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Abstract 
 

Partial saturation of porous rock by two fluids substantially affects compressional wave 

propagation. In particular, partial saturation causes significant attenuation and dispersion 

due to wave-induced fluid flow. Such flow arises when a passing wave induces different 

fluid pressures in regions of rock saturated by different fluids. When partial saturation is 

mesoscopic, i.e. existing on a length scale much greater than pore scale but less than 

wavelength scale, significant attenuation can arise for frequencies 10-1000 Hz. Models 

for attenuation and dispersion due to mesoscale heterogeneities mostly assume fluids are 

distributed in a regular way. Recent experiments indicate mesoscopic heterogeneities 

have less idealised distributions and distribution affects attenuation/dispersion. Thus, 

theoretical models are required to simulate effects due to realistic fluid distributions.   

  

The thesis focus is to model attenuation and dispersion due to realistic mesoscopic fluid 

distributions and fluid contrasts. First X-ray tomographic images of partially saturated 

rock are analysed statistically to identify spatial measures useful for describing fluid 

distribution patterns. The correlation function and associated correlation length for a 

specific fluid type are shown to be of greatest utility. Next a new model, called 3DCRM 

(CRM stands for continuous random media) is derived, utilizing a correlation function to 

describe the fluid distribution pattern. It is a random media model, is accurate for small 

fluid contrast and approximate for large fluid contrast. Using 3DCRM attenuation and 

dispersion are shown to depend on fluid distribution.  

 

Next a general framework for partial saturation called APS (acoustics of partial 

saturation) is extended enabling estimation of attenuation and dispersion due to arbitrary 

1D/3D fluid distributions. The intent is to construct a versatile model enabling 

attenuation and dispersion to be estimated for arbitrary fluid distributions, contrasts and 

saturations. Two crucial parameters within APS called shape and frequency scaling 

parameters are modified via asymptotic analysis using several random media models 

(which are accurate for only certain contrasts in fluid bulk moduli and percent 

saturation). For valid fluid contrasts and saturations, which satisfy certain random media 
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conditions there is good correspondence between modified APS and the random media 

models, hence showing that APS can be utilized to model attenuation and dispersion due 

to more realistic fluid distributions.  

 

Finally I devise a numerical method to test the accuracy of the analytical shape 

parameters for a range of fluid distributions, saturations and contrasts. In particular, the 

analytical shape parameter for randomly distributed spheres was shown to be accurate 

for a large range of saturations and fluid contrasts. 
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Chapter 1 

Introduction, Basic Theory and Thesis Overview  

1.0 Introduction   

 

Partial saturation of porous rock by two or more different fluids can occur in a 

multitude of geological settings. For instance, gas, oil and brine commonly share the 

available pore-space in the upper part of gas capped reservoirs. Underground 

aquifers can become infiltrated by contaminating fluids. Earthquake events can 

induce ground water variations and in turn; aftershocks have been linked to changes 

in pore fluid distribution. In order to better assist the interpretation of seismic data 

acquired for the purposes of detecting hydrocarbons, monitoring or tracking saltwater 

intrusions into ground water aquifers, or for analysing recorded waveforms from 

earthquake events, knowledge of how partial fluid saturation affects elastic wave 

propagation is required. 

 

The propagation of elastic waves in fluid saturated porous media is usually described 

by Biot’s equations of poroelasticity (Biot 1956a; 1956b; 1962). In the low-

frequency (static) limit these equations yield the so-called Gassmann’s equation 

(Gassmann 1951), which expresses the undrained static bulk modulus of the porous 

medium as a function of the properties of the dry frame and the saturating fluid. Both 

Biot’s and Gassmann’s equations assume that the porous medium is saturated with a 

single Newtonian fluid (liquid or gas).  

 

Extending Biot-Gassmann theory to model wave propagation in porous media 

saturated by two or more immiscible fluids is not trivial. Immiscibility implies that 

the fluids are not dissolved into one another and a distinct fluid-fluid interface exists 

which separates each fluid (Bear 1988). When two immiscible fluids are distributed 

on a relatively fine scale, they can be regarded as a single composite fluid whose 

compressibility (inverse of bulk modulus) is given by an average of its constituent 

compressibilities (using the so-called Wood equation (Wood 1941)). In this 

circumstance, Gassmann’s equation can be applied to determine an effective bulk 
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modulus of the porous medium, in which the fluid bulk modulus is now given by the 

composite average.  This case is often referred to as uniform saturation, and implies 

full pressure equilibration between the two fluids.  

 

 

This pressure equilibration can only be achieved if the frequency is sufficiently low 

so that the characteristic length of fluid diffusion in the pore-space is large compared 

to the largest spatial scale of fluid mixing.  If the frequency is higher, the pressure in 

the two fluids will not have enough time to equilibrate, resulting in a higher 

undrained bulk modulus and wave velocity. Hence, the presence of two fluids in the 

pores (so called partial saturation) causes an additional dispersion and attenuation of 

elastic waves, which is related to relaxation of pore fluid pressures. The frequency 

dependency of wave velocity and attenuation in a partially saturated medium is 

controlled by the size, shape and spatial distribution of fluid pockets and 

permeability and elastic moduli of the solid matrix as well as the properties of the 

two fluids.  

 

 

In the last 30 years a numbers of models have been introduced that correspond to 

different spatial configurations of fluid pockets. Most of these models assume regular 

fluid patterns such as a cubic lattice of gas pockets of a fixed shape in a liquid-

saturated background medium (White 1975; Johnson 2001; Pride et al. 2004).  

However, spatially regular distribution of the fluids may not always give an adequate 

representation of the real distribution. Moreover, it has been shown (Gurevich & 

Lopatnikov 1995; Müller & Gurevich 2004) that random and periodic 1D 

distributions of two different fluids yield very different attenuation/dispersion pairs. 

Although 1D alternating fluid distributions may not be realistic, this result gives an 

additional motivation to studies of wave propagation in porous media with random 

spatial fluid distributions. Recent results show that this approach is promising (Ciz et 

al. 2005; Ciz et al. 2006; Toms et al. 2006). 
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1. 1 Elastic Wave Propagation in Fully Fluid Saturated Porous 

Media 

  

Biot’s equations of dynamic poroelasticity (Biot 1956a; 1956b; 1962) provide a 

general framework for modelling elastic wave propagation through porous fluid 

saturated media. The equations were derived using a Lagrangian view point with 

generalised coordinates given by the average solid and fluid displacements. A 

dissipation function was introduced, which depended only upon relative solid and 

fluid motion. Subsequently, Biot’s equations have been rederived using a number of 

different mathematical techniques, such as volume averaging methods (Pride et al. 

1992) and homogenization for periodic structures (Levy 1979; Auriault 1980; 

Burridge & Keller 1981). All of these methods yield exactly the same macroscopic 

equations, thus confirming the validity of Biot’s original formulation.    

 

The basic assumptions of Biot’s equations (Biot 1956a; 1956b; 1962) are:  

I) The porous rock frame is homogeneous and isotropic. It has uniform 

porosity  , bulk modulus 
dK , shear modulus 

0 , density 
0  and 

permeability  , and consists of only one grain type, characterized by 

bulk modulus 
gK , shear modulus 

g  and density 
g .  

II) The porous rock is fully saturated by only one fluid having viscosity, 

fluid  bulk modulus 
fK , and density 

f .  

III) Relative motion between solid and fluid is governed by Darcy’s law.  

IV) The wavelength of the passing wave is substantially larger than the size 

of the largest grains or pores.  

 

Biot’s wave equations describing average solid u and fluid displacement U can be 

written in the frequency domain (with time dependenceexp( )i t implied) as (Biot 

1962) 

                  2 2grad div grad div 0fH M           u u w u w , (1.1.1) 

                         2graddiv graddiv 0fM M q     u w u w , (1.1.2) 
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where   w U u  represents the average fluid displacement relative to the solid,  

  fg   1  is the density of the porous fluid-saturated rock, gd KK1 is so 

called the Biot-Willis coefficient (Biot & Willis 1957), and H ,  , and M  are 

material properties (defined later in this section page 6). Parameter ( )q   is a 

frequency-dependent coefficient responsible for viscous and inertial coupling 

between the solid and fluid motion, and is given by  

 

                                                  




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


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f

f

i
q
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




*
. (1.1.3) 

 

Here 1  is the tortuosity, a dimensionless parameter which is responsible for 

inertial coupling between solid and fluid motion and 1i .  The parameter *  is 

the dynamic hydraulic permeability, which in general, is frequency-dependent and 

responsible for viscous coupling. For sufficiently low frequencies (lower than Biot’s 

characteristic frequency  fcf  2 ), fluid flow within the pore channels can be 

regarded as Poiseuille flow. This means that the flow is laminar (i.e. the Reynolds 

number of the flow which expresses the ratio of inertial forces to viscous forces, is 

less than a critical Reynolds number (Bear 1980)).  In this case the first bracketed 

term in the right-hand side of (1.1.3) can be neglected (Bourbie et al. 1987) and the 

dynamic permeability reduces to the steady-state permeability  , giving  

 

                                                                      

i

q  . (1.1.4) 

 

For most rocks and soils Biot’s characteristic frequency cf  turns out to be about 105 

Hz or higher. Therefore, for most seismic and acoustic applications the low-

frequency version of Biot’s theory is adequate.  

 

For a homogeneous porous medium equations (1.1.1) and (1.1.2) form a system of 

six linear partial differential equations with constant coefficients for six components 

of two vector-functions u and w. By considering a solution of these equations 

dependent upon only one coordinate, say x, we can reduce equations (1.1.1) and 

(1.1.2) to a system of six second-order linear ordinary differential equations with one 
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independent variable x. The equations for yu , zu , yw , and zw  describe the 

propagation of two identical shear modes with two orthogonal polarisations. These 

shear waves are very similar in nature to classical shear waves in an isotropic 

viscoelastic medium. The remaining system of two equations for xu , xw  has a 

solution of the form  

0

0

exp( )x x

x x

u u
ikx

w w

   
   

   
, (1.1.5) 

 

where wavenumber k  is the root of its characteristic equation, that is, an eigenvalue 

of the linear algebraic system obtained by substituting  (1.1.5) into (1.1.1) and 

(1.1.2).  The characteristic equation is quadratic in 2k , and thus yields two pairs of 

complex roots k  and k . This shows that in a porous medium there exist two types 

of compressional waves with complex velocities    ,, Re kv   and attenuation 

factors (inverse quality factors)    2
,

2
,

1
, ReIm 

  kkQ . 

 

The compressional waves are termed fast (+) and slow (-) P-waves and occur when 

solid and fluid particle motion is in phase or out of phase, respectively. The fast wave 

is a direct analog of the normal compressional wave in an elastic or viscoelastic 

solid; it exhibits small amounts of attenuation and phase velocity dispersion (see 

Figure 1.1.1). On the other hand, the slow P- wave behaves very differently at low 

and high frequencies. At low frequencies 
cf f , the wavenumber of the slow P-

wave is given by 2k i N    where /N ML H . In this frequency regime, the slow 

P-wave is highly attenuated and is analogous to diffusion or heat conduction. On the 

other hand, at high frequencies 
cf f  the slow P-wave is propagatory with the 

propagation velocity approaching 1/ 2
fc   , where fc  is sound velocity in the free 

fluid. 
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For frequencies less than Biot’s characteristic frequency, the fast P and shear wave 

numbers are given by (Berryman 1998) 

   



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i
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
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


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ss

s Q

i

v
k 1

2

2
2  , (1.1.6) 

 

where Hv   is the fast P-wave velocity and sv  is the shear wave 

velocity. In this frequency range the attenuation (inverse quality factors) for fast P 

and shear waves are    222
0

1 1 

  vvQ f  and  fsQ 1 , where fMv 0 . 

Parameter H  that appears in the expression for the fast P-wave velocity v  is called 

the saturated P-wave modulus, and can be written as 34 KH , where K and   

are the undrained bulk and shear moduli of the fluid-saturated porous medium given 

by the equations: 

 MKK d
2 , (1.1.7) 

   1 fg KKM  , (1.1.8) 

                                                                 0  , (1.1.9) 

where the  analogous P-wave modulus for a dry medium is given by 34 0 dKL .  

 

Equations (1.1.7) - (1.1.9) have first been derived by Gassmann (1951) and are 

referred to as Gassmann’s equations. For Gassmann’s equations to be applicable, 

several conditions must be met. The pore-space within the rock must be connected so 

that pore fluid can achieve equilibration. Thus, fluid pressure effects due to isolated 

pore-spaces are not accounted for. Furthermore, the frequency must be sufficiently 

low, so that, fluid pressures induced by a passing wave have enough time for 

pressure equilibration.  

 

In essence, Gassmann’s equations define elastic wave velocities in fluid saturated 

porous media in the low frequency limit. These equations are widely used in the 

petroleum industry for estimating seismic wave velocities in hydrocarbon reservoirs 

(Wang 2001; Smith 2003). However, in general, seismic wave propagation often 

violates the quasi-static assumption, causing deviations from Gassmann’s results. In 
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particular, wave attenuation and phase velocity dispersion cannot be modelled with 

Gassmann’s equation. To account for these effects Biot’s theory is often utilized.  

 

Wave attenuation and phase velocity dispersion within Biot type media is caused by 

global or macroscopic fluid flow, which is called “Biot’s loss”. It occurs when pore 

fluids develop spatial gradients in fluid pressure induced over the wavelength of an 

incident compressional wave. This drives fluid flow relative to the rock frame, 

causing wave energy to be lost through viscous dissipation.  

 

Although Biot’s theory provides a mechanism for the dissipation and dispersion of 

elastic waves, it is generally accepted that it cannot adequately explain observed 

magnitudes of attenuation and dispersion, especially within the low frequency regime 

(Johnston et al. 1979; Winkler 1985; Gist 1994; Bukingham 2000). However, it is 

widely accepted that Biot’s theory is correct in predicting the existence of the slow 

P-wave. It has been confirmed by a number of laboratory experiments (Plona 1980; 

Nagy et al.. 1990; Kelder & Smeulders 1997).   
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Figure 1.1.1: Biot’s attenuation (inverse quality factor) and dispersion for porous rock 

containing different fluids. (Top) 100 % water saturated and (bottom) 100% heavy gas 

saturation of porous rock. Very modest amounts of attenuation and dispersion are predicted 

at high frequencies using Equations 1.1.6.      
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1.2 Elastic Wave Propagation in Partially Fluid Saturated 

Porous Media 

 

Partial fluid saturation of porous rock by multiple types of pore fluids was first 

proposed as a cause for the mismatch between experimental measurements of 

attenuation and phase velocity dispersion, and theoretical predictions given by Biot’s 

theory (Biot 1956a; 1956b; 1962). JE White and his co-authors were the first to show 

theoretically that partial fluid saturation can cause significant attenuation and phase 

velocity dispersion (White 1975; White et al. 1976). Experimental studies conducted 

around the same time (Domenico 1976; Gregory 1976) also indicated that partial 

fluid saturation of porous rock causes different phase velocity behaviour then fully 

saturated porous rock.    

 

Since 1970s, the study of elastic wave propagation in partially fluid saturated media 

has become a field of interest in its own right, generating a number of experimental 

(Gist 1994; Murphy 1984; 1985; Cadoret et al. 1995; Cadoret et al. 1998), numerical 

(Dutta & Ode 1979a; Dutta & Ode 1979b; Dutta & Seriff 1979; Carcione et al. 2003; 

Helle et al. 2003) and theoretical studies designed to elucidate key features that cause 

attenuation and phase velocity dispersion.     

   

There are a number of different approaches to theoretically modelling attenuation 

and dispersion due to the presence of partial fluid saturation. Each approach 

emphasizes a particular physical aspect, thought to significantly affect attenuation 

and dispersion estimates. Broadly speaking, most approaches focus on: 

 

I) Porescale distribution of immiscible fluids: These models are often called 

local or “squirt” flow models (Mavko & Nur 1979; Palmer & Traviola 

1980; Murphy et al. 1986; Jones 1986). Attenuation and phase velocity 

dispersion arise due to fluid flow occurring between gas and liquid filled 

areas of the same pore or crack.  

 

II) Mesoscale distribution of immiscible fluids: fluid heterogeneities occur on 

the scale greater than the pore scale, but less than wavelength scale. Fluid 
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heterogeneities can be modelled using a periodic distribution (White 1975; 

Johnson 2001; Pride et al. 2004; White et al. 1976) or a random distribution 

(Müller & Gurevich 2004; Ciz et al. 2005; Toms et al. 2005). Attenuation 

and phase velocity dispersion arises due to induced pressure gradients on 

the mesoscale, which causes fluid to flow.    

 

III) Defining an effective pore fluid: incorporating free bubble oscillations 

(Bedford & Stern 1982; Lopatnikov & Gorbachev 1987; Smeulders & van 

Dogen 1997; Aurialt et al. 2002). Attenuation can arise due to viscous and 

thermal damping, which occurs when the free gas bubble oscillates in 

response to pressure fluctuations in the surrounding pore liquid.  

 

There are many different types of porous rocks, such as sandstones, limestones, 

shales etc, which are often saturated by different combinations of pore fluids, such as 

water, oil and gas. As such, in some situations, one theoretical approach may be 

more applicable than another.  

 

Category I models are good for situations where porous rocks are known to contain a 

large number of very compliant grain contacts or cracks. This becomes especially 

important for laboratory studies where rock samples have undergone distortion due 

to removal from in situ conditions, which can either induce fracturing on the grain 

scale or cause the opening of otherwise closed grain contacts, due to changes in 

confining pressure (Pride et al. 2004). Furthermore, certain rock samples or in situ 

rocks which contain significant grain-scale heterogeneities are also suitable, such as 

with carbonate rocks which possess both intergranular and intragranular porosity 

(Assefa et al. 1999) or for sandstones having either imperfectly cemented grain 

contacts (Murphy et al. 1986) or an assemblage of smaller irregularly shaped intra-

pore minerals (Best et al. 1994).      

 

In those circumstances, wetting fluids like water preferentially saturate grain contacts 

and cracks, whilst non-wetting fluids like gas assume larger rounder pore-spaces 

(Murphy et al. 1986). In response to a passing wave, spatial gradients in fluid 

pressure develop which cause fluid to flow between grain cracks, contacts etc and 
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rounder pore-spaces. This occurs because cracks, contacts etc are more compliant 

(mechanically weaker) than rounder pore-spaces.  

 

This type of pore scale fluid flow also known as local (or squirt) flow causes 

attenuation and phase velocity dispersion. The reason is that when wave frequencies 

are sufficiently low, there is enough time for fluid to flow between grain cracks into 

surrounding pores etc, whilst at higher frequencies there isn’t sufficient time. This 

means that a porous rock at lower frequencies is less stiff than at higher frequencies 

resulting in lower wave velocities. At intermediate wave frequencies, phase velocity 

is frequency-dependent and attenuation is a maximum.     

 

A possible limitation of most squirt flow models is that they assume specific pore 

scale geometries. In particular, Murphy et al. (1986) assumes that the grain contact is 

perfectly flat and adjacent to a spherical pore, whilst Mavko and Nur (1979) model a 

multitude of idealised geometries, such as flat, triangular and parabolic pore shapes. 

Thus appropriate application of these models requires knowledge of rock 

characteristics on the pore scale, which isn’t always available, certainly for in situ 

applications. However, the increasing use of X-ray microtomographic imaging (Arns 

et al. 2004) with numerical algorithms (Arns et al. 2002; Saenger et al. 2007) that 

compute elastic properties from porescale images of real rock,  will provide a direct 

means of relating elastic properties to pore structure.  Hence, these studies may serve 

to improve our understanding of squirt flow mechanisms etc and thus provide 

direction on how squirt flow models for certain rock types should be framed.  

 

As it is well known that bubbles affect the acoustic properties of a liquid (Silberman 

1957; van Wijngaarden 1972; Commander & Prosperetti 1989), category III models 

are best suited to applications where fluid-fluid interaction is considered important. 

In a free liquid the presence of bubbles has two interconnected effects on the acoustic 

properties of the liquid, which can also affect wave propagation when that fluid 

saturates porous rock.  

  

Firstly, the presence of bubbles affects the compressibility of the liquid; this changes 

the propagation velocity of waves. Secondly, pressure fluctuations within the liquid 

stemming from wave propagation, forces bubbles to oscillate about their equilibrium 
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radius. This causes attenuation, as wave energy is transferred into energy which 

drives bubble oscillations. As sound wave attenuation has a maximum at the resonant 

frequency of the bubble, it is anticipated that these models will be of most use at high 

frequencies, as the resonant frequency of the bubble is inversely proportional to 

bubble radius which is typically small  (Silberman 1957).     

