ON A REFINEMENT OF THE CONVERGENCE ANALYSIS FOR THE NEW EXACT PENALTY FUNCTION METHOD FOR CONTINUOUS INEQUALITY CONSTRAINED OPTIMIZATION PROBLEM

Changuun $\mathrm{Yu}^{\dagger \ddagger}$, Kok Lay TeO^{\dagger}, Liansheng Zhang ${ }^{\ddagger}$ and Yanqin Bai ${ }^{\ddagger}$
${ }^{\dagger}$ Department of Mathematics and Statistics
Curtin University of Technology Kent Street, Bentley 6102, WA, Australia
\ddagger Department of Mathematics
Shanghai University
99, Shangda Road, 200444, Shanghai, China

(Communicated by Cheng-Chew Lim)

Abstract

This note is to provide a refinement of the convergence analysis of the new exact penalty function method proposed recently.

1. Introduction. As in [1], we consider a class of functional inequality constrained optimization problems given below.

$$
\begin{gather*}
\min f(x) \tag{1a}\\
\text { subject to } \quad \phi_{j}(x, \omega) \leq 0, \forall \omega \in \Omega, j=1, \ldots, m, \tag{1b}
\end{gather*}
$$

where the vector \mathbb{R}^{n} is the parameter vector to be found, Ω is a compact interval in $\mathbb{R}, f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is continuously differentiable in x, and for each $j=1, \ldots, m$, $\phi_{j}: \mathbb{R}^{n} \times \mathbb{R} \rightarrow \mathbb{R}$ is a continuously differentiable function in x and ω. Let this problem be referred to as Problem (P).

Define

$$
\begin{equation*}
S_{\epsilon}=\left\{(x, \epsilon) \in \mathbb{R}^{n} \times \mathbb{R}_{+}: \phi_{j}(x, \omega) \leq \epsilon^{\gamma} W_{j}, \forall \omega \in \Omega, j=1, \ldots, m\right\} \tag{2}
\end{equation*}
$$

where $\mathbb{R}_{+}=\{\alpha \in \mathbb{R}: \alpha \geq 0\}, W_{j} \in(0,1), j=1, \ldots, m$, are fixed constants and γ is a positive real number. Clearly, Problem (P) is equivalent to the following problem, which is denoted as Problem (\hat{P}).

$$
\begin{equation*}
\min f(x) \tag{3a}
\end{equation*}
$$

subject to

$$
\begin{equation*}
(x, \epsilon) \in S_{0} \tag{3b}
\end{equation*}
$$

where $S_{0}=S_{\epsilon}$ with $\epsilon=0$. We assume that the following conditions are satisfied:

- There exists a global minimizer of Problem (P), implying that $f(x)$ is bounded from below on S_{0}.

[^0]- The number of distinct local minimum values of the objective function of Problem (P) is finite.
A new exact penalty function $f_{\sigma}(x, \epsilon)$ defined below is introduced in [1].

$$
f_{\sigma}(x, \epsilon)= \begin{cases}f(x) & \text { if } \epsilon=0, \phi_{j}(x, \omega) \leq 0(\omega \in \Omega) \tag{4}\\ f(x)+\epsilon^{-\alpha} \Delta(x, \epsilon)+\sigma \epsilon^{\beta} & \text { if } \epsilon>0 \\ +\infty & \text { otherwise }\end{cases}
$$

where $\Delta(x, \epsilon)$, which is referred to as the constraint violation, is defined by

$$
\begin{equation*}
\Delta(x, \epsilon)=\sum_{j=1}^{m} \int_{\Omega}\left[\max \left\{0, \phi_{j}(x, \omega)-\epsilon^{\gamma} W_{j}\right\}\right]^{2} d \omega \tag{5}
\end{equation*}
$$

α and γ are positive real numbers, $\beta>2$, and $\sigma>0$ is a penalty parameter. The surrogate optimization problem, which is referred to as Problem $\left(P_{\sigma}\right)$, is as follows.

$$
\begin{equation*}
\min f_{\sigma}(x, \epsilon) \tag{6a}
\end{equation*}
$$

subject to

$$
\begin{equation*}
(x, \epsilon) \in \mathbb{R}^{n} \times[0,+\infty) \tag{6b}
\end{equation*}
$$

2. Convergence analysis. For every positive integer k, let $\left(x^{(k), *}, \epsilon^{(k), *}\right)$ be a local minimizer of Problem $\left(P_{\sigma_{k}}\right)$. For the proof of the convergence results, the definition of constraint qualification given in Definition 2.2 of [1] should be changed to the one given below.

