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an animal whether it is wildlife, farm stock or domestic. This level of uncertainty can vary with depending 
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effect on AVCs, while speed limits and horizontal curves indicate a negative effect. AVCs consist of both 
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Abstract 

 

Driving along any rural road within Western Australia involves some level of uncertainty about 

encountering an animal whether it is wildlife, farm stock or domestic. This level of uncertainty can 

vary with depending on factors such as the surrounding land use, water source, geometry of the 

road, speed limits and signage. This paper aims to model the risk of animal-vehicle crashes (AVCs) 

on a segmented highway. A hierarchical Bayesian model involving multivariate Poisson lognormal 

regression is used in establishing the relationship between AVCs and the contributing factors. 

Findings of this study show that Farming on both sides of a road, a mixture of farming and forest  

roadside vegetation and roadside vegetation have significant positive effect on AVCs, while speed 

limits and horizontal curves indicate a negative effect. AVCs consist of both spatial and segment 

specific contributions, even though the spatial random error does not dominate model variability. 

Segment 15 is identified as the highest risk segment and its nearby segments also exhibit high risk. 
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1. Introduction 

 

1.1 Rationale and Objectives 

 

Animal-vehicle crashes (AVCs) are an important health issue worldwide. Thousands of deaths and 

injuries and billions of damage occur annually because of these events (Langley & Mathison, 2008). 

In the United States, Significant attention has been paid into preventing animal-related crashes due 

to extensive vehicle damage occurring yearly (Hedlund, Curtis, Curtis, & Williams, 2004). Vehicle 

collisions with moose are considered as one of the major safety issues in Sweden with around 4500 

crashes per year, including 10–15 human fatalities (Seiler, 2005). Each year in Australia, many 

thousands of AVCs have also resulted in considerable damage to the society. So far the specific 

nature of AVCs has not been thoroughly studied (Rowden, Steinhardt, & Sheehan, 2008). Ramp et 

al. (2005) suggests identifying and targeting fatality hotspots is required to focus mitigation efforts, 

given enormously long roads (810,022km)  in Australia. It is too costly to manage the AVC damage 

for each segment of the road. 

 

Statistical modelling of vehicle crashes has been of interest to researchers for many years (Mitra & 

Washington, 2007). More advanced statistical methods have become widely used in recent years to 

determine the effectiveness of safety measures and to identify high risk traffic areas. Bayesian 

statistical techniques, in particular, can generate more real-world-condition statistical results than 

traditional methods (Schultz, Thurgood, Olsen, & Shane Reese, 2011).  
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The objective of this paper is to develop a Bayesian model to identify higher risk segments of a 

roadway susceptible to AVCs and significant contributing factors to the risk of AVCs. The 

hierarchical Bayesian multivariate Poisson lognormal regression model allows for both over 

dispersion and a possible correlation structure and has been central to many traffic crash studies  

(El-Basyouny & Sayed, 2009; Ma, Kockelman, & Damien, 2008; M. Maes, Dann, Sarkar, & 

Midtgaard, 2007). In particular, the model developed by Maes et al. (2009), which was applied to a 

dynamically segmented coastal road in Norway by Graf (2009), is modified and adapted for AVC 

counts in this study. This model incorporates direct correlation using the distance between the 

centroids of homogeneous segments of varying lengths.  

 

The paper is organised as follows: firstly a literature review of existing studies and models of AVCs 

and general traffic crashes as part of this introduction. The methodology employed in this paper is 

described in section 2. This includes outlining the study area selected, description of how the data 

were sourced and prepared, explanation of the Bayesian principals and Markov chain Monte Carlo 

simulation techniques applied and the hierarchical multivariate Poisson lognormal model adopted 

and evaluated. It is then followed by the results and discussion of the model and segment ranking in 

section 3. Finally conclusions are drawn. 

 

1.2 Literature Review of AVC Analysis 

 

The study by Rowden et al. (2008) essentially used descriptive and exploratory statistics to 

highlight the importance of the issue, finding AVCs comprised 5.5% of total serious crashes in the 

study. This indicates far more interest should be generated to this issue by road safety funding 

bodies and researchers. However, research papers analysing AVCs are still not as prevalent as 

would be expected given the significance of the issue. Seiler (2005) applied an empirical multiple 
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logistic regression model to determine factors affecting moose vehicle collisions. The traffic 

volume, the occurrence of fences and vehicle speed were discovered as dominant factors and 72·7% 

of the crash sites were predicted by the model. Gunson et al. (2011) reviewed 24 published papers, 

which used generalized linear models to quantitatively analyse the influence of environmental 

predictors on the wildlife vehicle crash locations. Increased traffic volumes, speed limits and road 

width, decreased visibility, flat terrain and the presence of water sources increased the number of 

wildlife vehicle collisions among all species. A diagonal inflated bivariate Poisson model was fitted 

to two datasets by Lao et al. (2011) and illustrated the influences of geographic characteristics, 

geometric design and traffic elements on the AVC occurrences. The annual average daily traffic, 

speed limit, and shoulder width were also found to increase the numbers of AVCs. On the other 

hand, some geometric factors, such as rolling and mountainous terrain, were found to decrease the 

number of reported AVCs (Lao, Wu, Corey, & Wang, 2011). A common finding amongst the 

research papers mentioned is that identification of spatial clusters of AVCs is the key of AVC 

mitigation and its associated factors are geographic characteristics, geometric design and traffic 

elements (Clevenger, Chruszcz, & Gunson, 2003 ; Gunson et al., 2011; Joyce & Mahoney, 2001; 

Plug, Xia, & Caulfield, 2011; Puglisi, Lindzey, & Bellis, 1974). 