 

On the other hand, category II models are best suited to applications where wave 

frequencies are low and the porous rock is saturated by relatively large (mesoscopic) 

fluid patches. For the rest of this Chapter, I will focus only on category II models; 

however I wish to acknowledge that both category I and category III models are 

important.  

 

1.2.1 Mesoscopic Distribution of Fluids  

 

Fluid heterogeneities existing on a scale which is greater than pore scale, but less 

than wavelength scale are called mesoscopic. A mesoscopic distribution of two pore 

fluids can arise due to variations in porosities, permeabilities and grain types within a 

porous rock. These features will cause pore fluids to be preferentially located in 

different positions, e.g., in a way shown in Figure 1.2.1.1 

 

On the pore scale, numerical studies (Knight et al. 1990; Silverstein & Fort 2000a; 

2000b; 2000c; Berkowitz & Hansen 2001) have shown that water preferentially 

locates in grain contacts and smaller pore-spaces, whilst gas prefers larger rounder 

pore-spaces. Presumably, the same physics which dictates fluid distribution on the 

pore scale, such as minimization of interfacial surface area, between grains and 

fluids, and fluids and fluids, history of fluid saturation, processes of fluid saturation, 

wettability of the rock, capillary effects etc will also influence fluid distribution on 

the mesoscale, in addition to gravitational forces which leads to the separation of 

fluids that have significantly different densities (i.e reservoir scale-gas cap rocks).   

    

Mesoscopic fluid distributions have been observed in recent experiments (Cadoret et 

al. 1995; 1998; Monsen & Johnstad, 2005). In these studies, clusters or patches of 

different pore fluids are distributed throughout the porous rock samples. These 
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experiments have revealed that the shape and distribution of mesoscopic fluid 

patches depends upon the degree of saturation and also upon the process of fluid 

saturation.   

 

X-ray tomographic images of Cadoret et al. (1995) show that imbibition experiments, 

where water displaces gas, produce more or less regular patches of fluids distributed 

uniformly throughout the porous rock at high water saturations, whilst drainage or 

evaporative experiments, where the reverse fluid substitution process occurs, produce 

gas clusters distributed non-uniformly through out the porous rock at high water 

saturations.  

 

As drainage and imbibition produce different saturation patterns at the same level of 

saturation, differences in attenuation and phase velocity measurements have been  

attributed to differences in fluid distribution. Moreover, phase velocities measured 

from drainage experiments are appreciably higher than those from imbibition 

experiments (Cadoret et al. 1995; Knight & Nolen-Hoeskema 1990) and differences 

between attenuation values have also been observed (Cadoret et al. 1998). Hence, 

estimates of attenuation and phase velocity are affected by the distribution of 

immiscible fluids.   
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Figure 1.2.1.1: Mesoscale distribution of two different pore fluids within a porous rock 

having lithological variations. The scale of fluid heterogeneities is greater then pore scale, 

but much less then wavelength scale 

 

1.2.2 Low and High Frequency Elastic Moduli    

 

In response to a passing compressional wave, the porous framework of grains is 

compressed and rarefied on time scales imposed by the wave speed. When spatial 

heterogeneities in saturating fluids (and/or rock properties) exist, the compression or 

rarefaction of the frame causes spatial gradients in fluid pressure to develop. 

Providing that heterogeneities exist on length scales less than a wavelength, but 

greater than pore scale, gradients in fluid pressure develop on the mesoscale. This 

drives the so called mesoscopic fluid flow, which causes the attenuation of elastic 

energy and the dispersion of a propagating wave form.  
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In the limiting cases of very low and very high wave frequencies, theoretical values 

of phase velocities can be determined. For intermediate wave frequencies, phase 

velocities are frequency-dependent and lie between these limiting values. Following 

Mavko and Murkerji, (1998), Johnson (2001), Müller and Gurevich (2004), the upper 

and lower-frequency limits on phase velocities are presented below.  

 

 

For a porous rock having only heterogeneities in saturating fluids, Norris (1993) has 

shown that the distribution of fluid pressures is governed by the diffusion equation 

with a diffusion length of    


 N

d  , 

where HMLN  ,  is wave frequency, and L and H are P-wave moduli of the dry 

and fluid-saturated rock, respectively. 

 

 

When the frequency  of the incident wave is sufficiently low and the characteristic 

patch size of fluid heterogeneities is less then the diffusion length d , there is 

enough time for fluid to flow and equilibrate at a constant pressure. In this limit, 

Wood’s law (Wood, 1941) can be applied to determine an effective fluid bulk 

modulus fK  given by,    

 

2211
1

ffW KSKSK 
, (1.2.2.1)                        

where 1S , 2S  are volume concentrations of fluids having bulk moduli 1fK , 2fK . 

 

 

Once the effective bulk modulus of the pore fluid is defined, Gassmann’s relations 

(1.1.7)-(1.1.9) can be applied to estimate the low-frequency phase velocity for a 

partially fluid saturated rock (Figure 1.2.2.1). This quasi-static limit is known as 

uniform saturation or Gassmann-Wood limit.  
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Conversely, when the wave frequency   is sufficiently high, and the characteristic 

patch size is larger than the diffusion length d , there isn’t enough time for pressure 

equilibration and fluid flow effects can be ignored. In this circumstance, patches of 

rock will remain at different pressures. Then, application of Gassmann’s theory on 

individual patches allows the saturated bulk modulus of each patch to be determined. 

According to Gassmann’s equation (1.1.9), the saturated shear modulus of each patch 

is independent of fluid bulk modulus. Thus Hill’s theorem (Hill 1963) can be applied 

to determine the overall saturated bulk modulus: 

 

        343434 2211
1    KSKSK H ,               (1.2.1.2)                        

 

Where 1K  and 2K  are the saturated bulk moduli determined by applying 

Gassmann’s theory on each fluid patch (Figure 1.2.2.1). This high-frequency or no-

flow limit is known as patchy or Gassmann-Hill limit. 

 

 

The elastic moduli in both the low- and high frequency limits are given by real 

numbers and are frequency independent. Johnson (2001) has shown that 1) for any 

non-zero saturation the homogeneous moduli are always smaller than those for 

patchy saturation, and 2) at intermediate frequencies the bulk modulus lies between 

these limits. Thus for any intermediate saturation level the partially fluid saturated 

rock exhibits frequency-dependent phase velocity.   
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Figure 1.2.2.1: Lower and upper bounds on P-wave velocities for partially water saturated 

porous rocks with light gas or heavy gas inclusions. 
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1.3. Regular Cell Models 

1.3.1 White’s Models  

 
There are a number of approaches to modelling attenuation and phase velocity 

dispersion due to mesoscopic fluid flow. Most approaches assume that 

heterogeneities in fluid content or lithology are distributed periodically throughout 

the porous medium. This approach was proposed by White et al. (1976) and White 

(1975), who were the first to illustrate that significant amounts of attenuation and 

phase velocity dispersion could arise from mesoscopic fluid flow. White et al. (1976) 

modelled fluid heterogeneities as periodically alternating layers of gas and water in a 

uniform solid frame. White (1975) modelled fluid heterogeneities as a periodic array 

of spherical gas inclusions, embedded within a water saturated  rock having uniform 

frame properties, see (Figure 1.3.1.1).   

   

In these approaches, an elementary composite volume consisting of porous rock 

saturated by each fluid is considered representative of the entire periodic system of 

fluid heterogeneities. In 1D, the representative volume spans the interface between 

different fluid layers from the centre of each layer. In 3D, the representative volume 

is spherical enclosing a single gas inclusion. See Figure 1.3.1.1.  

 

In White et al. (1976) and White (1975), the frequency-dependent complex bulk 

modulus is derived by considering the ratio of the imposed pressure amplitude to the 

corresponding fractional change in volume (including effects of fluid flow). Later 

these models were recast using Biot’s equations of dynamic poroelasticity (Biot 

1962) for 1D periodic layering by Norris (1993) and for 3D spherical gas inclusions 

by Dutta and Ode (1979a; 1979b). These studies validated the conclusions that wave 

induced fluid flow causes attenuation and phase velocity dispersion, and 

demonstrated that Biot’s theory of poroelasticity provides a powerful and versatile 

tool to study this phenomenon.   

 

Recently, two more general models for patchy saturation have been developed which 

also utilize 3D regular patch geometries (Johnson 2001; Pride et al. 2004). These 

new models allow attenuation and phase velocity to be determined for arbitrary 



 Introduction, Basic Theory and Thesis Overview  
__________________________________________________________________________ 

 

____________________________________________________________________ 
 1-19 

shaped fluid inclusions. However, explicit analytical expressions are only given for 

White’s  periodic layering and concentric sphere geometries. 

 

 

 

 

 

 

Figure 1.3.1.1: White’s periodic fluid distribution geometries. (a) Shows 1D periodic 

layering and its composite volume. (b) Shows spherical inclusions distributed in a 3D 

periodic array and (c) the composite volume used to approximate the 3D periodic array 
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1.3.2 The APS Framework -Johnson’s Model  

 

The Acoustics of Patchy Saturation (APS) model of Johnson (2001) will be utilized 

extensively in Chapters 4 and 5. Here I will give a precursory introduction, leaving 

the detailed discussions to subsequent chapters.  

 

Johnson’s APS (Acoustics of Patchy Saturation) approach was developed within the 

context of low-frequency Biot’s theory. The dynamic bulk modulus  K  of a 

partially fluid saturated porous rock is developed by firstly considering its response 

to low and high wave frequencies (however where ‘high frequency’ is still assumed 

smaller than Biot’s characteristic frequency  fcf  2 ).  

 

When wave frequencies are sufficiently low, the rock is “relaxed” as fluid pressure is 

equilibrated. In this limit the low frequency asymptote of  K  converges to 

Gassmann-Wood limits (see Section 1.2.2), 

 

   1 ( )J BGWK K i T o     .                            (1.3.2.1) 

 

Here T  is a parameter which depends on:  percent fluid saturation, contrast between 

pore-fluid properties and fluid patch geometry. This parameter only has analytical 

solutions for very simple fluid distributions, such as White’s concentric spheres, etc. 

The general expression for T is  
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                                    (1.3.2.2) 

 

In Equation (1.3.2.2)    
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where WK  is the effective fluid modulus given by Wood’s law (Equation 1.2.2.1)  

and   rK f  is the fluid bulk modulus at some spatial position r, and  r  is a solution 

to the potential equation: 
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Here  r  is fluid viscosity at position r.  

 

Equations (1.3.2.1) and (1.3.2.4) can only be analytically solved for simple fluid 

distributions. For periodic layering (Johnson, 2001):  
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where 1L  and 2L  are layer widths. In analogy to the concentric sphere model of 

White et al. (1976) and Johnson (2001); Krzikalla et al. (2006) derived 

theT coefficient for concentric circles in a two-dimensional medium (corresponding 

in 3D to circular cylinders):   
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where 1R  and 2R  are radii for the inclusion and host. For the concentric sphere model 

(Johnson, 2001):   
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Conversely, when wave frequencies are sufficiently high, the rock is “unrelaxed” as 

fluid pressures are unequilibrated. In this limit, the high frequency asymptote of 

 K  converges to Gassmann-Hill limit (see Section 1.2.2), leading to an expansion 

of the form  

     1/ 2 1/ 21J BGHK K G i o        
.               (1.3.2.8) 

 Here G  depends on: contrast between pore-fluid properties and volume to surface 

ratio of the patches, such that     
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where i  and iD  are viscosity and diffusivity of fluid i, Vds is the surface area to 

volume ratio of the fluid inclusion and ef Pp  is the change in pore pressure due 

to external pressure applied on the sample.  

 

For intermediate wave frequencies, the dynamic response of the porous rock is 

constructed using a branching function, which ensures causality of the solution and 

convergence to lower-frequency (Equation 1.3.2.1) and higher-frequency (Equation 

1.3.2.8) limits.  The dynamic saturated bulk modulus is given by:  

       )(1  bfKK BGHJ  ,                                (1.3.2.10) 

with a branching function of            
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and fluid contrast factor  
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The branching is defined in terms of two parameters. The first is called the shape 

parameter  

         223 2 TGKKKK BGHBGWBGWBGH  .        (1.3.2.13) 

and controls the shape of the attenuation curve. The second is called the frequency 

scaling parameter  

   22 GKKK BGHBGWBGH  , .                              (1.3.2.14) 

and controls the frequency at which attenuation reaches its maximum value.  

 

Utilizing this theory, Tserkovnyak and Johnson (2002) deduced values for the 

specific surface area and effective patch size from experimental data (Cadoret et al. 

1995; 1998). They found that APS theory could be used to interpret geometrical 

measures of partial fluid saturation from attenuation and phase velocity 

measurements. Their interpretation produced effective patch sizes which were in 

general plausible; however the volume to surface ratios exceeded theoretical limits at 

large water saturations.  Tserkovnyak and Johnson (2002b) have extended the 

approach to incorporate surface tension at the interface between pore fluids.  
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1.3.3 Double Porosity Dual Permeability -Pride and Berryman  

 

A more general approach based broadly on similar principles as APS theory was 

recently developed by Pride and Berryman (2004a; 2004b). This approach yields 

estimates of attenuation and phase velocity in a general double-porosity dual-

permeability medium. The theory utilizes Biot’s equations (Biot 1962) of 

poroelasticity to determine the poroelastic response of a composite body comprising 

two different poroelastic materials (each described by Biot’s equations of 

poroelasticity).   

 

Central to the double-porosity dual-permeability theory is a model for fluid transport 

(Pride and Berryman 2004b). That is, they aim to directly model mesoscopic fluid 

flow arising between different regions of rock. They assume that it is proportional to 

fluid pressure differences (between each material), with a frequency-dependent 

proportionality coefficient . The average rate inc  at which fluid volume is 

transferred from material 1 into material 2 is given by  

  21 ffinc ppi   ,      (1.3.3.1) 

where fip refers to fluid pressure in material i . It is this quantity inc that represents 

mesoscopic fluid flow, when wave frequency is much less than Biot’s characteristic 

frequency. This flow is responsible for significant attenuation and dispersion of 

compressional waves. 

 

The fluid transport coefficient   in Equation (1.3.3.1) is obtained using a similar 

approach to that of Johnson (2001). That is, the fluid transport coefficient is only 

exactly determined at low and high frequency limits.  To estimate   at intermediate 

frequencies, Pride and Berryman (2004b) use a branching function given by  

 
m

m i

  1 ,       (1.3.3.2) 

which converges to theoretically derived low and high frequency limits. The 

parameters m  and m  depend on mesoscopic geometry and constituent properties 

(see Pride et al. 2004). 
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In the important case where one porous phase is entirely embedded in the other, the 

double porosity equations of Pride and Berryman (2004a, 2004b) reduce to an 

effective Biot’s theory having complex frequency-dependent coefficients. That is, the 

drained bulk modulus  dK , saturated bulk modulus  satK  and fluid modulus  M  

all depend on wave frequency. This is possible because in this case the flux into and 

out of the volume element for the embedded fluid is zero. Wave attenuation and 

velocity dispersion are then modelled by substituting these equations into the wave 

slowness obtained from Biot’s theory. Hence, attenuation and dispersion due to 

heterogeneities in rock (or fluid properties) can be predicted for both the low and 

high frequency regimes of Biot’s theory. This shall be shown in Figure 1.3.3.1.  

 

Pride et al. (2004) specialised the general results of Pride and Berryman (2004a, 

2004b).  to the specific case of patchy saturation, where only heterogeneities in 

saturating fluids exist. They also derive analogous results for squirt flow. Rather then 

list the multitude of equations required to use their theory, I shall show below a 

patchy saturation version that I simplified assuming that the frequency is much lower 

than Biot’s characteristic frequency.  

 

The saturated P-wave modulus is  
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where  is the fluid transport coefficient given by Equation (1.3.3.2). The 

iA coefficients are: 
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Here  2,1, iBi  are Skempton coefficients for regions of rock saturated by fluid one 

and fluid two. The Skempton coefficient is a ratio of the change in fluid pressure of 

the undrained rock due to changes in confining pressure (Shempton 1954). That is, it 

is a measure of induced fluid pressure and is given by (Pride et al. 2004):  
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In Equations (1.3.3.4)-(1.3.3.7), 0B  and *
0B  are harmonic and arithmetic averages of 

the Skempton coefficients for the two phases,    
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Figure 1.3.3.1 shows (a) attenuation and (b) velocity calculated using Pride and 

Berryman’s (P.B) patchy saturation model; this is compared against Equation 

(1.3.3.3). Clearly, Equation (1.3.3.3) is a good approximation at low frequencies, as 

the predicted attenuation and velocity curves are identical to P.B. (a) Shows two 

attenuation peaks, the first at low frequencies is due to mesoscopic fluid flow, whilst 

the second at higher frequencies is due to macroscopic fluid flow.  There is a large 

difference in the magnitude of attenuation, at high frequencies as Equation (1.3.3.3) 

does not account for macroscopic flow (which is negligible at low frequencies). 

 



 Introduction, Basic Theory and Thesis Overview  
__________________________________________________________________________ 

 

____________________________________________________________________ 
 1-26 

−6 −4 −2 0 2 4 6 8
−6

−5.5

−5

−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

log10( Frequency [Hz] )

lo
g1

0 
(A

tte
nu

at
io

n 
[1

/Q
])

 

 
Full Biot 
Low freq. approx.

 

(a) 

−4 −2 0 2 4 6
3500

3550

3600

3650

3700

3750

log10( Frequency [Hz] )

V
el

oc
ity

 [m
/s

]

 

 

Full Biot
Low freq. approx
Wood
Hill

 

(b)  

 

 

Figure 1.3.3.1: Attenuation and dispersion due to the Pride et al. (2004) patchy saturation 

model and approximation. (a) Attenuation and (b) velocity modelled using Pride et al. 

(2004) full Biot’s model (solid line with circles) and modelled using my low frequency 

approximation Equation (1.3.3.3).  
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1.3.4 Comparison of Regular Cell Concentric Sphere Models  

 

Here I model attenuation and dispersion using three regular cell models (White, 

Johnson, Pride and Berryman approaches) assuming the concentric sphere fluid 

geometry. The motivation is to identify whether differences in physical approaches 

used to account for mesoscopic fluid flow will affect attenuation and dispersion 

estimates. For 5% of air inclusions within an otherwise water saturated host rock of 

porosity 0.15, attenuation and phase velocity are shown in Figure 1.3.4.1 (a) and (b), 

respectively. These figures show that there is a good agreement between all periodic 

models for estimates of attenuation and phase velocity. In particular, (a) shows that 

attenuation at low frequencies is proportional to , whilst for high frequencies it is 

proportional to 21 . (b) Shows that phase velocities converge to low (Gassmann-

Wood) and high frequency (Gassmann-Hill) limits and at intermediate frequencies 

the phase velocities are bounded by those limits. Clearly, the differences in 

theoretical formulations do not affect attenuation and velocity estimates. 

 

The regular cell approaches are limited to modelling attenuation and velocity 

dispersion due to wave induced flow arising between fluid heterogeneities that are 

identical in shape and distributed regularly throughout the porous medium. The use 

of idealised modelling geometries has clearly been helpful in identifying the effects 

of mesoscopic fluid flow. However, other types of patchy saturation models that 

allow more realistic fluid distributions to be modelled, like the random media 

approaches (Müller & Gurevich 2004; Ciz et al. 2006) are required in order to 

evaluate whether fluid distribution will influence attenuation and velocity estimates. 

We know from 1D analyses (Gurevich & Lopatnikov, 1995; Müller & Gurevich, 

2004) that random and periodic 1D distributions of two different fluids yield very 

different attenuation/dispersion pairs. Although 1D alternating fluid distributions 

may not be realistic, this result gives additional motivation to studies of wave 

propagation in porous media with 3D random spatial fluid distributions. 
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Figure 1.3.4.1: Attenuation and dispersion modelled using the regular cell approaches. (a) 

Attenuation and (b) velocity estimates modelled using the periodic models of White, Johnson 

and Pride et al. 2004. Very good agreement between all approaches for the case of 5 % air 

inclusions in an otherwise water saturated host rock of porosity 15%. The inclusion radius is 

25 cm.  
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1.4 Thesis Overview – My Contribution  

 

I once sent a dozen of my friends a telegram saying “flee at once- all is discovered”. 