Definition 1. It is said that the constraint qualification is satisfied for the continuous inequality constraints $(1 b)$ at $x=\bar{x}$, if the following implication is valid. Suppose that

$$
\int_{\Omega} \sum_{j} \varphi_{j}(\omega) \frac{\partial \phi_{j}(\bar{x}, \omega)}{\partial x} d \omega=0
$$

Then, $\varphi_{j}(\omega)=0, \forall \omega \in \Omega, j=1, \ldots, m$.
Theorem 2.3 of [1] is modified as follows.
Theorem 2. Suppose that $\left(x^{(k), *}, \epsilon^{(k), *}\right)$ is a local minimizer of Problem $\left(P_{\sigma_{k}}\right)$ such that $f_{\sigma_{k}}\left(x^{(k), *}, \epsilon^{(k), *}\right)$ is finite. If $\left(x^{(k), *}, \epsilon^{(k), *}\right) \rightarrow\left(x^{*}, \epsilon^{*}\right)$ as $k \rightarrow+\infty$, and the constraint qualification is satisfied for the continuous inequality constraints (1b) at $x=x^{*}$, then $\epsilon^{*}=0$ and $x^{*} \in S_{0}$.

For the proof of Theorem 2, it is basically the same as that given for Theorem 2.3 of [1], except Definition 1, rather than Definition 2.2 of [1], is used.

Remark 1. The existence of an accumulating point of the sequence $\left(x^{(k), *}, \epsilon^{(k), *}\right)$ is assured if the following condition is satisfied

$$
f(x) \rightarrow \infty, \text { as }\|x\| \rightarrow \infty
$$

Where $\|\cdot\|$ denotes the usual Euclidean norm.
Theorem 3. Assume that $\max \left\{0, \phi_{j}\left(x^{(k), *}, \omega\right)\right\}=o\left(\left(\epsilon^{(k), *}\right)^{\delta}\right), \delta>0, j=1, \ldots, m$. Suppose that $\gamma>\alpha, \delta>\alpha,-\alpha-1+2 \delta>0,2 \gamma-\alpha-1>0$. Then

$$
\begin{equation*}
f_{\sigma_{k}}\left(x^{(k), *}, \epsilon^{(k), *}\right) \xrightarrow[\epsilon^{(k), *} \rightarrow x^{*} \in S_{0}]{\epsilon^{(k), *} \rightarrow \epsilon^{*}=0} f_{\sigma_{k}}\left(x^{*}, 0\right)=f\left(x^{*}\right) \tag{7}
\end{equation*}
$$

$$
\begin{equation*}
\nabla_{(x, \epsilon)} f_{\sigma_{k}}\left(x^{(k), *}, \epsilon^{(k), *}\right) \xrightarrow[\epsilon^{(k), * \rightarrow x^{*} \in S_{0}}]{\epsilon_{(k), *}} \nabla_{(x, \epsilon)} f_{\sigma_{k}}\left(x^{*}, 0\right)=\left(\nabla f\left(x^{*}\right), 0\right) \tag{8}
\end{equation*}
$$

The proof of Theorem 3 is similar to Theorem 2.4 of [1], except with the changes listed below.

