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Abstract—This paper presents a general multi-scale control 

scheme which can be used to control processes with significant 

time-delays. The salient feature of the multi-scale control scheme 

is to decompose a given plant into a sum of basic factors or 

modes. An individual sub-controller is specifically designed to 

control each of the plant modes and subsequently, an overall 

multi-scale controller is synthesized via combining all of the sub-

controllers in a manner to enhance cooperation among these 

different plant modes. Numerical examples show that the multi-

scale control scheme can provide improved performance and 

robustness over the conventional single-loop PID and Smith 

predictor schemes. 
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I.  INTRODUCTION 

One of the most common factors limiting the closed-loop 
performance in many real systems is time-delay, which 
imposes an upper limit on control performance [1]. To 
maintain stability, it is often required to detune the 
conventional single-loop PID control. Since the traditional PID 
controllers are normally ineffective in controlling time-delay 
systems, the most prevalent approach to controlling this type of 
systems is usually based on the Smith predictor [2]. The Smith 
predictor structure is as shown in Figure 1. 

 

Figure 1.  Smith Predictor scheme for time-delay system 

Based on Figure 1, assuming that 
∗= PP , the closed-loop 

transfer function from the setpoint R  to the controlled output 
Y  is given by 
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where ∗P denotes the delay-free nominal model, P  the actual 

plant, iD the input disturbance, oD the output 

disturbance, dG the output disturbance transfer function; K the 

controller. 

As the Smith predictor design requires model of a given 
plant, the stability of the scheme is often susceptible to 
modeling error [3]. The necessary and sufficient conditions for 
the practical stability and robust stability for Smith predictor 
scheme is given in [4]. A number of variants of the Smith 
predictor have been developed over the years, e.g. [5]-[7]. 

In this paper, we present a new approach to control time-
delay systems called the multi-scale control (MSC) scheme. 
The basic idea of the proposed MSC scheme is to decompose a 
given plant into a sum of basic factors or modes with distinct 
speed of responses. An individual sub-controller is then 
specifically designed to control each of the plant modes. 
Subsequently, an overall multi-scale controller is synthesized 
by combining all of the sub-controllers in a manner to enhance 
good cooperation among the different plant modes – this is the 
essential feature to improve control performance and 
robustness. Note that, in a conventional single-loop (PID) 
control scheme, it can be interpreted that a single controller is 
often designed based on the slow dominant modes, i.e. the fast 
modes are often ignored. Thus, this single controller might not 
lead to good cooperation among the different plant modes, 
which subsequently causes poor control performance and even 
robustness. 

The rest of the paper is structured as follows. In Section II, 
the concept of multi-scale control scheme is presented 
alongside with a general design procedure. In Section III, 
numerical examples are presented. Section IV highlights some 
conclusions of the work. 



II. MULTI-SCALE CONTROL SCHEME 

A. Multi-scale Plant Decomposition 

Assume that a plant P  to be controlled is given by a 
rational transfer function. By applying partial fraction 
expansion, the plant can be decomposed into a sum of factors 
as follows: 

 ( ) ( ) ( ) ( )sPsPsPsP n+++= ...10  (1) 

For a system with time delay, the delay part can often be 
approximated using the first order (1/1) Padé formula [8]: 

 ( )
s

s
sGe td

s

θ5.01

θ5.01
θ

+

−
=≈−  (2) 

Hence, the overall plant model can be written as follows: 

 ( ) ( ) ( ) ( )sGsPesPsP td
s ∗−∗ ≈= θ  (3) 

B. Realization of Multi-Scale Control Scheme 

Figure 2 shows the block diagram of 3-layer multi-scale 
feedback control scheme for a given plant P  that can be 

decomposed into 3 factors ( 210 PPPP ++= ). Here, iW is 

called the multi-scale predictors; iK  the multi-scale sub-

controllers; cP  the augmented overall plant transfer function. 

The outermost sub-controller ( 0K ) corresponds to the factor 

with the slowest dynamic ( 0P ) and 2K corresponds to the 

fastest dynamic ( 2P ). 

Note that, the closed-loop transfer functions for the inner 
layers are given by: 
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The augmented overall plant transfer function 

 ( ) ( ) ( ) ( )sPsGsGsPc 21=  (6) 

For a plant that can be decomposed into a sum of 

1+n factors such as nPPPPP ++++= ...210 ; there are n  

inner control loops (or sub-controllers) corresponding to the 

n inner-layer factors. The notations 0P and nP represent the 

slowest and the fastest factors, respectively. 

Furthermore, for a plant with 1+n  factors, we can further 

extend the 3-layer block diagram shown in Figure 2 into 1+n -

layer block diagram. We can derive a vector of closed-loop 

transfer functions [ ]T

nGGG L21=GGGG for the n inner 

layers as follows: 
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Figure 2.  Block diagram of 3-layer multi-scale feedback control scheme: (a) 

full 3-loop, (b) reduced 2-loop and (c) reduced single-loop block diagrams. 