They all left town immediately. - Mark Twain  

 

Well, fortunately (or unfortunately) I never received Twain’s telegram, was he 

talking about patchy saturation? Yes and No. It is true that the effect has been 

identified and the physics is pretty much understood; however there are still two 

aspects of this phenomenon (amongst others) which require further research. They 

are (1) how fluid contrast and (2) fluid distribution influence patchy saturation 

signatures (attenuation and dispersion).   Both aspects are interrelated and are the 

focus of my thesis.   

 

 

My first study concerns fluid distribution, that is, how fluids are spatially arranged on 

a scale that is greater than pore scale but less than wavelength scale. Specifically, in 

Chapter 2, I examine a series of X-ray tomographic images of partially saturated 

rock. The objective is to identify which statistical measures are useful for 

characterizing mesoscopic fluid distributions and to study how those measures 

change as average gas saturation increases. From this chapter, I show that the 

correlation function and correlation length provide the most useful statistical 

information for spatial characterisation of mesoscopic fluid heterogeneities.  

 

 

By learning how to describe fluid distribution (and changes in fluid distribution) 

from experimental data, we can identify how to characterise fluid distribution in our 

theoretical models. That is, if we want to model patchy saturation signatures 

(attenuation and dispersion) due to realistic fluid distributions, then we need a way of 

incorporating realistic spatial information into our theoretical models. In Chapter 3, I 

detail two models based on concepts of random media and build a new random 

media patchy saturation model. In particular, my model called 3DCRM implicitly 

assumes that fluid distribution is described by a correlation function. Hence it is well 

suited to modelling patchy saturation signatures due to realistic fluid distributions 



 Introduction, Basic Theory and Thesis Overview  
__________________________________________________________________________ 

 

____________________________________________________________________ 
 1-30 

that arise in X-ray tomographic images. In this Chapter, I show how these signatures 

change for different types of correlation functions.  

 

 

The Chapter 3 patchy saturation models allow us to connect realistic fluid 

distributions to patchy saturation signatures. However, the models are not without 

their limitations and restrictions. Perhaps the most significant of these is that they are 

in general accurate for low fluid contrast and approximate for large fluid contrast 

(fluid contrast refers to the difference between the bulk moduli of the fluids). That is, 

low contrast implies that there are only small differences in the fluid bulk moduli, 

this may occur with a water and oil in the system; whilst high contrast implies that 

there are large differences, such as with a water and gas system.  

 

 

When modelling patchy saturation signatures due to realistic fluids, it is necessary to 

be able to take into account realistic fluid contrasts (in bulk moduli, viscosity etc), in 

addition to realistic fluid distributions. In Chapter 4, I express the patchy saturation 

models from Chapter 3 in a single framework, a unified parameterization. The 

framework utilized is APS (Section 1.2), which is valid for high contrast between 

fluids, but is analytically restricted to very simple geometries. Specifically, I derive 

expressions which allow APS to estimate attenuation and dispersion due to the fluid 

distributions employed by the Chapter 3 models.  

 

 

Central to the APS framework is a branching function, which provides a simple way 

to approximate the dynamic solution at intermediate frequencies from knowledge of 

low and high frequency asymptotes. Via comparison with the Chapter 3 models, 

which predict attenuation and velocity explicitly over the entire frequency range, I 

show that the branching function provides an excellent approximation of frequency-

dependent attenuation and velocity at intermediate frequencies. These comparisons 

are performed at fluid contrasts for which the Chapter 3 models are precise. Hence, 

the question remains can APS with modified parameters be used to model 

attenuation/dispersion when pore fluid contrast is large, such as with water and air.      
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In Chapter 5, I use numerical methods to examine how the shape parameter for a 

specific model varies as fluid contrast increases. The results of this analysis show 

that the shape parameter for a random distribution of spherical inclusions is governed 

well by the shapes parameters derived in Chapter 4 for most fluid contrasts.    
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Chapter 2 

Fluid Distribution from Saturation Experiments on 

Porous Rock  

2.0 Introduction  

 

Understanding how the percentage of two (or more) different pore fluids will affect 

P-wave velocities is important for interpreting time lapse seismic data, in particular 

tracking fluid front movements. Application of Gassmann’s fluid substitution 

relations (Gassmann 1951) in addition to fluid mixing equations like Brie et al.. 

(1995) or Wood’s (1941) is one approach which could be used to make forward 

modelling estimates of P-wave velocities at different percentages of fluid saturation.  

However, the problem with these approaches is that partial fluid saturation effects 

such as mesoscopic fluid flow are completely ignored. 

 

Mesoscale fluid flow arises when a passing wave induces different fluid pressures in 

regions of rock saturated by different fluid types, where mesoscale specifically refers 

to a length scale greater than pore scale, but less than wavelength scale. The presence 

of spatial gradients in fluid pressure causes fluid to flow relative to the rock frame. 

This causes dissipation of energy and results in the attenuation and dispersion of a 

propagating waveform. A number of different patchy saturation models accounting 

for the mesoscale distribution of fluid heterogeneities have been proposed: 

concentric sphere model of White et al. (1977), Acoustics of Patchy Saturation 

(APS) model of Johnson (2001) and the so-called Continuous Random Media (CRM 

model, Chapter 3) of Toms et al. (2006; 2007). 

 

 

These theoretical models allow us to calculate dynamic-equivalent elastic moduli as 

a function of percent fluid saturation and wave frequency. However, one must 

assume either a fixed geometry of the patch distribution (such as periodically 

distributed spherical inclusions in White’s model) or fluid distribution given by a 
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specific correlation function (for CRM). Thus, the applicability of these models 

hinges on knowledge of the real spatial distribution of pore fluids in rocks. The 

spatial distribution is influenced by rock heterogeneity, the prior history of fluid 

movement, and density and viscous effects such as viscous fingering (Homsy 1987). 

 

The most suitable tool to assist with imaging fluid distributions of partially saturated 

rocks is X-ray tomography. It is already routinely applied in petroleum engineering 

to image reservoir lithologies undergoing secondary and tertiary recovery processes 

(Wellington & Vinegar 1987, Dunsmuir et al.. 1991, Withjack et al.. 2003). It is also 

increasingly used for characterization of soils (Peyton et al.. 1992; De Gryze et al. 

2006) and rocks (Arns et al. 2002; Arns et al. 2004); to produce input models for 

numerical algorithms which calculate transport properties of rocks (Arns et al. 2001; 

Knackstedt et al. 2004) and for calculation of elastic properties (Arns et al. 2002).  In 

fact, it is being used in numerous other applications spanning the entire geoscience 

field (Ketcham & Carlson 2001).   

 

The simultaneous acquisition of X-ray tomographic images and acoustic 

measurements during fluid saturation experiments on porous rock will provide the 

most direct means of relating velocity saturation information to pore fluid 

distribution. There have been several recent studies of this kind (Cadoret et al. 1995; 

Cadoret et al. 1998; Monsen & Johnstad 2005). Cadoret et al. (1995) use X-ray 

tomographic images to explain why velocities at the same percentage of water 

saturation may be different for drainage and imbibition experiments.  Where the 

velocities differed the drainage images showed the presence of distinct gas bearing 

clusters (for water saturations greater than 80%), whilst the imbibition images 

showed no such clustering. This suggests that differences in fluid distribution will 

cause differences in velocity measurements. The same conclusion has been drawn for 

attenuation measurements (Cadoret et al. 1998).  

 

Although X-ray tomographic images are central to the experiments of Cadoret et al. 

(1995) and Monsen and Johnstad (2005), the images themselves are only analysed 

qualitatively. That is, apart from identifying images which have clustering (Cadoret 

et al. 1995) or show fluid displacement in preferred directions (Monsen & Johnstad 
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2005), no further analysis of the fluid saturation patterns is performed. Thus, 

variations in velocities and attenuation are linked qualitatively to changes in fluid 

saturation patterns; missing still is a quantitative description. 

 

In this chapter I examine a series of X-ray tomographic images (with mesoscale 

resolution) obtained from a drainage experiment performed on Mount Gambier 

Limestones (Paterson & Lupton 2003, unpublished results). The objective is to 

analyse fluid saturation patterns quantitatively, thus showing how they can be 

described and how they vary as saturation changes. In particular, the applicability 

and significance of correlation type measures on mesoscopic fluid patch patterns is 

investigated.  Unfortunately, reliable velocity data was not acquired during the 

experiment so these results can not be linked to experimentally measured velocities.  

 

The chapter is organised as follows: Section 1 describes Paterson’s fluid saturation 

experiment and briefly outlines the basics of X-ray tomography. Section 2 covers 

processing of raw tomographic scans to produce saturation patterns.  Section 3 is the 

main contribution, where I introduce and extract quantitative statistics which allow 

description of fluid saturation patterns. Section 4 summarizes the results, compiling a 

list of reasonable fluid assumptions for modelling velocities due to patchy saturation.  
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2.1 The Experiment  

 

Paterson and Lupton (2003) performed a series of drainage experiments on Mount 

Gambier limestone samples. The experimental setup is shown in Figure 2.1.1. There 

is a cylindrical core sample encased in PVC pipe connected to pipe work which 

controls pressured fluid injection of nitrogen gas and subsequent water extraction. 

The medical X-ray imager is shown in the background, at various stages during the 

saturation experiment images are taken of the core sample.   

 

The experiment proceeds by initially taking an image of the dry core sample. The 

core sample is then fully saturated with water. A vacuum is applied to ensure 

uniform saturation of the water through out the pore-space and to draw out any 

remaining air. An image is then taken of the fully water saturated sample. Then fluid 

replacement begins by injecting pressurized nitrogen gas into the end of the core. 

The flow rate is kept continuous at constant pressure (but not at a constant rate) 

throughout the experiment. Images were taken at different times.  

     

The core samples are Mount Gambier limestone (MGL), which come from the Bruhn 

quarry in South Australia (www.bruhn.com.au). They generally have a high 

permeability (around 5 Darcy) and typical effective porosities in the range 36-44% 

Although the saturation experiments were performed on a number of different core 

samples, only one experiment (performed on sample MGL2a) is suitable for 

thorough analysis, as images are taken at both low and high gas saturations.    
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Figure 2.1.1: Paterson’s (2003) experimental setup for imaging the core sample during the 

fluid replacement experiment.  

 

 

2.1.2 X-ray Tomography  

 

The X-ray tomography method was originally developed for medical applications, 

specifically the imaging of bones and soft tissue (Hounsfield 1972). Typical medical 

X-ray tomography machines, such as the one shown in Fig. 2.1.1 employ a single 

source which is rotated around the object being scanned. The source is an X-ray tube 

which emits a beam of photons that are received by a fixed set of detectors located in 

a ring around the object. They measure the intensity of the received X-ray which is 

related to the intensity of the source X-ray for homogeneous materials by Beer’s Law 

(Wellington & Vinegar 1987) 

 xII  exp0 ,        (2.1.2.1) 
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where   is the linear attenuation coefficient of the scanned material and x  is the 

distance travelled  through the material.  When the material is heterogeneous Beer’s 

law is  











 

i

ii xII exp0 ,       (2.1.2.2) 

where i  is the  linear attenuation coefficient of each material and ix  is the distance 

travelled through each material i .  

  

Different types of heterogeneities (materials) in a porous rock such as saturating 

fluids and mineral grains can be imaged providing there is sufficient contrast in the 

linear X-ray attenuation coefficient of each type of material. The linear attenuation 

coefficient, in turn, depends on how atoms in a material absorb and scatter energy. 

Absorption of X-ray energy is due to the photoelectric effect, where the entire energy 

of the photon is transferred to the atom resulting in the emission of an electron. This 

effect is dominant for X-ray energies less than 100keV.  

 

When X-ray energies are greater than 100keV but less than 10 MeV, Compton 

scattering dominates. This effect causes some of the photon energy to be transferred 

to the atom resulting in the emission of an electron and deflection of the photon in 

another direction.   The degree of Compton scattering depends upon the electron 

density of the material. In general, the linear attenuation coefficient of a material can 

be expressed as the sum of photoelectric and Compton scattering terms: 

    aa EZbE  2.38.3  ,      (2.1.2.3) 

where is the Klein-Nishina coefficient and e is the electron density, Z is the 

effective atomic number, E is the photon energy in keV and 24108.9 b (Vinegar & 

Wellington 1986).    

 

Although the detectors measure the intensity of the received X-rays, the output of a 

CT scanner is in Hounsfield units (HU). Hounsfield units come from the 

reconstruction of linear attenuation coefficients from the measured X-ray intensities 

using methods such as the Shepp-Logan filter (Shepp and Logan 1974). In general, 

medical imagers are calibrated such that the CT value of water is zero (HU) and the 

CT value of air is -1000 (HU). However, other types of calibration (Amos et al. 
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1995; Orsi & Anderson 1999; Johns et al. 1993) can be adopted, which linearly relate 

CT values to a materials bulk density, this is especially useful for geological 

applications.  

 

As fluids such as water, brine, oil etc all have simular linear attenuation coefficients 

(and thus CT values), petroleum engineers often utilize dopants which are added to 

one of the fluids to increase the linear attenuation coefficient and thus create contrast 

in properties. Typical substances utilized are sodium iodide and bromide.  In 

Paterson’s experiment sodium iodide was added to water to help distinguish it from 

Nitrogen. 

  

Imaging of pore-spaces and individual mineral grains requires the use of high 

resolution tomography machines. Typically, pore scale imaging of most materials 

requires resolutions of 3 to 5 microns (Olafuyi et al. 2006). When combined with a 

typical field of view of 512 x 512 or 1024 x 1024 pixels, this limits the size of the 

scanned sample to 5 mm-1 cm. In Figure 2.1.1.1 we show porescale images of a 

typical sample of MGL containing no saturating fluids (Toms et al. 2008). The MGL 

samples have a very complicated microstructure composed of macroporosity, and 

microporosity (not resolvable at this scale). Variations in rock porosity will have a 

significant affect on the distribution of different pore fluids.  

 

Porescale images of a drainage experiment performed on a Berea sandstone and 

mono-disperse bead pack show that the wetting fluid is present as pendular rings, 

bridges between adjacent grains and as lenses within pore throats (Turner et al. 

2004). This degree of detail is not visible in the images obtained during the Paterson 

and Lupton (2003) experiments as the resolution of the medical imager utilized was 

less, but the field of view larger. The relatively large core samples have a radius of 

0.050 m and length 0.24 m, and were imaged with a minimum pixel size of 0.36 mm. 

Hence, in order to visualize changes in fluid distribution the images must be 

processed as specified in the following section.   
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(a) 

 

(b) 

 

 

Figure 2.1.1.1 Porescale images of a typical sample of MGL containing no saturating fluids.  

 

 

 

 



Fluid Distribution from Saturation Experiments on Porous Rock 
__________________________________________________________________________ 
 

____________________________________________________________________ 
2- 40 

2.2 Processing Images  

 

As the resolution of the tomographic scanner is not sufficient to image the interface 

between gas, water and mineral grains, the CT value of each pixel is approximately 

equal to the average of CT responses due to different percentages of mineral grains, 

pore-spaces, and pore fluids. That is, dry map pixels have CT values (See Figure 

2.2.1 (a)) given by    

  AIRGRAINDRY CTCTCT   1 ,  (2.2.1) 

where is rock porosity, and GRAINCT , AIRCT are the CT values of the grains and air filled 

pore-spaces, respectively. Pixels belonging to the fully water saturated map have CT 

values (see Figure 2.2.1(b)) :   

   WATERGRAINSATFULL CTCTCT   1 ,  (2.2.2) 

whilst pixels of the  partially saturated maps have CT values (see Figure 2.2.1 (c)) 

given by  

    GASWATERGRAINSATPART CTvCTvCTCT 121   , (2.2.3) 

where WATERCT  and GASCT are the CT values of water and nitrogen and 1v and 2v are the 

percentages of water and gas occupying the pore-space, respectively.   

 

In essence, Equations (2.2.1-3) assume that the CT value of a pixel at mesoscale 

resolution is linearly related to CT values of its constituents in proportion to volume 

fractions. Thus for large differences in CT values, which may occur at interfaces 

between mineral grains and pore-spaces, the above approximations can have 

considerable errors. Ketchom and Carlson (2001) suggest that these errors can in 

general be ignored as mineral/grain interfaces are rotated randomly relative to the 

plane of the scan; however when the interfaces are parallel to the plane of the scan 

errors can be as high as 10%. A further assumption of the approach is that the grain 

space is mono-mineralic (or has constant X-ray density).   

 

In general, the CT value (at mesoscale resolution) does not change greatly as the 

relative percentage of gas to water in the pore-space alters. That is, the change in CT 

value associated with changes in percentage gas saturation is much less than the CT 

values of the rock frame itself. Thus in order to identify regions of the core sample 
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that contain gas; the processing procedure of Cadoret et al. (1995) is implemented.  

This procedure also removes CT artefacts arising from multi-mineralogical grain 

spaces.  

 

Cadoret’s procedure involves creating three different types of maps:    

 

   (1)  Porosity map = {fully water saturated image} – {dry image},   

   (2) Gas content map = {fully water saturated image} – {partially water saturated images}, 

   (3)  Gas saturation map = Gas content map / porosity map. 

 

The pixels in each of the created maps have CT values of:  

 

   (1)  AIRWATERSATFULLDRYPOROSITY CTCTCTCTCT                 (see Fig. 2.2.1(d)),                  (2.2.4) 

   (2)  GASWATERPARTSATSATFULLGASCONT CTCTvCTCTCT  1      (see Fig. 2.2.1(e)),                  (2.2.5) 

   (3)  
 AIRWATER

GASWATER

POROSITY

GASCONT
GASSART CTCT

CTCTv

CT

CT
CT




 1                    (see Fig. 2.2.1(f)).                (2.2.6) 

 

 

In theory Equation (2.2.4) can be used to estimate spatial fluctuations in rock 

porosity (in addition to the average rock porosity).  Unfortunately, it cannot be 

utilized in this study as the CT value of the doped water wasn’t measured.  

 

Determination of percentage gas saturation of each pixel comes from Equation 

(2.2.6), where it is assumed that the CT value of Nitrogen gas is close to the CT 

value of air. If this assumption is accepted then maps generated in Step (3) show the 

spatial location of gas saturating pores and the percentage of gas saturation in those 

pores. Pixel values range from 0 to 1, where 0 indicates fully water saturated pores 

and 1 indicates fully gas saturated pores, whilst intermediate pixel values indicate 

that the pore-space is of mixed gas-water composition. The average gas saturation 

1v of the core sample is calculated from the gas saturation of each pixel by  

 



N

i

iv
N

v
1

11

1 ,                                           (2.2.7) 

where N is the total number of pixels. 
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To convert the images into binary media (which is necessary to extract certain types 

of quantitative statistics), a simple global-threshold-technique is applied; where 

pixels below a certain threshold value are counted as water, whilst above the 

threshold they are counted as gas. The threshold value utilized here is the arithmetic 

mean of the statistical distribution of pixel values. Thus the threshold value is 

representative of an average pixel that contains some percentage of gas, whilst pixels 

below (or above) the threshold are to be understood as containing less (or more) gas 

relative to the average pixel.  

  

In Fig. 2.2.2 (a) – (m) the gas saturation maps are shown for the drainage experiment 

on MGL2a (only the inner square of the core sample is shown). During the initial 

stages of the experiment (Figure 2.2.2 (a)-(f)) gas saturations less than 20%) distinct 

patches of gas bearing pores exist. Once average gas saturations (Figure 2.2.2 (g)-

(m)) have exceeded this value, distinct clusters of gas bearing pores are no longer 

visible.  

