doi:10.3934/jimo.2012.8.485

ON A REFINEMENT OF THE CONVERGENCE ANALYSIS FOR THE NEW EXACT PENALTY FUNCTION METHOD FOR CONTINUOUS INEQUALITY CONSTRAINED OPTIMIZATION PROBLEM

Changjun $Yu^{\dagger \ddagger}$, Kok Lay Teo^{\dagger}, Liansheng Zhang^{\ddagger} and Yanqin Bai^{\ddagger}

[†]Department of Mathematics and Statistics Curtin University of Technology Kent Street, Bentley 6102, WA, Australia

[‡]Department of Mathematics Shanghai University 99, Shangda Road, 200444, Shanghai, China

(Communicated by Cheng-Chew Lim)

ABSTRACT. This note is to provide a refinement of the convergence analysis of the new exact penalty function method proposed recently.

1. **Introduction.** As in [1], we consider a class of functional inequality constrained optimization problems given below.

$$\min f(x) \tag{1a}$$

subject to
$$\phi_j(x,\omega) \le 0, \ \forall \ \omega \in \Omega, \ j=1, \ \dots, \ m,$$
 (1b)

where the vector \mathbb{R}^n is the parameter vector to be found, Ω is a compact interval in \mathbb{R} , $f : \mathbb{R}^n \to \mathbb{R}$ is continuously differentiable in x, and for each $j = 1, \ldots, m$, $\phi_j : \mathbb{R}^n \times \mathbb{R} \to \mathbb{R}$ is a continuously differentiable function in x and ω . Let this problem be referred to as Problem (P).

Define

$$S_{\epsilon} = \{ (x, \epsilon) \in \mathbb{R}^n \times \mathbb{R}_+ : \phi_j(x, \omega) \le \epsilon^{\gamma} W_j, \ \forall \ \omega \in \Omega, \ j = 1, \ \dots, \ m \}$$
(2)

where $\mathbb{R}_+ = \{ \alpha \in \mathbb{R} : \alpha \geq 0 \}$, $W_j \in (0,1)$, $j = 1, \ldots, m$, are fixed constants and γ is a positive real number. Clearly, Problem (*P*) is equivalent to the following problem, which is denoted as Problem (\hat{P}).

$$\min f(x) \tag{3a}$$

subject to

$$(x,\epsilon) \in S_0 \tag{3b}$$

where $S_0 = S_{\epsilon}$ with $\epsilon = 0$. We assume that the following conditions are satisfied:

• There exists a global minimizer of Problem (P), implying that f(x) is bounded from below on S_0 .

²⁰⁰⁰ Mathematics Subject Classification. Primary: 90-08; Secondary: 90C34, 49M37.

Key words and phrases. Exact penalty function, semi-infinite programming, constrained optimization, convergence analysis, refinement.

This research is supported by a grant from National Natural Science Foundation of China (No. 11071158), Key Disciplines of Shanghai Municipality (No.S30104) and China Scholarship Council.

• The number of distinct local minimum values of the objective function of Problem (P) is finite.

A new exact penalty function $f_{\sigma}(x, \epsilon)$ defined below is introduced in [1].

$$f_{\sigma}(x,\epsilon) = \begin{cases} f(x) & \text{if } \epsilon = 0, \phi_j(x,\omega) \le 0 \ (\omega \in \Omega) \\ f(x) + \epsilon^{-\alpha} \Delta(x,\epsilon) + \sigma \epsilon^{\beta} & \text{if } \epsilon > 0 \\ +\infty & \text{otherwise} \end{cases}$$
(4)

where $\Delta(x,\epsilon)$, which is referred to as the constraint violation, is defined by

$$\Delta(x,\epsilon) = \sum_{j=1}^{m} \int_{\Omega} \left[\max\left\{ 0, \phi_j(x,\omega) - \epsilon^{\gamma} W_j \right\} \right]^2 d\omega$$
(5)

 α and γ are positive real numbers, $\beta > 2$, and $\sigma > 0$ is a penalty parameter. The surrogate optimization problem, which is referred to as Problem (P_{σ}) , is as follows.

$$\min f_{\sigma}(x,\epsilon) \tag{6a}$$

subject to

486

$$(x,\epsilon) \in \mathbb{R}^n \times [0,+\infty) \tag{6b}$$

2. Convergence analysis. For every positive integer k, let $(x^{(k),*}, \epsilon^{(k),*})$ be a local minimizer of Problem (P_{σ_k}) . For the proof of the convergence results, the definition of constraint qualification given in Definition 2.2 of [1] should be changed to the one given below.

