
Volume 7, Issue 1 2012 Article 13

Chemical Product and Process
Modeling

A Modified Kennard-Stone Algorithm for
Optimal Division of Data for Developing

Artificial Neural Network Models

Agus Saptoro, Curtin University, Australia
Moses O. Tadé, Curtin University, Australia
Hari Vuthaluru, Curtin University, Australia

Recommended Citation:
Saptoro, Agus; Tadé, Moses O.; and Vuthaluru, Hari (2012) "A Modified Kennard-Stone
Algorithm for Optimal Division of Data for Developing Artificial Neural Network Models,"
Chemical Product and Process Modeling: Vol. 7: Iss. 1, Article 13.
DOI: 10.1515/1934-2659.1645 

©2012 De Gruyter. All rights reserved.

Brought to you by | Curtin University Library
Authenticated | 134.7.89.216

Download Date | 8/29/12 9:35 AM



A Modified Kennard-Stone Algorithm for
Optimal Division of Data for Developing
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Abstract
This paper proposes a method, namely MDKS (Kennard-Stone algorithm based on

Mahalanobis distance), to divide the data into training and testing subsets for developing artificial
neural network (ANN) models. This method is a modified version of the Kennard-Stone (KS)
algorithm. With this method, better data splitting, in terms of data representation and enhanced
performance of developed ANN models, can be achieved. Compared with standard KS algorithm
and another improved KS algorithm (data division based on joint x - y distances (SPXY) method),
the proposed method has also shown a better performance. Therefore, the proposed technique can
be used as an advantageous alternative to other existing methods of data splitting for developing
ANN models. Care should be taken when dealing with large amount of dataset since they may
increase the computational load for MDKS due to its variance-covariance matrix calculations.
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1. Introduction 

Optimal data division into a training dataset and an independent test subset is an 
important and critical step in artificial neural networks (ANN) modelling for 
complex data analysis. Recent studies have found that data splitting into subsets 
can have a significant influence on ANN’s performance (Bowden et al., 2002; 
Minns et al., 1996; Maier et al., 2000; Maier et al., 2010). Typically, an ANN 
model is only capable of interpolating data and it is unable to extrapolate beyond 
the range of dataset used for training. As a consequence, poor predictive ability is 
expected when the trained model is tested using the dataset having values outside 
the range of training dataset.  Flood et al. (1994) also noted that the performance 
of an ANN model strongly depends on the number of available training samples. 
The higher the number of training samples available for ANN modeling, the 
higher the potential level of accuracy can be obtained by the model. However, 
from practical points of view, having sufficient data for training ANN model is 
not always possible. Sometimes engineers and/or researchers can only obtain 
limited data for costly measurements and experimental procedures.  In few cases, 
due to faulty sensors or maintenance activities, missing measurements result in 
small amount of collected data. Hence, the proportion of samples to include in 
each of the subsets becomes very important consideration. 

There are several existing data division methods for systematically 
partitioning the available data into statistically representative subsets: random 
selection (RS) (Rajer-Kanduč et al., 2003; Wu et al., 1996; Kocjančič et al., 2000; 
Saptoro et al., 2008), kohonen self organising map (SOM) (Bowden et al., 2002; 
Rajer-Kanduč et al., 2003; Wu et al., 1996), genetic algorithm (GA) based 
approach (Bowden et al., 2002), D-optimal design (Wu et al., 1996; Atkinson et 
al., 1995; de Aguiar et al., 1995) and Kennard-Stone (KS) algorithm (Rajer-
Kanduč et al., 2003; Wu et al., 1996; Kocjančič et al., 2000; Saptoro et al., 2008; 
Galvão et al., 2005; Kennard et al., 1969). The random selection approach is the 
way of selecting training set by applying random division where no clear selection 
criteria is applied. Due to its simplicity, this method is the most commonly used 
(Kocjančič et al., 2000).  