 

1.3 Literature Review of Modelling Methods of General Vehicle Crash 

 

Research of general traffic crashes has been far more extensive and methodologies for predictive 

modelling have evolved over many years. Crash count models have been established and 

universally adopted, but also critiqued and reinvented. The primary purpose of these models is to 

estimate the risk at a particular entity of the road network where a count of crash occurrences can be 

made. Possible entities include road segments, intersections and suburbs. Initially models are 

relatively simple and based on linear regression. Two early studies by Jovanis and Chang (1986) 
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and Miaou and Lum (1993) investigated conventional linear regression and Poisson regression. 

Both studies criticised their linear regression models in favour of Poisson regression model. Caution 

should be taken in using the normal distribution because of problems associated with non-negativity 

and unequal variances. If the underlying crash frequency is functionally related to the variance (e.g. 

Poisson Distribution), parameters in a linear regression model will be unbiased but will have 

incorrect confidence limits (Jovanis & Chang, 1986). The conventional linear regression models 

were found by Miaou and Lum (1993) to be lack of the distributional property to describe 

“adequately random, discrete, non-negative and typically sporadic” vehicle events on the road. 

Also, the prediction of a AVC rate is sensitive to the of the road segment length considered (Miaou 

& Lum, 1993). The Poisson distribution assumes that the mean and variance are equal, while crash 

count data are often over dispersed with the mean less than the variance.  

 

To accommodate over dispersion, various alternatives such as the Negative Binomial (NB), Zero 

Inflated Poisson (ZIP), Zero Inflated Negative Binomial (ZINB) and Poisson lognormal models 

were developed. Miaou (1994) recommended the Poisson regression model as a pioneer model for 

developing the relationship between crash counts and factors. The NB and ZIP regression models 

can be explored if the over dispersion of crash data are found to be moderate or high. The ZIP 

models were introduced to account for frequently occurring zero counts in crash data but were 

found to be misleading. Lord et al. (2005) argued that although zero-inflated models, such as the 

NB and ZIP, can improve the statistical fit to crash data in many cases, the essential assumption of a 

“dual state process” of these models is inconsistent with crash data. Recently studies have identified 

the need to account for spatial variation in crash occurrences. Maher (1987) argued that the true 

crash rates are spatially correlated, and it is then shown, by means of simulation results, that the 

selection process of 'neighbouring' sites (which are untreated and adjacent to a treated site) leads to 

bias in the comparison of their before and after crash frequencies. It is important to consider both 
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uncorrelated heterogeneity and spatial dependence concurrently among neighbouring units (Quddus, 

2008). Quddus (2008) also states that because Bayesian hierarchical models have this capability, 

they are more suitable for identifying a relationship between area-wide VCs and their contributing 

factors related to traffic conditions, socioeconomic and infrastructure of the area.   

 

1.4 Literature Review of Bayesian methods 

 

Bayesian methods present many advantages over classical methods in that all aspects of uncertainty 

present can be quantified. These aspects can be decomposed into a series of simpler conditional 

models (data, process and parameters) using a hierarchical Bayes model. In a hierarchical Bayesian 

analysis, prior (before) information and all available data are integrated into posterior (after) 

distributions from which inferences can be made; therefore, all uncertainties are accounted for in the 

analyses (Schultz et al., 2011).  

 

The Hierarchical Bayes spatial generalized model is a general model, which can cover many 

circumstances in which spatial structure needs to be integrated (Ghosh, Natarajan, Waller, & Kim, 

1999). MacNab (2004) illustrated this broad application of Bayesian methods by applying an 

ecological regression model to motor vehicle crash injury among males aged 0 - 24 in British 

Columbia, Canada. He summarised the usefulness of the Bayesian ecological studies in the 

prediction of spatial patterns of vehicle crash and identification of “areas in need” (MacNab, 2004). 

Aguero-Valverde (2011) divided models of spatial correlation into two main groups: direct spatial 

and conditional models. In the former, the spatial correlation between two observations is a function 

of the distance between the entities (J.  Aguero-Valverde, 2011). Conditional spatial models, on the 

other hand, rely on the adjacency matrix. Ghosh et al. (1999) along with many vehicle crash 

analysis studies (Jonathan Aguero-Valverde & Jovanis, 2006; Huang & Abdel-Aty, 2010; Miaou, 
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Song, & Mallick, 2003) adopted the conditional autoregressive (CAR) model to incorporate spatial 

dependence. Direct Correlation models have been adopted more recently (Mitra, 2009; Augero-

Valverdo, 2011). Direct spatial correlation models assess the spatial correlation as a function of the 

distance between sites through the covariance function; hence, the strength of the spatial correlation 

is derived directly from the data (Augero-Valverdo, 2011).   

 

Bayesian analysis can be complicated and computationally intense, in particular for the hierarchical 

Bayesian multivariate models applied in vehicle crash analysis. Feasibility of Bayesian analysis is 

largely due to advances in technology and the application of Markov chain Monte Carlo simulation 

algorithms, such as Gibbs Sampler and Metropolis-Hastings algorithms (Ma et al., 2008). 

 

2. Methodology 

 

2.1 Study Area 

 

The study area chosen for this study is the Bussel Highway in the Southwest of Western Australia. 

