convergence term converts to a variable structure term, causing the
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maximum chattering, as depicted in Figs. 3b and 4b. The preceding
results demonstrate that both the two planar finite time convergent
guidance laws guarantee the finite time convergence of the LOS
angular rates in the three-dimensional guidance process. Because the
simulation results in the elevation loop and those in the azimuth loop

are similar, in the following cases, we only depict the results in the
elevation loop.

Case 2a: Assume that the target escapes with constant acceleration
components aT� � 12 m=s2 and aT� � 12 m=s2, and that these
components can be estimated. Apply the finite time convergent

Fig. 3 LOS angular rate and missile acceleration in elevation loop in
case 1.

Fig. 4 LOS angular rate and missile acceleration in azimuth loop in

case 1.

Fig. 5 LOS angular rate and missile acceleration in elevation loop in
case 2a.

Fig. 6 LOS angular rate and missile acceleration in elevation loop in

case 2b.
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guidance law (35) with �� 0:3 and �� 1, 5, 10, and 20,
respectively. The miss distances for all these different values of � are
less than 0.01m. TheLOS angular rate and themissile acceleration in
the elevation loop are plotted in Fig. 5. Figure 5a shows that the LOS
angular rate converges to zero in finite time, which is before the final
time, and the convergence rate increases as the value of � is
increased. However, it is apparent from Fig. 5b that a large value of �
induces the chattering effect in the missile acceleration.

Case 2b: The target maneuver is the same as that in case 2a and can
be estimated. In the guidance law (35), we choose two groups of
guidance parameters: for the first group, �� 0:3 and �� 21, and for
the second group, �� 0 and�� 1. Themiss distances for both these
two groups of guidance parameters are less than 0.01 m.

Figure 6a shows that the LOS angular rates, under the guidance
law (35) with these two groups of parameters, converge with almost
the same speed. However, Fig. 6b shows that the chattering effect
of the missile acceleration with �� 0:3 and �� 21 is much less
than that with �� 0 and �� 1. Hence, in a finite time convergent
guidance process, we can ensure the required convergence ratewhile
removing the chattering effect through a proper selection of the
parameters � and �.

Case 3: The targetmaneuver is the same as that in case 2 but cannot
be estimated. Assume that the upper bound of the target acceleration
can be found a priori. Then, we employ the finite time convergent
guidance law (43). To reduce chattering, we replace the signum
function sgn xwith the saturation function sat	�x� given by Eq. (44).
Let 	� 0:002 deg =s and "1 � "2 � "� 12:01, 12.1, 12.5, and 13,
respectively. For these various values of ", the miss distances are all

less than 0.01 m. The variations of the LOS angular rate and the
missile acceleration in the elevation loop are plotted in Fig. 7.

In this case, the finite time convergent guidance law is just the first-
order sliding-mode guidance law. Because the gain of the variable
structure term is larger than the maximum of the target acceleration,
the LOS angular rate, as shown in Fig. 7a, converges into a prescribed
boundary layer jxj 
 	� 0:002 deg =s (see subplots in Fig. 7a)
before the final time of the guidance process and, furthermore, the
convergence rate increases as the value of " is increased. From Fig. 7,
we observe that the chattering effect is removed when the signum
function is replaced by the saturation function.

Case 4a: Assume that the upper bound of the target acceleration is
not known and that we cannot use a variable structure term to deal
with the target maneuver. Even for such a case, the finite time con-
vergent guidance scheme will still be robust to intercept the
maneuvering target. This is because of the signum function in the
guidance scheme, which not only ensures finite time convergence
but is also effective on overcoming the bad influence of target
acceleration. However, in this case, only when the parameter � is
small enough or the parameter is � large enough, the guidance law
will be robust enough to target accelerations and send the LOS
angular rate to zero or a small boundary layer of zero. In fact, as �
approaches zero, the guidance law (42) tends to the first-order
sliding-mode guidance law which is robust against target maneuvers
and ensures the finite time convergence of LOS rate if the gain of its
signum function is larger than the target acceleration.

Let the target acceleration be the same as that in case 2.We use the
finite time convergent guidance law (42), where there exists no
compensation for target acceleration, and compare it with the PN

guidance law aM ��N _r _� where N � 3. In the guidance law (42),

Fig. 7 LOS angular rate and missile acceleration in elevation loop in

case 3.