 

In Figure 2.2.3 the gas saturation map (left) is compared with its corresponding 

binary map (right). It shows that applying a threshold about the mean produces a 

binary map which preserves the main features of the full gas saturation map. This is 

true for most scans; however more elaborate thresholding techniques like indicator 

kriging could be used (Oh & Lindquist 1999). 
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(e)       (f)  

 

Figure 2.2.1 X-ray images and fluid heterogeneity maps. X-ray images of (a) dry core (b) 

fully water saturated core and (c) partially water saturated core, (d) Porosity map, (e) gas 

content map and (f) gas saturation map. The colour bar in (a-e) refers to CT values, whilst 

the colour bar in (f) refers to percent gas saturation divided by 100.    
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(a) Scan 3          (b)     Scan 4     (c)       Scan 5 

 

(d) Scan 6           (e)     Scan 7      (f)         Scan 8  

  

(h) Scan 15          (i)      Scan 16      (j)        Scan 17 

 

(k) Scan 18            (l)       Scan 19     (m)  Scan 20 

 

 

Figure 2.2.2 Gas saturation maps for Scans 3 through to 20. The colour bar indicates the 

average gas saturation of a pixel. Red corresponds to 100 % gas saturation, whilst blue 

corresponds to 100 % water saturation. Intermediate colours such as green and yellow, 

indicate pixels of mixed gas-water composition.   
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Ave Gas Sat: 0.063859
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Ave Gas Sat: 0.34633
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(c)      (d)        

 

 

Figure 2.2.3: Example of global thresholding applied to saturation maps (a) Scan 11 and (c) 

Scan 15 to create binary maps (b) and (d)  
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2.3 Statistical Analysis of the Binary Maps   

 

As the drainage experiment proceeds, the gas saturation maps (Figure 2.2.2 (a)-(m)) 

become more complicated as more of the pore-space becomes affected by the 

presence of gas. To characterise the fluid distribution (and changes in fluid 

distribution) of each mesoscale image, descriptive statistics (such as the correlation 

function, correlation length, linear path function, etc) are extracted from the binary 

images using Monte Carlo methods. By comparing statistics derived from each map, 

it is possible to characterise changes in fluid distribution caused by changes in gas 

saturation.   

 

For each binary map an indicator function is defined which describes the 

segmentation of the map into different subdomains. The indicator function is given 

by  

 

    


 


otherwise

Vrif
rI ii

0

1
;


 ,                                         (2.3.1) 

where  1I is the indicator function for the gas saturated domain 1V and  2I is the 

indicator function for the water saturated domain 2V .  

 

The role of the indicator function can be elucidated by considering all points 

    1,:, Vyxyxrg   belonging to the gas saturated domain and the values assumed by 

the different indicator functions. For this set of points the indicator function for the 

gas saturated domain    11 grI , whilst the indicator function for the water saturated 

zone    02 grI . For all points belonging to the water saturated domain, the reverse is 

true. Hence,       121  rIrI    yxr , 21 VVV  .  

 

The average of either indicator function   rI i  is equal to the volume concentration of 

that domain, that is  
i

iI  . This is equivalent to the probability that a randomly 

chosen point on the map will belong to either the gas saturated (or water saturated) 

domain. That is       1
11 1  rIPI  and       2

22 1  rIPI  . It is not necessarily the 

case that the volume concentration of the gas saturated domain is equal to the 
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average gas saturation of the partially saturated core sample, that is 

( 2211 vv   ).  

 

2.3.1 Autocorrelation Functions and Correlation Length  

 

 

The autocorrelation function  r  for the binary map is related to the indicator 

functions of the gas and water saturated domains by  

              2
2

2
2

1
1

1
1   drrIrIdrrIrIdr ,             (2.3.1.1)  

 

where dr  is the scalar distance separating two points. Relation (2.3.1.1) is 

appropriate for isotropic maps where  r  does not vary with line orientation (see 

Section 2.3.1.2). As the indicator function of each domain is equivalent to the 

probability of a random point residing in that domain, the correlation function can be 

determined from  

        2
2

22
1

1 ,,   xrrSxrrSr ,              (2.3.1.2)  

where   xrrS ,1 and   xrrS ,2 are the two point probability functions for the gas and 

water saturated domains, respectively.  

 

The two point probability function refers to the probability that two random points 

displaced by a scalar distance dx reside in the same domain. That is,   xrrS ,1  is the 

probability that two random points will reside in the gas saturated domain and 

   xrrS ,2 is the probability that two random points will reside in the water saturated 

domain. Clearly as the distance separating the points reduces to zero the two point 

probability functions reduce to one point probability functions  

            i
iii

x rSrrSxrrS  ,,lim 0 ,              (2.3.1.3) 

 accordingly. Moreover, if no long range order exists the two point probability 

function converges to  

    2,lim i
i

dx dxrrS  .     (2.3.1.4) 

Substitution of Equations (2.3.1.3) and (2.3.1.4) into Equation (2.3.1.2) shows that 

the correlation function has limiting values of   21
2
110   and   0 .  
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To determine the correlation function for each binary map, we extract the two point 

probability function using Monte Carlo methods. From Equation (2.3.1.2) it is clear 

that the correlation function can be determined using either two-point probability 

functions for the gas or water saturated domain. Here I choose to extract the two 

point probability function corresponding to the gas saturated domain.  Note that the 

two point probability function of the water saturated domain can be calculated from 

the two point probability function for the gas saturated domain using   

              1
12

2
2
1

12 21,,,   dxrrSdxrrSdxrrS .            (2.3.1.5) 

 

The one point probability function for the gas saturated domain is determined by 

randomly sampling the image at one point and recording the total number of times 

that one point corresponds to gas saturated domain. This total is divided by the total 

number of points sampled to give the one point probability density function. It is 

equivalent to the volume fraction of the gas saturated domain within the binary map.   

 

The two point probability function of the gas saturated domain is obtained by 

randomly sampling the image at two points separated by scalar distances sdx . A 

record is made of the total number of times both sample points simultaneously reside 

in the gas saturated domain for each scalar distance dx . Refer to Figure 2.3.1.1 for an 

illustration of which events are counted in the record. To determine the two point 

probability density function, the record is divided by the total number of times the 

binary map was sampled at each scalar distance.  
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(a) 

 

 

 

(b)  

 

 

Figure 2.3.1.1: Cartoon representation of two point probability functions. (a) Two point 

probability function for the grey phase 1. (b) Two point probability function for the white 

phase 2.  
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2.3.1.1 Correlation Function of Binary Map with and without Periodic 

Boundary Conditions   

 

The computational domain of each binary map is finite. As the scalar distance 

between random points on the map increases, the total number of potential pairs of 

sample points decreases. For instance, when the scalar distance is equal to the size of 

the map, only pairs of points residing on the map edge can be sampled; no other 

combination is possible. In general, the statistical sample size decreases as the scalar 

distance between points increases. This affects the accuracy of the correlation 

function at larger offsets.  

  

To minimize the effect small statistical sizes have on the two point probability 

function (and thus the correlation function), boundary conditions can be applied on 

the edge of the map. The most widely used boundary conditions are periodic in 

character (Gadjdošík et al. 2006; Torquato 2002), which can be easily implemented 

by replicating the map spatially, as per Figure 2.3.1.1.1 (b).   The adoption of 

periodic boundary conditions ensures statistical consistency with the original map 

and an increased statistical sample size at larger scalar distances.   

 

Another type of boundary condition, which can be implemented, relies upon deriving 

statistically equivalent binary maps by transforming the original map by certain types 

of transformations. These statistically equivalent maps can be added to the edges of 

the original map in order to expand the computational domain.  In particular, the 

binary map can be rotated 90, 180 and 270 degrees and flipped horizontally about the 

middle column or flipped vertically about the middle row. A random representation 

of the original binary map is then formed by randomly rotating or flipping the 

additional boundary condition maps. This can be seen in Figure 2.3.1.1.1(c).      

 

Alternatively, no boundary conditions can be added to the edge of the map (see 

Figure 2.3.1.1.1(a)). In which case, the correlation function at long offsets should be 

disregarded.  Figure 2.3.1.1.2 (a) - (b), compares correlation functions extracted from 

each of type of representation: no boundary conditions (dotted line), periodic 

boundary conditions (dashed line) and random boundary conditions (solid line) for 
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gas saturations of 6% and 48%. All three curves are in good correspondence for 

small offsets and thus extraction of the Debye correlation length (see Section 2.3.1.4) 

from either correlation function will be consistent.   

 

As offsets become large (but still less than half the sample width), there is reasonable 

correspondence between periodic and random map correlation functions. However, 

correlation functions extracted from the no B.C map differ significantly. For offsets 

greater than half the sample width (but still less than the width of the sample) the 

periodic and random map correlation functions differ. The reason is that the periodic 

map correlation function is an even function (symmetric) about the mid point of the 

sample width whilst the random map is not.     

 

Figure 2.3.1.1.3 shows for gas saturations of (a) 6% and (b) 48% that correlation 

functions extracted from thresholded (binary) maps having periodic (dashed line) and 

random (solid line-circles) representations are different from correlation functions 

from non-thresholded maps (continuous) of periodic (dash-dotted line) and random 

representation (solid line solid circles). Furthermore, there are considerable 

differences between the non-thresholded correlation functions. This results from the 

artificial manner in which maps are added to the boundaries of the original map. That 

is, large differences in pixel values may arise across the map boundaries, destroying 

the continuous variation of the pixel values.  Thus boundary maps should not be 

added when extracting correlation functions from continuous maps.  
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(a) Binary Maps  

  

(b) Periodic Representations 

  

(c) Random Representations 

 

Figure 2.3.1.1.1: Various representations of the binary maps for Scan 11 and Scan 23 
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Figure 2.3.1.1.2: Correlation functions extracted from binary map and its periodic and 

random representations. (a) Shows for scan 11 and (b) shows for scan 23.    
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Figure 2.3.1.1.3 Correlation functions extracted from random representations of binary and 

continuous media.  
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2.3.1.2 Correlation Function Testing for Anisotropy 

 

Relations 2.3.1.1 and 2.3.2.2 are applicable for statistically homogeneous and 

isotropic materials. The first condition implies that the correlation function does not 

depend on the absolute positions of the points 1r  and 2r , but only on the distance 

separating the points dr . This is called translational invariance (Berryman 1987; 

Torquato 2002). See Fig 2.3.1.2.1 (a).  The second condition implies that the 

correlation function does not depend on the orientation of the vector connecting 1r  

and drrr  12 , relative to some fixed coordinate system. This is called rotational 

invariance; see Fig. 2.3.1.2.1 (b). Thus, correlation functions obtained by sampling 

the maps at 0, 45 and 90 degrees should be the same. 

 

For anisotropic statistically homogeneous materials the correlation function is   

              22
2

2
2

12
1

1
1

2   rrIrIrrIrIr
   (2.3.1.2.1) 

where r
 and 2r

 are vectors. It depends on the magnitude of vector 2r
 and its orientation. 

The two point probability function can also be modified appropriately for anisotropic 

media.   

 

The correlation functions extracted in Section 2.3.1.1 are obtained by: (1) sampling 

the map in two orthogonal directions at orientations of 0 and 90 degrees relative to 

map edges, thus forming vertical (Ver) and horizontal (Hor) correlation functions. (2) 

By taking the average of both correlation functions. In Fig. 2.3.1.2.2 (a) the vertical 

and horizontal correlation functions are plotted for binary map (BM Scan 11) and for 

the periodic map (PM). There are significant differences between vertical and 

horizontal correlation functions of both maps. Furthermore, the anisotropy inherent 

in the binary map (differences in the vertical and horizontal correlation functions) is 

directly reflected in the correlation functions extracted from the periodic map. This is 

evident as correlation functions at the same orientation are in close correspondence 

for each map type.    

 

On the other hand, in Fig. 2.3.1.2.2 (b) the vertical and horizontal correlation 

functions are plotted for periodic and random maps (Scan 11). Only small differences 

exist in the correlation functions (RM ver and RM hor) extracted from the random 
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map. Thus anisotropy present in the single binary map is not reflected in its random 

map representation. Thus, small differences will exist in the average periodic and 

random correlation functions (PM/RM ver + PM/RM hor) when maps are 

anisotropic. 

 

For the rest of the Section 2.3.1 statistics will be extracted from random map 

representations of the binary maps, as there is greater accuracy at longer offsets and 

anisotropy is reduced.     

 

 

 

                                             

(a)             (b)   

 

 

Figure 2.3.1.2.1: Cartoon representations of statistically inhomogeneous and anisotropic 

media. (a) Statistically inhomogeneous media:  212 ,rrS  will depend on the absolute positions 

of 21,rr relative to the origin, as the top and bottom regions of the model are densely and 

sparsely populated by overlapping spheres. (b) Statistically anisotropic media:  212 ,rrS  will 

depend on the orientation of the vector connecting 21,rr .  
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Figure 2.3.1.2.2: Correlation functions extracted horizontally (Hor) and vertically (Ver) 

across different heterogeneity maps. (a) Shows the correlation functions extracted from the 

binary (BM) and periodic maps (PM). (b) Shows the correlation functions extracted from the 

periodic (PM) and random maps (RM). The application of random boundary conditions 

produces statistically isotropic media from anisotropic media.    

 
 

2.3.1.3 Correlation Function versus Relative Percentage Fluid 

Saturation   

 
The objective of this section is to access whether the correlation function is sensitive 

to changes in percentage fluid saturation. To this end, I extract correlation function 

from random map representations for the sample MGL2a. By visual inspection of the 

shape of the correlation functions two predominant sets are identified. The first set 

contains correlation functions which have an exponentially decreasing appearance, 

whilst the second set contains correlation functions of a different shape.  

 

In Figure 2.3.1.3.1 (a) the first group of correlation functions are plotted. The relative 

percentage fluid saturation is shown in the legend. There are only small observable 

differences between each correlation function. Also plotted is the average of these 

correlation functions (thick dashed line) obtained by taking the mean of this group. 

The un-normalised variance is shown in Figure 2.3.1.3.2 (b) (dotted line with 

circles). In Figure 2.3.1.3.1 (b) the second group of correlation functions are plotted. 

There are no real observable differences between each correlation function. The 

average correlation function of this set (thick dashed line) is plotted and the variance 
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between correlation functions at various saturations is shown in Figure 2.3.1.3.2 (b) 

(dotted line with crosses).    

 

Note, the first set of correlation functions are obtained from random maps of low gas 

saturations (<23%), whilst the second set are obtained from random maps of higher 

gas saturations (>23%). Comparison of the average correlation functions for each 

group (Figure 2.3.1.3.2 (a)) shows that the shape of each curve is different.  

 

On the basis of Figures 2.3.1.3.1 and 2.3.1.3.2, it appears that correlation functions 

are only sensitive to changes in fluid saturation below a critical percentage (here it is 

approximately 23%). Above this value there are only minor changes in the 

correlation function as gas saturation is increased (the variance shows that small 

changes occur around the Debye correlation length, Section 2.3.1.5). However, it 

must be noted that at greater X-ray tomographic resolutions the correlation functions 

may show an increased dependence on gas saturation (when percentages are high). 

That is, perhaps differences cannot be observed at mesoscale resolution.   
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(a)                            (b)     

 

Figure 2.3.1.3.1: Correlation functions extracted from random binary maps of MGL2a 

divided into saturation sets. (a)  r  small gas saturation and (b)  r  large gas saturation. 
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Figure 2.3.1.3.2 Average correlation functions and variance of correlation functions. (a) 

Average of each set of correlation functions extracted from maps having small (line with 

circles) and large gas saturation (dashed line with crosses). (b) The variance of each set of 

small (dotted line with circles) and large gas saturation (dotted line with crosses).  

 

2.3.1.4 Correlation Function versus Rock Type     

 

Percentage fluid saturation influences the shape of the correlation function (as shown 

in Figures 2.3.1.3.1 and 2.3.1.3.2), but it is not the only influencing factor. In Fig. 

2.3.1.4.1 (a) the average correlation function and (b) variances (for gas saturations 

greater than the critical percentage) are shown for three different types of rocks:  

MGL 8 (crosses), MGL 6 (circles) and MGL2a (triangles). The average correlation 

functions (in Fig 2.3.1.3.1 (a)) differ in shape.  

 

As the average correlation function for each rock type is obtained from maps having 

gas saturations greater than the critical percentage, the shape differences are not 

caused by different percentages of gas.  But rather it is a consequence of each rock 

having different fluid transport properties; that is porosity and permeability 

variations (wettability characteristics may not play a significant role here as all rock 

are of similar type, i.e.  composed of the same mineral grains, etc). Unfortunately, 

experimental measurements of rock porosity and permeability are not known for 

these rock samples. 
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Figure 2.3.1.4.1: Average correlation function and variance of correlation functions 

obtained from binary maps of MGL2a, MGL6 and MGL8 at large gas saturation. (a) Shows 

the average correlation functions for MGL2a (line with triangles), MGL6 (line with circles) 

and MGL8 (line with crosses). (b) Shows the variance in the set of correlation functions 

obtained from each rock sample.   

 

2.3.1.5 Correlation Lengths  

 

There are a host of different types of length scales which can be derived from a 

correlation function. Two common ones are the “Debye” and “mean” length scale. 

The first length scale can be derived from the correlation function by assuming that 

the binary map is a Debye random material (Debye & Bueche 1949). That is, for 

structures in which one phase consists of random shapes and sizes, the correlation 

function obeys 

   





 

a

r
r exp .    (2.3.1.4.1)  

 

Here a is the Debye correlation length which is defined as   ea 1 and e  is 

Boltzman’s constant, see Fig 2.3.1.5.1.  
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The second length, termed here as the mean length is derived from the correlation 

function as  

 
21

0 







 


drrrlm  .     (2.3.1.4.2) 

This length scale arises in rigorous bounds on the fluid permeability and trapping 

constant of three dimensional isotropic random porous media (Berryman & Blair 

1987, Torquato 2002).  If the correlation function in Equation (2.3.1.5.2) is an 

exponentially decreasing function (Eq. 2.3.1.5.1), the mean length scale is equal to 

the Debye length scale alm  .     

 

Any length scale derived from a correlation function will produce a length scale 

representative of the average spatial properties of the medium (a consequence of Eq. 

2.3.1.2). That is, the Debye or permeability lengths are a measure of how coarse or 

fine the material is rather than indicating an average size of either phase.   Thus, 

either length scale (2.3.1.4.1 or 2.3.1.4.2) derived from the correlation function will 

not indicate the size of the gas or water patches within the binary map. 

 

Figure 2.3.1.5.2, shows the Debye correlation length extracted from the correlation 

functions of samples MGL 2a (circles), MGL 6 (asterixis) and MGL 8 (plus signs). It 

shows that the Debye length of MGL 2a decreases as gas saturation increases. The 

decrease is approximately linear. The Debye length of MGL 8 also decreases 

approximately linearly with saturation and a simular trend can be observed with 

MGL 6. Note that, the variances extracted in the previous section indicate that small 

changes in the correlation functions occur around the Debye correlation length. Thus 

these results are perfectly consistent with the conclusion that the correlation function 

is mostly insensitive to percentage fluid saturation at large gas saturations.    

 

By analysing the mean correlation functions for MGL 2a at both low and high gas 

saturations, an interesting observation can be made. It appears that the mean 

correlation function for small gas saturations (solid line) is approximated well by a 

Debye correlation function (dotted line) with correlation length of 5.3a ; see Fig. 

2.3.1.4.3. On the other hand, at high gas saturations there is only a good 

correspondence between the mean correlation function (dashed line) and the Debye 
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correlation function (dashed-dotted line) at small offsets. This was also observed for 

MGL 6 (not shown here).   

 

In Figure 2.3.1.4.4 the mean correlation function for large gas saturations (MGL 2a) 

is approximated well by two Debye correlation functions: one which models small 

offset behaviour Small  and one which models large offset behaviour eL arg .  That is,  

    




































L
s

S
S

L
L

S
SeLSmall a

r
b

a

r
b

a

r
b

a

r
br exp1expexpexparg2             (2.3.1.4.3) 

where Sb , Lb are weighting coefficients of the correlation functions (with 01  LS bb ), 

whilst Sa , La are the usual Debye correlation lengths (with 0 SL aa ). In Table 

2.3.1.4.1,  r2 is given for the mean correlation functions for large gas saturations of: 

MGL 2a, MGL 6, and MGL 8.  

  

 

   Table 2.3.1.4.1: Double Debye coefficients 

      Data          Sa           Sb           La          Lb    RMSE 

     MGL2a         2.30          0.73         12.28         0.27   0.02234 

     MGL 6         2.02          0.93         12.58          0.07   0.01357 

     MGL 8         2.77          0.85           9.11         0.15  0.01153 

 

 

On the basis of this three conclusions could be made regarding fluid distribution 

versus saturation.   

 

1) Decrease the correlation length linearly as gas saturation is increased.   

2) Small gas saturations %201 v  can be approximated well by a single 

Debye correlation function.   