Definition 1. It is said that the constraint qualification is satisfied for the continuous inequality constraints (1b) at $x = \bar{x}$, if the following implication is valid. Suppose that

$$\int_{\Omega} \sum_{j} \varphi_{j}(\omega) \frac{\partial \phi_{j}(\bar{x}, \omega)}{\partial x} d\omega = 0.$$

Then, $\varphi_j(\omega) = 0, \forall \omega \in \Omega, j = 1, \dots, m.$

Theorem 2.3 of [1] is modified as follows.

Theorem 2. Suppose that $(x^{(k),*}, \epsilon^{(k),*})$ is a local minimizer of Problem (P_{σ_k}) such that $f_{\sigma_k}(x^{(k),*}, \epsilon^{(k),*})$ is finite. If $(x^{(k),*}, \epsilon^{(k),*}) \to (x^*, \epsilon^*)$ as $k \to +\infty$, and the constraint qualification is satisfied for the continuous inequality constraints (1b) at $x = x^*$, then $\epsilon^* = 0$ and $x^* \in S_0$.

For the proof of Theorem 2, it is basically the same as that given for Theorem 2.3 of [1], except Definition 1, rather than Definition 2.2 of [1], is used.

Remark 1. The existence of an accumulating point of the sequence $(x^{(k),*}, \epsilon^{(k),*})$ is assured if the following condition is satisfied

$$f(x) \to \infty$$
, as $||x|| \to \infty$.

Where $\|\cdot\|$ denotes the usual Euclidean norm.

Theorem 3. Assume that $\max \{0, \phi_j(x^{(k),*}, \omega)\} = o((\epsilon^{(k),*})^{\delta}), \delta > 0, j = 1, \dots, m.$ Suppose that $\gamma > \alpha, \delta > \alpha, -\alpha - 1 + 2\delta > 0, 2\gamma - \alpha - 1 > 0$. Then

$$f_{\sigma_k}(x^{(k),*}, \epsilon^{(k),*}) \xrightarrow[x^{(k),*} \to x^* \in S_0]{} f_{\sigma_k}(x^*, 0) = f(x^*)$$
(7)

$$\nabla_{(x,\epsilon)} f_{\sigma_k}(x^{(k),*}, \epsilon^{(k),*}) \xrightarrow{\epsilon^{(k),*} \to \epsilon^* = 0}{x^{(k),*} \to x^* \in S_0}} \nabla_{(x,\epsilon)} f_{\sigma_k}(x^*, 0) = (\nabla f(x^*), 0)$$
(8)

The proof of Theorem 3 is similar to Theorem 2.4 of [1], except with the changes listed below.

• Equation (2.16) of [1] should be changed to:

$$= \lim_{\substack{\epsilon^{(k),*} \to \epsilon^{*} = 0 \\ x^{(k),*} \to x^{*} \in S_{0} \\ x^{(k),*} \to x^{*} \in S_{0}}} \sum_{j \in J'} \int_{\Omega} \left[\max\{0, \phi_{j}(x^{(k),*}, \omega) - (\epsilon^{(k),*})^{\gamma}W_{j}\} \right]^{2} d\omega}{(\epsilon^{(k),*})^{\alpha}}$$
(9)

