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Abstract. This note is to provide a refinement of the convergence analysis of
the new exact penalty function method proposed recently.

1. Introduction. As in [1], we consider a class of functional inequality constrained
optimization problems given below.

min f(x) (1a)

subject to φj(x, ω) ≤ 0, ∀ ω ∈ Ω, j = 1, . . . , m, (1b)

where the vector Rn is the parameter vector to be found, Ω is a compact interval
in R, f : Rn → R is continuously differentiable in x, and for each j = 1, . . . , m,
φj : Rn × R → R is a continuously differentiable function in x and ω. Let this
problem be referred to as Problem (P ).

Define

Sε = {(x, ε) ∈ Rn × R+ : φj(x, ω) ≤ εγWj , ∀ ω ∈ Ω, j = 1, . . . , m} (2)

where R+ = {α ∈ R : α ≥ 0}, Wj ∈ (0, 1), j = 1, . . . , m, are fixed constants
and γ is a positive real number. Clearly, Problem (P ) is equivalent to the following

problem, which is denoted as Problem (P̂ ).

min f(x) (3a)

subject to
(x, ε) ∈ S0 (3b)

where S0 = Sε with ε = 0. We assume that the following conditions are satisfied:

• There exists a global minimizer of Problem (P ), implying that f(x) is bounded
from below on S0.
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• The number of distinct local minimum values of the objective function of
Problem (P ) is finite.

A new exact penalty function fσ(x, ε) defined below is introduced in [1].

fσ(x, ε) =

 f(x) if ε = 0, φj(x, ω) ≤ 0 (ω ∈ Ω)
f(x) + ε−α∆(x, ε) + σεβ if ε > 0
+∞ otherwise

(4)

where ∆(x, ε), which is referred to as the constraint violation, is defined by

∆(x, ε) =

m∑
j=1

∫
Ω

[
max

{
0, φj(x, ω)− εγWj

}]2
dω (5)

α and γ are positive real numbers, β > 2, and σ > 0 is a penalty parameter. The
surrogate optimization problem, which is referred to as Problem (Pσ), is as follows.

min fσ(x, ε) (6a)

subject to

(x, ε) ∈ Rn × [0,+∞) (6b)

2. Convergence analysis. For every positive integer k, let (x(k),∗, ε(k),∗) be a
local minimizer of Problem (Pσk). For the proof of the convergence results, the
definition of constraint qualification given in Definition 2.2 of [1] should be changed
to the one given below.

Definition 1. It is said that the constraint qualification is satisfied for the con-
tinuous inequality constraints (1b) at x = x̄ , if the following implication is valid.
Suppose that ∫

Ω

∑
j

ϕj(ω)
∂φj(x̄, ω)

∂x
dω = 0.

Then, ϕj(ω) = 0, ∀ω ∈ Ω, j = 1, . . . ,m.

Theorem 2.3 of [1] is modified as follows.

Theorem 2. Suppose that (x(k),∗, ε(k),∗) is a local minimizer of Problem (Pσk)
such that fσk(x(k),∗, ε(k),∗) is finite. If (x(k),∗, ε(k),∗) → (x∗, ε∗) as k → +∞, and
the constraint qualification is satisfied for the continuous inequality constraints (1b)
at x = x∗, then ε∗ = 0 and x∗ ∈ S0.

For the proof of Theorem 2, it is basically the same as that given for Theorem
2.3 of [1], except Definition 1, rather than Definition 2.2 of [1], is used.

Remark 1. The existence of an accumulating point of the sequence (x(k),∗, ε(k),∗)
is assured if the following condition is satisfied

f(x)→∞, as ‖x‖ → ∞.
Where ‖ · ‖ denotes the usual Euclidean norm.

Theorem 3. Assume that max
{

0, φj(x
(k),∗, ω)

}
= o((ε(k),∗)δ), δ > 0, j = 1, . . . ,m.