The sub-controllers are consecutively designed starting 

from the innermost layer nK  followed by 121 ,...,, KKK nn −− . It is 

often helpful to derive the following vector of transfer 

functions 1−∈ nRHHHH  in order to design the sub-controllers: 
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Once all the inner layer sub-controllers have been designed, 

the outermost sub-controller ( 0K ) can be designed based on the 

augmented overall plant transfer function: 

 ( )[ ] ( )sPsGsP
n
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To design 0K , it is normally assumed that PP =  where P is 

the nominal model for the plant. 

C. Design Procedure 

Step 1: Decompose the plant (model) P into a sum of 
factors by using partial fraction expansion as in (2). 

Step 2: Design the innermost sub-controller nK  based on 

nn PW = . 

Step 3: Derive the transfer functions nG as in (8) and then 

1−nH as in (9). 

Step 4: Design the sub-controller 1−nK  based on 1−nH . 

Repeat Steps 3 and 4 to obtain 132 ,...,, KKK nn −− . 

Step 6: Once all the inner sub-controllers have been 
designed, then derive the augmented overall plant transfer 

function cP  as in (10). Finally, use cP to design 0K . 

Remark: 

• For the inner sub-controllers, it is often recommended 
to adopt a very simple controller algorithm (the 
proportional or P-only controller).  

• As for the outermost sub-controller 0K , it is 

recommended to adopt a proportional-integral (PI) 
controller for reason of simple tuning.  

• We can also adopt more complex controller algorithms 
especially for the outermost sub-controller if a desired 
performance cannot be met using the PI controller, e.g. 
a proportional-integral-derivative (PID) controller with 
a lag filter and Linear-Quadratic-Gaussian (LQG) 
controller. 

 

III. ILLUSTRATIVE EXAMPLES 

Example 1 

Assume that the system to be controlled is given by the 
transfer function below: 
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where a  represents plant/model mismatch or modeling error 

for the time-delay. 

Furthermore, assume that the output disturbance is given by 
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Assuming that 0=a , approximate the time-delay component in 

(11) using the 1/1 Padé formula (3). The nominal model can be 
written as follows: 
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Next, we can decompose (13) into two factors using partial 
fraction expansion: 
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For the synthesis of multi-scale control (MSC) scheme, we 

select the multi-scale predictor as 11 PW = . The general 

procedure given in the previous section is adopted to 

synthesize the multi-scale controller. 

The controller tuning is done via the automated tuning 
procedure based on the minimization of Integral Absolute Error 
(IAE) criterion, performed using the Matlab SISO Design Tool: 

 25.21 −=K  (14) 

Then, derive the closed-loop transfer function 1G as in (9) 

for the case where 1=n (1 inner layer exists). Subsequently, 

derive the augmented overall plant transfer function PGPc 1=
 

using the approximated plant model in (13). Finally, proceed 

with the outermost sub-controller 0K  design, where the 

application of automated tuning procedure for PI controller 
leads to: 
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For performance comparison, two other control schemes 
are designed: (1) PI controller with Smith predictor and (2) 
conventional single-loop PID controller. 

The control scheme employing a PI controller augmented 
with the Smith predictor (Figure 1) is designed based on the 
delay-free model of the plant. Note that, the time-delay 
component is ignored in the controller design. The application 
of Matlab SISO Design Tool (automated tuning):  
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Next, the conventional single-loop PID controller with a lag 
filter is designed based on the approximated plant model as in 
(13). The following controller is obtained: 
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Figure 3 shows the closed-loop responses of the 3 control 
schemes for the case when the model is exact in response to 1 
unit step change in output disturbance. Notice that at the 
nominal condition, the multi-scale control scheme (MSC-PI/P) 
and the Smith predictor scheme (PI wt. Smith) exhibit almost 
the same performance in term of IAE value. Meanwhile, the 
standard single-loop PID controller shows more sluggish 
response in term of IAE value (13.7) than the other two control 
schemes. 
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Figure 3.  Disturbance rejection performance for zero model error: 0=a  

Figure 4 shows the comparative performances of the 3 
control schemes in the presence of modelling error in time-
delay (5 units). In this case, the PI with Smith Predictor control 
scheme is unstable. On the other hand, the MSC-PI/P and PID 
control schemes remain stable for this modeling error 
condition. However, the performance of the standard PID 
control scheme is badly degraded; its IAE increases from 13.7 
to 99.9. It is worth highlighting that, the performance of the 
multi-scale control (MSC) scheme is more robust than that of 
the standard single-loop PID controller; its IAE only increases 

by about 1.7 times that at the nominal condition, i.e. it 
experiences much less performance degradation. 
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Figure 4.  Disturbance rejection  performance for 5=a  
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Figure 5.  Gain margin vs. time-delay modeling error 

Note that, we can calculate the gain margin for the control 
system using Nyquist plot. For the proposed MSC scheme, the 
gain margin is calculated based on the overall open-loop 
transfer function given by 

 ( ) ( ) ( ) ( )sPsGsKsGOL 10=  (18) 

For the conventional single-loop PID controller, the overall 

open-loop transfer function  
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And for the Smith predictor scheme, the overall open-loop 

transfer function is given by 
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The plant P  shown in (19)-(21) is as given by (11); P  
denotes the approximated model as in (13) after time-delay 

approximation using the 4
th

-order Padé formula; ∗P  the plant 
model as in (11) assuming no time-delay component. The value 
of time-delay modeling error a  in (11) is varied while keeping 

all controllers fixed. Then, Nyquist plot is analyzed at each 
value of a  for gain margin. 