Here, J' denotes the index set such that for any $j \in J'$, $\max\{0, \phi_j(x^{(k),*}, \omega) - (\epsilon^{(k),*})^{\gamma}W_j\} = \phi_j(x^{(k),*}, \omega) - (\epsilon^{(k),*})^{\gamma}W_j$. • Equation (2.17) of [1] should be changed to:

$$\lim_{\substack{\epsilon^{(k),*} \to \epsilon^* = 0\\x^{(k),*} \to x^* \in S_0}} \sum_{j \in J'} \int_{\Omega} \left[(\epsilon^{(k),*})^{-\frac{\alpha}{2}} \phi_j(x^{(k),*},\omega) - (\epsilon^{(k),*})^{\gamma-\frac{\alpha}{2}} W_j \right]^2 d\omega = 0$$
(10)

• Equation (2.20) of [1] should be changed to:

$$= \lim_{\substack{\epsilon^{(k),*} \to \epsilon^{*} = 0 \\ x^{(k),*} \to x^{*} \in S_{0}}} \nabla_{x} f_{\sigma_{k}}(x^{(k),*}, \epsilon^{(k),*}) \\ = \lim_{\substack{\epsilon^{(k),*} \to x^{*} \in S_{0} \\ x^{(k),*} \to x^{*} \in S_{0}}} \left\{ \frac{\partial f(x^{(k),*})}{\partial x} \\ + 2(\epsilon^{(k),*})^{-\alpha} \sum_{j=1}^{m} \int_{\Omega} \max\left\{ 0, \phi_{j}(x^{(k),*}, \omega) - (\epsilon^{(k),*})^{\gamma} W_{j} \right\} \frac{\partial \phi_{j}(x^{(k),*}, \omega)}{\partial x} d\omega \right\} \\ = \sum_{\substack{\tau^{(k),*} \to \epsilon^{*} = 0 \\ x^{(k),*} \to x^{*} \in S_{0}}} \nabla_{x} f(x^{*}) + \lim_{\substack{\epsilon^{(k),*} \to \epsilon^{*} = 0 \\ x^{(k),*} \to x^{*} \in S_{0}}} 2 \sum_{j \in J'} \int_{\Omega} \left[(\epsilon^{(k),*})^{-\alpha} \phi_{j}(x^{(k),*}, \omega) \\ - (\epsilon^{(k),*})^{\gamma - \alpha} W_{j} \right] \frac{\partial \phi_{j}(x^{(k),*}, \omega)}{\partial x} d\omega = \nabla_{x} f(x^{*})$$
(11)

• Equation (2.21) of [1] should be changed to:

488

$$\lim_{\substack{\epsilon^{(k),*} \to \epsilon^{*} = 0 \\ x^{(k),*} \to x^{*} \in S_{0}}} \nabla_{\epsilon} f_{\sigma_{k}}(x^{(k),*}, \epsilon^{(k),*}) \\ = \lim_{\substack{\epsilon^{(k),*} \to x^{*} \in S_{0} \\ x^{(k),*} \to x^{*} \in S_{0}}} \left\{ (\epsilon^{(k),*})^{-\alpha-1} \left\{ -\alpha \sum_{j=1}^{m} \int_{\Omega} \left[\max\{0, \phi_{j}(x^{(k),*}, \omega) - (\epsilon^{(k),*})^{\gamma}W_{j}\} \right]^{2} d\omega \right. \\ \left. + 2\gamma \sum_{j=1}^{m} \int_{\Omega} \max\{0, \phi_{j}(x^{(k),*}, \omega) - (\epsilon^{(k),*})^{\gamma}W_{j}\}((-\epsilon^{(k),*})^{\gamma}W_{j})d\omega \right\} \\ \left. + \sigma_{k}\beta(\epsilon^{(k),*})^{\beta-1} \right\} \\ = \lim_{\substack{\epsilon^{(k),*} \to e^{*} = 0 \\ x^{(k),*} \to x^{*} \in S_{0}}} \left\{ -\alpha \sum_{j \in J'} \int_{\Omega} \left[\phi_{j}(x^{(k),*}, \omega)(\epsilon^{(k),*})^{-\frac{\alpha+1}{2}} - (\epsilon^{(k),*})^{\gamma-\frac{\alpha+1}{2}}W_{j} \right]^{2} d\omega \\ \left. + 2\gamma \sum_{j \in J'} \int_{\Omega} \left[\phi_{j}(x^{(k),*}, \omega) - (\epsilon^{(k),*})^{\gamma}W_{j} \right] ((-\epsilon^{(k),*})^{\gamma}W_{j})(\epsilon^{(k),*})^{-\alpha-1} d\omega \right\} \\ = 0 \end{aligned}$$

$$(12)$$

Theorems 2.5 and 2.6 of [1] are combined as one theorem given below.