The highway links the city of Bunbury to the small coastal town of Augusta and meanders through 

the popular tourist region of Magaret River. The roadway was selected for its variety in geometry 

and adjacent environments that could contribute to AVC risk. The Bussel Highway is 142km in 

length, includes curved as well as straight sections and passes through urban, forest and farming 

landscapes, often differing on either side of the road. 

 

For the purpose of the study, the Bussel Highway was divided into relatively homogeneous 

segments. In order to analyse contributing factors, the segments needed to be reasonably similar in 

terms of these factors. The beginning of a new segment was generally necessitated by a major 



	 9	

change in the characteristics of the roadway. The segments are illustrated in Figure 1. 

 

2.2 Data Preparation 

Data was obtained from the Department of Main Roads Western Australia who maintain an 

Integrated Road Information System (IRIS). The IRIS uses a linear referencing system, Straight-line 

kilometer (SLK), which locates features along a roadway, such as crashes according to their relative 

position from the start of the roadway. Four datasets extracted from the IRIS by Main Roads were 

used in this paper including vehicle crash, road centreline and speed limit zone datasets for all 

Western Australian roads and a specific Geometry/Alignment dataset for the HO43 road (Bussel 
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Highway). The crash dataset contains thorough details of vehicle crashes occurring in the 10 year 

period of 2001 to 2010, sourced from police crash reports and the Insurance Commission of 

Western Australia. The details of vehicle crashes include crash location such as road name, SLK 

and geographic coordinates and crash nature such as hitting an animal. Crashes involving animals 

located on the Bussel Highway were filtered from the crash dataset and are presented on a map of 

the area in Figure 1. 

  

Contributing factors to animal vehicle collisions can be categorised as either driver/vehicle related 

or road related. Driver/vehicle related factors such as the driver's level of fatigue or the condition of 

the vehicle's brakes apply homogenously to the entire road network. These factors are very difficult 

to address and require general strategies such as driver education and extra policing. Road related 

factors tend to be spatially variable and location specific. 

 

Factors to be considered as possible covariates (independent variables) in the model include those 

that could contribute to the risk of animal presence near or on the road and those that could 

contribute to the risk of collision between vehicle and animal. Data used to describe these factors 

include the Geometry/Alignment and speed zone datasets obtained from main roads, Mean Annual 

Flow figures reported by Bowman (2007) and satellite imagery provided by Google Inc. (2012).  

 

Only very small sections of roadway are perfectly homogeneous for each factor. These sections are 

also differing from factor to factor. An index to describe each factor was determined for each 

homogenous section and then a weighted average of these indexes, using the proportional lengths of 

the sections as a weight, were assigned to the respective segment as a covariate value for the factor 

in the model.  
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Segment Factor Index = !"
#

$
%&' ×𝐼%          (1) 

where 𝐼% is the factor index determined for the 𝑖+,	small homogeneous section of length  𝑙% and  

           𝐿 is the total length of  n sections in the segment (also the length of the segment). 

Adjacent land-use and roadside vegetation are considered to be possible contributing factors to the 

presence of an animal near or on the road, on the assumption that more animals are present in their 

natural environment. Indexes describing these factors were based on visual observation of satellite 

imagery. Six land-use covariates were investigated based on a combination of urban, farming or 

forest classification on either side of the road. For example, Roadside vegetation density within 

three-meter buffer alongside was measured using The Braun-Blanquet (1965) scale. Figure 2 

illustrates the visual interpretation of the satellite imagery. The measure of the other land use 

variables was its proportion of total landuse. For example, the proportion of farming landuse was 

the percentage of Farming landuse size of the total area in a road segment. 

 

 

 

 

 

 

Braun-Blanquet	Scale 
Source:	Braun-Blanquet	
J.,	1965) 

Roadside	Vegetation	=	3	
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Figure 2: Satellite Imagery to determine Adjacent Landuse and Roadside Vegetation 

Existing fencing is assumed to have a negative effect on the presence of the animal near or on the 

road as it may prevent animals from accessing to the road. The factor was not used as a covariate in 

the model due to its near perfect correlation with the farming land-use factor. Its effect can be 

inferred with that farming land-use covariate.  

 

The availability of water is considered to be a possible contributing factor to the presence of the 

animal near or on the road as it is a requirement for survival for any animal. Appropriate data for 

this factor is the Mean Annual Flow of water within the area. The Cape to Cape area which 

surrounds the Bussel Highway has been divided into sub areas called the Whicher Catchments by 

the Department of Water of Western Australia. Mean annual flows are used to determine allocation 

limits for surface water use in the region (Bowman 2007). The Mean Annual Flow (MAF) figures 

provided an appropriate index to describe the availability of water for sections of roadway. A map 

of the Whicher Catchments and the path of segments through the sub areas are presented in Figure 

3. 

 

Horizontal and vertical curvature of the roadway are considered possible contributing factors to 

AVC due to the assumption that they affect the driver's vision and the animal awareness of 

oncoming traffic. The Geometry/Alignment dataset obtained from Main Roads include the radius of 

the curve of all horizontal sections of Bussel Highway. An index for horizontal curve was 

determined by the reciprocal of the radius of the curve due to an assumed inverse effect.  

	 		 	 	 	 	 	 	 	 																	

	   𝑆𝑒𝑐𝑡𝑖𝑜𝑛	𝐼𝑛𝑑𝑒𝑥	𝑓𝑜𝑟	𝐻𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙	𝐶𝑢𝑟𝑣𝑎𝑡𝑢𝑟𝑒 = '
ABC%DE	FG	HDIJK	

                 (2)	

																																																																																																																																								

The Geometry/Alignment dataset assigns vertically curved sections of roadway a K value which 
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represents the length of vertical curve in meters for 1% change of Grade (%). In order to determine 

a comparable index to that of the horizontal curve, an approximate circular radius can be applied to 

 

Figure 3: Segments passing through Whicher Catchments 

 

the parabolic vertical curve using the K value multiplied by one hundred (Easa & Hassan, 2000). 

