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Abstract 

Gravimetric geoid computation is often based on modified Stokes’s integration, where 

Stokes’s integral is evaluated with some stochastic or deterministic kernel modification. 

Accurate numerical evaluation of Stokes’s integral requires the modified kernel to be 

integrated across the area of each discretised grid cell (mean kernel). Evaluating the modified 

kernel at the centre of the cell (point kernel) is an approximation which may result in larger 

numerical integration errors near the computation point, where the modified kernel exhibits a 

strongly nonlinear behaviour. The present study deals with the computation of whole-of-the-

cell mean values of modified kernels, exemplified here with the Featherstone-Evans-Olliver 

(1998) kernel modification (Featherstone, W.E., Evans, J.D., Olliver, J.G., 1998. A Meissl-

modified Vaníček and Kleusberg kernel to reduce the truncation error in gravimetric geoid 

computations.  Journal of Geodesy 72(3), 154-160). We investigate two approaches 

(analytical and numerical integration) which are capable of providing accurate mean kernels. 

The analytical integration approach is based on kernel weighting factors which are used for 

the conversion of point to mean kernels.  For the efficient numerical integration, Gauss-

Legendre Quadrature is applied. The comparison of mean kernels from both approaches 

shows a satisfactory mutual agreement at the level of 10-4 and better, which is considered to 

be sufficient for practical geoid computation requirements. Closed-loop tests based on the 

EGM2008 geopotential model demonstrate that using mean instead of point kernels reduces 

numerical integration errors by ~65%. The use of mean kernels is recommended in remove-

compute-restore geoid determination with the Featherstone-Evans-Olliver (1998) kernel or 

any other kernel modification under the condition that the kernel changes rapidly across the 

cells in the neighbourhood of the computation point. 
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 1 Introduction  

Many strategies used in gravity field modelling were developed at a time when the 

“goal for geoid determination was at a precision of a least one order of magnitude less than 

it is today, i.e., ~10 cm or worse” (Sjöberg, 2005).  For today’s geoid and quasigeoid 

modelling at the centimetre-level and better, it is therefore required to thoroughly assess and 

– if necessary – correct for approximations that are still inherent in the techniques used. 

 Regional geoid computations are often based on numerical integration of gravity 

anomalies using modified Stokes’s integration where Stokes’s integral is evaluated with some 

kernel modification (e.g., Featherstone, 2003; Ellmann, 2005). Inevitably, the practical 

evaluation of Stokes’s integral is subject to approximations. This is because Stokes’s integral 

is evaluated by numerical integration of gravity anomalies, given for small surface elements 

(aka blocks or cells), cf. Heiskanen and Moritz (1967) and Torge (2001). Not only are gravity 

anomalies required, but also values of the integral kernel which are ‘most’ representative for 

the cells (Heiskanen and Moritz, 1967; Vaníček and Krakiwsky, 1986). 

 Sometimes, the integral kernel is computed at the centre-of-the-cell, but this may be a 

coarse approximation in the neighbourhood of the computation point, where the kernel 

changes nonlinearly across the cell (Strang van Hees, 1990). Rigorously, whole-of-the-cell 

means of the kernel (herein abbreviated to mean kernels) are required. These can be obtained 

through integration of the kernel over the cell (Vaníček and Krakiwsky, 1986).  Using mean 

instead of centre-of-cell kernels near the computation point may considerably reduce 

numerical integration errors  (Hirt et al. 2011). 

 For Stokes’s integral and Stokes’s kernel, Strang van Hees (1990) and de Min (1994) 

have developed approaches to compute estimates of mean kernels across the cell. Recently, 

Hirt et al. (2011) have combined these approaches, yielding a generalized computation 

procedure for mean kernels used in Stokes’s integral and other geodetic convolution 

integrals, such as the integrals of Vening-Meinesz and Poisson (Torge, 2001) or Hotine 

(Hotine, 1969). However, the computation procedures and benefits of mean kernels are 

generally not or little addressed by scholars for modifications of Stokes’s function, such as the 



deterministic modifications of Wong and Gore (1969), Heck and Grüninger (1987), Vaníček 

and Kleusberg (1987) and Featherstone et al. (1998) and the stochastic modifications of 

Wenzel (1982) and Sjöberg (1984, 1991). An exception is de Min (1996, p. 169) mentioning 

the use of cell-mean values for the Wong and Gore (1969) kernel modification. 