The second data division method, SOM, is used to cluster the data by 
presenting ANN input and output variables as the SOM’s inputs. A SOM grid is 
then specified, where each cell in the grid represents a node in the Kohonen layer. 
By training SOM, similar data samples are clustered into each dot representing a 
sample of data. Using the method employed by Bowden et al. (2002), three data 
records from each cluster are sampled and allocated to each of the training, testing 
and validation subsets. However, if a cluster only contains one record, this record 
is allocated to the training set. If a cluster contains two records, one record is 
placed in the training set and the other one is in the testing set. This technique has 
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an advantage over other data division methods where it avoids the need to 
arbitrarily select which proportion of data to be included in each subset. It is also 
capable of constructing a representative training data set using the minimum 
number of samples. 

The GA for data division is designed to allocate available data into pre-
specified proportions of training and testing sets according to a set of pseudo-
random numbers. Pseudo-random number seed is used to determine the optimal 
allocation of data into subsets. Therefore, this seed is optimized as a decision 
variable. The objective function of the optimization is to minimize sum of the 
absolute difference in mean and standard deviation values for each input and 
output variable between each pair of the two subsets as indicated by the equation 
below (Bowden et al., 2002). 
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K is the number of inputs and  and   are mean and standard deviation 

of the input or output variable, respectively. To ensure that the maximum and 
minimum values of each variable are included in the training set, penalty 
constraints are added to the objective function. Penalty constraints are preferable 
than manually removing extreme values from the data and placing them in the 
training set.  This is because of a possible trade-off between keeping the statistical 
properties of the training and testing sets and at the same time ensuring the 
extreme values in the training set. 

The KS algorithm technique was originally applied to generate a training 
set when no standard experimental design can be implemented. With this 
technique, all objects are considered as candidates for the training set. The 
selected candidates are chosen sequentially. KS algorithm can be summarized as 
follows: First, the KS algorithm takes the pair of samples with the largest 
Eucledian distance of x-vectors (predictors) and then it sequentially selects a 
sample to maximize the Eucledian distance between x-vectors of already selected 
samples and the remaining samples. This process is repeated until the required 
number of samples is achieved. For each pair of samples i and j , the Eucledian 
distance in x space is defined as (Wu et al., 1996; Saptoro et al., 2008; Galvão et 
al., 2005; Kennard et al., 1969) 
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It is well-known that each proposed approach above suffers from some 
drawbacks. Firstly, when using RS method, since there is no clear selection 
criteria applied, there is a risk that some ‘rich information’ sets of data are not 
selected in the training set. The random nature of this method may result in 
uncertain characteristics into the selected training and testing sets. Consequently, 
no guarantee that representative training data set can be obtained. 

Partitioning data with a GA can be very time consuming as finding the 
best allocation requires comparisons of many different combinations of data 
arrangement. In a simple example given by Bowden et al. (2002), if there are 60 
sets of data which must be divided into 45 data for training set and 15 data for 
testing set, there will be 

 

    
1310.32.5

!15.!45

!60
  (3)   

 
ways of arranging samples of data. In reality, it is unlikely that an optimal 

data division will be found within a reasonable time frame, although good results 
can still be obtained. Moreover, as noted by Bowden et al. (2002), the cross-over 
operator is usually unable to function as it should. Crossing over two random 
number seeds does not result in a set of random numbers that inherits the 
properties of the parents. Thus this method only relies on the selection and 
mutation to find an appropriate data set which further slowdown the process. 

Using data division method based on SOM, the number of data allocated 
to each data subset depends on the specified Kohonen grid size. However, as 
indicated by Bowden et al. (2002), there is no theoretical principle for 
determining the optimum size of the Kohonen layer. According to Shahin et al. 
(2004), the specified grid size can have a significant impact on the results 
obtained from SOM data division method. This is because of an underlying 
assumption that the data in one cluster should provide the same information in 
high-dimensional space. Bowden et al. (2002) also stated that the selected grid 
size should be large enough to ensure that the maximum number of clusters are 
formed from the available data. However, even though the grid size may be large 
enough, sometimes each grid only contains one sample of data. This creates 
difficulties in choosing representative subsets. Furthermore, by only selecting one 
sample from each cluster, the amount of data used for developing ANN model is 
significantly reduced. In one of the case studies presented by Bowden et al. 
(2002), 2005 available data were reduced to 147 data with only 49 data allocated 
to each data subset. Such a reduction in data analysis may result in a significant 
loss of information where the selected training data set will not adequately 
represent the population of data. This lost normally depends on the intra cluster 
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variation. If this variation is large, important information may be omitted from the 
training set by only selecting one sample from each cluster. 