Theorem 4. There exists a $k_0 > 0$, such that for any $k \ge k_0$, every local minimizer $(x^{(k),*}, \epsilon^{(k),*})$ of the penalty problem with finite $f_{\sigma_k}(x^{(k),*}, \epsilon^{(k),*})$ has the form $(x^*, 0)$ where x^* is a local minimizer of Problem (P).

Proof. On the contrary, we assume that the conclusion is false. Then, there exists a subsequence of $\{(x^{(k),*}, \epsilon^{(k),*})\}$, which is denoted by the original sequence such that for any $k_0 > 0$, there exists a $k' > k_0$ satisfying $\epsilon^{(k'),*} \neq 0$. By Theorem 2, we have

$$\epsilon^{(k),*} \to \epsilon^* = 0, \ x^{(k),*} \to x^* \in S_0, \ \text{as } k \to +\infty$$

Since $\epsilon^{(k),*} \neq 0$ for all k, it follows from dividing (2.10) in [1] by $(\epsilon^{(k),*})^{\beta-1}$ that

$$(\epsilon^{(k),*})^{-\alpha-\beta} \left\{ -\alpha \sum_{j=1}^{m} \int_{\Omega} \left[\max\{0, \phi_{j}(x^{(k),*}, \omega) - (\epsilon^{(k),*})^{\gamma}W_{j}\} \right]^{2} d\omega + 2\gamma \sum_{j=1}^{m} \int_{\Omega} \max\{0, \phi_{j}(x^{(k),*}, \omega) - (\epsilon^{(k),*})^{\gamma}W_{j}\} ((-\epsilon^{(k),*})^{\gamma}W_{j}) d\omega \right\} + \sigma_{k}\beta = 0$$
(13)

This is equivalent to

$$(\epsilon^{(k),*})^{-\alpha-\beta} \left\{ -\alpha \sum_{j=1}^{m} \int_{\Omega} \left[\max\{0, \phi_{j}(x^{(k),*}, \omega) - (\epsilon^{(k),*})^{\gamma}W_{j}\} \right]^{2} d\omega + 2\gamma \sum_{j=1}^{m} \int_{\Omega} \left[\max\{0, \phi_{j}(x^{(k),*}, \omega) - (\epsilon^{(k),*})^{\gamma}W_{j}\} ((-\epsilon^{(k),*})^{\gamma}W_{j}) + \max\{0, \phi_{j}(x^{(k),*}, \omega) - (\epsilon^{(k),*})^{\gamma}W_{j}\} \phi_{j}(x^{(k),*}, \omega) - \max\{0, \phi_{j}(x^{(k),*}, \omega) - (\epsilon^{(k),*})^{\gamma}W_{j}\} \phi_{j}(x^{(k),*}, \omega) \right] d\omega \right\} + \sigma_{k}\beta = 0$$

$$(14)$$

Rearranging (14) yields

$$(\epsilon^{(k),*})^{-\alpha-\beta}(2\gamma-\alpha)\left\{\sum_{j=1}^{m}\int_{\Omega}\left[\max\left\{0,\phi_{j}(x^{(k),*},\omega)\right.\right.\right.\right.\right.\\\left.\left.\left.\left.\left(\epsilon^{(k),*}\right)^{\gamma}W_{j}\right\}\right]^{2}d\omega\right\}+\sigma_{k}\beta\right.\right.\\\left.\left.\left.\left.\left(\epsilon^{(k),*}\right)^{-\alpha-\beta}\sum_{j=1}^{m}\int_{\Omega}\max\left\{0,\phi_{j}(x^{(k),*},\omega)-(\epsilon^{(k),*})^{\gamma}W_{j}\right\}\phi_{j}(x^{(k),*},\omega)d\omega\right.\right.\right.\right.\right.$$