- Equation (2.16) of [1] should be changed to:

$$
\begin{align*}
& \lim _{\substack{\epsilon(k), * \rightarrow \epsilon^{*}=0 \\
x^{(k), *} \rightarrow x^{*} \in S_{0}}} \frac{\sum_{j=1}^{m} \int_{\Omega}\left[\max \left\{0, \phi_{j}\left(x^{(k), *}, \omega\right)-\left(\epsilon^{(k), *}\right)^{\gamma} W_{j}\right\}\right]^{2} d \omega}{\left(\epsilon^{(k), *}\right)^{\alpha}} \tag{9}\\
= & \lim _{\substack{\epsilon^{(k), * \rightarrow \epsilon^{*}=0} \\
x(k), * \rightarrow x^{*} \in S_{0}}} \sum_{j \in J^{\prime}} \int_{\Omega}\left[\left(\epsilon^{(k), *}\right)^{-\frac{\alpha}{2}} \phi_{j}\left(x^{(k), *}, \omega\right)-\left(\epsilon^{(k), *}\right)^{\gamma-\frac{\alpha}{2}} W_{j}\right]^{2} d \omega
\end{align*}
$$

Here, J^{\prime} denotes the index set such that for any $j \in J^{\prime}, \max \left\{0, \phi_{j}\left(x^{(k), *}, \omega\right)-\right.$ $\left.\left(\epsilon^{(k), *}\right)^{\gamma} W_{j}\right\}=\phi_{j}\left(x^{(k), *}, \omega\right)-\left(\epsilon^{(k), *}\right)^{\gamma} W_{j}$.

- Equation (2.17) of [1] should be changed to:

$$
\begin{equation*}
\lim _{\substack{\epsilon(k), * \rightarrow \epsilon^{*}=0 \\ x(k), * \rightarrow x^{*} \in S_{0}}} \sum_{j \in J^{\prime}} \int_{\Omega}\left[\left(\epsilon^{(k), *}\right)^{-\frac{\alpha}{2}} \phi_{j}\left(x^{(k), *}, \omega\right)-\left(\epsilon^{(k), *}\right)^{\gamma-\frac{\alpha}{2}} W_{j}\right]^{2} d \omega=0 \tag{10}
\end{equation*}
$$

- Equation (2.20) of [1] should be changed to:

$$
\begin{align*}
& \lim _{\substack{\epsilon(k), * \rightarrow \epsilon^{*}=0 \\
x^{(k), * \rightarrow x^{*} \in S_{0}}}} \nabla_{x} f_{\sigma_{k}}\left(x^{(k), *}, \epsilon^{(k), *}\right) \\
&=\quad \lim _{\substack{\epsilon^{(k), * \rightarrow \epsilon^{*}} 0 \\
x^{(k), * \rightarrow} \rightarrow x^{*} \in S_{0}}}\left\{\frac{\partial f\left(x^{(k), *}\right)}{\partial x}\right. \\
&\left.+2\left(\epsilon^{(k), *}\right)^{-\alpha} \sum_{j=1}^{m} \int_{\Omega} \max \left\{0, \phi_{j}\left(x^{(k), *}, \omega\right)-\left(\epsilon^{(k), *}\right)^{\gamma} W_{j}\right\} \frac{\partial \phi_{j}\left(x^{(k), *}, \omega\right)}{\partial x} d \omega\right\} \\
&=\quad \nabla_{x} f\left(x^{*}\right)+\lim _{\substack{\epsilon^{(k), * \rightarrow \epsilon^{*}=0} \\
x^{(k), * \rightarrow x^{*} \in S_{0}}}} 2 \sum_{j \in J^{\prime}} \int_{\Omega}\left[\left(\epsilon^{(k), *}\right)^{-\alpha} \phi_{j}\left(x^{(k), *}, \omega\right)\right. \\
&\left.\quad-\left(\epsilon^{(k), *}\right)^{\gamma-\alpha} W_{j}\right] \frac{\partial \phi_{j}\left(x^{(k), *}, \omega\right)}{\partial x} d \omega=\nabla_{x} f\left(x^{*}\right) \tag{11}
\end{align*}
$$

- Equation (2.21) of [1] should be changed to:

$$
\begin{align*}
& \lim _{\substack{\epsilon^{(k), * \rightarrow \epsilon^{*}=0} \\
x^{(k), * \rightarrow x^{*} \in S_{0}}}} \nabla_{\epsilon} f_{\sigma_{k}}\left(x^{(k), *}, \epsilon^{(k), *}\right) \\
&=\quad \lim _{\substack{\epsilon^{(k), * \rightarrow \epsilon^{*}=0} \\
x^{(k), * \rightarrow x^{*} \in S_{0}}}}\left\{(\epsilon ^ { (k) , * }) ^ { - \alpha - 1 } \left\{-\alpha \sum_{j=1}^{m} \int_{\Omega}\left[\operatorname { m a x } \left\{0, \phi_{j}\left(x^{(k), *}, \omega\right)\right.\right.\right.\right. \\
&\left.\left.-\left(\epsilon^{(k), *}\right)^{\gamma} W_{j}\right\}\right]^{2} d \omega \\
&\left.+2 \gamma \sum_{j=1}^{m} \int_{\Omega} \max \left\{0, \phi_{j}\left(x^{(k), *}, \omega\right)-\left(\epsilon^{(k), *}\right)^{\gamma} W_{j}\right\}\left(\left(-\epsilon^{(k), *}\right)^{\gamma} W_{j}\right) d \omega\right\} \\
&=\quad\left.+\sigma_{k} \beta\left(\epsilon^{(k), *}\right)^{\beta-1}\right\} \\
&=\quad \lim _{\substack{\epsilon^{(k), * \rightarrow \epsilon^{*}=0} \\
x(k), * \rightarrow x^{*} \in S_{0}}}\left\{-\alpha \sum_{j \in J^{\prime}} \int_{\Omega}\left[\phi_{j}\left(x^{(k), *}, \omega\right)\left(\epsilon^{(k), *}\right)^{-\frac{\alpha+1}{2}}-\left(\epsilon^{(k), *}\right)^{\gamma-\frac{\alpha+1}{2}} W_{j}\right]^{2} d \omega\right. \\
&\left.+2 \gamma \sum_{j \in J^{\prime}} \int_{\Omega}\left[\phi_{j}\left(x^{(k), *}, \omega\right)-\left(\epsilon^{(k), *}\right)^{\gamma} W_{j}\right]\left(\left(-\epsilon^{(k), *}\right)^{\gamma} W_{j}\right)\left(\epsilon^{(k), *}\right)^{-\alpha-1} d \omega\right\}
\end{align*}
$$

Theorems 2.5 and 2.6 of [1] are combined as one theorem given below.
Theorem 4. There exists a $k_{0}>0$, such that for any $k \geq k_{0}$, every local minimizer $\left(x^{(k), *}, \epsilon^{(k), *}\right)$ of the penalty problem with finite $f_{\sigma_{k}}\left(x^{(k), *}, \epsilon^{(k), *}\right)$ has the form $\left(x^{*}, 0\right)$ where x^{*} is a local minimizer of Problem (P).

Proof. On the contrary, we assume that the conclusion is false. Then, there exists a subsequence of $\left\{\left(x^{(k), *}, \epsilon^{(k), *}\right)\right\}$, which is denoted by the original sequence such that for any $k_{0}>0$, there exists a $k^{\prime}>k_{0}$ satisfying $\epsilon^{\left(k^{\prime}\right), *} \neq 0$. By Theorem 2, we have

$$
\epsilon^{(k), *} \rightarrow \epsilon^{*}=0, x^{(k), *} \rightarrow x^{*} \in S_{0}, \text { as } k \rightarrow+\infty
$$

Since $\epsilon^{(k), *} \neq 0$ for all k, it follows from dividing (2.10) in [1] by $\left(\epsilon^{(k), *}\right)^{\beta-1}$ that

$$
\begin{align*}
& \left(\epsilon^{(k), *}\right)^{-\alpha-\beta}\left\{-\alpha \sum_{j=1}^{m} \int_{\Omega}\left[\max \left\{0, \phi_{j}\left(x^{(k), *}, \omega\right)-\left(\epsilon^{(k), *}\right)^{\gamma} W_{j}\right\}\right]^{2} d \omega\right. \\
& \left.+2 \gamma \sum_{j=1}^{m} \int_{\Omega} \max \left\{0, \phi_{j}\left(x^{(k), *}, \omega\right)-\left(\epsilon^{(k), *}\right)^{\gamma} W_{j}\right\}\left(\left(-\epsilon^{(k), *}\right)^{\gamma} W_{j}\right) d \omega\right\}+\sigma_{k} \beta=0 \tag{13}
\end{align*}
$$