 The aim of the present study is to demonstrate that the use of mean kernel estimates is 

an important issue for the accurate evaluation of Stokes’s integral using modified integration 

kernels.  Section 2 briefly summarizes the basic theory of geoid computation using Stokes’s 

integral, modified Stokes’s integration and the Featherstone et al. (1998) kernel as an 

example for integral kernel modifications. Section 3 then describes and compares one 

analytical and one numerical approach capable of providing whole-of-the-cell mean values of 

modified kernels. Results of closed-loop tests are presented in Section 4, revealing the 

benefits of mean kernels in practice. The Featherstone et al. (1998) kernel has been chosen to 

serve as example, however, we consider our study representative for other kernel 

modifications used in practice (e.g., Featherstone, 2003; Ellmann, 2005). The present study is 

complementary to the paper by Hirt et al. (2011), that discusses the computation of mean 

kernels for geodetic convolution integrals in general and for the (unmodified) Stokes’s 

integral in particular. 

 

2. Basic theory  

2.1 Stokes’s integral 

Stokes’s integral (aka Stokes’s formula) of 1849 allows computation of geoid heights N from 

gravity anomalies g∆  which – at least theoretically – are required to be continously given for 

small cells of size dσ  covering the whole of the Earth’s surface σ  (Torge, 2001): 

( )
4
RN g S d

σ

ψ σ
πγ

= ∆ ⋅∫∫         (1) 

with R denoting the radius of Earth and γ  the normal gravity. The term ( )S ψ  is Stokes’s 

function (aka Stokes’s kernel) which is a function of the spherical distance ψ  between the 

computation point P (where the geoid height N is sought) and the data points Q (where 

gravity anomalies g∆  are given). In closed-form, Stokes’s function reads (Heiskanen and 

Moritz, 1967): 
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S ψ ψ ψ ψ ψ ψ
ψ
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To contrast with modified kernels in Sections 2.2 and 2.3, ( )S ψ  is also called unmodified 

Stokes’s kernel.  The spherical distance ψ  is computed as a function of the spherical 

coordinates (latitude Pϕ  and longitude Pλ ) of the computation point P and the coordinates 

( , )Q Qϕ λ  of the data points Q  (Strang van Hees 1990, p. 236): 
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− −     = +    

     
.    (3) 

Practically, Stokes’s integral formula is evaluated numerically by means of summation of 

products of Stokes’s kernel ( )S ψ  and gravity anomalies g∆  over small, but finite cells, e.g., 

of 1 arc min x 1 arc min size. The required discretisation of Earth’s surface is usually done by 

means of grid lines along meridians and parallels, giving a subdivision into approximately 

rectangular cells q  (Heiskanen and Moritz, 1967, p. 118).  Next, we use Q to denote the 

centre coordinates of the cells q. 

Stokes’s function ( )S ψ  is singular for the gravity anomaly of the computation point P (i.e., 

ψ=0). The cell centred to the computation point P is also denoted innermost zone (e.g., 

Featherstone, 2002; Torge, 2001). The contribution of the gravity anomaly Pg∆  of the 

innermost zone to the geoid height N can be taken into account with approximations given 

e.g., in Haagmans et al. (1993) or Torge (2001), p. 283.  

Evaluating the ( )S ψ  at the centre of the cells Q is sufficiently accurate beyond some 

distance, say 1° from the computation point P, while larger numerical integration errors are 

caused by centre-of-cell kernels in the neighbourhood of the computation point P. This is 

related to the first term of Stokes’s function 

1 1( )
sin( / 2)

stS ψ
ψ

= ,          (4)  

which, as dominating component of ( )S ψ  in the neighbourhood of the computation point P, 

is chiefly responsible for the non-linear across-the-cell-variation of the kernel (see, e.g., Hirt 

et al., 2011). To accurately evaluate Stokes’s integral near the computation point P, the kernel 



function needs to be integrated across the cell (Vaníček and Krakiwsky, 1986), which gives 

whole-of-the-cell mean kernels (Section 3).  