3) Large gas saturations %201 v can be approximated reasonably well by 

two Debye correlation functions which are weighted.  
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Figure 2.3.1.5.1: The Debye correlation function shown at different correlation lengths.  
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Figure 2.3.1.5.2: The Debye correlation lengths for different gas saturations for MGL 2a, 

MGL 6 and MGL 8. 
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Figure 2.3.1.5.3: The Debye correlation function having different correlation lengths is 

compared against the average correlation functions of MGL2a. 
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Figure 2.3.1.5.4: The average correlation function at large gas saturations is approximated 

by two Debye correlation functions Small and eL arg . 
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2.3.2 Linear Path Function    

 

To shed light on what sort of spatial information is contained in different types of 

microstructural functions, such as the correlation function and the linear path 

function, it is useful to perform reconstruction studies.  Such studies involve the 

following stages:  

 

(1) a target model is sampled using the microstructural function of interest. 

(2) An initial starting model is chosen and sampled using the microstructural 

function 

(3) The initial starting model is perturbed (in some way) and sampled by the 

microstructural function. This is repeated until the microstructural function is 

the same as that of the target model (the real image).   

(4) The final model is compared against the target model.   

 

The reconstruction of 1-dimensional models of randomly positioned overlapping 

rods (Yeong & Torquato 1998a) and 2-dimensional models of randomly positioned 

overlapping discs (Yeong & Torquato 1998b) indicates what sort of descriptive 

information is contained in the correlation and linear path functions.  It was found 

that reconstruction procedures which target only a correlation function produce 

models having the distribution characteristics of the original model, but not the 

clustering characteristics, whilst  procedures which solely target the linear path 

function reproduce clustering characteristics, but not distribution characteristics. 

Moreover, optimum reconstruction strategies were ones which targeted both the 

correlation function and the linear path function simultaneously, thus generating 

models which “most closely” resembled the original models.    

 

This suggests that the correlation function and volume concentration extracted 

together will contain necessary but not sufficient information to fully describe fluid 

saturation patterns. Furthermore, changes in fluid saturation patterns may not be 

quantifiable in terms of the correlation function as it may not be the most sensitive 

measure.  Thus, in the following sections several other statistical measures will be 

extracted, such as the linear path function (this section), chord length density 
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function (Section 2.3.3) and cluster statistics (Section 2.3.4). We would like to assess 

whether these other types of statistics are better suited to quantifying changes in fluid 

saturation patterns associated with changes in gas saturation.   

 

The linear path function   dzL i  is defined for a statistically isotropic material as the 

probability that a line segment of length dr  lies completely in either subdomain 

when randomly thrown into the sample (Torquato 2002), Fig. 2.3.2.1. That is, 

  drL1 is the probability that a line segment of length dr  lies entirely in the gas 

saturated domain, whilst   drL1 is the probability that a line segment of length dr lies 

entirely in the water saturated domain.  As the length of the line segment dr  

increases, the linear path functions   dzL i  will decrease monotonically, because the 

space available in either subdomain decreases with increasing dr . Thus, the limiting 

values for the linear path functions for small and large line segments 

are     i
i

dz dzL 0lim  and    0lim  dzL i
dz . In particular, the linear path function 

contains some information on the connectivity           11221  zLzLzL  
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Figure 2.3.2.1: Cartoon representations of the linear paths. (a) Linear paths for phase 1 and 

(b) for phase 2.  
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Figure 2.3.2.2 shows the linear path function for the gas saturated and water 

saturated domains during the initial stages of the drainage experiment (i.e. small gas 

saturations). There initially is a clear separation in the linear paths of each domain. 

As gas saturation increases the linear path function of the gas saturated domain 

broadens and the linear path function of the water saturated domain sharpens.  As gas 

saturation is increased further (Figure 2.3.2.3) the linear path functions for the gas 

saturated and water saturated domains converge. This suggests that linear paths of 

the two different domains are constant as saturation increases.  

 

 

Analysis of the linear path function in addition to the correlation function indicates 

that: 

1) The fluid saturation patterns during the later stages of the drainage 

experiment (i.e. high gas saturations) don’t change significantly. The 

correlation function which characterised the distribution of fluids and the 

linear path function which characterises connectedness (in a linear path) are 

both relatively constant. 

2) The fluid pattern during the initial stages of the drainage experiment (i.e. 

small gas saturations) changes significantly with saturation.  

3) During the initial stages of the drainage experiment there is a clear separation 

of length scales between the water saturated domain and the gas saturated 

domain. For the rest of the experiment there is not a clear separation between 

the length scales.   
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Figure 2.3.2.2 : The linear path function for the gas   drL1 and water   drL 2 saturated domain 

during the initial stages of the drainage experiment.  
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Figure 2.3.2.3: The linear path function for the gas   drL1 and water   drL 2 saturated domain 

during the final stages of the drainage experiment.  
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2.3.3 Chord Length Density Function  

 

The chord length density function   drp i is defined as the probability of finding a 

chord of length between r  and drr  in subdomain i  (Lu & Torquato 1992). It is 

related to the linear path function by  

  
    

2

2

dr

drLdl
drp

i

i

i
Ci


 .      (2.3.3.1)  

 

Conceptually speaking chords are all of the line segments between the intersections 

of an infinitely long line with the subdomain interfaces, as shown in Figure 2.3.3.1. 

From the chord length density function the mean chord length can be derived by  

    



0

drrrpl ii
C .                  (2.3.3.2) 

 

The mean chord length is related to the specific surface area via  
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Figure 2.3.3.2 (a) shows the chord length density function for the gas saturated 

domain during the initial stages of the drainage experiment on MGL 2a. As gas 

saturation is increased, the probability of chords of width 2-3 pixels increases.  For 

the smallest gas saturations the chord length density function has an exponential 

shape (solid line and dashed line). This is most likely a result of noise during the 

initial scans (which may be greater than the mean threshold of the map). As gas 

saturation increases further the shape of the probability density function becomes 

more bell like, with the most probable chord lengths having widths of 2 to 5 pixels. 

Similarly, the chord length density function of water (shown in (b)) has a bell like 

shape and peaks around 2 to 5 pixels with probabilities increasing as gas saturation 

increases.  
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Fig.2.3.3.2 (c) and (d) show the probability density function for the gas and water 

saturated domains during the later stages of the drainage experiment. As gas 

saturation increases there is very little change in the chord length density functions 

for either subdomain except within the 2-5 pixel range, where probabilities still 

increase with gas saturation.  

 

Fig. 2.3.3.2 (e) shows the mean chord lengths for the gas (asterixis) and water 

(circles) saturated domains derived using Equation (2.3.3.2). As gas saturation 

increases, the mean chord length for the gas saturated domain decreases, whilst the 

mean chord length of the water saturated domain increases. (f) Shows the specific 

surface derived using the mean chord lengths (via Eq (2.3.3.3)) of (e). There is a 

large discrepancy between the specific surfaces obtained from the mean chord length 

of the gas saturated patches (asterixis) and from the mean chord lengths of the water 

saturated patches (circles). Certainly, the mean chord lengths for the gas saturated 

patches should be more accurate then the mean chord lengths of the water saturated 

patches for lower gas saturations, as the gas patches are distinct and isolated (keeping 

in mind that noise may be a factor at very small gas saturations). For lower gas 

saturations there are very few lengths which are counted as water saturated chords, 

because they may not intersect the gas water interface at the two end points (see 

Figure 2.3.3.1 (b)).  

 

 

 

 

 

 

 



Fluid Distribution from Saturation Experiments on Porous Rock 
__________________________________________________________________________ 
 

____________________________________________________________________ 
2- 71 

 

 

(a) 

 

 

 

(b) 

 

Figure 2.3.3.1: Cartoon representation of chord lengths. (a) Shows the chord lengths (solid 

line with bars situated on the domain interface) which contribute to the chord length density 

function for subdomain 1 and (b) subdomain . The dashed lines represent infinite lines laid 

down over the map.  
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(e)       (f) 

 

Figure 2.3.3.2 Chord length density functions during the initial and final stages of the 

drainage experiment. (a) Shows gas and (b) water saturated domain during the initial stages 

(final (c) and (d)) of the drainage experiment. (e) Mean chord lengths for the gas and water 

saturated patches and (f) specific surface. 
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2.3.4 Cluster Statistics 

 

A cluster of subdomain i  refers to that region of subdomain i  which can be reached 

from a point in subdomain i without passing through subdomain  ijj ,  (Torquato et 

al. 1988). That is, a set of pixels which belong to the gas saturated subdomain will 

form a cluster when every member of that pixel set can be accessed via at least one 

pathway consisting entirely of pixels belonging to the gas saturated subdomain, see 

Figure 2.3.4.1.  

  

To identify clusters within the gas saturated subdomain (or water saturated 

subdomain) the Hoshen and Kopelman (1976) cluster labelling algorithm was 

implemented. The output of this algorithm is cluster labels and cluster numbers for 

each separate cluster label.  

 

In Figure 2.3.4.3 cluster labels are shown for (a) gas and (b) water saturated 

subdomains of Scan 8, respectively. The colour bar (in a and b) shows the number of 

different clusters in each map. In (a) there is over 60 different gas clusters, whilst in 

(b) there is only 14 different water clusters. In (c) gas and (d) water cluster numbers 

are shown for each different label. The colour bar (in c and d) shows the population 

of pixels in each cluster. The largest gas cluster in Scan 8 has a population of over 

700 pixels, whilst the largest water cluster in Scan 8 has a population over 6000 

pixels.    

 

In Figure 2.3.4.4 cluster labels are shown for (a) gas and (b) water saturated 

subdomains of Scan 15, respectively. The colour bar shows the number of different 

clusters in each map. In (a) there are 14 different gas clusters, whilst in (b) there are 

47 different water clusters. In (c) gas and (d) water cluster numbers are shown for 

each different label. The colour bar (in c and d) shows the population of pixels in 

each cluster The largest gas cluster in Scan 8 has a population of over 5000 pixels, 

whilst water cluster in Scan 8 has a population of approximately 2000 pixels.    
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Comparison of Figures 2.3.4.3 (a) and 2.3.4.4 (a) show that with increasing gas 

saturation the total number of gas clusters decreases from 60 to 14 clusters; whilst 

the average number of pixels belonging to a single cluster decreases (as seen in 

Figures 2.3.4.3 (c) and 2.3.4.4 (c)). This arises because the gas clusters within scan 8 

join up to form one major cluster in scan 15. Conversely, when gas saturation 

increases the number of water clusters increases from 13 (in Figure 2.3.4.3 (b)) to 46 

(in Figure 2.3.4.4 (b)); whilst comparison of Figure 2.3.4.3 (d) and 2.3.4.4 (d) show 

that there is one dominant water cluster at low gas saturation and an increasing 

number larger populated water clusters at larger gas saturations.      

 

When all of the different clusters within the gas saturated subdomain (or water 

saturated subdomain) are identified, it is possible to decompose the two point 

probability function   21,rrS i into two different types of probability functions    

        2,12,12,1 ,,, rrErrCrrS iii  .   (2.3.4.1) 

Here   21,rrC i  is the cluster function which is the probability of finding two points at 

positions 1r  and 2r  that belong to the same cluster of subdomain i , whilst   21,rrE i is 

the blocking function which is the probability of finding two points at positions 1r  

and 2r  which belong to different clusters of subdomain i , refer to Figure 2.3.4.2.  

 

Decomposition of the two point probability function   21,rrS i  into   21,rrC i  and   21,rrE i  

gives information on “connectedness” and “disconnectedness” within the map. The 

same basic algorithm which was employed in Section 2.3.1 to extract   21,rrS i  can be 

employed to determine   21,rrC i  and   21,rrE i  from the cluster labelled maps (see Figure 

2.3.4.3 (a) and (b) and 2.3.4.4 (a) and (b)).   

 

Here no boundary conditions are added to extend the binary map domain (see 

Section 2.3.1.1) as this may create artificial cluster information. For instance, what 

may be labelled as two different gas saturated clusters in the single binary map could 

be labelled as one single cluster when boundary condition maps are added to single 

binary map. This would arise when the boundary maps provide a connecting path of 

pixels between the two different clusters within the binary map.  
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Figure 2.3.4.5 (a) shows three different probability functions for scan 8.  They are the 

two point probability function   21,rrS i  (solid line) which is decomposed into the 

cluster probability function   21,rrC i  (dashed line with crosses) and the blocking 

probability function   21,rrE i  (dashed-dotted line). The contribution made by the 

cluster function to the two point probability function decreases as the scalar distance 

between points increases; whilst the contribution made by the blocking function 

increases as the scalar distance between points increases.  Evidently for scan 8, the 

two point probability function does not accurately convey information on gas patch 

connectedness throughout the binary map as there are significant differences between 

the two point probability function and connectedness function as offset increases.  

 

Figure 2.3.4.5 (b) shows three different probability functions for scan 15.  They are 

the two point probability function   21,rrS i  (solid line) which is decomposed into the 

cluster probability function   21,rrC i  (dashed line with crosses) and the blocking 

probability function   21,rrE i  (dashed-dotted line). The contribution made by the 

blocking function to the two point probability function is insignificant, as there is 

close correspondence between the cluster function and the two point probability 

function. Evidently when there is one large gas cluster the two point probability 

function (for gas saturation) captures information on connectedness.  

 

To summarise, the use of cluster statistics and decomposition of the two point 

probability function provides valuable insight into the spatial distribution of pore 

fluids. The cluster statistics are useful for assigning inclusion/host fluid relationships, 

when there are large differences between cluster numbers and cluster populations. 

Although only shown here for gas saturated domains, decomposition of the two point 

probability function into blocking and cluster functions provides a measure of 

connectedness and disconnectedness of fluid heterogeneities on the mesoscale.  
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Figure 2.3.4.1: Clustering pixels. The grey and white pixels belong to different subdomains. 

There are four different clusters of size 1 and two different clusters of size 2 and one cluster 

of sizes 3, 4, 5, 6, 7, and 8. The grey pixels enclosed in the ellipse are not part of the same 

cluster as a path which connects the clusters that consists entirely of grey pixels doesn’t 

exist.  

 

 

 

 

Figure 2.3.4.2: Cartoon representation of two point probability functions.  The two point 

probability function   21,rrS i  can be decomposed into the cluster probability function   21,rrC i   

and the blocking probability function   21,rrE i . 
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(a)                (b) 

 

 

(c)                (d) 

 

Figure 2.3.4.3: Cluster labels and cluster numbers for gas and water saturated subdomains 

of the binary map for scan 8. (a) Shows cluster labels for the gas saturated domain and (b) 

shows cluster labels for the water saturated domain. (c) Shows cluster numbers for the gas 

saturated domain and (d) shows cluster numbers for the water saturated domain.  
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(a)              (b) 

 

 

(c)           (d) 

 

Figure 2.3.4.4 Cluster labels and cluster numbers for gas and water saturated subdomains 

of the binary map for scan 15. (a) Shows cluster labels for the gas saturated domain and (b) 

shows cluster labels for the water saturated domain. (c) Shows cluster numbers for the gas 

saturated domain and (d) shows cluster numbers for the water saturated domain. 
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Figure 2.3.4.5: Two point probability function decomposition into cluster and blocking  

functions. (a) Shows    21,rrS i  (solid line),   21,rrC i (dashed line with crosses) and   21,rrE i  

(dotted line) for gas saturated domain extracted from the binary map of scan 8.(b) Shows the 

probability functions extracted from the binary map of scan 15. 
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2.4 Summary of Results   
 
 
Four different types of statistics were extracted from binary map representations of 

gas saturation maps. The first statistic was the normalised autocorrelation 

function  r . It was derived from the two point probability function   21,rrS i  extracted 

from the binary maps using Monte Carlo methods. During the initial stages of the 

drainage experiment, the autocorrelation function changed significantly as gas 

saturation increased. Moreover, for small gas saturations  r was approximated well 

by a single Debye correlation function. However, during the latter stages of the 

drainage experiment (i.e. for large gas saturation)  r  did not vary much as gas 

saturation increased. For those gas saturations  r  was approximated well by two 

Debye correlation functions: one which models short range behaviour and one which 

models long range behaviour.  

 

In terms of length scales two different types of measures were considered, the Debye 

correlation length and the mean chord length. Of these two measures the Debye 

correlation length is considered more reliable.  The reason is that the mean chord 

length derived from the water saturated subdomains may be erroneous if water has 

the role of host fluid. This occurs because the mean chord length for the water 

saturated domain needs to be extracted from the intersection of two endpoints lying 

on the gas/water interface, which doesn’t always arise when water is a host fluid with 

gas inclusions.   

 

The Debye correlation length showed “almost” a linear decrease with percent gas 

saturation. In particular, the variance of the correlation functions obtained during the 

initial and latter stages of the drainage experiment showed that largest changes in 

correlation functions generally occur around the Debye correlation length. Here, 

double Debye correlation lengths were not examined for saturation dependence; this 

is a subject of future work.  

 

The third statistical measure of use is the linear path function. It is useful for 

obtaining a thorough description of the fluid saturation pattern, in that the linear path 

function is a measure of connected linear paths within the binary maps.  As a statistic 
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in its own right, the linear path functions of the gas and water saturated domain were 

considerably different during the initial stages of the experiment. However, during 

the final stages of the experiment the shape of the linear path functions of both 

domains closely resembled one another. In conjunction with the correlation functions 

it indicates that the saturation patterns do not change significantly during the latter 

stages of the experiment.  

 

The last statistics extracted from the binary maps were based on cluster analysis. 

That is, identifying how many gas and water saturated clusters were present in a 

particular binary map. Probability functions extracted from cluster labelled binary 

maps showed that connectedness and disconnectedness within an image can be 

identified using cluster and blocking functions.  

 

It must be noted that these results are preliminary due to the limited number of 

samples analysed. Moreover further work needs to be conducted to characterise how 

binary mesoscale maps should be created from gas saturation mesoscale maps. 

Should we be seeking to identify “predominantly” or “average” gas/water saturated 

subdomains. In this study I used a simple thresholding technique about average gas 

saturation of a map. Hence the statistics extracted in this chapter are all relative to 

some average pixel which generally contains a percentage of both gas and water. 

One could possibly improve on this thresholding technique.   

 

2.5 Chapter Conclusions 
 

In this chapter statistics were extracted from X-ray tomographic images of partially 

saturated core samples so as to enable description of realistic fluid distributions. By 

analysing the saturation dependence of these statistics, it was shown how saturation 

patterns change as gas saturation is increased during drainage experiments on 

different types of limestone rocks. In particular, the correlation function and the 

correlation length are identified as being the most useful statistics for describing fluid 

saturation patterns and changes in fluid saturation patterns.  
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Chapter 3 

Patchy Saturation Models for Complex and Irregular 

Fluid Distribution   

3.0 Introduction  
 

Maximising the recovery of known hydrocarbon reserves is one of the biggest 

challenges facing the petroleum industry today. One of the causes of low recovery 

rates is the creation of a production-induced transition zone, where the reservoir rock 

is saturated with a mixture of oil, gas, and/or water. In the transition zone the fluids 

form patches of various sizes, with the spatial distribution of patches largely 

controlled by the heterogeneity of the rock itself. Identification of this zone and 

determination of its properties (oil, water and gas saturations) is a key problem in the 

monitoring of petroleum production using time-lapse (4-D) seismic data (Calvert 

2005). In order to solve this problem, it is necessary to know the relationship 

between fluid saturation and seismic characteristics (elastic moduli, velocity and 

attenuation). 

 

Recent X-ray tomographic studies (Chapter 2; Monsen & Johnstadt 2004; Cadoret et 

al. 1995; Cadoret et al. 1998) of partially fluid saturated core samples show fluid 

saturation on the mesoscale that is complex and irregular. Acoustic measurements 

conducted concurrently (Cadoret et al. 1995; Cadoret et al. 1998) indicate that wave 

attenuation and velocity dispersion vary as fluid distribution changes. Most 

theoretical models (White 1975; Johnson 2001; Pride et al. 2004, see Chapter 1, 

Section 1.3) for attenuation and dispersion due to mesoscopic heterogeneities assume 

that fluid heterogeneities are distributed in a regular way.   Although, these models 

allow us to calculate dynamic-equivalent elastic moduli as a function of percent fluid 

saturation and wave frequency, they do not enable us to take into account possible 

effects caused by complex and irregular distribution of pore fluids.  
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In order to evaluate how complex fluid distributions affect attenuation and 

dispersion, we require theoretical models which allow fluid heterogeneities to be 

distributed in less idealised ways. In this Chapter I introduce two such models. The 

first is the 1D continuous random media (1DCRM) model of Müller and Gurevich 

(2004), which utilizes a correlation function that can be changed to model different 

sequences of fluid layers. The second is the discrete random media (DRM) model of 

Ciz and Gurevich (2005) which assumes that fluid heterogeneities are randomly 

distributed spherical inclusions within an otherwise homogeneously saturated rock. I 

also derive a third patchy saturation model, which is a 3-dimensional analogue of 

1DCRM (Müller & Gurevich 2004) called 3DCRM. It utilizes a correlation function 

to describe the three dimensional spatial variation of fluids within an otherwise 

homogeneous rock.   