In their work, Bowden et al. (2002) indicated that SOM based method 
performs better than GA and the random approaches. However, in later work done 
by Galvão et al. (2005), KS method is preferred than SOM due to its ability to 
select more representative training data set. Moreover, KS algorithms are far 
simpler than the SOM and GA algorithm.  

Despite the comparative advantage of KS over the other methods, KS 
algorithm has also a possible shortcoming. In multivariate data analysis, 
dependent variable (y) and independent variable (x) are statistically related. 
Therefore, data division criteria should take into account the statistical 
contributions from both x and y. Whereas KS algorithm only incorporates the 
variability of the independent variable. It could be postulated that the inclusion of 
y  information in the selection process might result in a more effective 
distribution of training set in the multidimensional space, thus it may improve the 
predictive ability and robustness of the developed model. 

A KS algorithm which considers variabilities in both x  and y  
dimensions, was first proposed by Galvão et al. (2005).  The method, namely 
sample set partitioning based on joint x - y distances (SPXY), extends the original 
KS algorithm by encompassing both x - and y - differences in the calculation of 
inter-sample distances. In this method, Galvão et al. (2005) still utilised the 
Eucledian distance to measure variabilities in both x and y spaces.  They found 
that SPXY technique outperforms both RS and KS based training set design 
algorithms.  

In statistics, it has been agreed that Mahalonobis distance gives better 
distance analysis compared with Eucledian approach especially in their 
applications for detecting outliers (Maesschalck et al., 2000). To date, however, 
no studies have been dedicated to incorporate Mahalanobis distance as selection 
criteria for data division in developing empirical models including ANN models. 

In this work, we propose data splitting method for ANN modelling based 
on Mahalanobis distance (MD) framework. Although the concept of MD is not 
new, its application is mainly limited on the outlier detection method and no one 
has utilised MD as criteria for data partition. Therefore, the new method, namely 
MDKS or KS based on MD method, was used for partitioning the dataset for 
developing ANN models and its performance was compared with standard KS 
and SPXY method. 
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2. Theory and Algorithms 

2.1. KS algorithm 

The classical KS algorithm aims to select a representative subset from a pool of N 
samples. To ensure a uniform distribution of such a subset along the x data space, 
the algorithm follows a stepwise procedure in which new selections are taken in 
the regions of space located far from the already selected samples. For this 
purpose, the algorithm employs Eucledian distance  qpEDx ,  between the x-

vectors of each pair  qp,  of samples as shown by the equation below (Wu et al., 
1996; Saptoro et al., 2008; Galvão et al., 2005; Kennard et al., 1969). 

 

        MqpjxjxqpED
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j
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  (4) 

 
In Eq. (4), N is the number variables in x  and M is the number of samples. 

 jx p  and  jxq  are the j th variable for samples p and q , respectively. 

The selection starts by taking a pair of samples for which the distance is 
the largest. At each subsequent iteration, the algorithm selects the sample that 
exhibits the least distance with respect to any sample already selected. Such a 
procedure is repeated until the number of samples required is achieved. 

2.2. SPXY algorithm 

The basic principle of SPXY algorithm is to combine the contributions from the 
distance defined in Eq. (4) with the distance in the dependent variable y space for 

parameter under consideration. Such a distance  qpEDy ,  can be calculated for 

each pair of samples p and q as (Galvão et al., 2005) 
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where K is the number of variables in y and  ky p  and  kyq  are the k th 

variable for samples p and q , respectively. 
In order to assign an equal importance to the distributions of samples in 

the x and y spaces, distances  qpEDx ,  and  qpEDy ,  are divided by their 

maximum values in the data set. In this manner, a normalised xy distance is 
calculated as (Galvão et al., 2005) 
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A stepwise selection procedure similar to the KS algorithm can then be 

applied using selection criteria of  qpEDxy ,  instead of  qpEDx , . 