Suppose that γ > α, δ > α, −α− 1 + 2δ > 0, 2γ − α− 1 > 0. Then

fσk(x(k),∗, ε(k),∗)
ε(k),∗→ε∗=0−−−−−−−−−→
x(k),∗→x∗∈S0

fσk(x∗, 0) = f(x∗) (7)



REFINEMENT OF THE CONVERGENCE ANALYSIS 487

∇(x,ε)fσk(x(k),∗, ε(k),∗)
ε(k),∗→ε∗=0−−−−−−−−−→
x(k),∗→x∗∈S0

∇(x,ε)fσk(x∗, 0) = (∇f(x∗), 0) (8)

The proof of Theorem 3 is similar to Theorem 2.4 of [1], except with the changes
listed below.

• Equation (2.16) of [1] should be changed to:

lim
ε(k),∗→ε∗=0

x(k),∗→x∗∈S0

m∑
j=1

∫
Ω

[
max

{
0, φj(x

(k),∗, ω)− (ε(k),∗)γWj

}]2
dω

(ε(k),∗)α

= lim
ε(k),∗→ε∗=0

x(k),∗→x∗∈S0

∑
j∈J′

∫
Ω

[
(ε(k),∗)−

α
2 φj(x

(k),∗, ω)− (ε(k),∗)γ−
α
2 Wj

]2
dω

(9)

Here, J ′ denotes the index set such that for any j ∈ J ′, max
{

0, φj(x
(k),∗, ω)−

(ε(k),∗)γWj

}
= φj(x

(k),∗, ω)− (ε(k),∗)γWj .
• Equation (2.17) of [1] should be changed to:

lim
ε(k),∗→ε∗=0

x(k),∗→x∗∈S0

∑
j∈J′

∫
Ω

[
(ε(k),∗)−

α
2 φj(x

(k),∗, ω)− (ε(k),∗)γ−
α
2 Wj

]2
dω = 0 (10)

• Equation (2.20) of [1] should be changed to:

lim
ε(k),∗→ε∗=0

x(k),∗→x∗∈S0

∇xfσk(x(k),∗, ε(k),∗)

= lim
ε(k),∗→ε∗=0

x(k),∗→x∗∈S0

{∂f(x(k),∗)

∂x

+2(ε(k),∗)−α
m∑
j=1

∫
Ω

max
{

0, φj(x
(k),∗, ω)− (ε(k),∗)γWj}

∂φj(x
(k),∗, ω)

∂x
dω
}

=

∇xf(x∗)+ lim
ε(k),∗→ε∗=0

x(k),∗→x∗∈S0

2
∑
j∈J′

∫
Ω

[
(ε(k),∗)−αφj(x

(k),∗, ω)

− (ε(k),∗)γ−αWj

]∂φj(x(k),∗, ω)

∂x
dω = ∇xf(x∗)

(11)
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• Equation (2.21) of [1] should be changed to:

lim
ε(k),∗→ε∗=0

x(k),∗→x∗∈S0

∇εfσk(x(k),∗, ε(k),∗)

=

lim
ε(k),∗→ε∗=0

x(k),∗→x∗∈S0

{
(ε(k),∗)−α−1

{
− α

m∑
j=1

∫
Ω

[
max

{
0, φj(x

(k),∗, ω)

−(ε(k),∗)γWj

}]2
dω

+2γ

m∑
j=1

∫
Ω

max
{

0, φj(x
(k),∗, ω)− (ε(k),∗)γWj

}
((−ε(k),∗)γWj)dω

}
+σkβ(ε(k),∗)β−1

}
= lim

ε(k),∗→ε∗=0

x(k),∗→x∗∈S0

{
− α

∑
j∈J′

∫
Ω

[
φj(x

(k),∗, ω)(ε(k),∗)−
α+1
2 − (ε(k),∗)γ−

α+1
2 Wj

]2
dω

+2γ
∑
j∈J′

∫
Ω

[
φj(x

(k),∗, ω)− (ε(k),∗)γWj

](
(−ε(k),∗)γWj

)
(ε(k),∗)−α−1dω

}
= 0

(12)

Theorems 2.5 and 2.6 of [1] are combined as one theorem given below.