2.2 Modified Stokes’s integration 

It is well known that geoid computation based on Stokes’s integral [Eq. (1)] requires the 

gravity data g∆  to be provided continuously over the whole of the Earth’s surface. This is an 

impractical requirement, given that the global gravity data coverage (e.g., at 1 arc min 

resolution) is still incomplete and irregular, thus impeding the direct and accurate use of 

Stokes’s formula (e.g., Vaníček and Sjöberg, 1991).  A commonly applied strategy to 

circumvent this problem is the remove-compute-restore (RCR) technique together with 

modified Stokes’s integration (after Vaníček and Sjöberg, 1991, Featherstone et al. 2001): 

*( ) ( )
4

L res L LRN N N N g g S d
σ

ψ σ
πγ

= + = + ∆ −∆ ⋅∫∫  .    (5) 

In the RCR-technique (e.g., Sjöberg, 2005; Featherstone et al., 2001), the observed gravity 

anomalies g∆ are reduced (“remove”) by the contribution Lg∆  of a global geopotential 

model (GGM) expanded to spherical harmonic degree L, yielding residual anomalies 
resg∆ = Lg g∆ −∆ . These are transformed (“compute”) to the residual geoid undulation resN of 

the computation point P using modified Stokes’s integration, i.e., evaluation of Stokes’s 

integral in Eq. (5) with some modified kernel *( )S ψ . Finally, the GGM geoid contribution 
LN  is added (“restore”) to the residual geoid undulation resN . We refer the reader to, e.g., 

Featherstone et al. (2001) and Torge (2001), p. 271f, for the spherical harmonic expansions to 

compute LN  and Lg∆  from the GGM coefficients. As an important benefit of the RCR-

technique, the computation area may be limited to radius 0ψ , typically a few degrees, around 

the computation point P (e.g., Vaníček and Kleusberg, 1987; Featherstone et al., 2001; Torge, 

2001, p. 285).   

The neglect of gravity data outside the computation area (ψ> 0ψ ) results in a truncation error, 

which is kept manageably small by using a high-degree GGM reference field (e.g., L=360) in 

the RCR-approach. In case of using a low-degree GGM reference field (usually well below 

spherical harmonic degree 360), the truncation error is often estimated and corrected for 

based on a GGM. This technique, also known as University of New Brunswick approach 

(e.g., Vaníček and Kleusberg, 1987; Featherstone et al., 2003) is not further discussed here.  



From a range of commonly used kernel modifications (see, e.g., Featherstone, 2003; Ellmann, 

2005 for an overview), we select the Featherstone-Evans-Olliver (1998) deterministic 

modification (herein abbreviated to FEO) to serve as modified kernel *( )S ψ for this study. 

The Featherstone et al. (1998) modified kernel was used, e.g., in recent RCR-based geoid 

computations for Australia (Featherstone et al., 2011) and for New Zealand (Claessens et al., 

2011).  

2.3 Featherstone et al. (1998) modified kernel 

The FEO modified kernel is based on the Vaníček and Kleusberg (1987) kernel 

modification and depends on the parameters (i) degree of modification M and (ii) the 

integration radius (aka integration cap radius or truncation radius) 0ψ . In a first step, the 

Wong and Gore (1969) modified kernel ( )WGS ψ  is computed (Featherstone, 2003) 

2
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where (cos )nP ψ denotes the Legendre Polynomials (Torge 2001, p.68) and M the degree of 

modification. In a second step, the Vaníček and Kleusberg (1987) modified kernel ( )VKS ψ  is 

calculated  

0
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M
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+
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where the modification coefficients 0( )nt ψ  are obtained as solution of a set of 1M −  linear 

equations (e.g., Featherstone et al., 2001; Featherstone, 2003) 
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The quantities 0( )nke ψ  and 0( )nQ ψ (see Featherstone et al. 2001) 
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are computed using the algorithms by Paul (1973). In a third step,  the FEO modified kernel 

( )FEOS ψ  is obtained by forcing the Vaníček and Kleusberg kernel to zero at the integration 

radius 0ψ  (Featherstone et al. 1998, p. 157): 

0( ) ( ) ( )FEO VK VKS S Sψ ψ ψ= − .       (11) 

Eqs. (7) and (11) are valid for 00 ψ ψ< ≤ . The modified kernel function ( )FEOS ψ can be 

computed with the publicly available software modkern.f (Featherstone, 2003), allowing the 

reader to replicate the computation of the modified kernel.  