$$(15)$$

Letting $k \to +\infty$ in (15) gives

$$2\gamma(\epsilon^{(k),*})^{-\alpha-\beta}\sum_{j=1}^{m}\int_{\Omega}\max\left\{0,\phi_{j}(x^{(k),*},\omega)-(\epsilon^{(k),*})^{\gamma}W_{j}\right\}\phi_{j}(x^{(k),*},\omega)d\omega\to+\infty$$
(16)

Define

$$y^{k} = (\epsilon^{(k),*})^{-\alpha-\beta} \sum_{j=1}^{m} \int_{\Omega} \max\left\{0, \phi_{j}(x^{(k),*},\omega) - (\epsilon^{(k),*})^{\gamma} W_{j}\right\} d\omega$$
(17)

From (16) and (17), we have

$$y^k \to +\infty$$
, as $k \to +\infty$ (18)

Define

$$z^k = y^k / \|y^k\| \tag{19}$$

Clearly

$$\lim_{k \to +\infty} \|z^k\| = \|z^*\| = 1$$
(20)

Dividing (2.11) in [1] by $||y^k||$ yields

$$\frac{\frac{\partial f(x^{(k),*})}{\partial x}}{\|y^k\|} + \frac{2(\epsilon^{(k),*})^{-\alpha}}{\|y^k\|} \sum_{j=1}^m \int_{\Omega} \max\left\{0, \phi_j(x^{(k),*},\omega) - (\epsilon^{(k),*})^{\gamma} W_j\right\} \frac{\partial \phi_j(x^{(k),*},\omega)}{\partial x} d\omega = 0$$
(21)

Note that $x^{(k),*} \to x^*$ as $k \to +\infty$ and that $\frac{\partial f(x)}{\partial x}$ and, for each $j = 1, \ldots, m, \phi_j$ and $\frac{\partial \phi_j(\cdot, \omega)}{\partial x}$ are continuous in \mathbb{R}^n for each $\omega \in \Omega$, where Ω is a compact set. Then, it can be shown that there exist constants \hat{K} and \overline{K} , independent of k, such that, for all $k = 1, 2, \cdots$,

$$\left\|\frac{\partial f(x^{(k),*})}{\partial x}\right\| \le \hat{K} \tag{22}$$

$$\left\|\frac{\partial\phi_j(x^{(k),*},\omega)}{\partial x}\right\| \le \overline{K}, \text{ for } j = 1,\cdots,m.$$
(23)

By substituting (17) and (19) into (21), we obtain

$$\frac{\frac{\partial f(x^{(k),*})}{\partial x}}{\|y^k\| (\epsilon^{(k),*})^\beta} + \frac{2(\epsilon^{(k),*})^{-\alpha-\beta}}{\|y^k\|} \sum_{j=1}^m \int_{\Omega} \max\left\{0,\phi_j(x^{(k),*},\omega) - (\epsilon^{(k),*})^\gamma W_j\right\} \frac{\partial \phi_j(x^{(k),*},\omega)}{\partial x} d\omega = 0$$
(24)

Note that

490

$$\frac{1}{\|y^k\|(\epsilon^{(k),*})^{\beta}} = \frac{1}{\|(\epsilon^{(k),*})^{-\alpha-\beta} \sum_{j=1}^m \max\left\{0,\phi_j(x^{(k),*},\omega) - (\epsilon^{(k),*})^{\gamma}W_j\right\}\|(\epsilon^{(k),*})^{\beta}}} = \frac{1}{\|\sum_{j=1}^m \max\left\{0,\phi_j(x^{(k),*},\omega) - (\epsilon^{(k),*})^{\gamma}W_j\right\}\|(\epsilon^{(k),*})^{-\alpha}}}$$
(25)