2.3. Proposed MDKS algorithm 

The proposal of the present work involves calculating Mahalanobis distance of 
the matrix z where z is the augmentation matrix of the matrices x and y. Then 

 qpMD ,  is calculated using Eq. (7) (Maesschalck et al., 2000) 
 

       qpEqpCqpEqpMD ,,,, 1' 
  (7)  

 
where 
 

                              (8) 
 

and 
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 (9) 

 
F is number of variables in matrix z. Meanwhile,  qpC , is the covariance 

matrix of matrix E , where (Maesschalck et al., 2000)  
 

      qpEqpE
M

qpC ,,
1

, '                   (10) 

 
Step-by-step procedure of the MDKS is analogous to the SPXY algorithm 

where ܦܯሺ݌, ,݌ሺܦܧ ሻ is used instead ofݍ  ሻ. This proposed method is expected toݍ
be better than the SPXY method since besides it accounts for the integrated 
relations between x and y, it also uses Mahalanobis distance as selection criteria 
instead of Eucledian distance. Theoretically it has been proven that Mahalanobis 
distance has a better similarity measure than of Eucledian distance (Maesschalck 
et al., 2000). 

          FeueeeqpE pqpqpqpq .......21,' 
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3. Simulation studies 

In this research, three approaches for data partition, two of them are established 
methods (KS and SPXY) and the other is the proposed one (MDKS), were tested 
through case studies of predicting carbon content (C) in coal using its proximate 
analysis (case study 1) and estimating calorific value (CV) of coal using its 
proximate and ultimate analysis (case study 2).  The original datasets were 
extracted from coal database compiled by Hatch et al. (2006). The independent 
variables for predicting C are fixed carbon (FC), volatile matter (VM) and 
moisture content (M). Meanwhile, for predicting CV, C, H no H2O, FC, N, VM, 
H, O, O no H2O and organic S (O-S) were selected for input variables. All 
variables were measured in weight percentage - as-received basis except CV is in 
MJ/kg – as-received basis. The sizes of available datasets are respectively 90 x 4 
and 90 x 10 where the size of matrix y is 90 x 1 for both cases. Tables 1 and 2 
summarise the statistical properties of original datasets. 

Table 1: Statistical Properties of Case Study 1 Data. 

Statistical Properties FC VM M C 

Minimum 8.59 11.21 0.57 12.46 

Maximum 71.01 38.09 30.28 82.02 

Mean 45.18 29.31 12.06 59.96 

Standard Deviation 11.97 7.22 9.86 13.60 

Skewness -0.32 -1.06 0.32 -1.07 

Kurtosis 0.35 -0.19 -1.46 2.29 

Table 2: Statistical Properties of Case Study 2 Data. 

Statistical 
properties 

C 
H no 
H2O 

FC N VM H O 
O no 
H2O 

O-S CV 

Minimum 12.46 1.12 8.59 0.02 11.21 1.18 1.85 0.16 0.02 5.07 

Maximum 82.02 5.28 71.01 1.97 38.09 7.10 38.45 13.61 1.35 32.88 

Mean 59.96 3.83 45.18 1.14 29.31 5.18 18.91 8.46 0.49 24.22 
Standard 
Deviation 

13.60 0.79 11.97 0.40 7.22 1.31 13.03 4.63 0.28 5.55 

Skewness -1.07 -1.01 -0.32 -0.32 -1.06 -1.06 0.04 -0.61 0.69 -0.98 

Kurtosis 2.29 2.62 0.35 -0.23 -0.19 0.97 -1.69 -1.09 0.07 1.97 

 
To test each method, ANN models were developed and simulated using 

ANN Toolbox of MATLAB 7.1 software. Since the main objective of this study 
is to propose MDKS algorithm based data division method and to compare its 
performance with other algorithms, other network and training parameters which 
may influence the model performance such as activation functions, training 
algorithm, number of iterations, weight initialization algorithm etc were kept 
constant. The performances were evaluated in terms of training performance and 

7

Saptoro et al.: A Modified KS Algorithm for Optimal Data Division

Published by De Gruyter, 2012

Brought to you by | Curtin University Library
Authenticated | 134.7.89.216

Download Date | 8/29/12 9:35 AM



generalisation ability (testing performance) where mean squared errors (MSE) 
were calculated. Figures 1 and 2 show the MSE versus number of hidden neurons 
for case studies 1 and 2.  