The degree of modification M often ranges between 2 and 360 and the integration radius 0ψ  

usually amounts to a few degrees (e.g., Vaníček and Featherstone, 1998; Featherstone et al., 

2011; Claessens et al., 2011). Importantly, the spherical harmonic degree L of the GGM 

reference field and degree of modification M do not need to be equal (e.g., Featherstone et al., 

2001). For instance, in practical RCR-based geoid computations using ultra-high-degree 

GGM reference fields (L=2160), the kernel parameters M=20..60 and 0ψ =2.5°..5° have been 

found to produce accurate geoid heights (e.g., Featherstone et al., 2011; Claessens et al., 

2011). This serves as a justification for using the FEO kernel modification with M=40 and 

0ψ =5° in the numerical tests of our study. To speed up the geoid computation using modified 

kernels, it is beneficial to establish a look-up-table (LUT) of pre-calculated kernel values 

( 00 ψ ψ< ≤ ) which are cubically interpolated. 

The FEO kernel modification ( )FEOS ψ  (with L= 40 and 0ψ = 5°), the [unmodified] Stokes’s 

kernel ( )S ψ  and the first term of Stokes’s function 1 ( )stS ψ  are shown together in Fig. 1 

(left), illustrating the relationship among the functions.  For small ψ -values, say less than 

~0.5-1°, the FEO kernel modification is dominated by the first term of Stokes’s function 
1 ( )stS ψ , however not as strongly as the unmodified Stokes’s kernel ( )S ψ  (Fig. 1 right).   

Please place Figure 1 near here 

3.  Computation of mean kernels   

Whole-of-the-cell mean values of modified kernels can be obtained either through analytical 

or numerical integration. In the analytical integration approach, a planar approximation of the 



first term of Stokes’s function is integrated over the area of the cell, serving as an aid in 

computing so-called kernel weighting factors (e.g., Strang van Hees, 1990; Featherstone and 

Olliver, 1997; Hirt et al., 2011). These are conversion factors allowing transformation from 

point to mean kernel values (of Stokes’s function or modified versions thereof). The 

numerical integration approach used here is based on Gauss-Legendre Quadrature (e.g., 

Abramowitz and Stegun, 1972; Hamming, 1986). Both approaches are detailed and compared 

next. 

3.1  Analytical integration 

The method presented here is a hybrid of the analytical integration approach developed for 

the unmodified Stokes’s kernel by Strang van Hees (1990) and de Min (1994). Strang van 

Hees (1990) introduced kernel weighting factors W allowing transformation from point to 

mean kernels. He derived mean Stokes’s kernels from a one-dimensional analytical 

integration assuming square-shaped cells, which limits the accuracy of his method in practice 

(Hirt et al., 2011). Without using kernel weighting factors, de Min (1994) applied two-

dimensional analytical integration (2D-AI) of Stokes’s function, taking into account the 

usually rectangular shape of cells. Combining the kernel weighting factor concept with the 

2D-AI is a suitable approach to provide analytically mean values of modified kernels. 

We start by introducing rectangular coordinates (x,y) to describe the distance between the 

computation point ( , )P Pϕ λ  and centre of the cell under evaluation ( , )Q Qϕ λ  in planar 

approximation: 
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= −
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Planar approximation of the first term of Stokes’s function 1 ( )stS ψ ≈ 2/ψ  and planar 

approximation of the distance 2 2x yψ ≈ + (see Torge, 2001, p. 287)  gives Stokes’s kernel 

in planar approximation (e.g., de Min 1994): 
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.        (13) 