Figure 5 displays the plot of gain margins for the 3 control 
schemes against the error in time-delay (negative sign indicates 
reduction in the actual time-delay and vice versa). Notice that, 
the gain margins for the MSC-PI/P and PID schemes increase 
with the reduction in the actual time-delay, which means that 
the control schemes will only become unstable when the actual 
time-delay increases beyond certain values above that of the 
nominal value. On the contrary, the PI with Smith predictor 
scheme is stable only within a narrow range of error in time-
delay. From Figure 5, obviously we can notice that the MSC-
PI/P is the most robust against the plant/model mismatch in 
time-delay where the proposed scheme will only become 
unstable when the increase in the actual time delay exceeds 11 
units. Note that, the standard single-loop PID controller can 
only maintain stability for the increase in the actual time-delay 
up to 6 units. Note that, the PI with Smith predictor scheme is 
the least robust against the plant/model mismatch in time-
delay.  

Overall, based on this example we can draw a conclusion 
that it is possible to achieve a better closed-loop performance 
using the proposed multi-scale control scheme than the Smith 
predictor scheme for time-delay systems. It is worth noting 
that, for a system with dynamics dominated by long time-delay, 
the proposed scheme can be more robust against modeling 
error in time delay than the Smith predictor or the standard 
single-loop PID controller. 

Example 2 

Assume the system to be controlled is given by the second 
order plus time-delay (SOPDT) transfer function as follows: 
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And let the output disturbance transfer function 
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Assuming that model error 0=a , the application of 1/1 

Padé formula (3) yields an approximated model: 
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Application of partial fraction expansion to (24) leads to 
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where the plant factors are given by 
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The multi-scale predictors are selected as 
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The multi-scale control scheme is designed according to the 
procedure described in Section 2.3. All sub-controllers for the 
inner-loops are chosen as P-only controllers. Meanwhile, a PI 
controller is chosen for the outermost sub-controller. This 
results in the sub-controllers as given by 
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As for the Smith predictor scheme, a PI controller is designed 

using (22), but ignoring the time-delay component: 
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And for the single-loop feedback control scheme, a PID 
controller is augmented with a lag filter. The controller is 
designed based on the approximated model (24): 
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Figure 6 displays the closed-loop responses under nominal 
condition when subject to 1 unit step change in output 
disturbance. From the values of IAE, we can clearly notice that 
the proposed multi-scale control scheme (MSC-PI/P) gives the 
best performance while the standard single-loop PID control 
scheme yields the worst performance. 

Figure 7 demonstrates the closed-loop responses in the 
presence of error in time-delay (actual time-delay is 10 units 
above its nominal value). The Smith predictor scheme exhibits 
severe oscillatory response (shows almost unstable 
performance), while both MSC-PI/P and PID control schemes 
remain stable. Interestingly, just like in the first example, the 
performance degradation of the proposed multi-scale control 
scheme is significantly less than of the traditional single-loop 



PID control scheme (increase in the IAE of the former is much 
less than that of the latter).  

Figure 8 illustrates the plot of gain margins of the 3 control 
schemes versus time-delay modeling error. Unlike the first 
example, the gain margins for all control schemes increase with 
the increase in negative value a (actual time-delay is smaller 

than the model time-delay). Thus, this means that the 
controllers can become unstable only when the actual time-
delay increases beyond certain values above that of nominal 
value.  
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Figure 6.  Disturbance rejection performances 0=a  
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Figure 7.  Disturbance rejection performance under plant/model mismatch 

( 10=a ) 

From Figure 8, notice that the MSC-PI/P and standard 
single-loop PID control schemes exhibit similar robustness 
against time-delay modeling error (both become unstable when 
the actual time-delay increases by 19.5 units above the nominal 
value). Meanwhile, the PI controller with Smith predictor can 
only tolerate modeling error in time-delay up to about 10 units 
(only about half of that MSC-PI/P). Therefore, like the first 
example, we can conclude that the proposed multi-scale control 
scheme can achieve better performance than the conventional 
PID and PI with Smith predictor schemes. It is interesting to 
note that, the proposed multi-scale scheme is able to maintain 
better performance robustness against plant/model mismatch 
than the Smith predictor scheme. 
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Figure 8.  Gain margin versus model error in time-delay 

IV. CONCLUSIONS 

In this, paper we have presented a general multi-scale 
control scheme which can be used to improve the control 
performance of processes with significant time-delays. 
Numerical studies and analysis have shown that the proposed 
multi-scale control scheme is superior over the classical Smith 
predictor in terms of nominal performance and robustness 
against time-delay modeling error. It is worthwhile to highlight 
that, the proposed multi-scale control scheme can provide 
improved performance over the standard single-loop PID 
control scheme; surprisingly, this can be achieved by the multi-
scale control scheme with similar or greater robustness against 
time-delay modeling error than the standard single-loop PID 
control scheme. 
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