 
Figure 1: Simulation results representing MSE vs number of hidden nodes for Case Study 1. 

 
Figure 2: Simulation results representing MSE vs number of hidden nodes for Case Study 2. 

From these two figures, it is evident that the optimum network 
configurations are 3 – 6 – 1 and 9 – 8 - 1 for case studies 1 and 2, respectively. 
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4. Results and discussion 

4.1. Dataset characteristics 

After all three data division techniques were applied into the original datasets, the 
training and testing subsets were chosen. The proportion of data used in the case 
studies is 80% and 20% for training and testing data, respectively. Tables 3 and 4 
show statistical properties of both training and testing data sets.  

It is apparent that for both case studies, the statistical properties of training 
datasets obtained from the three methods are similar in terms of data range, except 
for case 1 where training set chosen by the standard KS has the narrowest region. 
It is also found MDKS method is able to choose the narrowest region of the 
testing subset shown by its minimum and maximum values of each variable. This 
indicates that the MDKS method is not only able to select wide area but also 
dense area of training set. This characteristic is beneficial since the trained model 
is expected to have better generalisation ability. 

Table 3: Statistical Properties of Data after Data Division for Case Study 1. 

Statistical Properties FC VM M C 
KS-algorithm 
Training set 
Minimum 17.69 12.59 0.64 20.08 
Maximum 71.01 38.09 30.28 82.02 
Mean 44.41 29.99 14.54 59.24 
Standard Deviation 10.33 6.85 9.50 10.86 
Skewness 0.37 -1.25 -0.06 -0.33 
Kurtosis -0.19 0.22 -1.45 1.42 
Test set 
Minimum 8.59 11.21 0.57 12.46 
Maximum 68.45 37.31 5.35 81.85 
Mean 48.25 26.60 2.17 62.82 
Standard Deviation 17.08 8.17 1.55 21.57 
Skewness -1.39 -0.52 0.74 -1.68 
Kurtosis 1.09 -0.93 -0.66 1.67 

SPXY-algorithm 
Training set 
Minimum 8.59 11.21 0.57 12.46 
Maximum 71.01 38.09 30.28 82.02 
Mean 43.59 28.62 14.59 57.72 
Standard Deviation 12.00 7.63 9.45 13.03 
Skewness -0.09 -0.90 -0.06 -1.16 
Kurtosis 0.67 -0.67 -1.43 3.16 

Testing set 
Minimum 23.42 19.31 0.69 30.39 
Maximum 61.91 37.31 4.61 79.89 
Mean 51.52 32.06 1.97 68.89 
Standard Deviation 9.75 4.43 1.11 12.43 
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Skewness -1.67 -1.39 0.69 -2.03 
Kurtosis 2.87 2.80 -0.03 4.59 

MDKS-algorithm 
Training set 
Minimum 8.59 11.21 0.57 12.46 
Maximum 71.01 38.09 30.28 82.02 
Mean 47.44 28.84 10.39 62.07 
Standard Deviation 12.30 7.72 8.97 14.42 
Skewness -0.81 -0.88 0.56 -1.52 
Kurtosis 1.10 -0.68 -1.10 3.07 
Testing set 
Minimum 32.23 16.46 0.74 47.18 
Maximum 42.61 36.12 28.55 55.90 
Mean 36.11 31.19 18.77 51.51 
Standard Deviation 3.00 4.39 10.66 2.50 
Skewness 0.83 -2.36 -0.90 0.19 
Kurtosis -0.28 7.26 -0.98 -0.36 

Table 4: Statistical Properties of Data after Data Division for Case Study 2. 