Table 1 Summary of miss distances in case 4a

Guidance law Miss distance, m

�� 13, �� 0 0.008
Finite time �� 13, �� 0:02 0.004
Convergent �� 13, �� 0:1 0.002
Guidance �� 13, �� 0:4 2.170

PN guidance 4.476

Fig. 8 LOS angular rate and missile acceleration in elevation loop in

case 4a.

Table 2 Summary of miss distances in case 4b

Guidance law Miss distance, m

�� 50, �� 0:1 0.013
Finite time �� 30, �� 0:1 0.002
Convergent �� 10, �� 0:1 0.003
Guidance �� 1, �� 0:1 2.908
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�� 13 and �� 0, 0.02, 0.1, 0.4, respectively. For �� 13 and
�� 0:1, themiss distance is only 0.002m. On the other hand, the PN
guidance law gives rise to a large miss distance of 4.476 m. Table 1
summarizes themiss distances resulting from thefinite timeguidance
scheme for different values of � and that from the PN guidance law.
Figure 8 illustrates the variations of the LOS angular rate and the
missile acceleration in the elevation loop in case 4a.

Case 4b: The target acceleration is the same as that in case 4a.
However, in the guidance law (42), we fix �� 0:1, while letting
�� 50, 30, 10, and 1, respectively. Table 2 summarizes the miss
distances resulting from such a guidance law with these different
values of�. Figure 9 illustrates the variations of the LOS angular rate
and the missile acceleration in the elevation loop in case 4b.

The variations of the LOS angular rate and themissile acceleration
under the PN guidance law can be seen fromFig. 8. At the beginning,
the missile acceleration is small (see Fig. 8b), but due to the influence
of the target maneuver, the LOS angular rate increases gradually
(see Fig. 8a), moving to the eventual phase at which the missile
acceleration is saturated (see Fig. 8b). On the other hand, the LOS
angular rate diverges at an early time (see Fig. 8a). Therefore, the
final miss distance under the PN guidance law is large. When �
is fixed, the variations of the LOS angular rate and the missile
acceleration under the guidance law (42) can also be seen fromFig. 8.
When the value of � is large, the variations of the missile acceleration
and the LOS angular rate are close to those under the PN guidance
law. For example, when �� 0:4, the LOS angular rate diverges early,
resulting in a large miss distance. When the value of � is small, the
missile acceleration at the beginning is relatively large, ensuring the
convergence of the LOS angular rate. The variations of the missile
acceleration and the LOS angular rate are close to those under the
first-order sliding-mode guidance law. However, if the value of � is
too small, because we have not used a saturation function in lieu of
the signum function, the guidance law tends to induce the chattering
effect, causing not only some increase in the miss distance but also
unfavorable effects on the instruments onboard the missile.

When � is fixed, the variations of the LOS angular rate and the
missile acceleration under the guidance law (42) can be seen from
Fig. 9. When the value of � is small, the finite time convergent
guidance law is close to the PN guidance law. On the other hand,
when the value of � is large, it is close to the first-order sliding-mode

guidance law and is robust enough to target maneuvers. However, if
the value of � is too large, it will cause chattering.

In practical applications, the values of � and � are to be suitably
chosen so as to achieve a compromise of meeting the required
convergence rate while alleviating the chattering effect.

V. Conclusions

The theory on the finite time stability of nonlinear control systems
was used to design finite time convergent guidance laws under which
the line-of-sight angular rate converges to zero or a small neighbor-
hood of zero in finite time. The proposed finite time convergent
guidance laws were simpler in structure than previous second-order
sliding-mode guidance laws. Their complexities were just compar-
able to those of previous first-order sliding-mode guidance laws. The
finite time convergent guidance laws designed in the plane could be
directly applied to a three-dimensional guidance process, achieving
the finite time convergence of both the elevation angular rate and the
azimuth angular rate. Theguidance lawswithfinite time convergence
covered the first-order sliding-mode guidance law and they supplied
more convenience in selecting the parameters of guidance law. In
the case that target acceleration can be estimated, we designed afinite
time convergent guidance lawwith target acceleration compensation.
Suitable parameters for this guidance law could ensure finite time
convergence while alleviating the chattering effect, even though
there exists a signum function in the guidance law. In the case that
target acceleration cannot be estimated, we designed a finite time
convergent guidance law without target acceleration compensation.
This guidance law should be designed to be close to the first-order
sliding-mode guidance law such that robustness and rapid con-
vergence rate could be ensured. To remove the chattering, the signum
function in the guidance law could be replaced by the saturation
function, and then the line-of-sight angular rate converges to a
prescribed boundary layer of zero in finite time.
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