Theorem 4. There exists a k0 > 0, such that for any k ≥ k0, every local minimizer
(x(k),∗, ε(k),∗) of the penalty problem with finite fσk(x(k),∗, ε(k),∗) has the form (x∗, 0)
where x∗ is a local minimizer of Problem (P ).

Proof. On the contrary, we assume that the conclusion is false. Then, there exists
a subsequence of {(x(k),∗, ε(k),∗)}, which is denoted by the original sequence such

that for any k0 > 0, there exists a k′ > k0 satisfying ε(k
′),∗ 6= 0. By Theorem 2, we

have

ε(k),∗ → ε∗ = 0, x(k),∗ → x∗ ∈ S0, as k → +∞

Since ε(k),∗ 6= 0 for all k, it follows from dividing (2.10) in [1] by (ε(k),∗)β−1 that

(ε(k),∗)−α−β
{
− α

m∑
j=1

∫
Ω

[
max

{
0, φj(x

(k),∗, ω)− (ε(k),∗)γWj

}]2
dω

+2γ
m∑
j=1

∫
Ω

max
{

0, φj(x
(k),∗, ω)− (ε(k),∗)γWj

}(
(−ε(k),∗)γWj

)
dω

}
+ σkβ = 0

(13)
This is equivalent to

(ε(k),∗)−α−β
{
− α

m∑
j=1

∫
Ω

[
max

{
0, φj(x

(k),∗, ω)− (ε(k),∗)γWj

}]2
dω

+2γ
m∑
j=1

∫
Ω

[
max

{
0, φj(x

(k),∗, ω)− (ε(k),∗)γWj

}(
(−ε(k),∗)γWj

)
+ max

{
0, φj(x

(k),∗, ω)− (ε(k),∗)γWj

}
φj(x

(k),∗, ω)

−max
{

0, φj(x
(k),∗, ω)− (ε(k),∗)γWj

}
φj(x

(k),∗, ω)
]
dω

}
+ σkβ = 0

(14)
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Rearranging (14) yields

(ε(k),∗)−α−β(2γ − α)

{ m∑
j=1

∫
Ω

[
max

{
0, φj(x

(k),∗,ω)

−(ε(k),∗)γWj

}]2
dω

}
+ σkβ

= 2γ(ε(k),∗)−α−β
m∑
j=1

∫
Ω

max
{

0, φj(x
(k),∗, ω)− (ε(k),∗)γWj

}
φj(x

(k),∗, ω)dω

(15)
Letting k → +∞ in (15) gives

2γ(ε(k),∗)−α−β
m∑
j=1

∫
Ω

max
{

0, φj(x
(k),∗, ω)− (ε(k),∗)γWj

}
φj(x

(k),∗, ω)dω → +∞

(16)
Define

yk = (ε(k),∗)−α−β
m∑
j=1

∫
Ω

max
{

0, φj(x
(k),∗, ω)− (ε(k),∗)γWj

}
dω (17)

From (16) and (17), we have

yk → +∞ , as k → +∞ (18)

Define

zk = yk/‖yk‖ (19)

Clearly

lim
k→+∞

‖zk‖ = ‖z∗‖ = 1 (20)

Dividing (2.11) in [1] by ‖yk‖ yields

∂f(x(k),∗)
∂x

‖yk‖
+

2(ε(k),∗)−α

‖yk‖

m∑
j=1

∫
Ω

max
{

0, φj(x
(k),∗,ω)

−(ε(k),∗)γWj

}∂φj(x(k),∗, ω)

∂x
dω = 0

(21)

Note that x(k),∗ → x∗ as k → +∞ and that
∂f(x)

∂x
and, for each j = 1, . . . , m, φj

and
∂φj(· , ω)

∂x
are continuous in Rn for each ω ∈ Ω, where Ω is a compact set.