  

 

The Chapter is organised as follows. In Section 3.1 I introduce 1DCRM and derive 

different correlation functions which show how different layering sequences affect 

attenuation and dispersion. In Section 3.2 I introduce DRM and compare attenuation 

and dispersion estimates against White’s model for periodically distributed spherical 

inclusions. In Section 3.3 I derive 3DCRM and model attenuation and dispersion for 

different correlation functions, fluid contrasts, etc. In Section 3.4, I use 3DCRM to 

model attenuation and dispersion due to different types of randomly distributed fluid 

inclusions, such as spheres In Section 3.5, I show how to use 3DCRM to model 

attenuation and dispersion due to fluid heterogeneities observed in imaged saturation 

maps (Chapter 2).   
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 3.1 1-Dimensional: 1DCRM Layering 

  

It is important to study the effect that thin fluid saturated porous layering has on 

compressional wave propagation as layering is ubiquitous in nature and seismic 

exploration is routinely used to image the subsurface. White et al. (1975) were the 

first to illustrate that mesoscopic layering of different fluids could cause significant 

intrinsic attenuation of compressional waves at seismic frequencies, due to wave 

induced fluid flow.  White and co-authors modelled periodically alternating gas and 

water layers within an otherwise homogeneous porous rock frame. The results of this 

study were later validated by Norris (1993) who recast the problem using Biot’s 

equations of dynamic poroelasticity (Biot 1962).  

 

Gurevich and Lopatnikov (1995) modelled attenuation and dispersion due to wave 

induced fluid flow also using dynamic poroelasticity (Biot 1962). Their approach is 

based on statistical wave theory. They assumed that Biot’s poroelastic coefficients 

could be expressed as smoothly varying random functions of one spatial coordinate. 

Their study revealed that the low frequency asymptote for frequency-dependent 

attenuation due to random layering was proportional to 21 , whilst for periodic 

layering, it was proportional to .  Müller and Gurevich (2004) specialised those 

results to the case of patchy saturation, where only heterogeneities in fluid properties 

exist (this model will be discussed next). Müller and Rothert (2006) provide a 

physical explanation for different low frequency asymptotic attenuation behaviour 

caused by periodic and random layering.  

 

Gelinsky and Shapiro (1997) study attenuation and dispersion due to random 

layering of rock and fluid heterogeneities including (in addition to the wave induced 

fluid flow effects) attenuation and dispersion due to elastic scattering at high wave 

frequencies (see also Gurevich et al. 2007). Gelinsky and Shapiro (1997) show that 

gas saturation of more compliant layers and water saturation of less compliant layers 

reduces attenuation due to wave induced fluid flow, but increases attenuation due to 

scattering. The reverse was also shown, that gas saturation of less compliant layers 

and water saturation of more compliant layers cause wave induced fluid flow 
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attenuation to increase and scattering attenuation to decrease. Gelinsky et al. (1998) 

verified these results numerically.    

 

Pride et al. (2002) use a numerical approach (Kennett reflectivity code) to investigate 

attenuation due to different types of layer sequences. They model attenuation due to 

mesoscopic fluid flow, elastic scattering and global flow mechanisms. They show for 

layer sequences having large variation in layer widths that attenuation due to wave 

induced fluid flow is independent of frequency, whilst for small variations in layer 

widths that mesoscopic fluid flow attenuation is dependent on frequency.  

 

My interest is in identifying attenuation effects due to different types of layered 

systems; however my approach is much simpler. I derive correlation functions which 

can be inserted into the random media model of Müller and Gurevich (2004) 

(explained below). In particular, I examine how periodicity and deviations from 

periodicity affect attenuation and dispersion. 

 

The patchy saturation model of Müller and Gurevich (2004) 

 

When pore fluid bulk modulus varies continuously in magnitude in one-spatial 

dimension according to some correlation function  r  within an otherwise 

homogeneous porous rock; attenuation and dispersion can be estimated using the 

patchy saturation model of Müller and Gurevich (2004). This model is a 

specialization of the results of Gurevich and Lopatnikov (1995), which model the 

effective P-wave number for fluctuations in both frame and fluid bulk modulus. The 

saturated P-wave modulus is   

 

      







 



drrikriskHH D
0

2201 exp1
~

 ,  (3.1.1) 

 

where  

  
N

N

ik



2  
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 is the effective slow P-wave number, which is rewritten in shorthand as 

 

          
0

2 D

i
k


  where 

N

N
D




0 .  

 

Here 0D is diffusivity defined in terms of averaged fluid viscosity , permeability  

and by a combination of averaged poroelastic moduli HMLN  , 

where M , L and H are given by Gassmann (1951) (defined in Chapter 1, Section 

1.1.1). The angle brackets donate ensemble averaging and the normalised 

autocorrelation function is   

                                                               
 2z

rzz
r







 , (3.1.2) 

where  represents fluctuations in poroelastic parameters about the mean 

 

      
 

   
 zH

zMz

zH

zMz
z


  ,  (3.1.3) 

and s is a dimensionless coefficient given by  
















 12

2

21
11

NL
N

LH
s

 . (3.1.4) 

 

When there are only variations in fluid bulk modulus Equation (3.1.3) implies 

   zz MM  , as the variation in the saturated P-wave modulus H in Equation (3.1.3) 

due to variations in fluid modulus M are small, that is   HzH  . As the statistical 

approach employed by Gurevich and Lopatnikov (1995) utilizes the so-called 

method of statistical smoothing (Karel & Keller 1964) widely used in the theory of 

waves in random media; the 1DCRM  model (Equation 3.1.1) is accurate for small 

contrasts in fluid bulk modulus and approximate when fluid contrast  increases.  

 

By varying the correlation function different 1D fluid distributions can be 

considered. In particular, when it is assumed that the pore-space is saturated by only 

two fluids, attenuation and dispersion due to binary fluid distributions can be 

modelled. In the next three subsections, attenuation and dispersion is modelled due to 

different types of binary layered media.  
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3.1.1 Attenuation and Dispersion: Due to Periodic Layering  

 

In the study of Gurevich and Lopatnikov (1995) and Gurevich et al. (1997) the 

random media approach was used to model effects due to periodic layering, even 

though the approach was not originally designed for this purpose. They modelled 

periodic layering using a saw tooth autocorrelation function, thus restricting analysis 

of attenuation and dispersion to periodic layering consisting of layers of equal 

thickness (i.e. 50% saturation). Here I derive a new correlation function, which is 

less restrictive. It will allow us to investigate whether the 1DCRM approach can be 

adapted to model attenuation and dispersion due to binary periodic layering having 

any relative layer widths (i.e. arbitrary percentage fluid saturation). Here we assume 

that rock saturated by fluid one and fluid two has layer widths 1L  and 12 LLL P   

where PL is the spatial repetition width.   

 

In order to use the 1DCRM it is necessary to derive a correlation function 

appropriate for periodic layering. The approach utilized here is to take a rectangular 

periodic function (see Figure 3.1.1.1) given by   

 

 





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 ....0
0

221 11 n
otherwise

nLLrL
rrect P                       (3.1.1.1) 

and explicitly perform the autocorrelation (thereby assuming a random shift). This 

produces an autocorrelation function which is a triangular periodic function given by    
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rtri

PPP

PP

P

       (3.1.1.2) 

Here no restrictions are placed on layer width, which means that any percentage fluid 

saturation can be considered with Equation (3.1.1.2).This is substituted into Equation 

(3.1.1) to obtain an effective saturated P-wave modulus of   

    221

~
1

~
kBiskHH BGWD   ,                                (3.1.1.3) 

where  
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                                                                                                                           (3.1.1.4) 

 

In Figure 3.1.1.2, attenuation and dispersion are modelled for periodic layering of 

light gas and water; the physical properties are shown in Tables 3.1.1.1 and 3.1.1.2. 

The gas layer width 61 L cm and the water layer width is 14cm ( 20PL cm), this 

corresponds to 70% layering of water with another low contrasting fluid. Attenuation 

and dispersion are estimated using Johnson’s model (Equation 1.3.2.10 and Equation 

1.3.2.5) (solid line) and 1DCRM with periodic correlation function (Equation 3.1.1.3 

with Equation 3.1.1.4) (dashed line). The figure shows that (a) attenuation and (b) 

dispersion estimates obtained from both models correspond closely. Hence, the 

random media approach (1DCRM) accurately predicts for arbitrary saturation 

percentages the effect of periodic stratification, even though it was not originally 

designed for this purpose.   

 

Table 3.1.1.1: Rock properties    

 

 

          Table 3.1.1.2: Saturating fluid properties  

 

Kfw     

Water 

2.25 

GPa 

Kf -lc 

Low contrast 

with water 

2.0 

GPa 

Kf  

Heavy gas 

0.25 

GPa  

Kf    

Light gas  

0.1  

GPa 

w 990 

Kg/m3 

w-lc 990 

Kg/m3 

 400  

Kg/m3 

g 100  

Kg/m3 

w 1e-3  

Pa s 

w-lc 1e-3  

Pa s 

 6e-5  

Pa s 

2 3e-5  

Pa s 

 

K 7  

GPa 

Kg 35  

GPa 

 0.08 

 9  

GPa 

g 2650 Kg/m3  1e-13  

m2 
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Figure 3.1.1.1: Construction of autocorrelation function for periodic layering. (a) Shows 

periodic layered media, (b) corresponding periodic pulse sequence and (c) autocorrelation 

of periodic pulse sequence as given by a triangular function.    
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Figure 3.1.1.2 Frequency-dependent attenuation and dispersion estimates from 1DCRM and 

Johnson (2001) for periodic layering. (a) Shows attenuation and (b) shows velocity predicted 

using 1DCRM (dotted line) and Johnson (solid line). Clearly there is good agreement 

between both approaches.  



 Patchy Saturation Models for Complex and Irregular Fluid Distribution  
__________________________________________________________________________ 

____________________________________________________________________  
3-91  

3.1.2 Attenuation and Dispersion: due to Quasi-Periodic Layering   

 

Strictly periodic systems are unlikely to exist in the earth. I am therefore interested to 

explore deviations from periodicity on patchy saturation signatures. Specifically, 

layering which is almost spatially periodic is called quasi-periodic.  One type of 

quasi-periodic layered media arises when a layer of fixed width P is repeated at a 

repetition period comprising of an average spatial period PL  plus a random spatial 

shift k . See Figure 3.1.2.1 (a) where layer 1 (cross hatched) is of constant length, 

whilst layer 2 (dotted) is almost of constant length.  

 

Layered systems of this kind stand in direct analogy to sequences of binary random 

pulses (Levin 1968, Franks 1969), which  are  characterised by a series of rectangular 

pulses of fixed amplitude one separated by periods of amplitude 0, see Figure 3.1.2.1 

(b) and (c). Spectral densities and correlation functions derived for binary random 

pulse sequences can be suitably modified and incorporated into the 1DCRM 

(Equation 3.1.1). Here I derive a correlation function for quasi-periodic layering, 

which I substitute into Equation (3.1.1) to obtain the saturated P-wave modulus for 

quasi-periodic layered media.     

 

Levin (1968) has derived the (power) spectral density corresponding to the quasi-

periodic random pulse sequence (shown in Figure 3.1.2.1(c)) as  
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Here  x  is the Dirac delta function and    
x

x
x

sin
sinc  , whilst  R  is the 

characteristic function of the probability density function w  of the random variable , 

that is 

       dgiR  exp .                                     (3.1.2.2) 

To derive the correlation function, the inverse Fourier transform of Equation 

(3.1.2.1) is taken giving  
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where   refers to convolution,      tgtgtG  and  xtri  is a symmetric triangular 

function.     

 

This expression (Equation 3.1.2.3) is manipulated further to give  
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As Equation (3.1.2.4) was obtained for a positive signal with unit amplitude, I need 

to subtract the squared mean of the signal to obtain a correlation function for a 

centred signal. I also need to normalise the correlation function, when both are done:  
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                                                                                                                           (3.1.2.5)  

  

Hence the correlation function due to quasi periodic layering is composed of three 

different types of contributions:   

 

(1) aperiodic component given by:  
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(2) constant component given by: 

   PT

P
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P
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 ,                                    (3.1.2.7)  

(3)  periodic component given by: 
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To calculate wave attenuation and dispersion due to quasi periodic layering 

Equations (3.1.2.6)-(3.1.2.8) can be substituted into Equation (3.1.1).  
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For the aperiodic component:  
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For the constant component:  
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For the periodic component: 
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which simplifies after much algebra to  
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The addition of Equations (3.1.2.9) –(3.1.2.11) gives  
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This is further manipulated to  
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where  R is defined for any PTPk 0  as   

           















22

sin
hh

R


 .  

 

Equation (3.1.2.12) can be substituted into Equation (3.1.1.3) to obtain the saturated 

P-wave modulus due to quasi-periodic layering, by setting 2ik  

 

In this example, I compare estimates from 1DCRM using the quasi-periodic 

correlation function against Johnson’s approach for periodic layering. I model 30% 

light gas layering which repeats quasi-periodically with water layers. Figure 3.1.2.2 

shows (a) attenuation and (b) dispersion for each approach. The quasi-periodic 

attenuation curve (dotted line) is slightly broader than the periodic attenuation curve 

(solid line) and the quasi-periodic velocity curve has the same velocity as the 

periodic curve, at lower wave frequencies. Despite these observations, there is very 

little difference in the patchy saturation signatures of quasi-periodic and periodic 

layering, unlike the case of random layering which shall be discussed next.  
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Figure 3.1.2.1: Quasi-periodic layers and pulses. (a) Shows quasi periodic repetition of 

more compressible fluid layers in terms of spatial layers, (b) shows the spatial repetition 

period and random shift, (c) Shows the random binary signal analogy from radio physics.  
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Figure 3.1.2.2: 1DCRM with quasi-periodic correlation function versus Johnson (2001) for 

periodic layering. (a) Shows attenuation and (b) dispersion due to 30 percent layering light 

gas within water. The quasi periodic attenuation curve (dotted line) is slightly broader than 

the periodic attenuation curve (solid line), whilst rapid velocity dispersion occurs at lower 

frequencies for the quasi periodic layering than for periodic layering.  
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3.1.3 Attenuation and Dispersion: due to Random Layering  

 

Like periodic and quasi-periodic models, a randomly layered sequence of two 

different fluids will consist of individual layers which are fully saturated by only one 

type of fluid. However, unlike the preceding layered media models all layers are of 

variable width. That is, gas layers and water layers alternate at random spatial 

intervals. One way of interpreting such layered sequences is in terms of a random 

facsimile signal (Franks 1969). Here I modify Franks’ terminology to suit the 

application of random layering of two fluids, hence showing what sort of correlation 

function can be utilized to model this type of layering.  

 

One can define a random function  rx which has a binary output, such that   0rx for 

gas saturated layers and   1rx for water saturated layers where the probabilities of 

gas and water saturated layers are    21 10 vvrxP   and    21 vrxP  . The spatial 

length between successive gas to water and water to gas transitions is a random 

variable. This can be modelled by assuming that  ,.....3,2,1,0; krk  is an ordered 

sequence of random variables distributed over the entire real line according to a 

Poisson point process with rate parameter p . The rate parameter p is equivalent to 

the average number of transitions between gas and water in a unit interval. In the 

intervals defined by the random points kr ,  rx has a constant value of 0 or 1. 

Furthermore, the values of  rx in different intervals are statistically independent.  

 

The layer sequence has a mean value of      21Pr vrxrx   which is equivalent to 

average water saturation. The autocorrelation function (un-normalised, un-centred) is  

      1&1Pr  rxRrxRr ,                        (3.1.3.1) 

where probabilities in Equation (3.1.3.1) depend on whether r and Rr  are in same or 

different spatial intervals defined by kr . Let A refer to event   1 Rrx and B refer to 

the event   1rx . The probability of r and Rr  residing in the same interval is:   

           2PrPr&Pr1&1Pr vA
BABArxRrx  ,          (3.1.3.2)  

 as events A and B are statistically dependent. The probability that r and Rr  reside in 

different intervals is: 

           2
2PrPr&Pr1&1Pr vBABArxRrx  ,           (3.1.3.3) 
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as events A and B are statistically independent.  

 

Moreover, the probability that r and Rr   reside in the same interval 

is    RRP  exp0  as it is a Poisson point process.  

 

The correlation function is then  

                      RvRvR pp   exp1exp 2
22     2

222 exp1 vRvv p   .     (3.1.3.4)  

Equation (3.1.3.4) is un-normalised and un-centred, hence it needs to be converted   

                                              
 
   R

vv

vR
p


 




 exp
1

~

22

2
2                                      (3.1.3.5) 

Equation (3.1.3.5) shows that the correlation function for random layering (described 

by a Poisson point process) is given by an exponential function. By comparing 

Equation (3.1.3.5) with  

    








 


a

r
r

2
exp ,                                              (3.1.3.6) 

we see that  

ad

2
 .  

This means that the correlation length a  is an inverse of the rate parameter p . That 

is, if there are lots of transitions between gas and water saturated layers occurring 

within the unit interval, than the correlation length is small. Thus, a small correlation 

length could be used to model finely distributed random layers. On the other hand, if 

fewer water gas transitions occur within the unit interval then the correlation length 

is large. This would produce random layering which is coarse. To model attenuation 

and dispersion Equation (3.1.3.6) is substituted into Equation (3.1.3) giving (Müller 

& Gurevich 2004) 

                                             


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


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




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HH BGW
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1
~  ,                                         (3.1.3.7) 

where BGWH is Woods limit on the saturated P-wave modulus and  

 

                                                       
 
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s
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In Figure 3.1.3, I compare attenuation and velocity dispersion for random layering 

and periodic layering. I use 1DCRM with an exponential correlation function 

(Equation 3.1.3.7) to model wave induced fluid flow arising between random 

layering; whilst Johnson’s approach is utilized to model wave induced fluid flow for 

periodic layering.  For consistency, I assume that there is 30% light gas layers 

randomly or periodically distributed within water layers. The rock frame and fluid 

properties are the same as those listed in Tables 3.1.1.1 and 3.1.1.2.  

 

Figure 3.1.3 (a) shows that attenuation due to random (dotted line) and periodic 

(solid line) layering exhibits different frequency dependency at low frequencies. 

Also, the attenuation curve is broader for random layering than for periodic layering. 

This means that attenuation due to random layering will be substantially greater at 

lower wave frequencies than attenuation due to periodic layering (providing of 

coarse scaling of correlation lengths and layer widths are comparable).  

 

Figure 3.1.3 (b) shows velocity dispersion curves for random (dotted line) and 

periodic (solid line) stratification of light gas and water. Both models approach the 

theoretical limits on velocity given by Gassmann-Wood and Gassmann-Hill. The 

bandwidth over which velocity changes most rapidly is wider for random layering 

than for periodic layering.    
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(b) 

 

Figure 3.1.3.1: 1DCRM with exponential correlation function versus Johnson (2001) for 

periodic layering. (a) Shows attenuation and (b) dispersion due to 30 percent layering of 

light gas within water. The attenuation curve for random layering (dotted line) has different 

frequency dependence at low frequencies relative to the periodic attenuation curve (solid 

line). The velocity dispersion occurs across a wider bandwidth random layering than for 

periodic layering.   
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3.2 3-Dimensional: Random Distribution of Spherical 
Inclusions  
 
 

Small gas bubbles in water and small liquid drops in gas are likely to assume a 

spherical shape because of surface tension. Surface tension is force acting tangential 

to the surface of an interface separating two dissimilar fluids (Bachelor 1967).  

Surface tension arises because different fluids have different intermolecular cohesive 

forces (Chang 1994). For instance, cohesive forces like dipole moments are 

responsible for attraction between neighbouring polar molecules within water. Water 

molecules away from the gas-water interface experience balanced cohesive forces, 

where as water molecules adjacent to the interface experience unbalanced cohesive 

forces (due to the presence of neighbouring gas molecules). The unbalanced forces 

cause water molecules to be drawn inwards and sideways along the interface, this 

minimizes the interfacial surface area. Hence, spherical shaped gas bubbles and 

liquid drops are formed (see Figure 3.2.1).    