The following index formula for the vertical curve factor takes into consideration the conversion 

from meters to kilometers prior to multiplying by one hundred and the assumption of an inverse 

effect similar to the horizontal curve.  

     𝑆𝑒𝑐𝑡𝑖𝑜𝑛	𝐼𝑛𝑑𝑒𝑥	𝑓𝑜𝑟	𝑉𝑒𝑟𝑡𝑖𝑐𝑎𝑙	𝐶𝑢𝑟𝑣𝑎𝑡𝑢𝑟𝑒 = 'M
N	

    (3)	
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Based on the assumption that drivers ability to respond to an animal present on the road is affected 

by the speed of the vehicle, speed limits of a roadway is expected to contribute to AVC risk. The 

speed zone dataset obtained from Main Roads provided an overlay over the segments and value for 

the covariate. 

 

Prior to using the covariate values in the model, scaling was required to ensure the values were 

within a similar range in order for resulting regression coefficients to be comparable. Without 

scaling, for example, the roadside vegetation values which range from 0 to 5, due to the Braun-

Blanquet scale limits whereas the Mean Annual Flow values for water availability range from 6700 

to 37770. Scaling factors and final covariate value ranges are presented in Table 1. 

Table 1: Covariate information	

Symbol  Name of Covariate  Definition and scaling  Min 

Value  

Max 

Value  

𝑥'	 Speed Average Speed Limit  / (50 km/hr) 1.34 2.2 

𝑥O	 Horizontal Curve  Average Inverse Radius  (km) x 10  0.06  3.89  

𝑥P Vertical Curve  Average Inverse Radius  (km) x 100  0  3.88  

𝑥Q 
Roadside 

Vegetation  
Average Braun–Blanquet Scale  0  5  

𝑥R Farming both sides Proportion  / 30%  0 3.33 

𝑥S Forest both sides Proportion  / 20%  0 5 

𝑥T Urban both sides Proportion  / 22%  0 3.28 

𝑥U Urban/Farming Proportion  / 14%  0  3.07  
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𝑥V Urban/Forest  Proportion  / 12%  0  3.04  

𝑥'M Farm/Forest  Proportion  / 13%  0 3.3 

𝑥'' Water Availability  Mean Annual Flow  / 10000  0.67 3.78  

 

Traffic flow data was obtained from the South West Traffic Digest published by the Department of 

Main Roads Western Australia. The report provides the average number of vehicles at 38 locations 

along the Bussel Highway. 

 

2.3 Hierarchical multivariate Poisson lognormal model  

The fundamental theory of Bayesian Hierarchical models can be found in Haque, Chin, and Huang 

(2009), Huang and Abdel-Aty (2010) and (Andrew Gelman et al., 2013). This section will discuss 

the methods used for the AVC analysis based on Hierarchical multivariate Poisson lognormal 

model. The information on the AVC analysis is available on several levels and requires multi-level 

modelling to make accurate inferences. A hierarchical model involves multiple levels and considers 

all sources of uncertainty simultaneously. Three models at three different levels are applied to the 

AVCs along Bussel Hwy forming an overall hierarchical Poisson lognormal model. 

 

AVC Count Speed
Horizontal 

Curve 
Vertical 
Curve 

Roadside 
Vegetation 

Farming 
both sides

Forest 
both sides

Urban 
both sides

Urban 
/Farming

Urban 
/Forest 

Farm    
/Forest 

Water 
Availability 

Segment 1 14 1.71 1.84 0.06 1.91 0.00 0.00 1.09 1.50 3.04 1.43 0.67
Segment 2 13 2.20 0.89 0.19 2.58 0.90 2.11 0.00 0.00 1.66 0.83 0.67
Segment 3 21 2.20 1.33 0.33 1.16 2.41 0.00 0.00 0.00 0.00 2.12 1.81
Segment 4 13 2.20 1.33 0.25 1.91 1.06 0.26 2.58 0.00 0.00 0.48 2.19
Segment 5 19 2.20 1.54 0.27 1.18 2.26 0.24 0.00 0.00 0.00 2.10 3.27
Segment 6 7 2.02 1.75 0.79 1.00 1.90 0.00 0.00 3.07 0.00 0.00 3.27
Segment 7 10 1.95 1.20 0.98 1.00 0.00 0.00 0.00 2.90 1.38 3.30 3.78
Segment 8 5 2.04 3.36 0.00 0.87 2.87 0.47 0.21 0.00 0.00 0.00 3.77
Segment 9 6 2.20 0.55 1.99 0.54 2.73 0.00 0.00 0.00 0.00 1.38 3.74
Segment 10 4 1.53 1.60 3.73 0.00 1.29 0.00 2.78 0.00 0.00 0.00 2.59
Segment 11 8 2.20 0.27 1.34 0.50 3.33 0.00 0.00 0.00 0.00 0.00 1.49
Segment 12 7 2.15 2.04 2.81 5.00 0.00 5.00 0.00 0.00 0.00 0.00 1.49
Segment 13 2 1.34 2.68 3.87 2.70 0.00 2.18 1.75 0.00 1.49 0.00 0.93
Segment 14 4 2.20 0.26 0.99 2.02 1.86 0.97 0.00 0.00 0.00 1.91 2.00
Segment 15 1 1.46 0.41 0.55 0.22 1.46 0.00 2.56 0.00 0.00 0.00 2.01
Segment 16 5 2.20 0.06 1.13 1.28 2.40 0.00 0.00 0.00 0.00 2.15 2.01
Segment 17 9 2.20 1.42 1.09 2.55 2.42 0.71 0.00 0.00 0.00 1.01 2.97
Segment 18 9 2.18 1.62 1.61 1.23 3.00 3.42 0.00 0.00 0.00 0.35 1.62
Segment 19 0 1.34 3.89 3.29 1.12 0.00 1.40 3.28 0.00 0.00 0.00 1.50
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At the lowest level is the data model, a likelihood function linking occurrences of AVC 𝑌% within a 