Statistical 
properties 

C 
H no 
H2O 

FC N VM H O 
O no 
H2O 

O-S CV 

KS-algorithm 
Training set 
Minimum 12.4 1.12 8.59 0.02 11.2 1.18 1.85 0.16 0.02 5.07 
Maximum 82 5.28 71.0 1.97 38.0 7.10 38.4 13.6 1.35 32.8 
Mean 61.9 3.91 47.3 1.21 28.8 5.09 16.8 7.86 0.54 25.0 
Standard Deviation 14.5 0.86 12.4 0.42 7.70 1.33 12.4 4.66 0.29 5.90 
Skewness -1.47 -1.22 -0.78 -0.75 -0.87 -1.08 0.26 -0.45 0.53 -1.39 
Kurtosis 2.85 2.46 0.90 0.26 -0.68 1.14 -1.56 -1.30 -0.03 2.56 
Testing set 
Minimum 47.1 2.70 32.2 0.72 16.4 3.15 4.02 0.43 0.16 18.7 
Maximum 55.9 3.98 42.6 1.18 36.1 6.72 37.0 13.5 0.63 23.6 
Mean 52.0 3.53 36.7 0.87 31.2 5.56 26.9 10.8 0.31 20.9 
Standard Deviation 2.31 0.26 2.84 0.15 4.42 1.18 12.3 3.74 0.18 1.26 
Skewness -0.37 -1.67 0.36 1.07 -2.38 -0.91 -1.09 -1.72 1.05 0.81 
Kurtosis 0.59 5.50 -0.40 -0.45 7.28 -0.85 -0.60 2.39 -0.77 0.91 
SPXY-algorithm 
Training set 
Minimum 13.8 1.28 12.6 0.02 11.2 1.35 1.85 0.16 0.02 5.70 
Maximum 82.0 4.90 71. 1.97 38.0 7.10 38.4 13.6 1.35 32.4 
Mean 58.4 3.69 44.1 1.08 28.8 5.32 21.4 8.80 0.44 23.4 
Standard Deviation 11.8 0.63 11.2 0.37 7.38 1.31 13.4 5.09 0.27 4.74 
Skewness -0.91 -1.56 0.18 -0.18 -0.95 -1.08 -0.41 -0.77 1.09 -0.91 
Kurtosis 2.95 5.15 0.30 0.04 -0.55 0.77 -1.53 -1.19 1.36 2.68 
Testing set 
Minimum 12.4 1.12 8.59 0.19 12.3 1.18 5.72 5.12 0.23 5.07 
Maximum 79.8 5.28 61.9 1.80 37.3 5.58 13.3 9.26 1.07 32.8 
Mean 65.9 4.39 49.3 1.37 30.9 4.61 8.84 7.10 0.70 27.2 
Standard Deviation 18.2 1.09 14.0 0.44 6.43 1.16 2.23 1.31 0.24 7.43 
Skewness -2.05 -2.13 -1.91 -1.55 -1.80 -2.02 0.37 0.06 -0.36 -2.12 

Kurtosis 3.95 4.41 3.45 2.31 3.52 3.91 -0.98 -1.36 -0.40 4.32 

MDKS-algorithm 
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Training set 
Minimum 12.4 1.12 8.59 0.02 11.2 1.18 1.85 0.16 0.02 5.07 

Maximum 82.0 5.28 71.0 1.97 38.0 7.10 38.4 13.6 1.35 32.8 

Mean 62.0 3.90 47.5 1.23 28.4 4.90 15.0 7.42 0.54 25.1 
Standard Deviation 14.4 0.87 12.3 0.40 7.78 1.29 11.5 4.60 0.26 5.85 
Skewness -1.52 -1.18 -0.84 -0.90 -0.75 -0.93 0.45 -0.29 0.41 -1.47 

Kurtosis 3.06 2.20 1.14 0.87 -0.87 0.85 -1.37 -1.35 -0.02 2.86 

continued 
Testing set 
Minimum 47.8 3.28 32.0 0.69 29.1 4.34 20.1 11.0 0.16 19.1 

Maximum 53.0 3.93 38.5 0.98 36.1 6.85 37.4 13.5 1.28 21.4 

Mean 51.4 3.56 35.8 0.78 32.9 6.29 34.3 12.6 0.30 20.5 

Standard Deviation 1.65 0.13 1.95 0.08 1.55 0.54 3.69 0.81 0.27 0.59 
Skewness -0.98 0.89 -0.04 1.64 -0.20 -2.97 -3.70 -0.66 3.05 -0.92 