This is equivalent to

$$
\begin{align*}
& \left(\epsilon^{(k), *}\right)^{-\alpha-\beta}\left\{-\alpha \sum_{j=1}^{m} \int_{\Omega}\left[\max \left\{0, \phi_{j}\left(x^{(k), *}, \omega\right)-\left(\epsilon^{(k), *}\right)^{\gamma} W_{j}\right\}\right]^{2} d \omega\right. \\
& +2 \gamma \sum_{j=1}^{m} \int_{\Omega}\left[\max \left\{0, \phi_{j}\left(x^{(k), *}, \omega\right)-\left(\epsilon^{(k), *}\right)^{\gamma} W_{j}\right\}\left(\left(-\epsilon^{(k), *}\right)^{\gamma} W_{j}\right)\right. \tag{14}\\
& +\max \left\{0, \phi_{j}\left(x^{(k), *}, \omega\right)-\left(\epsilon^{(k), *}\right)^{\gamma} W_{j}\right\} \phi_{j}\left(x^{(k), *}, \omega\right) \\
& \left.\left.-\max \left\{0, \phi_{j}\left(x^{(k), *}, \omega\right)-\left(\epsilon^{(k), *}\right)^{\gamma} W_{j}\right\} \phi_{j}\left(x^{(k), *}, \omega\right)\right] d \omega\right\}+\sigma_{k} \beta=0
\end{align*}
$$

Rearranging (14) yields

$$
\begin{align*}
& \left(\epsilon^{(k), *}\right)^{-\alpha-\beta}(2 \gamma-\alpha)\left\{\sum _ { j = 1 } ^ { m } \int _ { \Omega } \left[\operatorname { m a x } \left\{0, \phi_{j}\left(x^{(k), *}, \omega\right)\right.\right.\right. \\
& \left.\left.\left.-\left(\epsilon^{(k), *}\right)^{\gamma} W_{j}\right\}\right]^{2} d \omega\right\}+\sigma_{k} \beta \\
= & 2 \gamma\left(\epsilon^{(k), *}\right)^{-\alpha-\beta} \sum_{j=1}^{m} \int_{\Omega} \max \left\{0, \phi_{j}\left(x^{(k), *}, \omega\right)-\left(\epsilon^{(k), *}\right)^{\gamma} W_{j}\right\} \phi_{j}\left(x^{(k), *}, \omega\right) d \omega \tag{15}
\end{align*}
$$

Letting $k \rightarrow+\infty$ in (15) gives

$$
\begin{equation*}
2 \gamma\left(\epsilon^{(k), *}\right)^{-\alpha-\beta} \sum_{j=1}^{m} \int_{\Omega} \max \left\{0, \phi_{j}\left(x^{(k), *}, \omega\right)-\left(\epsilon^{(k), *}\right)^{\gamma} W_{j}\right\} \phi_{j}\left(x^{(k), *}, \omega\right) d \omega \rightarrow+\infty \tag{16}
\end{equation*}
$$

Define

$$
\begin{equation*}
y^{k}=\left(\epsilon^{(k), *}\right)^{-\alpha-\beta} \sum_{j=1}^{m} \int_{\Omega} \max \left\{0, \phi_{j}\left(x^{(k), *}, \omega\right)-\left(\epsilon^{(k), *}\right)^{\gamma} W_{j}\right\} d \omega \tag{17}
\end{equation*}
$$

From (16) and (17), we have

$$
\begin{equation*}
y^{k} \rightarrow+\infty, \text { as } k \rightarrow+\infty \tag{18}
\end{equation*}
$$

Define

$$
\begin{equation*}
z^{k}=y^{k} /\left\|y^{k}\right\| \tag{19}
\end{equation*}
$$

Clearly

$$
\begin{equation*}
\lim _{k \rightarrow+\infty}\left\|z^{k}\right\|=\left\|z^{*}\right\|=1 \tag{20}
\end{equation*}
$$