 

In porous media the physics which dictates the shape of heterogeneous fluid patches, 

such as minimization of interfacial surface area (between fluid-fluid and fluid-solid), 

the process and history of fluid saturation within rock, the shape of pore-spaces, fluid 

transport properties, rock wettability etc., is not fully understood. Hence, as a first 

start towards modelling attenuation/dispersion due to realistic three dimensional fluid 

distributions in porous rock, some studies (Ciz et al. 2005; 2006; Markov et al. 2007) 

have assumed in analogy to bubbly fluids, a random distribution of spherical shaped 

fluid inclusions. In this Section I outline the approach of Ciz et al. (2006) as it will be 

utilized extensively in Chapters Four and Five.   

 

Ciz et al. (2005, 2006) have derived explicit expressions for attenuation and phase 

velocity dispersion due to a random distribution of spherical heterogeneities within 

porous rock. I call their model DRM, which stands for discrete random media. The 

derivation of their model, involves two main stages. In the first stage a problem of 

scattering by a single inclusion is analysed. Under the assumption of mesoscopic 

inclusion this analysis yields a closed-form solution for the scattering amplitude (Ciz 

& Gurevich 2005). The second stage utilizes the Waterman and Truell (1961) 
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theorem of multiple scattering to approximate the scattered wave field of a system of 

randomly distributed poroelastic inclusions (Ciz & Gurevich 2005). 

 

 

 

Figure 3.2.1: A spherical gas bubble in a liquid. The arrows denote intermolecular cohesive 

forces acting between molecules, 

 

3.2.1 Single inclusion scattering   

 

The problem of scattering of an elastic wave in a poroelastic material (host) by a 

spherical inclusion of another poroelastic material (inclusion) was first considered by 

Berryman (1985). When the incident wave interacts with the inclusion of radius a, it 

produces fast and slow compressional waves and a shear wave in the host (called 

scattered or reflected waves) and three of the same kinds of waves within the 

inclusion (called refracted waves), Figure 3.2.1.1.  

 

Both the inclusion and host medium are described by Gassmann equations (1.1.7-

1.1.9) and Biot’s equations of poroelasticity (1.1.1-1.1.3). Standard boundary 

conditions (Dersiewicz & Shalak 1963) apply on the interface between the inclusion 

and host at ar  : 
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I.    continuity of normal stress  

II. continuity of tangential stress  

III. continuity of normal average solid displacement  

IV. continuity of tangential average solid  displacement  

V. continuity of fluid pressure 

VI. continuity of average relative solid-fluid displacement  

 

Similarly to the corresponding scattering problem in elasticity (Yamakawa 1962), the 

solution of poroelastic scattering problem is sought for by expanding the reflected 

and refracted waveforms in series of spherical harmonics (Berryman 1985):  

 

(1) (1)
1 2 2

0

( ) ( ) (cos )n n
r n n n
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B Bd d
u h k r h k r P
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            (3.2.1.1) 
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 
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 

 
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 
 

 , 

where, u1r  and u3r are normal displacements in the host and inclusion and 
nB  , 

nB , 


nD , 

nD  are coefficients corresponding to reflected and refracted fast and slow 

harmonics of order n, )1(
nj , )1(

nh , are spherical Bessel functions of the first and third 

kind, (cos )nP   is the Legendre polynomial of the order n and k , k  are wave 

numbers of the fast and slow waves.  Similar representation is derived for the polar 

angle components of displacements, which involve scattering coefficients nC  and 

nE  corresponding to reflected and refracted shear wave. 

 

Application of the standard boundary conditions yields a 66 system of linear 

equations in terms of six unknown wave field coefficients of each order 1n . For 

order 0n   a similar 44 system of linear equations in terms of 4 unknown wave 

field coefficients is obtained (Berryman 1985).  
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The general infinite series formulation of Berryman (1985) gives a complete solution 

of the single scattering problem for an inclusion of arbitrary size (larger than the pore 

size) and for any frequency. Ciz and Gurevich (2005) showed that this solution can 

be greatly simplified if the frequency is small compared to Biot’s characteristic 

frequency, and the inclusion is mesoscopic. In particular, they showed that at most 

three first terms of the series are significant in this case, and gave explicit analytical 

expressions for these terms.  

 

Furthermore, it was shown that the term with 2n   is proportional to the difference 

in shear modulus between the inclusion and the host medium. Thus in the specific 

case where the inclusion differs from the host medium by the fluid properties only, 

this term can be neglected and the scattering coefficient of the fast compressional 

wave is given by  the sum of the zero-order and first-order terms with coefficients 

(Ciz et al. 2005): 

 

                      
 

 
  




















 











 







)1(

1

)1(
0'

'
1

'
0'

2

''

'
3

''

'3

0
3 h

h
N

j

j
N

H

C

H

C
Hi

H

KKi
B ,         (3.2.1.2) 

                                                       
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1B .                                           (3.2.1.3) 

In these expressions, ak  , a prime (or no prime) above a parameter denotes 

within the inclusion (or host), whilst   refers to the effective density of the porous 

rock.  

  

 

Figure 3.2.1.1: Shows the incident plane fast compressional wave and the reflected and 

refracted waves. 
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3.2.2 Random Distribution of Inclusions 

 

Waterman and Truell (1961) showed that the velocity and attenuation of waves 

propagating in a medium containing a random distribution of identical inclusions can 

be related to the amplitude of the waves scattered from a single inclusion (Figure 

3.2.2.1). According to their theory, the complex effective wave number is given by:  

 

                                  
2 2 2

2 2

2 (0) 2 ( )
1effk f f

k k k

  
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     
,                      (3.2.2.1)

  

where k v   is the wave number of the fast P-wave in the host,   is the density 

or number of scatterers per unit volume, and (0)f ,  ( )f   are forward and backward 

scattering amplitudes which are related to scattering coefficients by 
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    ,                    (3.2.2.2) 

For random distribution of mesoscopic fluid patches the scattering amplitudes are 

determined by substituting scattering coefficients (3.2.1.2) and (3.2.1.3) into 

(3.2.2.2). Incorporating a weak scattering approximation and neglecting quadratic 

terms in   reduces the effective wave number (3.2.2.1) to 
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Real and imaginary components of effk , yield the effective phase velocity effv and 

dimensionless attenuation (inverse quality factor) Q-1  
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where  34 3 a   is the fractional volume concentration of the inclusions. 

The discrete random media model discussed here models fluid patches of spherical 

shape, and in this respect it is similar to the regular cell models (White 1975; 

Johnson 2001; Pride et al. 2004). However, unlike these models, DRM is based on 

scattering theory and thus implies that fluid inclusions are distributed randomly 

through out the rock, which is more realistic.  On the other hand, since phase velocity 

and attenuation estimates (3.2.2.4) and (3.2.2.5) are based on applying the single 

scattering approximation of Waterman and Truell, DRM is limited to small 

concentrations of inclusions. The range of admissible concentrations depends on 

contrasts in fluid properties between the inclusion and the host medium.  

 

The next example models attenuation and phase velocity due to a random 

distribution of spherical inclusions (using the DRM model above) and a periodic 

distribution of spherical inclusions (using White’s model (1975) as the reference 

model). In Figure 3.2.2.1, attenuation and phase velocity are shown when there are 

small contrasts in saturating fluids (a) 0.1% heavy gas and (b) 10% heavy gas within 

an otherwise water saturated rock. In both cases, the more compressible fluids are 

modelled as inclusions. In (c) the more compressible fluid is modelled as the host 

saturating fluid for the situation of large contrasts between fluids. Figure 3.2.2.1, top 

row (a) shows good agreement between attenuation and phase velocity estimates for 

small contrasts in fluid properties when the volume concentration of the included 

phase is small. Figure 3.2.2.1, middle row (b) shows a larger volume concentration 

of the included fluid results in different attenuation and phase velocity estimates. In 

particular, the phase velocity estimate of the DRM does not converge to the low 

frequency Gassmann-Wood limit.  This is a consequence of the weak scattering 

approximation employed in the models derivation.  

 

When the more compressible fluid is modelled as the host saturating fluid, the DRM 

can handle larger contrasts in fluid properties. In (c), attenuation and phase velocity 



 Patchy Saturation Models for Complex and Irregular Fluid Distribution  
__________________________________________________________________________ 

____________________________________________________________________  
3-107  

dispersion is modelled for 50% water inclusions within an otherwise air saturated 

host rock of porosity 0.08. There is very good agreement between attenuation and 

phase velocity estimates. Figure 3.2.2.1, shows that the attenuation behaviour of 

periodic and random distributions of fluid inclusions is proportional to  for low 

frequencies and proportional to 21 for high frequencies. Providing the weak 

scattering conditions are met, there is good agreement between attenuation and phase 

velocity estimates for periodic and random distributions of fluid inclusions.  

 

 

 

 

 

 

Figure 3.2.2.1: Showing a compressional wave incident on a random distribution of 

spherical inclusions of another poroelastic material. 
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Figure 3.2.2.2: Attenuation and dispersion estimates from heavy gas inclusions within an 

otherwise water saturated porous rock of porosity 0.08. White’s model (solid line)), Ciz and 

Gurevich (dotted line)) (a) has an inclusion concentration of 0.1 % (b) has an inclusion 

concentration of 10%, (c) attenuation and dispersion when the more compressible fluid is 

modelled as the host saturating fluid. In this case, water inclusions are modelled within an 

air saturated host rock. Good agreement is seen between periodic and random estimates.  
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3.3 3-Dimensional-Continuous Random Media (3DCRM)  

 

Both of the partial saturation models (1DCRM) and (DRM) outlined above allow 

attenuation and dispersion to be estimated due to fluid geometries that are more 

realistic than the idealised geometries assumed by White’s periodic approach 

(Section 1.3.1). However, they are still not suitable for modelling attenuation and 

dispersion due to fluid distributions obtained from saturation maps (Chapter Two). 

As the first model assumes complex layering and the second model assumes fluid 

inclusions are fixed in size and shape, whilst Chapter 2 fluid distributions were 

shown to be described well by correlation functions, like an exponential function 

(Debye correlation function). 

 

In this section I develop a patchy saturation model, which allows greater versatility 

and flexibility in the distribution of pore fluids. Thus, it is more suited to the problem 

of modelling attenuation and dispersion due to realistic fluid distributions.  The basis 

of this model is the generalised 3-dimensional poroelastic model of Müller and 

Gurevich (2005a, 2005b).  Their model allows attenuation and dispersion to be 

predicted due to mesoscale heterogeneities in the bulk and shear modulus of the 

porous rock frame, in addition to heterogeneous fluid saturation.  Such a medium is 

described by Biot’s equations of poroelasticity with poroelastic coefficients that are 

continuous random functions of position. The Müller and Gurevich (2005a,b)  

approach is the same as that utilized by Gurevich and Lopatnikov (1995). Hence 

statistical smoothing is applied, which limits the precision of the model to small 

contrast in the physical properties of the heterogeneities.     

 

According to Müller and Gurevich (2005a,b), the complex effective P-wave number 

in a 3-dimensional heterogeneous porous solid is  

    





  




0

2
12 exp1 drrikrrkkk eff  ,  (3.3.1) 

with dimensionless coefficients given by,  

                             222
2

2

1 2
2

MMLMLL
H

ML 
  , 2

2
2

2 22 MMLL H

M

H

L   , (3.3.2) 

where Hk  , Nik  ,are the fast and slow P-wave numbers for the 

background medium,  r is the normalised spatial correlation function which 
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describes the spatial variation in rock/fluid properties (see Figure 3.3.1) and xx ’s 

are normalised variances of the different elastic moduli and HNML ,,,  are poroelastic 

moduli given by Gassmann (see Chapter 1, Section 1.1.1).   

 

For partial fluid saturation, only variances in fluid modulus M exist, so that 

0 LMLL  , This reduces the complexity of the dimensionless coefficients in 

Equation (3.3.2) to 2 2
2 2MMM H    and  1 2L H   . To obtain the fast and 

slow P-wave numbers for the average background media, it is necessary to calculate 

the average properties of the fluid modulus M, saturated P-wave modulus H and fluid 

viscosity η. This is accomplished by taking the saturation-weighted average of each 

property: 2211 vXvXX  , where 21 , vv are percent saturation of each fluid and 

121  vv . Thus the average fluid modulus is 22110 vMvMM  ; the average viscosity 

is 22110 vv   and the average saturated P-wave modulus is 0
2

0 MLH  .  

 

By using  

        tot

eff

eff
eff

H
k

v 
 

Re
, 

Equation (3.3.1) can be transformed into an effective complex saturated P-wave 

modulus given by: 

                                           
2

0

2
120 exp1 






  



 drrikrrkHHeff  ,  (3.3.3)

       

where 0H is the average background P-wave modulus determined from Gassmann’s 

equation using the average fluid modulus M . Real and imaginary components of 

(3.3.3) yield the effective phase velocity   effeff Hv Re  and specific attenuation 

(inverse quality factor)    effeffeff HHQ ReIm1   respectively. 
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Figure 3.3.1: An idealized representation of a random medium described by some 

correlation function  r   

 

3.3.1 Low and high frequency limits  

 

Application of statistical smoothing in the inception of the generalised framework of 

Müller and Gurevich (2005a) limits the accuracy of Equation (3.3.3) to pore fluids 

having small contrast in fluid bulk moduli 1MM  . This can be seen by studying 

the theoretical low- and high frequency limits on the P-wave moduli obtained from 

Equation (3.3.3). They are:  

 2

0 21lowH H  ,                                               (3.3.1.1)  

and  

 2
120 1  HH high ,                                     (3.3.1.2) 

 respectively. For small contrast in fluid properties 1MM   these moduli approach 

theoretical Gassmann-Wood WH  and Gassmann-Hill HH  limits as given by 

equations (1.1.7)-(1.1.9) and (1.2.2.1), and (1.2.2.2) respectively.  
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I will now show that the model does converge to Gassmann-Wood and Gassmann-

Hill limits for small contrasting fluids. Let the fluid moduli for fluid 1 and fluid 2 be 

                                           101  MM  and 202  MM ,                                    (3.3.1.3)  

where 1  and 2  are displacement fluid moduli for each respective fluid. By taking 

the average 02211 MvMvM  ; the second fluid displacement modulus can be formulated 

in terms of the first fluid displacement modulus
2

11
2 v

v   , this gives a normalised 

variance of
2
0

2
1

2

1
2

2

2 1
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  . 

 

Firstly, consider the effective fluid modulus WM obtained using Wood law 
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             (3.3.1.4) 

 This shows that effective fluid modulus for Wood’s limit is equal to the harmonic 

average of both fluid moduli. Substitution of Equations (3.3.1.3) into (3.3.1.4) gives  
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 .                  (3.3.1.5) 

The saturated P-wave modulus at Woods limit is then  

                                  
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HMLH WW  .                        (3.3.1.6)

  

Now consider (3.3.1.1)  
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                                                                                                                           (3.3.1.7) 

where the last term in (3.3.1.7) is small when contrast is small. 

  

Consider high frequencies, using Gassmann (Eq. (1.1.7)-(1.1.9)) the saturated P-

wave modulus for the regions of the rock saturated by fluid 1 and fluid 2 are  

1
2

1 MLH  and 2
2

2 MLH  .                             (3.3.1.8) 
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Substitution of (3.3.1.8) into Hills limit (1.2.2.2) gives  
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 .          (3.3.1.9)               

Now consider the high frequency limit of the model (Equation  3.3.1.2)  
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 .   (3.3.1.10)  

Thus as contrast becomes small Equations (3.3.1.9) and (3.3.1.10) will converge.   

 

In other words, the moduli given by Equations (3.3.1.1) and (3.3.1.2) are 

asymptotically consistent with Gassmann-Wood and Gassmann-Hill limits for small 

contrast in fluid modulus.  However, in partially saturated rocks the variation in fluid 

properties is often large, resulting in significant deviation of predicted low- and high-

frequency moduli from the theoretical limits.  

 

To make the model consistent with the theoretical limits of Gassmann-Wood 

equations and Gassmann-Hill equations, I introduce a scaling function: 

                              
1 eff lowH W

SC W
high low W

H HH H
H H

H H H




 
     

.                      (3.3.1.11) 

The new complex modulus  SCH   predicted by Equation (3.3.1.11) behaves 

similarly to that predicted by Equation (3.3.3) but is consistent with the theoretical 

limits when contrast in fluid bulk moduli is large. This scaled model is called the 3D 

continuous random media (3DCRM) of patchy saturation. 

 

The scaling function approximation (3.3.1.11) can be understood as taking the exact 

frequency dependence of the saturated P-wave modulus (at low fluid contrast) and 

supposing that for high fluid contrast the frequency-dependent characteristics (in 

Equation (3.3.1.11)) are the same. That is, the only factor considered to effect the 

frequency-dependent characteristics of the saturated P-wave modulus is fluid 

distribution, which is described by a correlation function.   
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3.3.2 Different Fluid Distributions: Exponential and Gaussian 

Correlation Functions   

 

Dispersion and attenuation in CRM depends on the correlation function  r , which 

in turn is determined by the spatial distribution of saturating fluids. To obtain closed-

form expressions for Equation (3.3.3) one needs to specify the correlation function.  

 

In particular, for an exponential correlation function (Debye random media)  

   arr  exp  ,       (3.3.2.1) 

the effective complex P-wave modulus is  
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where b is the correlation length, which characterizes a characteristic length of the 

inhomogeneities.   

 

For a double Debye correlation function of: 
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the effective complex P-wave modulus is  
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For a Gaussian correlation function  

   22exp brr  ,                                 (3.3.2.5) 

equation (3.3.3) yields: 

    222
120 )(erfc)exp(121 yyyyHH eff   ,                     (3.3.2.6) 

where erfc denotes the complementary error function and 2/biky  .   

 

I note that for a large class of correlation functions explicit expressions for the 

effective P-wave modulus can be obtained, such as for a fractal distribution of fluids 

(Müller et al. 2008). In the next couple of examples, I will illustrate some general 

properties of 3DCRM.  
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I. Shape of attenuation and dispersion curves  

 

The physical properties used in this example correspond to 30% light gas saturation 

in an otherwise water saturated rock (as shown in Tables (3.1.1.1) and (3.1.1.2)). 

Figure 3.3.2.1 shows (a) attenuation and (b) velocity estimates obtained using 

exponential and Gaussian correlation functions. Both attenuation curves have the 

same frequency dependence at low frequencies, being proportional to . However at 

high frequency the attenuation curves display different frequency dependencies, with 

the exponential being proportional to 2/1 , whilst the Gaussian is proportional to 1 .  

(b) Shows the frequency bandwidth for which velocity changes rapidly is wider for 

exponentially correlated fluid distributions than for the Gaussian correlated fluid 

distributions.  

 

II. Peak frequency of attenuation   

 

The rock properties used in this example are for the same rock as above, the fluid 

properties are 30% heavy gas saturation in an otherwise water saturated rock (as 

given in Table 3.1.1.2). Figure 3.3.2.2 shows frequency-dependent (a) attenuation 

and (b) velocity estimates obtained using an exponential correlation function with 

different correlation lengths ranging from a=0.5m to a=0.0625m . As the correlation 

length decreases the frequency at which attenuation is maximum shifts towards 

higher frequencies. Similarly the frequency bandwidth over which velocity changes 

most rapidly, also shifts to higher frequencies. Although not shown here a similar 

effect has been observed by having a fixed correlation length and varying the 

permeability of the rock. Namely, as permeability decreases the peak frequency of 

attenuation will shift to higher frequencies, whilst for lower permeability the peak 

frequency of attenuation will shift to lower frequencies (Müller et al. 2007). 

 

Figure 3.3.2.3 shows the peak frequency of attenuation for a range of rock 

permeabilities (~1 to 0.001 Darcy) having fluid heterogeneities of different 

correlation lengths (50cm to 0.25 cm). As the permeability decreases so does the 

frequency at which attenuation peaks for each correlation length. This occurs as fluid 

pressure equilibration in less permeable rocks, requires more time than in highly 

permeable rocks, for a fixed patch size. As the patch size (in terms of correlation 
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length) increases, more time is required for fluid pressure equilibration as the 

diffusion length (refer to Chapter 1, Section 1.2.2) is less than the patch size.    