For a given cell of size ϕ∆  x λ∆  (e.g., 1 arc min x 1 arc min), bounded by corner 

coordinates 1 1( , )x y and 2 2( , )x y  
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the whole-of-the-cell mean kernel 1 1 2 2( , , , )K x y x y  in planar approximation is obtained from 

two-dimensional analytical integration (after Vaníček and Krakiwsky, 1986; de Min, 1994): 

2 2

1 1
1 1 2 2

1( , , , ) ( , )
x y

x x y y
K x y x y K x y dxdy

a = =
= ∫ ∫       (15) 

where a = 2 1 2 1( )( )x x y y− − denotes the area of the cell. Eq. (15) can be solved analytically (de 

Min, 1994): 
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using the antiderivative (de Min, 1994) 

 2 2 2 2( , ) 2[ ln( ) ln( )]F x y x y x y y x x y= + + + + + .    (17) 

Comparing the mean value 1 1 2 2( , , , )K x y x y  with the point (centre-of-cell) value ( , )K x y  

(both in planar approximation) gives the kernel weighting factor (Hirt et al., 2011) 

1 1 2 2 1 1 2 2( , , , ) ( , , , ) / ( , )W x y x y K x y x y K x y=       (18) 

which is adapted here to transform point values of FEO kernels FEOS  to mean values 
2DAI
FEOS  

for a given cell ( 1 1 2 2, , ,x y x y ): 

2DAI
FEO FEOS WS≈ .         (19) 

Because the first term of Stokes’s function 1 ( )stS ψ  ‘governs’ the modified kernel FEOS  near 

the computation point (say well within 1° radius, see also Fig. 1), the kernel weighting 

factors
2DAI
FEOS / FEOS  and /K K  have very similar values. This makes the transformation in Eq. 

(19) possible. A numerical confirmation of Eq. (19) is given in Section 3.3. It should be noted 



that the planar approximations K  or K of Stokes’s kernel are not used as a substitute of the 

modified kernel FEOS . The direct use of the planar approximations (in place of FEO mean 

kernels 
2DAI
FEOS ) would significantly worsen the accuracy of Stokes’s integration.  

3.2 Numerical integration 

Gauss-Legendre Quadrature (GLQ) (e.g., Stark, 1970; Abramowitz and Stegun, 1972; 

Hamming, 1986; Alberts and Klees, 2004; Wild-Pfeiffer, 2008) is a very efficient integration 

technique for the numerical computation of mean kernel estimates. The basic idea is to 

evaluate the kernel function at carefully selected points (being a function of the Legendre 

Polynomials), located within the area of the cell q. The GLQ numerical mean kernel estimate 

is obtained as weighted average of the point kernel evaluations. For a given cell q, bounded 

by coordinates 1 2 1 2, , ,λ λ ϕ ϕ , the GLQ numerical whole-of-the-cell mean value 
GLQ
FEOS  of the 

FEO kernel is obtained through 2n  evaluations of the modified kernel function ( )FEOS ψ  (see 

also Hirt et al., 2011): 

1 1

1 ( ( , , , ))
n nGLQ

FEO i j FEO P P Qi Qj
i ji j

S w w S
w w

ψ ϕ λ ϕ λ
= =

= ∑∑      (20) 

where n is the quadrature degree, ,i jw w  are the weights (not to confuse with kernel weighting 

factors W from Section 3.1) and ,Qi Qjϕ λ  are the coordinates of the evaluation points.. The 

evaluation points ,Qi Qjϕ λ  are located within the area of cell q (i.e., 1 2Qjλ λ λ< <  and 

1 2Qiϕ ϕ ϕ< < ) and obtained from (Hirt et al., 2011) 
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where ix ( jx ) is the i -th ( j -th) zero crossing of the n -th Legendre polynomial (e.g., 

Abramowitz and Stegun, 1972). The weights ,i jw w  are computed from (Abramowitz and 

Stegun, 1972, p. 887; Hirt et al., 2011):  
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with '
nP  being the derivative of the n -th Legendre polynomial, evaluated at ix  and jx , 

respectively. The computation of the coordinates of the evaluation points ,Qi Qjϕ λ  and the 

weights ,i jw w  can be accomplished with computer code from the Numerical Recipes (Press 

et al., 2002) or other mathematical software libraries. Naturally, the described approach can 

be used to compute mean kernel estimates of any other kernel modification. 