Kurtosis -0.38 4.05 -1.52 2.81 1.48 11.0 15.0 -1.05 10.0 0.42 

4.2. ANN model performances and accuracy 

Performances of the developed models using training set obtained from KS, 
SPXY and MDKS data splitting techniques are shown in Table 5. The model 
performances for all cases are similar. This is logical since the models were 
developed using very similar range of data. However, from this table also, it is 
evident that from the mean squared error of the testing data, there are differences 
in terms of generalisation abilities.  Models built using training data from data 
partition based SPXY algorithm performs better than of the standard KS and this 
is consistent with the results from Galvao et al [9]. Further analysis on the 
generalisation ability of the models, it can be clearly seen that performances of the 
models developed using training data selected by the proposed method are 
superior to the SPXY. The results from experimental studies show that this 
improved method is not only capable of improving the performance of the ANN 
model but also it outperforms both standard KS and SPXY methods. It is evident 
that the use of MDKS is able to improve the performance of training and testing 
by up to 33 % and 75 %, respectively, compared with KS method and by up to 16 
% and 57 %, respectively, compared with SPXY approach. Consequently, it 
appears the MDKS approach is a more suitable approach for dividing data into 
training and testing datasets for more accurate ANN modelling. 

Table 5: ANN model performances trained with training data developed from different data 
division method. 

Data Division 
Method 

Prediction of C Prediction of CV 
MSE of Training MSE of Testing MSE of Training MSE of Testing 

KS 0.25 15.50 2.37 x 10-4 8.86 
SPXY 0.25 8.98 1.88 x 10-4 5.29 
MDKS 0.25 3.85 1.57 x 10-4 2.28 
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Table 6: Comparisons of computational loads for KS, SPXY and MDKS data division methods. 

Dataset Data division technique Computational Time (s) 

1 
(90 x 4) 

KS 0.1192 

SPXY 0.1323 

MDKS 0.1737 

2 
(90 x 10) 

KS 0.2335 

SPXY 0.2784 

MDKS 0.392 

 

4.3. Computational load 

Despite its superiority to standard KS and SPXY methods, MDKS approach 
requires longer computational time than of KS and SPXY. Theoretically, this is 
correct since MDKS approach includes calculations of variance-covariance 
matrices. Consequently, the larger the dataset the heavier the computational load 
for this calculation would be. Table 6 presents the comparisons of computational 
loads for the three data division methods assessed when the algorithms were run 
in a CPU with a processor of Intel (R) Core (TM) 2 Duo E7300 having 2.66 GHz 
in speed and 1 GB in memory. From this table, it can be seen that for both 
datasets, computational loads for MDKS data division technique are up to 68 % 
higher than of standard KS and 41 % higher than of SPXY. Despite of this longer 
computational time, all the numerical values of the computational times for the 
three techniques are actually still in the order of less than 1 second. Therefore, for 
the two datasets taken as case studies the computational loads of the proposed 
method are still acceptable. However, care should be given to the treatment of 
large datasets where further research should be directed to speed-up the 
calculations of variance-covariance matrices. Thus, the promising use of the 
MDKS method can also be implemented faster in dealing with large amount 
datasets. 

5. Conclusions 

This paper presents a modified Kennard-Stone algorithm to perform data splitting 
for developing ANN models. The method, namely MDKS, employs data division 
algorithm that considers variability of dataset in both x- and y- spaces and uses 
Mahalanobis distance as selection criteria. The results from experimental studies 
show that this improved method is not only capable of improving the performance 
of the ANN model but also it outperforms both standard KS and SPXY methods. 
In terms of computational load, however, there might be issues of using this 
improved method for dealing with large amount datasets. Nevertheless, the 
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improved method can be utilised to perform better data partition for better 
development of ANN models. Further research on how to speed-up the 
calculations of variance-covariance matrices within the Mahalanobis distance 
would surely be the next step to further refine this method for its faster 
implementation in dealing with huge amount of dataset. 
 
 
 

References 

Atkinson, A.C. 1995. Beyond response surfaces: recent developments in optimum 
experimental design. Chemometrics and Intelligent Laboratory Systems 
28, 35-47. 