segment i with the length 𝐿% and average daily traffic flow 𝑇% during a period with a time t with the 

risk parameter  𝜃% . 

 

 𝑌%~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜃%, 𝐿%, 𝑇%, 𝑡)        (9) 

 

The middle level is the process model formulating a logarithmic risk 𝜔% involving a general linear 

model that captures both spatially structured and spatially unstructured errors.  

 

 𝜔% = 𝑙𝑜𝑔 𝜃% = 𝜇% + 𝜀% + 𝜙%        (10) 

 

𝜇%  is the mean log risk,  𝜇% = 𝛽𝑥%  where 	𝑥% = 1, 𝑥'%, … , 𝑥i%  representing m covariates 

characterizing segment i and 𝛽 = 𝛽M, 𝛽', … , 𝛽i  representing the respective regression coefficients. 

𝛽M is the overall intercept and captures minimum level of risk for the entire highway.  

  

𝜀%  and 𝜙%  are independent and identically distributed random variables representing the residual 

components. 𝜀% is the spatially unstructured error capturing uncorrelated error and 𝜙% is the spatially 

structured error capturing correlated error. 

 

The highest level is the parameter models including hyper-parameters and assigned prior 

distributions. 

 

The regression coefficients act as a hyper-parameter for the mean log risk. The vector of values for 

the regression coefficients are assumed to follow a multivariate normal distribution and hence 

assigned the non-informative prior distribution; 
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 𝛽M, 𝛽', … , 𝛽i j~𝑀𝑉𝒩 𝜇m", Σm        (11) 

 

The values of the spatially unstructured error are assumed to follow a zero-mean normal Guassian 

distribution and hence assigned the prior distribution; 

 

  𝜀%~𝒩 0, 𝜎qO           (12) 

 

The variance of the spatially unstructured error, 𝜎qO is analogous to the nugget effect and acts as a 

hyper-parameter to the spatially unstructured error 𝜀% providing precision. 𝜎qO is assigned an inverse 

gamma distribution as a non-informative hyperprior. 

 

The vector of values for the spatially structured error 𝜙%  are assumed to follow a multivariate 

normal distribution and hence assigned the prior distribution; 

 

  𝜙',… , 𝜙i j|σtO , 𝑟t~𝑀𝑉𝒩 σtO , Σ        (13) 

 

The covariance matrix Σ incorporates isotropic spatial association that is conditional on the variance 

σtO  and correlation length 𝑟t and is represented by an exponential function of decay in correlation 

between pairs of segments according to the distance between their centroids: 

 Σ 𝜎tO, 𝑟t %,u
= 𝜎tO𝑒

v
w"xwy
z{        (14) 

This can be done on WinBUGS (Spiegelhalter et al. 2004) using the spatial.exp function. 
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With the introduction of more parameters, such as hyper-parameters and respective prior 

distributions, the model presented in this paper exhibits a complex Bayesian statement compared to 

the equivalent simple Bayesian statement (8) presented in section 2.3.  

 

𝜋 𝛽, 𝜎qO, 𝜎t,O 𝑟t|𝑌 ∝ 𝑓 𝑌|𝛽, 𝜎qO, 𝜎t,O 𝑟t ×𝜋 𝛽 ×𝜋 𝜎qO ×𝜋 𝜎t,O ×𝜋 𝑟t    (15) 

 

When component distributions of a complex model, 𝜋 𝜎t,O  for example, are not available in closed 

form and hence neither is the normalising constant, the Gibbs sampling or Metropolis-Hastings 

alone are no longer suitable MCMC methods. In this case Gibbs samplers must be modified, which 

means accepting or rejecting at each step is based on the Metropolis-Hastings rule (A.  Gelman, 

David, Huang, & John, 2008). The Metropolis-within-Gibbs MCMC algorithm is used to determine 

the posterior distribution of the hierarchical multivariate Poisson lognormal model adopted in this 

paper. 

	

2.5 Model Evaluation 

An important matter for using Markov Chain Monte Carlo (MCMC) methods is knowing when to 

stop sampling (Cowles & Carlin, 1996). The simplest way is to check convergence to the stationary 

posterior distribution in order to monitor the Monte Carlo (MC) error. Congdon (2010) suggests 

that the MC error should be less than 5% of the posterior standard deviation of a parameter. 