For the practical application of GLQ, it is useful to introduce some convergence threshold. 

Given that the geoid signal in RCR-based geoid computation rarely exceeds an order of a few 

metres, a threshold of 410ε −=  would result in an acceptable uncertainty well below the 

millimetre level. To investigate the quadrature degree n  required, Eq. (20) was evaluated  as 

a function of n , ranging from 1 to 20, and compared against a ‘reference value’  

( )
GLQ
FEOS ref from n = 1000.  The convergence error  

( ) ( )

( )

GLQ GLQ
FEO FEO

GLQ
FEO

S n S ref
S ref

ε −
=         (23) 

is shown in Fig. 2 for cells located 1, 5 and 30 arc min North of the innermost zone (cell size 

is 1 arc min x 1 arc min and latitude of the computation point P is –35°). For cells directly 

adjoining the innermost zone, a degree 3 quadrature (i.e., 9 evaluation points) is required to 

provide GLQ numerical mean kernels accurate to 10-4. In 5 arc min distance from the 

computation point, 4 evaluation points per cell are sufficient to meet the 410− criterion, 

whereas the point kernel (equivalent to quadrature degree 1 with the cell centre Q as only 

evaluation point) is yet good enough in 30 arc min distance and beyond. For higher 

quadrature degrees, say n = 5 and higher, convergence errors are at the level of ~ 810−  (Fig. 

2). This very small level of uncertainty would be more than sufficient for any practical 

application of mean kernels in modified Stokes’s integration. The results of this convergence 

experiment demonstrate that GLQ is a very efficient numerical integration technique for the 

accurate computation of whole-of-the-cell mean values of modified kernels.  



 

Please place Figure 2 near here 

 

3.3 Comparisons 

To evaluate the 2D-AI analytical and GLQ numerical computation approach, we computed 

FEO kernel values for a grid of 1 arc min x 1 arc min cells over Australia. Fig. 3A shows the 

FEO point kernel matrix (with the computation point P as the centre). The percentage 

differences between the 2D-AI mean kernel 
2DAI
FEOS  and point kernel FEOS  are shown in Fig. 

3B and those between the GLQ numerical mean 
GLQ
FEOS  and point kernel FEOS  in Fig. 3C. 

Both approaches exhibit very similar difference patterns with maximum differences of ~5% 

between FEO mean and point kernels for cells adjoining the computation point. This 

demonstrates across-the-cell variations of the FEO mean kernel for small ψ -values. Fig. 3D 

shows the percentage differences between 2D-AI and GLQ mean kernels. The differences are 

largest adjacent to the innermost zone (about 0.02%) and otherwise below or well below the 

level of 10-4. This good mutual agreement is considered a sufficient validation of both mean 

kernel computation strategies. Further to this, the small discrepancies in Fig. 3D implicitly 

confirm the validity of Eq. (19).  As a conclusion, the comparisons demonstrate the capability 

of both approaches to accurately compute FEO mean kernel estimates.  

With both approaches, it will be usually sufficient to restrict the mean kernel computation to 

a zone of ~30 arc min radius around the innermost zone (cf. Fig. 2). The increase in 

computation time (with respect to point kernels) is below ~10 % for both methods, which 

should be well acceptable in practical applications. 

 

Please place Figure 3 near here 

 

4. Numerical closed-loop tests  

Closed-loop tests were used to compare and evaluate the performance of FEO 

analytical/numerical mean and point kernels in RCR-based geoid computation. The recent 



high-resolution EGM2008 global gravity model (Pavlis et al., 2008) served as source to 

generate self-consistent pairs of gravity anomalies 2008EGMg∆  and geoid heights 2008EGMN  

using the state-of-the-art harmonic_synth spherical harmonic synthesis software (Holmes and 

Pavlis 2008). Transformation of gravity anomalies 2008EGMg∆  to geoid heights 2008( )EGMN g∆  

using different FEO kernel variants and subsequent comparision against the ‘error free’ geoid 

heights 2008EGMN  allows assessment of the mean and point kernel performance. 