Bowden, G.J., Maier, H.R., & Dandy, G.C. 2002. Optimal data division for neural 
network models in water resources applications. Water Resources 
Research 38 (2), 1-11. 

de Aguiar, P.F., Bourguignon, B., Khots, M.S., Massart, D. L., & Phan-Than-Luu, 
R. 1995. D-optimal designs. Chemometrics and Intelligent Laboratory 
Systems 30, 199-210. 

Flood, I., & Kartam, N. 1994. Neural networks in civil engineering. I: Principles 
and understanding.  Journal of Computing in Civil Engineering 8 (2), 131-
148. 

Galvão, R.K.H., Araujo, M.C.U., José, G.E., Pontes, M.J.C., Silva, E.C. & 
Saldanha, T.C.B. 2005. A method for calibration and validation subset 
partitioning. Talanta 67, 736-740. 

Hatch, J.R., Bullock Jr., J.H., & Finkelman, R.B. 2006. Chemical Analyses of 
Coal, Coal-Associated Rocks and Coal Combustion Products Collected for 
the National Coal Quality Inventory. http://pubs.usgs.gov/of/2006/1162/ 
(retrieved on 3 April 2008). 

Kennard, R.W. & Stone, L.A. 1969. Computer Aided Design of Experiments. 
Technometrics 11 (1), 137-148. 

Kocjančič, R., & Zupan, J. 2000. Modelling of the river flowrate: the influence of 
the training set selection. Chemometrics and Intelligent Laboratory 
Systems 54, 21-34. 

Maesschalck, R.D., Jouan-Rimbaud, D., & Massart, D.L. 2000. The Mahalanobis 
Distance. Chemometrics and Intelligent Laboratory Systems 50 (1), 1-18. 

Maier, H.R., & Dandy, G.C. 2000. Neural networks for the prediction and 
forecasting of water resources variables: a review of modelling issues and 
applications. Environmental Modelling & Software 15, 101-124.  

13

Saptoro et al.: A Modified KS Algorithm for Optimal Data Division

Published by De Gruyter, 2012

Brought to you by | Curtin University Library
Authenticated | 134.7.89.216

Download Date | 8/29/12 9:35 AM



Maier, H.R., Jain, A., Dandy, G.C., & Sudheer, K.P. 2010. Methods used for the 
development of neural networks for the prediction of water resource 
variables in river systems: Current status and future directions. 
Environmental Modelling & Software 25, 891-909. 

Minns, A.W., & Hall, M.J. 1996. Artificial neural networks as rainfall-runoff 
models. Hydrological Sciences Journal 41 (3), 399-417. 

Rajer-Kanduč, K., Zupan, J., & Majcen, N. 2003. Separation of data on the 
training and test set for modelling: a case study for modelling of five 
colour properties of a white pigment. Chemometrics and Intelligent 
Laboratory Systems 65, 221-229. 

Saptoro, A., Yao, H.M., Tadé, M.O., & Vuthaluru, H.B. 2008. Prediction of coal 
hydrogen content for combustion control in power utility using neural 
network approach. Chemometrics and Intelligent Laboratory Systems 94, 
149-159. 

Shahin, M.A., Maier, H.R., & Jaksa, M.B. 2004. Data division for developing 
neural networks applied to geotechnical engineering. Journal of 
Computing in Civil Engineering 18 (2), 105-114. 

Wu, W., Walczak, B., Massart, D.L., Heuerding, S., Erni, F., Last, I.R., & 
Prebble, K.A. 1996. Artificial neural networks in classification of NIR 
spectral data: Design of the training set. Chemometrics and Intelligent 
Laboratory Systems 33, 35-46. 

14

Chemical Product and Process Modeling, Vol. 7 [2012], Iss. 1, Art. 13

Brought to you by | Curtin University Library
Authenticated | 134.7.89.216

Download Date | 8/29/12 9:35 AM


	Chemical Product and Process Modeling
	A Modified Kennard-Stone Algorithm for Optimal Division of Data for Developing Artificial Neural Network Models
	A Modified Kennard-Stone Algorithm for Optimal Division of Data for Developing Artificial Neural Network Models
	Abstract