 

A. Gelman, Carlin, Stern, and Rubin (2004) suggests simulating multiple chain sequences with 

differing starting values. Three Markov chains should converge to a stationary distribution 

irrespective of the initial starting values. WinBUGS calculates the Brooks-Gelman-Rubin 

diagnostic based on the ratio of between-within chain variances. This diagnostic should converge to 

1.0 on convergence. 
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The model incorporated two types of error as per equation (10), spatially structured and 

unstructured error. The proportion of variability, 𝛼, in the model due to spatially structured error 

can be determined using the standard deviations of the posterior distributions of the error 

parameters 𝜙 and 𝜀 (Banerjee, Carlin, & Gelfand, 2003). 

 

𝛼 = EC 𝜙 𝑌
EC 𝜙 𝑌 �EC 𝜀 𝑌    (16) 

 

The proportion of variability in the model due to spatially unstructured error can be determined by 

(1 - 𝛼). If the spatial random effects dominate, data errors or missing covariates that have spatial 

structure could occur (Law, Haining, Maheswaran, & Pearson, 2006). 

3. Results and discussion 

3.1 Model Diagnostics 

For the purpose of attaining appropriate posterior distributions from the model, three separate 

chains with differing initial values were simulated to 100000 iterations. According to the Brooks-

Gelman-Rubin statistic, convergence occurred after 15000 iterations. Figure 4 shows the plots of 

the Brooks-Gelman-Rubin statistic for parameters in the model representing the AVC risk for 

segments 3 and 4. The blue line represents the within-sample variance; the green line represents the 

estimated variance of the parameter involving both within and between variances and the red line 

represents the ratio diagnostic that converges to 1.0 on convergence. The first 15000 iterations are 

consequently referred to as "burn ins" and samples for posterior analysis are taken from the 15001st 

iteration.  
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 Figure 4: WinBUGS Report - Plots of the Brooks-Gelman-Rubin Statistic. 

The proportion of variability due to spatially structured error was 36.58% indicating that AVCs 

consist of both spatial and segment specific contributions. The fact that the spatial random error 

does not dominate model variability indicates reasonable spatial data accountability.  

 

3.2 Identification of Higher Risk Segments 

In order to identify higher risk segments, the posterior distributions are best compared with the 

boxplot report as illustrated in Figure 5. 

 

 

 

 

 

 

 

Segment 15, even though it has the largest range, is clearly identifiable as the highest risk segment. 

Segments close by also exhibit high risk. Using the medians of the posterior distributions, segments 

are categorised and mapped in Figure 6. 

Figure 5: WinBUGS Report - Box Plots of Posterior Distributions for AVC Risk of 19 segments	
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Figure 6 Map of AVC risks of the segments 

The segment risk predicted by the model is the expected rate of AVCs per kilometre of roadway per 

10000 daily vehicles. The actual count of AVCs may be higher in segments other than those 

indicated above but this is due to a larger traffic flow. Segments 1 to 3 involve dual lanes with 

segment 1, for example experiencing over ten times the traffic flow of segment 15. The model 

adopted in this paper assumes traffic flow as a certain contributing factor and is applied directly to 

the risk calculation. Traffic flow is often considered a covariate in prediction models and is 

repeatedly shown to be a significant positive factor.  In agreement with numerous prior studies, 

traffic volumes on major and minor approaches to intersections are influential and positively 

correlated with crash occurrence (Mitra and Washington, 2012).  

 

3.3 Identification of significant risk factors 

Visual inspection of the zoomed insert in Figure 6 would suggest adjacent landuse may contribute 

to AVC risk with the higher risk segments passing through a mixture of farmland and forest. 
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WinBUGS can generate a simple statistical summary showing posterior mean, median and standard 

deviation with a 95% posterior credible interval. The summary of the regression coefficient 

parameters as presented in Table 2 is appropriate to recognise the significance of the contributing 

factors. 

Table 2: WinBUGS output - Summary statistics for posterior distributions of regression coefficients. 

 Parameter - Factor  mean  sd  MC error 2.5% median 97.5% start sample 

𝛽'  Speed Limit -3.201 0.7683 0.03179 -4.829 -3.233 -1.764 15001 100000 

𝛽O  Horizontal Curve -0.6824 0.1762 0.005091 -1.031 -0.6817 -0.3426 15001 100000 

𝛽P  Vertical Curve -0.2992 0.1543 0.004435 -0.6028 -0.2994 0.004469 15001 100000 

𝛽Q  Roadside Vegetation 0.9012 0.2637 0.009883 0.3539 0.9035 1.392 15001 100000 

𝛽R  Farming both sides 1.251 0.3686 0.01477 0.5412 1.256 1.961 15001 100000 

𝛽S  Forest both sides 0.3229 0.1485 0.004208 0.02711 0.3252 0.6101 15001 100000 

𝛽T  Urban both sides 0.4589 0.2558 0.009394 -0.03552 0.4586 0.9559 15001 100000 

𝛽U  Urban / Farming 0.2876 0.1823 0.005843 -0.06721 0.2883 0.644 15001 100000 

𝛽V  Urban / Forest 0.04497 0.2269 0.007847 -0.4068 0.04566 0.486 15001 100000 

𝛽'M Farm / Forest 0.3779 0.1766 0.005839 0.03839 0.3741 0.7318 15001 100000 

𝛽'' Water availability 0.1881 0.1586 0.005126 -0.1211 0.1866 0.5042 15001 100000 

 

The low MC error for each parameter is evidence of convergence. To be a significant contributing 

factor, the 95% credible intervals for the parameter of the regression coefficient cannot include 0. 