Australia, Europe and the Himalaya mountains were chosen as test areas to cover different 

latitudes and signal strengths of gravity field features. The boundaries of the computation 

areas and signal strengths of the geoid heights are found in the captions of Tables 1–3.  For 

any of the three test areas, the EGM2008 gravity anomalies 2008EGMg∆  and geoid heights were 

synthesized on 1 arc min grids in the spectral band 361..2190. This band was chosen because 

it ‘replicates’ the frequently used RCR-scheme with a degree L=360 GGM reference field 

removed. Given that a degree 2190 spherical harmonic expansion represents the geoid signal 

almost completely [the missing portion, known as omission error, is globally estimated to be 

~4 cm, cf. Jekeli et al. (2009)], the chosen spectral band is considered a realistic simulation of 

the RCR-approach.   

The FFT1Dmod2010 software of the Western Australian Centre of Geodesy was applied to 

evaluate Stokes’s integral [Eq. (5)], using the FEO modified kernel [Eq. (9)] with  parameters 

M= 40 and 0ψ = 5°. This software is based on the one-dimensional Fast Fourier Transform 

technique (Haagmans et al. 1993) that allows very efficient numerical evaluation of Stokes’s 

integral, see also Featherstone et al. (2001). To allow Stokes’s integral to be correctly 

evaluated over the whole cap radius, also near the edges of our test area, the EGM2008 

gravity grids were extended by an auxilliary 5° boundary strip.  The descriptive statistics of 

the closed-loop differences 2008 2008( )EGM EGMN N g− ∆  show an almost identical performance 

of the FEO 2D-AI analytical and FEO GLQ numerical mean kernel (Tables 1-3). The 

practical equivalence of both variants in our tests is as expected, given the ~10-4 mutual 

agreement between both mean kernel computation approaches found in Sect. 3.3.  

In any of the test areas, FEO mean kernels produce RMS errors which are factor ~2.5 to 3 

lower than those of FEO point kernels (Tables 1-3). Likewise, it is seen that the maximum 

discrepancies drop from the cm to the mm-level (Australia) from ~2 cm to the sub-cm-level 



(Europe) and from ~3-4 cm to the 1 cm-level (Himalaya Mountains).  This suggests to use 

mean kernel estimates in Stokes’ numerical integration with modified kernels. 

A detail display of the FEO mean and point kernel performance is given from the closed-loop 

differences 2008 2008( )EGM EGMN N g− ∆  along parallel of –35° (test area Australia) in Fig. 4, 

showing the larger numerical integration errors in case of point kernels. Finally, Fig. 5 shows 

the closed-loop differences 2008 2008( )EGM EGMN N g− ∆  for the Himalaya test area, illustrating 

the error patterns caused by using point kernels instead of mean kernels.   

 

Please place Figure 4 near here 

 

Please place Figure 5 near here 

5.  Conclusions and recommendations  

The present study has investigated the computation of whole-of-the-cell means for the 

Featherstone-Evans-Olliver (1998) kernel, serving as an example of modified kernels used in 

gravimetric geoid determination based on Stokes’s integration. We have described (i) the 

analytical approach to compute FEO mean kernels adapting the concept of kernel weighting 

factors and (ii) the numerical approach which is based on Gauss-Legendre-Quadrature. The 

comparison of both methods showed a satisfactory mutual consistency on the level of ~10-4 

and better.  

The performance of our mean kernel approaches was compared against centre-of-cell (point) 

kernels by means of closed-loop tests based on self-consistent sets of gravity anomalies and 

geoid heights from EGM2008 in the spectral band 361..2190. Any of the test demonstrated 

that whole-of-the-cell mean values of the FEO kernel modification reduce the numerical 

integration errors by ~65%. In many cases, maximum closed-loop errors were reduced from 

some cm to the sub-cm level, which is a relevant improvement for accurate geoid 

determination. 