Dividing (2.11) in [1] by $\left\|y^{k}\right\|$ yields

$$
\begin{align*}
& \frac{\frac{\partial f\left(x^{(k), *}\right)}{\partial x}}{\left\|y^{k}\right\|}+\frac{2\left(\epsilon^{(k), *}\right)^{-\alpha}}{\left\|y^{k}\right\|} \sum_{j=1}^{m} \int_{\Omega} \max \left\{0, \phi_{j}\left(x^{(k), *}, \omega\right)\right. \\
& \left.-\left(\epsilon^{(k), *}\right)^{\gamma} W_{j}\right\} \frac{\partial \phi_{j}\left(x^{(k), *}, \omega\right)}{\partial x} d \omega=0 \tag{21}
\end{align*}
$$

Note that $x^{(k), *} \rightarrow x^{*}$ as $k \rightarrow+\infty$ and that $\frac{\partial f(x)}{\partial x}$ and, for each $j=1, \ldots, m, \phi_{j}$ and $\frac{\partial \phi_{j}(\cdot, \omega)}{\partial x}$ are continuous in \mathbb{R}^{n} for each $\omega \in \Omega$, where Ω is a compact set.
Then, it can be shown that there exist constants \hat{K} and \bar{K}, independent of k, such that, for all $k=1,2, \cdots$,

$$
\begin{gather*}
\left\|\frac{\partial f\left(x^{(k), *}\right)}{\partial x}\right\| \leq \hat{K} \tag{22}\\
\left\|\frac{\partial \phi_{j}\left(x^{(k), *}, \omega\right)}{\partial x}\right\| \leq \bar{K}, \text { for } j=1, \cdots, m \tag{23}
\end{gather*}
$$

By substituting (17) and (19) into (21), we obtain

$$
\begin{align*}
& \frac{\frac{\partial f\left(x^{(k), *}\right)}{\partial x}}{\left\|y^{k}\right\|\left(\epsilon^{(k), *}\right)^{\beta}}+\frac{2\left(\epsilon^{(k), *}\right)^{-\alpha-\beta}}{\left\|y^{k}\right\|} \sum_{j=1}^{m} \int_{\Omega} \max \left\{0, \phi_{j}\left(x^{(k), *}, \omega\right)\right. \\
&\left.-\left(\epsilon^{(k), *}\right)^{\gamma} W_{j}\right\} \frac{\partial \phi_{j}\left(x^{(k), *}, \omega\right)}{\partial x} d \omega=0 \tag{24}
\end{align*}
$$

Note that

$$
\begin{align*}
\frac{1}{\left\|y^{k}\right\|\left(\epsilon^{(k), *}\right)^{\beta}} & =\frac{1}{\left\|\left(\epsilon^{(k), *}\right)^{-\alpha-\beta} \sum_{j=1}^{m} \max \left\{0, \phi_{j}\left(x^{(k), *}, \omega\right)-\left(\epsilon^{(k), *}\right)^{\gamma} W_{j}\right\}\right\|\left(\epsilon^{(k), *}\right)^{\beta}} \\
& =\frac{1}{\left\|\sum_{j=1}^{m} \max \left\{0, \phi_{j}\left(x^{(k), *}, \omega\right)-\left(\epsilon^{(k), *}\right)^{\gamma} W_{j}\right\}\right\|\left(\epsilon^{(k), *}\right)^{-\alpha}} \tag{25}
\end{align*}
$$

From Theorem 3, we have $\phi_{j}\left(x^{(k), *}, \omega\right)=o\left(\left(\epsilon^{(k), *}\right)^{\delta}\right)$ and $\gamma>\alpha, \delta>\alpha$. Thus

$$
\begin{array}{ll}
\lim _{k \rightarrow+\infty} & \left\|\sum_{j=1}^{m} \max \left\{0, \phi_{j}\left(x^{(k), *}, \omega\right)-\left(\epsilon^{(k), *}\right)^{\gamma} W_{j}\right\}\right\|\left(\epsilon^{(k), *}\right)^{-\alpha} \\
= & \left\|\sum_{j=1}^{m} \max \left\{0,\left(\epsilon^{*}\right)^{\delta-\alpha}-\left(\epsilon^{*}\right)^{\gamma-\alpha} W_{j}\right\}\right\| \\
= & 0
\end{array}
$$

and hence,

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \frac{1}{\left\|y^{k}\right\|\left(\epsilon^{(k), *}\right)^{\beta}} \rightarrow+\infty \tag{27}
\end{equation*}
$$