Then, it can be shown that there exist constants K̂ and K, independent of k, such
that, for all k = 1, 2, · · · ,

‖∂f(x(k),∗)

∂x
‖ ≤ K̂ (22)

‖∂φj(x
(k),∗, ω)

∂x
‖ ≤ K, for j = 1, · · · ,m. (23)
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By substituting (17) and (19) into (21), we obtain

∂f(x(k),∗)
∂x

‖yk‖(ε(k),∗)β
+

2(ε(k),∗)−α−β

‖yk‖

m∑
j=1

∫
Ω

max
{

0,φj(x
(k),∗, ω)

−(ε(k),∗)γWj

}∂φj(x(k),∗, ω)

∂x
dω = 0

(24)

Note that
1

‖yk‖(ε(k),∗)β
=

1

‖(ε(k),∗)−α−β
m∑
j=1

max
{

0, φj(x
(k),∗, ω)− (ε(k),∗)γWj

}
‖(ε(k),∗)β

=
1

‖
m∑
j=1

max
{

0, φj(x
(k),∗, ω)− (ε(k),∗)γWj

}
‖(ε(k),∗)−α

(25)
From Theorem 3, we have φj(x

(k),∗, ω) = o((ε(k),∗)δ) and γ > α, δ > α. Thus

lim
k→+∞

‖
m∑
j=1

max
{

0, φj(x
(k),∗, ω)− (ε(k),∗)γWj

}
‖(ε(k),∗)−α

= ‖
m∑
j=1

max
{

0, (ε∗)δ−α − (ε∗)γ−αWj

}
‖

= 0

(26)

and hence,

lim
k→∞

1

‖yk‖(ε(k),∗)β
→ +∞. (27)

From (22) and (27), it is clear that

|∂f(x(k),∗)
∂x |

‖yk‖(ε(k),∗)β
→ +∞, k → +∞ (28)

On the other hand,∣∣∣2(ε(k),∗)−α−β

‖yk‖

m∑
j=1

∫
Ω

max
{

0, φj(x
(k),∗, ω)(ε(k),∗)γWj

}∂φj(x(k),∗, ω)

∂x
dω
∣∣∣

≤ 2(ε(k),∗)−α−β

‖yk‖

m∑
j=1

∫
Ω

∣∣∣max
{

0, φj(x
(k),∗, ω)(ε(k),∗)γWj

}∂φj(x(k),∗, ω)

∂x

∣∣∣dω
=

2(ε(k),∗)−α−β

‖yk‖

m∑
j=1

∫
Ω

max
{

0, φj(x
(k),∗, ω)(ε(k),∗)γWj

}∣∣∣∂φj(x(k),∗, ω)

∂x

∣∣∣dω
≤ 2(ε(k),∗)−α−β

‖yk‖

m∑
j=1

∫
Ω

max
{

0, φj(x
(k),∗, ω)(ε(k),∗)γWj

}
Kdω

= 2Kzk

(29)

where zk is defined by (19). Clearly, ‖zk‖ = 1. Thus, it follows from (29) that 2Kzk

is bounded uniformly with respect to k. This together with (28) is a contradiction
to (24), and hence completing the first part of the proof .
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For sufficiently large k, every local minimizer (x(k),∗, ε(k),∗) has the form (x∗, 0).
It is obvious from Theorem 2 that x∗ is a feasible point of Problem (P ). This
indicates that there is a neighborhood of x∗, such that for any feasible x of Problem
(P )

f(x) = fσk(x, 0) ≥ fσk(x∗, 0) = f(x∗).

Therefore, x∗ is a local minimizer of Problem (P ). This completes the proof.
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