Our study demonstrates that mean kernels should be used instead of point kernels to 

accurately evaluate Stokes’s integral with kernel modifications. We have exemplified this 

with Featherstone-Evans-Olliver (1998) kernel modification, one of many kernel 

modifications used in practical geoid computations. Our findings are considered 



representative for any other kernel modification under the condition that the modified kernel 

rapidly varies across the cell in the neighbourhood of the innermost zone. Most of the 

modified kernels will meet this condition. As a general conclusion, using mean kernels in 

modified Stokes’s integration considerably reduces numerical integration errors. 
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Fig. 1. Left: (unmodified) Stokes’s function ( )S ψ , first term of Stokes’s function 1 ( )stS ψ and 

FEO modified kernel ( )FEOS ψ with M = 40 and ψ0 = 5°.  Right: Ratios 1 ( )stS ψ / ( )S ψ , 

( )FEOS ψ / ( )S ψ  and ( )FEOS ψ / 1 ( )stS ψ . 

 

 



Fig. 2. Convergence error ε of GLQ numerical mean kernels as a function of the quadrature 

degree n and as a function of the distance ψ between the innermost zone and the cell under 

evaluation (1, 5 and 30 arcmin). Cell resolution is 1 arc min x 1 arc min and latitude of the 

computation point P is -35°. Kernel is the FEO modification (M= 40, ψ0 = 5 deg).   

 

 

Fig. 3. A: Centre-of-cell (point) values of the FEO kernel. B: Percentage differences between 

FEO 2D-AI mean and point kernel. C: Percentage differences between GLQ numerical mean 

and point kernel. D: Percentage differences between 2D-AI and GLQ numerical mean kernel. 

The panels show 13 x 13 cell arrays with the centre being the computation point P. Cell 

resolution is 1 arc min x 1 arc min and latitude of the computation point P is -35°. FEO 

kernel parameters are M= 40 and ψ0 = 5 deg.   

 



 

 

Fig. 4. Closed-loop differences 2008 2008( )EGM EGMN N g− ∆ over Australia along parallel -35° as 

a function of the FEO kernel variant (point, 2D-AI mean and GLQ numerical mean). 

 

 



 

Fig. 5. Closed-loop differences 2008 2008( )EGM EGMN N g− ∆ for the Himalaya test area.  Left: 

results of modified Stokes’s integration using point kernels, Right: results of modified 

Stokes’s integration using GLQ numerical mean kernels.  Kernel used is the FEO 

modification (M= 40, ψ0 = 5 deg).  Units in metres. 

Tables 

 

Table 1. Descriptive statistics of closed-loop geoid differences 2008 2008( )EGM EGMN N g− ∆  for 

test area Australia (-40°≤ϕ≤-30° and 140°≤λ≤150°, 361201 pts, EGM2008 361..2190 

truncation, 2008EGMN  min/max/RMS: -0.82/1.10/0.13 m).  Units in mm.  

Kernel type Min Max Mean RMS 

Point ( centre-of-cell) -9.0 14.3 0.0 1.2 

2D-AI analytical mean -3.4 3.6 0.0 0.4 

GLQ  numerical mean  -3.1 3.0 0.0 0.4 

 

Table 2.  Descriptive statistics of closed-loop geoid differences 2008 2008( )EGM EGMN N g− ∆ for 

test area Europe (35°≤ϕ≤55° and 5°≤λ≤25°, 1442401 pts, EGM2008 361..2190 truncation, 

2008EGMN  min/max/RMS: -1.81/1.80/0.22 m).  Units in mm. 



Kernel type Min Max Mean RMS 

Point ( centre-of-cell) -20.3 23.0 0.0 2.1 

2D-AI analytical mean -8.0 8.3 0.0 0.8 

GLQ numerical mean  7.1 7.4 0.0 0.8 

 

Table 3.  Descriptive statistics of closed-loop geoid differences 2008 2008( )EGM EGMN N g− ∆    for 

test area Himalaya (25°≤ϕ≤35° and 85°≤λ≤95°, 361201 pts, EGM2008 361..2190 truncation, 

2008EGMN min/max/RMS: -2.84/3.67/0.49 m).  Units in mm. 

Kernel type Min Max Mean RMS 

Point ( centre-of-cell) -35.7 37.8 0.0 5.2 

2D-AI analytical mean -10.5 8.5 0.0 1.7 

GLQ numerical mean  -11.3 9.0 0.0 1.8 
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