The 95% credible intervals for parameters	𝛽', 𝛽O, 𝛽Q, 𝛽R, 𝛽S and 𝛽'M indicate that the respective factors 

speed limit, horizontal curve, roadside vegetation, forest on both sides and farm/forest have a 

relevant effect on the AVC risk. 	𝛽'and 𝛽O indicate a negative effect for speed limit and horizontal 

curve whereas roadside vegetation ,farming on both sides, forest on both sides and the farm/forest 

(𝛽Q, 𝛽R, 𝛽S and 𝛽'M ) appear to have a positive effect. 

 

Speed limit and horizontal curvature of the road segment was considered as a possible contributing 

factor because it was expected to have a positive effect on the AVC risk. At higher speeds the driver 

has less time to react and curved sections of road restrict the vision of the driver hence increase the 
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liklihood of a collision with an animal on the road. Contrary to this, the model indicated both to 

have a significant negative effect. The covariate value for speed limit used the average speed limit 

for that segment of roadway and not the actual speed of drivers. Higher speed limits are assigned to 

the safer, more open sections of road and this could account for a lower AVC risk. On a curved 

section of road the animal could be alerted earlier because sound travels in a straight line and the 

vehicle is travelling around the longer curved distance.    

 

The significant positive effect of farming on both sides of a road and a mixture of farming and 

forest is not surprising. Farming has created the perfect environment for kangaroos with vast 

pastures supplying the kangaroo's primary food source and the extra availability of water. 

Commercial grazing is possible over much of arid Australia due to a high density of artificial 

watering points. The broadscale supplementation of drinking water has not only enhanced densities 

of sheep (Ovies aries), cattle (Bos taurus, Bos indicus) and goats (Capra hircus), but has also 

contributed to increased populations of native kangaroos (Macropus spp.) since pre-European times 

(Fensham & Fairfax, 2008). Existing fencing was excluded as a covariate due to its high correlation 

with farming but should share the relevant effect. The model has again reported contrary effect to 

initial expectation. Fencing was initially considered to have a possible negative effect. Farm fences 

however restrict farm animals from the road and have little effect on wildlife, in particular 

kangaroos. 

 

Although kangaroos graze on the farmland they still live in small pockets of natural habitat. 

Western grey kangaroos living in remnants of woodland often feed in adjacent farmland (Arnold et 

al. 1989). Roadside vegetation, however small, could provide the familiar safe habitat for kangaroos 

on the move and they may be distressed by the unfamiliar noise of traffic. The model indicating a 

significant positive effect of roadside vegetation was as expected. 
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4. Conclusion 

	

This paper presents a hierarchical Bayesian multivariate Poisson lognormal regression model 

Bayesian model to identify the AVC risk for the segments of highways and its significant 

contributing factors. A case study of the Bussel Highway in the Southwest of Western Australia was 

developed to implement the model. 

 

The literature suggests although its development of Bayesian methods in spatial epidemiology has 

been advanced, its application to spatial problems, including spatially structured and unstructured 

random effects, is still in its initial stages (Law et al. 2006). This study confirmed that AVCs consist 

of both spatial and segment specific contributions, even though the spatial random error does not 

dominate model variability. Models that can predict the most likely collision points can be of a 

practical value. They can be used to predict the location of road sections with the highest collision 

probability (Malo, SuÁRez, & DÍEz, 2004). If high risk locations and influential factors can be 

identified, simple strategies such as extra signage can be applied to prevent crashes and provide a 

safe driving environment. In precise locations of extreme risk more expensive but still feasible 

strategies are possible such as wildlife overpasses or underpasses, exclusion fencing and interactive 

intelligent warning signs. The segments identified in this paper will require such intervention 

methods particularly if a dramatic increase in traffic flow is perceived in the near future. 

 

Analysis of segments is essentially an areal based analysis with the limitation of aggregation within 

each segment. The construction of an aggregated explanatory model for accidents involves any 

“classical” statistical problems associated with violations of regression assumptions such as 

misspecification of the model, autocorrelation of errors and instability or error variance, and 
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ecological fallacy (Thomas, 1996). The analysis of covariates would be more suited to smaller 

perfectly homogeneous segments. This would mean, however, extremely small impractical 

segments. The road geometry dataset for example describes sections of road as small as 20m.  

 

An assumption of the hierarchical Bayesian model is the existence of an underlying crash 

occurrence process based on a function of known and unknown factors that omits human 

intervention. A common shortfall of many of the previous studies is that they do not consider the 

effect of the drivers' characteristics (Abdel-Aty & Radwan, 2000 ). General traffic crashes involve 

more human intervention than AVCs. Two or more drivers are often involved and driver response is 

usually the major factor in a general traffic crash. Human factors were cited as probable causes in 

92.6% of crashes investigated. Environmental factors were cited as probable cause in 33.8% of 

these crashes, while vehicular factors were identified as probably causes in 12.6% of crashes. The 

major human direct causes were excessive speed, improper lookout, improper evasive action, in-

attention, and internal distraction (Treat et al., 1979). An AVC usually only involves a single driver 

and involves external contributing factors that can affect the presence of the animal and the driver's 

ability to respond. In the future, we will investigate how human and animal characteristics could 

affect the risk of AVCs, especially in an Australian context. In addition, AVCs change not only 

over space but also over time. A spatio-temporal model that could identify higher risk segments and 

significant factors during specific time periods will also be developed.   
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7. Appendix 

  

WinBUGS Code 

 

model; 

{ 

 # for N road segments 

    for( i in 1 : n ) { 

   #for all indicators 

   for (j in 1:ind){  

         mu[i,j] <- x[i,j]*Beta[j] 

         } 

  #nugget 

   epsilon[i] ~ dnorm(0,sigma_e_i) 