From Theorem 3, we have $\phi_j(x^{(k),*},\omega) = o((\epsilon^{(k),*})^{\delta})$ and $\gamma > \alpha, \ \delta > \alpha$. Thus

$$\lim_{k \to +\infty} \| \sum_{j=1}^{m} \max \left\{ 0, \phi_j(x^{(k),*}, \omega) - (\epsilon^{(k),*})^{\gamma} W_j \right\} \| (\epsilon^{(k),*})^{-\alpha} \\ = \| \sum_{j=1}^{m} \max \left\{ 0, (\epsilon^*)^{\delta - \alpha} - (\epsilon^*)^{\gamma - \alpha} W_j \right\} \| \\ = 0$$
(26)

and hence,

$$\lim_{k \to \infty} \frac{1}{\|y^k\|(\epsilon^{(k),*})^\beta} \to +\infty.$$
(27)

From (22) and (27), it is clear that

$$\frac{\left|\frac{\partial f(x^{(k),*})}{\partial x}\right|}{\|y^k\|(\epsilon^{(k),*})^\beta} \to +\infty, \quad k \to +\infty$$
(28)

On the other hand,

$$\left|\frac{2(\epsilon^{(k),*})^{-\alpha-\beta}}{\|y^k\|}\sum_{j=1}^m \int_{\Omega} \max\left\{0,\phi_j(x^{(k),*},\omega)(\epsilon^{(k),*})^{\gamma}W_j\right\}\frac{\partial\phi_j(x^{(k),*},\omega)}{\partial x}d\omega\right| \\
\leq \frac{2(\epsilon^{(k),*})^{-\alpha-\beta}}{\|y^k\|}\sum_{j=1}^m \int_{\Omega} \left|\max\left\{0,\phi_j(x^{(k),*},\omega)(\epsilon^{(k),*})^{\gamma}W_j\right\}\frac{\partial\phi_j(x^{(k),*},\omega)}{\partial x}\right|d\omega \\
= \frac{2(\epsilon^{(k),*})^{-\alpha-\beta}}{\|y^k\|}\sum_{j=1}^m \int_{\Omega} \max\left\{0,\phi_j(x^{(k),*},\omega)(\epsilon^{(k),*})^{\gamma}W_j\right\}\left|\frac{\partial\phi_j(x^{(k),*},\omega)}{\partial x}\right|d\omega \\
\leq \frac{2(\epsilon^{(k),*})^{-\alpha-\beta}}{\|y^k\|}\sum_{j=1}^m \int_{\Omega} \max\left\{0,\phi_j(x^{(k),*},\omega)(\epsilon^{(k),*})^{\gamma}W_j\right\}\overline{K}d\omega \\
= 2\overline{K}z^k$$

where z^k is defined by (19). Clearly, $||z^k|| = 1$. Thus, it follows from (29) that $2\overline{K}z^k$ is bounded uniformly with respect to k. This together with (28) is a contradiction to (24), and hence completing the first part of the proof.

For sufficiently large k, every local minimizer $(x^{(k),*}, \epsilon^{(k),*})$ has the form $(x^*, 0)$. It is obvious from Theorem 2 that x^* is a feasible point of Problem (P). This indicates that there is a neighborhood of x^* , such that for any feasible x of Problem (P)

$$f(x) = f_{\sigma_k}(x, 0) \ge f_{\sigma_k}(x^*, 0) = f(x^*).$$

Therefore, x^* is a local minimizer of Problem (P). This completes the proof. \Box

REFERENCES

 C. J. Yu, K. L. Teo, L. S. Zhang and Y. Q. Bai, A new exact penalty function method for continuous inequality constrained optimization problems, Journal of Industrial and Management Optimization, 6 (2010), 895–910.

Received August 2011; 1st revision August 2011; 2nd revision September 2011.

E-mail address: yuchangjun@126.com E-mail address: k.l.teo@curtin.edu.au E-mail address: zhangls@staff.shu.edu.cn E-mail address: yqbai@shu.edu.cn