From (22) and (27), it is clear that

$$
\begin{equation*}
\frac{\left|\frac{\partial f\left(x^{(k), *}\right)}{\partial x}\right|}{\left\|y^{k}\right\|\left(\epsilon^{(k), *}\right)^{\beta}} \rightarrow+\infty, \quad k \rightarrow+\infty \tag{28}
\end{equation*}
$$

On the other hand,

$$
\begin{align*}
& \left|\frac{2\left(\epsilon^{(k), *}\right)^{-\alpha-\beta}}{\left\|y^{k}\right\|} \sum_{j=1}^{m} \int_{\Omega} \max \left\{0, \phi_{j}\left(x^{(k), *}, \omega\right)\left(\epsilon^{(k), *}\right)^{\gamma} W_{j}\right\} \frac{\partial \phi_{j}\left(x^{(k), *}, \omega\right)}{\partial x} d \omega\right| \\
\leq & \frac{2\left(\epsilon^{(k), *}\right)^{-\alpha-\beta}}{\left\|y^{k}\right\|} \sum_{j=1}^{m} \int_{\Omega}\left|\max \left\{0, \phi_{j}\left(x^{(k), *}, \omega\right)\left(\epsilon^{(k), *}\right)^{\gamma} W_{j}\right\} \frac{\partial \phi_{j}\left(x^{(k), *}, \omega\right)}{\partial x}\right| d \omega \\
= & \frac{2\left(\epsilon^{(k), *}\right)^{-\alpha-\beta}}{\left\|y^{k}\right\|} \sum_{j=1}^{m} \int_{\Omega} \max \left\{0, \phi_{j}\left(x^{(k), *}, \omega\right)\left(\epsilon^{(k), *}\right)^{\gamma} W_{j}\right\}\left|\frac{\partial \phi_{j}\left(x^{(k), *}, \omega\right)}{\partial x}\right| d \omega \tag{29}\\
\leq & \frac{2\left(\epsilon^{(k), *}\right)^{-\alpha-\beta}}{\left\|y^{k}\right\|} \sum_{j=1}^{m} \int_{\Omega} \max \left\{0, \phi_{j}\left(x^{(k), *}, \omega\right)\left(\epsilon^{(k), *}\right)^{\gamma} W_{j}\right\} \bar{K} d \omega \\
= & 2 \bar{K} z^{k}
\end{align*}
$$

where z^{k} is defined by (19). Clearly, $\left\|z^{k}\right\|=1$. Thus, it follows from (29) that $2 \bar{K} z^{k}$ is bounded uniformly with respect to k. This together with (28) is a contradiction to (24), and hence completing the first part of the proof .

For sufficiently large k, every local minimizer $\left(x^{(k), *}, \epsilon^{(k), *}\right)$ has the form $\left(x^{*}, 0\right)$. It is obvious from Theorem 2 that x^{*} is a feasible point of Problem (P). This indicates that there is a neighborhood of x^{*}, such that for any feasible x of Problem (P)

$$
f(x)=f_{\sigma_{k}}(x, 0) \geq f_{\sigma_{k}}\left(x^{*}, 0\right)=f\left(x^{*}\right)
$$

Therefore, x^{*} is a local minimizer of Problem (P). This completes the proof.

REFERENCES

[1] C. J. Yu, K. L. Teo, L. S. Zhang and Y. Q. Bai, A new exact penalty function method for continuous inequality constrained optimization problems, Journal of Industrial and Management Optimization, 6 (2010), 895-910.

Received August 2011; 1st revision August 2011; 2nd revision September 2011.
E-mail address: yuchangjun@126.com
E-mail address: k.l.teo@curtin.edu.au
E-mail address: zhangls@staff.shu.edu.cn
E-mail address: yqbai@shu.edu.cn

[^0]: 2000 Mathematics Subject Classification. Primary: 90-08; Secondary: 90C34, 49M37.
 Key words and phrases. Exact penalty function, semi-infinite programming, constrained optimization, convergence analysis, refinement.

 This research is supported by a grant from National Natural Science Foundation of China (No. 11071158), Key Disciplines of Shanghai Municipality (No.S30104) and China Scholarship Council.