   

      Psi[i] <- sum(mu[i,1:ind])+epsilon[i]+phi[i] 

   log(theta[i]) <- Psi[i] 

 

  #occurence rate 

   V[i] <- theta[i]*L[i]*T[i]*time 

 

  #Poisson distribution 

   Y[i] ~ dpois(V[i]) 

    } 
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#  Prior distribution 

   r_i ~ dgamma(10,0.1) 

   sigma_phi_i ~ dgamma(10,0.1) 

   sigma_e_i ~ dgamma(10,0.1) 

 

 #inverse gamma 

 r <- 1/r_i 

 sigma_phi <-sqrt(1/sigma_phi_i) 

 sigma_e<-sqrt(1/sigma_e_i) 

  

 #Multivariate normal distribution of the regression coefficients 

   Beta[1:ind] ~ dmnorm(MuB[1:ind],EB[1:ind,1:ind]) 

 

  #random field with zero mean, variation sigma_phi and a correlation length r 

   phi[1:n] ~ spatial.exp(Mu0[1:n], XCentroids[], YCentroids[], sigma_phi_i ,r,1)  

 

 #proportion random effects 

 sd.h <- sd(epsilon[])   # marginal SD of heterogeniety effects 

 sd.c <- sd(phi[])  #marginal SD of clustering effects 

 alpha <- sd.c / (sd.h + sd.c)  

 

} 

 

# Data 

list(  

x=structure(.Data=c(1,1.711,1.8435,0.05575,1.911,0,0,1.088684043,1.498501499,3.044871795,1.42549757

9,0.67, 

1,2.2,0.8915,0.1921,2.58,0.895170789,2.11130742,0,0,1.663722026,0.829029628,0.67, 
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1,2.2,1.3275,0.32695,1.162,2.413071895,0,0,0,0,2.123680241,1.81, 

1,2.2,1.3315,0.25175,1.911,1.057098765,0.260416667,2.583122896,0,0,0.480769231,2.19, 

1,2.2,1.5425,0.2733,1.184,2.262773723,0.243309002,0,0,0,2.096200636,3.27, 

1,2.015,1.748,0.7895,1,1.902961563,0,0,3.065082366,0,0,3.27, 

1,1.951,1.1985,0.97735,1,0,0,0,2.89810103,1.375615407,3.301476977,3.777, 

1,2.038,3.363,0,0.869,2.867084203,0.469728602,0.208768267,0,0,0,3.765, 

1,2.2,0.5535,1.9851,0.541,2.733949301,0,0,0,0,1.383076923,3.742, 

1,1.527,1.596,3.7337,0,1.293859649,0,2.781100478,0,0,0,2.59, 

1,2.2,0.272,1.3397,0.5,3.333333333,0,0,0,0,0,1.49, 

1,2.153,2.0405,2.80895,5,0,5,0,0,0,0,1.49, 

1,1.339,2.6795,3.8741,2.7,0,2.178571429,1.753246753,0,1.488095238,0,0.93, 

1,2.2,0.2555,0.98525,2.022,1.862745098,0.966386555,0,0,0,1.906916613,2, 

1,1.463,0.4065,0.54645,0.219,1.4571949,0,2.558370591,0,0,0,2.01, 

1,2.2,0.062,1.1257,1.28,2.399797057,0,0,0,0,2.154314483,2.01, 

1,2.2,1.4205,1.0929,2.551,2.420681551,0.710928319,0,0,0,1.012383621,2.97, 

1,2.183,1.6215,1.60525,1.229,3.002421308,3.417634997,0,0,0,0.353883405,1.615, 

1,1.338,3.885,3.28695,1.116,0,1.395348837,3.276955603,0,0,0,1.5),.Dim = c(19, 12)),  

Y=c(14,13,21,13,19,7,10,5,6,4,8,7,2,4,1,5,9,9,0),  

XCentroids=c(5.505,11.16,20.36,31.155,39.59,46.255,53.965,64.285,76.585,84.695,87.73,92.43,97.27,101.

75,105.045,109.245,116.785,129.31,138.645),  

YCentroids=c(0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.0

0),  

L=c(5.65,5.66,12.74,8.85,8.02,5.31,10.11,10.53,14.07,2.15,3.92,5.48,4.2,4.76,1.83,6.57,8.51,16.54,2.13),  

T=c(21697,13680,10240,10430,9670,10665,9246,4605,4300,4510,5641, 

5270,6584,2530,1909,1760,1630,1536,1500), 

 MuB=c(0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00),  

Mu0=c(0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00),  

EB=structure(.Data=c(0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1

,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.

1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0
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.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,

0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1

,0.1,0.1,0.1,0.1,0.1,0.1 

),.Dim=c( 12, 12)),  time= 10,   ind= 12,  n=19) 

 

#Initial Values  

 

#Chain 1 

#list(Beta=c(0, 1, 1, 1, 1, 1, 1,1,1,1,1,1),r_i=30,sigma_phi_i=0.52,sigma_e_i=0.1) 

 

# Chain 2 

#list(Beta=c(0, 0.5, 0.5, 0.5, 0.5, 0.5,0.5,0.5,0.5,0.5,0.5,0.5),r_i=30,sigma_phi_i=0.52,sigma_e_i=0.1) 

 

# Chain 3 

#list(Beta=c(0, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5,1.5,1.5,1.5,1.5,1.5),r_i=30,sigma_phi_i=0.52,sigma_e_i=0.1) 

 

	

	

 

	

	