 

I freely acknowledge that certain regions of the permeability-frequency space (within 

Figure 3.3.2.3) may be dominated by elastic scattering and other mechanisms, etc. 

and that the assumptions of low frequency Biot theory underpinning 3DCRM will be 

invalid. Hence, mesoscopic fluid flow will not be controlling factor on the acoustic 

response of partially saturated rock for these frequencies and permeability.  

Nevertheless, Figure 3.3.2.3 illustrates nicely that attenuation will peak in the seismic 

bandwidth for a range of rock permeabilities and saturation correlation lengths.  

 

III. Magnitude of attenuation  

 

Figure 3.3.2.4 shows maximum attenuation (at peak frequency) as a function of 

Biot’s coefficient (see Chapter 1, Section 1.1). The shear wave modulus of the dry 

frame is altered as to satisfy Poisson ratio v=0.2. Fluid distribution is assumed to be 

exponential and there is 90 % water saturation with 10 % saturation by another fluid 

having moduli of fiK =0.01, 0.1, 1 GPa. The figure highlights two points: 1) as the Biot 

coefficient decreases the magnitude of attenuation deceases. This occurs because 

fluid flow effects are diminished for stiff rocks because the fluid pressure induced by 

rock frame compression is reduced. 2) When the difference in fluid bulk moduli 

decreases, the magnitude of attenuation decreases. This occurs as the rock frame will 

induce similar fluid pressure in fluids of similar compressibility, hence reducing the 

gradient in fluid pressure between heterogeneities and thus wave induced fluid flow 

is diminished.  
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Figure 3.3.2.1: Frequency-dependent attenuation and dispersion from 3DCRM with different 

correlation functions. (a) Shows attenuation and (b) velocity when correlation functions are 

exponential and Gaussian, the correlation lengths are the same. The frequency-dependent 

shapes of the attenuation and dispersion curves are different.  
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Figure 3.3.2.2: The influence of correlation length on attenuation and dispersion. (a) Shows 

attenuation and (b) velocity curves. As the correlation length is reduced, the frequency-

dependent curves are shifted to higher frequencies.  
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Figure 3.3.2.3: Peak attenuation frequency for rocks of different permeabilities having 

different characteristic fluid heterogeneity length scales (correlation lengths).  

 

 

Figure 3.3.2.4: Peak attenuation value as a function of frame stiffness (Biot coefficient) for 

90% water saturated rock having fluid heterogeneities of different compressibility.  
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3.4 Application of 3DCRM to Special Fluid Distributions 

 

In the previous section, 3DCRM was used to model attenuation/dispersion due to 

fluid heterogeneities characterised by specific correlation functions, such as 

exponential and Gaussian. These correlation functions typically arise from random 

media having complex and irregular variations in material properties (Klimes 2002). 

When fluid heterogeneities are distributed using such correlation functions, it is not 

always possible to distinguish an “included” fluid from a “host” fluid. Moreover, in 

some applications we actually want to model fluid inclusions of regular or fixed 

shape. For these situations exponential and Gaussian correlation functions are not 

really suitable.   

 

If we wish to use 3DCRM to model attenuation and dispersion due to a random 

distribution of fluid inclusions (having regular shape), then we need to search for 

appropriate correlation functions. An obvious correlation function to look for is one 

which describes a 3D distribution of randomly positioned spheres. This correlation 

function would allow us to use 3DCRM to model attenuation and dispersion due 

fluid bubbles distributed randomly thorough a rock saturated by another fluid. 

Luckily, I have found such a correlation function (Torquato & Stell 1985); amongst 

two others which are both interesting and relevant: the overlapping spheres 

(Weissberg 1963,Torquato 2002) and random checkerboard (Lu & Torquato 1992).  

In this section, I will model attenuation and dispersion using these three correlation 

functions.  

 

3.4.1 3DCRM for Non-overlapping Spherical Inclusions   

 

The DRM model outlined in Section 3.2 implicitly assumes that fluid heterogeneities 

are present as randomly distributed spheres and thus it assumes a geometry enabling 

us to model attenuation and dispersion due to bubbles. However, DRM is only 

accurate for certain inclusion concentrations and certain fluid contrasts. As such, my 

motivation for using 3DCRM is to find a less restrictive approach to model 

attenuation and dispersion, due to bubble like fluid distributions. 
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The key to using 3DCRM to model attenuation and dispersion due to bubble like 

fluid distributions is knowing the right correlation function to substitute into 

Equation (3.3.3). The correlation function I use was derived by Torquato and Stell 

(1985). It describes the two point probability function of a random distribution of 

non-overlapping spheres in equilibrium (see also Section 5.4). As the evaluation of 

the Torquato and Stell  analytical correlation function requires the inverse Fourier 

transform of a complicated function, I use their tabulated results (given in Table 

3.4.1.1) for illustration. Noting that in principle, one could perform the necessary 

computations to evaluate their correlation function for any inclusion concentrations 

which are physically realisable.     

 

To use the results presented in Table 3.4.1.1, one must convert them to a correlation 

function. To do this I use Equation (2.3.1.2), which shows that the two point 

probability function for the inclusion phase can be derived from the host phase and 

vice versa. In Figure 3.4.1.1 the correlation function is shown for 10%, 20% and 30 

% spherical inclusions. As the inclusion concentration increases, oscillatory 

correlations become more pronounced as there is a higher probability that the two 

offset points are more likely to sample spherical inclusions. 
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Figure: 3.4.1.1: Correlation functions for a 3D random distribution of spherical inclusions. 

The correlation functions for 10%, 20% and 30% saturations are given by symbols *, o, x, 

respectively. The correlation functions for higher inclusion saturations have more 

pronounced oscillations.   
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Table 3.4.1.1: Two point probability function values for the host medium of 

randomly distributed non-overlapping spherical inclusions. 

 

  rS2   rS2   rS2  

r  1.0iv  2.0iv  3.0iv  

0.0 0.9000 0.8000 0.7000 

0.2 0.8705 0.7411 0.6119 

0.4 0.8441 0.6908 0.5418 

0.6 0.8233 0.6539 0.4958 

0.8 0.8104 0.6339 0.4758 

1.0 0.8072 0.6327 0.4814 

1.2 0.8091 0.6393 0.4932 

1.4 0.8100 0.6416 0.4943 

1.6 0.8102 0.6411 0.4911 

1.8 0.8101 0.6401 0.4887 

2.0 0.8100 0.6396 0.4889 

2.2  0.6398 0.4901 

2.4  0.6400 0.4905 

2.6  0.6401 0.4902 

2.8  0.6401 0.4899 

3.0  0.6400 0.4898 

3.2   0.4900 

3.4   0.4901 

3.6   0.4900 

3.8   0.4900 

4.0   0.4900 
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To examine the accuracy of the 3DCRM I make comparisons with DRM. In order to 

utilize the DRM model (Equations 3.2.2.4 and 3.2.2.5) accurately at inclusion 

concentrations of 10% or more, I need to assume that the less compressible fluid is in 

the inclusion, whilst the more compressible fluid is the host. Otherwise, the DRM 

model does not converge to Gassmann-Wood limits.  Hence, I model 10 % water 

inclusions in an otherwise gas saturated host rock.  

 

Figure 3.4.1.2 shows DRM and 3DCRM (with Torquato and Stell (1985) correlation 

function) estimates of (a) attenuation and (b) dispersion due to 10 % randomly 

distributed water inclusions within an otherwise air saturated rock. The attenuation 

and velocity curve for 3DCRM (dashed solid dotted line) are in good agreement with 

DRM (solid line) over the entire frequency range. This indicates that 3DCRM can be 

used to model attenuation and dispersion due to randomly distributed non-

overlapping spherical inclusions.   
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Figure 3.4.1.2: Comparison of DRM and 3DCRM attenuation and dispersion estimates for 

randomly distributed spheres. (a) Shows attenuation and (b) dispersion estimates. The 

frequency-dependent curves are in good agreement.  
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To compare attenuation and dispersion estimates obtained using 3DCRM with (1) 

exponential (Equation 3.3.2.1) and (2) random sphere (Table 3.4.1.1) correlation 

functions, it is necessary to relate key parameters which characterize each type of 

media. The first is characterized by a correlation function and correlation length; 

whilst second (the discrete media) is characterized by a correlation function defined 

in terms of inclusion radius, volume concentration, etc. Below I derive an 

approximate relationship that links the key parameters of each media. The approach 

utilized is to equate the power expansion of the exponential correlation function, to 

the correlation function defined by Torquato (2002) for a random distribution of non-

overlapping spherical inclusions. 

 

For a random array of identical three-dimensional non-overlapping spheres of 

diameter D, an approximate two point probability function valid for small offset r is  

                                                    3

2

1
12 44

rO
D

rZv
r

s
vrS v 






 ,                      (3.4.1.1) 

where vs is the specific surface, defined to be the interface area per unit volume and  

Z is the mean coordination number defined to be the average number of contacts a 

given sphere has with its neighbour (Frisch & Stillinger 1963). By assuming that the 

spheres are isolated (i.e. not in contact) the coordination number becomes zero. 

Furthermore, by considering small offsets and using relation Equation 3.1.2.1 the 

correlation function becomes 

                                                   r
vv

s

vv

vr
s

v
rX v

v

2121

2
11

4
14 


 .                          (3.4.1.2)   

Setting this equal to the exponential correlation function (assuming small offsets) 

gives  

 
a

r

a

r
r

vv

s
rX v 






  1exp

4
1

21

, 

thus  

            
2

21214

R

vv

s

vv
a

spv 
 ,                                 (3.4.1.3) 

where  3
Bspsp Ln  is the number of spheres per unit volume. Equation (3.4.1.3) 

allows us to choose the correlation length (Debye) of the exponential correlation 

function, such that attenuation and dispersion curves have similar frequency scaling 
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to the attenuation and dispersion curves estimated from the DRM. This relation can 

also be modified to enable comparison of 3DCRM with periodically distributed 

spheres (i.e. White’s model) 

                                                           
2

3
2121

3

44

i

C

v R

Rvv

s

vv
a  ,                                 (3.4.1.4) 

 where CR is the composite volume radius (see Chapter 1, Section 1.3).  

 

In the next example I model a rock which is saturated by 10% gas bubbles (fluid bulk 

modulus GPa11 fK ) in an otherwise water saturated rock. Hence, the more 

compressible fluid is modelled as spherical inclusions, whilst the less compressible 

fluid is the host. The spherical inclusions have a radius of r=0.5m and all other rock 

properties are as Table 3.1.1.1. Figure 3.4.1.3 shows (a) attenuation and (b) 

dispersion as predicted by 3DCRM with exponential correlation function (dotted 

line) and with non-overlapping sphere correlation function (dashed and dotted line), 

and DRM (solid line). The first aspect to note is that DRM does not satisfy the lower 

limit on velocity given by Gassmann-Wood equations and hence the approach is 

inaccurate for this modelling scenario. Secondly, the 3DCRM attenuation curve is 

broader when the correlation function is exponential. Thirdly, by setting the 

correlation length according to Equation (3.4.1.3) the frequency at which both 

3DCRM curves peak are in reasonable agreement.  

 

The broadness of the 3DCRM attenuation with exponential correlation function 

relative to the DRM attenuation is not surprising, as the correlation length (given by 

Equation 3.4.1.3) is an average length scale, whilst DRM has only one length scale 

being the inclusion radius. Hence there will be fluid patches (within an exponentially 

correlated media) persisting on length scales less than and greater than the 

correlation length. This means that when wave frequency increases, patches that are 

smaller than the average patch size will remain relaxed, whilst others which are 

larger than the average patch size will become unrelaxed. This has the effect of 

broadening the attenuation curve of the 3DCRM and extending the frequency band 

width for which velocity changes most rapidly.  
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Figure 3.4.1.3: Comparison of DRM and 3DCRM attenuation and dispersion estimates for 

randomly distributed spheres of heavy gas. (a) Shows attenuation and (b) dispersion 

estimates. The DRM approach does not converge to Gassmann-Wood limits and hence the 

attenuation estimates are erroneous.  
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3.4.2 3DCRM Overlapping Sphere Correlation Function 

 

In the previous section, 3DCRM was compared against DRM when fluid 

heterogeneities were randomly distributed non-overlapping spherical inclusions. That 

is, there were randomly distributed spherical fluid inclusions (existing on a 

lengthscale greater than pore scale, but less than wavelength scale) within an 

otherwise homogeneously fluid saturated rock.  It was found that 3DCRM and DRM 

were in good agreement for cases where DRM satisfies the Gassmann-Wood limit. 

Another fluid heterogeneity/geometry which is very similar and also of interest is 

randomly distributed overlapping spherical inclusions (i.e. inclusions may have non 

zero intersection volume).  This type of fluid distribution may arise when the discrete 

spherical fluid patches join together to form larger patches, which could occur when 

the included fluid concentration increases. Here I show by choosing an appropriate 

correlation function that 3DCRM can be used to model attenuation and dispersion 

due to more complicated spherical shapes.   

 

The two point probability function of randomly distributed overlapping spheres 

having sphere radius R (Torquato 2002) is :  

   
  
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;
exp  .                                      (3.4.2.1) 

Here * is the reduced density given by    

  *
21 exp  vS ,                                  (3.4.2.2) 

where 2v is the volume fraction of the host fluid. For overlapping spheres there is 

reduced density, because the union volume of a system of overlapping spheres is less 

than the union volume of a system of non-overlapping spheres (refer to Figure 

3.4.2.1 a). Specifically, the union volume of two overlapping spheres (Figure 3.4.2.1 

(b)) is  
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where  
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and    

    2; 12 RvRrv              ( Rr 2 )           (3.4.2.5) 

Hence the two point probability function is:     

    
































3
*

22 16

1

4

3
exp

R

r

R

r
vrS    ( Rr 2 )              (3.4.2.6) 

and  

                          2
22 vrS  .  ( Rr 2 )              (3.4.2.7) 

Substitution of Equations (3.4.2.6) and (3.4.2.7) into the normalised correlation 

function gives 
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and  

   0r   ( Rr 2 )              (3.4.2.9) 

 

Unfortunately, substitution of Equation (3.4.2.8) into the saturated P-wave modulus 

Equation (3.3.3) results in an integral that I was not able to solve or find an analytical 

solution for. Hence to use this particular correlation function in 3DCRM will require 

numerical integration of Equation (3.3.3) or simplification of the correlation function 

(Equation (3.4.2.8)) to allow analytical integration. In the following examples, I shall 

numerically estimate the integral within Equation (3.3.3) (Section 3.3 page 110).  

  

In the first example, I model attenuation/dispersion due to spherical inclusions of 

heavy gas having total volume concentration of 0.1% within an otherwise water 

saturated rock. Figure 3.4.2.2 shows (a) attenuation and (b) velocity as predicted by 

DRM and 3DCRM with overlapping sphere correlation function (Equation 3.4.2.8). 

Clearly, both curves are in excellent agreement. This is expected as DRM satisfies 

the lower limit on velocities given by Gassmann-Wood; whilst a medium described 

by correlation function (3.4.2.8) at such small volume fractions is representative of a 

system of non-overlapping spheres. That is, at such low volume fractions of 

inclusions there will be little overlap and hence the overlapping sphere correlation 

function can be utilized to model a system of non-overlapping spheres. Thus both 

DRM and 3DCRM curves should be in agreement.  
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(a) 

 

   

 

(b)           (c) 

 

 

Figure 3.4.2.1: Cartoon representation of overlapping sphere fluid distribution. (a) Shows a 

random distribution of spherical inclusions which are permitted to overlap. This can create 

very complicated bubble like shapes. (b) The intersection of the overlapping spheres is 

cross-hatched, this causes reduced density relative to two non-overlapping spheres as shown 

in (c).   
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Figure 3.4.2.2: 3DCRM overlapping and non-overlapping correlation functions. (a) Shows 

correlation functions for 10 % spherical inclusions and (b) for 30% spherical inclusions.  
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Figure 3.4.2.3: Frequency-dependent attenuation and dispersion estimates obtained from 

randomly distributed non-overlapping (DRM) and overlapping spheres (3DCRM) for very 

small inclusion concentrations. (a) Shows attenuation and (b) velocity dispersion. There is 

good agreement between the models because the inclusion concentration is very small and 

hence there is minimal sphere overlap. 
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In the next example, I model attenuation and dispersion due to spherical inclusions of 

heavy gas having total volume concentration of 30 % within an otherwise water 

saturated rock. Figure 3.4.2.3 shows (a) attenuation and (b) velocity as predicted by 

DRM, 3DCRM with overlapping sphere correlation function (Eq 3.4.2.8) and 

3DCRM with non-overlapping sphere correlation function. At volume concentrations 

equal to 30% DRM does not converge to the Gassmann-Wood limit, hence the 

velocity and attenuation estimates of this model are not reliable at this inclusion 

concentration. The 3DCRM with overlapping and non-overlapping correlation 

functions produce attenuation and velocity curves which differ. The high frequency 

asymptotes do not correspond as the volume to surface ratio of the two models is 

different.  

 

The attenuation curve predicted from the overlapping sphere fluid distribution is 

broader than the attenuation curve predicted from the non-overlapping sphere 

approach. The reason for this is that the overlapping sphere distribution creates patch 

sizes which are greater than the diameter of a single sphere when spheres overlap. 

Hence, patches of this width (relative to the inclusion radius) require wave 

frequencies to be lower in order to achieve fluid pressure equilibration. This has the 

effect of broadening the attenuation curve and also increases the frequency 

bandwidth of dispersion.  
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Figure 3.4.2.4: Frequency-dependent attenuation and dispersion estimates obtained from 

randomly distributed non-overlapping (DRM) and overlapping spheres (3DCRM) for 30% 

inclusion concentrations. (a) Shows attenuation and (b) shows dispersion. The DRM (dotted 

line) does not converge to Gassmann-Wood limits and 3DCRM with overlapping (circles) 

and non-overlapping (solid dots) correlation functions produces slightly different 

attenuation and dispersion curves, indicating the presence of overlapping inclusions. 
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3.4.3 Random Checkerboard Correlation Function 

 

Let’s suppose that two pore fluids are distributed randomly throughout the rock, but 

that we do not know, or wish to assume, how they are spatially correlated. This 

scenario can be modelled by partitioning the rock into symmetric cells of some size 

and shape, with cells being randomly assigned as fluid 1 or fluid 2 by probabilities of 

1v and 12 1 vv  , respectively. This is called a symmetric cell material.  

 

One manifestation of a symmetric cell material is when 3d space is tessellated into 

cubes of equal width CL . This type of tessellation produces what is known as the 

random checkerboard (see Figure 3.4.3.1). Lu and Torquato (1992) have derived the 

two point probability function  r2S corresponding to this type of material. It depends 

on the orientation of vector r and its magnitude (Torquato 2002). However, it can be 

converted to a rotationally invariant two point probability function by averaging over 

spherical polar and azimuthal angles (Mecke 1998). For this case  

    2
121

1
22 vvvrWrS                                             (3.4.3.1) 

where  rW 1
2  is a rotationally averaged weighting function, it sums to one and is 

independent of the percent fluid saturation. Note that, one-point weighting functions 

in general depend on the cell shape and size, hence for other types of cell shapes 

(octahedrons etc) the weighting function will be different. Torquato (2002) give the 

analytical and tabulated rotationally averaged  rW 1
2  (see Table 3.4.3.1).  

      

From Equation (3.4.3.1), the normalised and centred correlation function 

corresponding to a 3D checkerboard is determined as  

     rW
vv

vrS
r 1

2
21

2
12 


 .                                      (3.4.3.2) 

 

Hence the correlation function (Equation 3.4.3.2) depends only on the weighting 

function and thus is independent of percent saturation of the two pore fluids, see 

Figure 3.4.3.1(a).  
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Figure 3.4.3.2 (b) shows attenuation and (c) velocity calculated using Equations 

(3.3.3 and 3.3.1.11) for two different cube widths. By reducing the cube width the 

curves are shifted to higher frequencies. These curves represent attenuation and 

dispersion when spatial correlation in pore fluid distribution does not exist. In reality, 

it is highly unlikely that correlation in fluid heterogeneities will be absent because of 

the influence of rock permeability etc. Hence, we would not expect frequency-

dependent curves like this.  Nevertheless, this example shows by tessellating space 

up into cubes and randomly assigning fluids, the attenuation and dispersion estimates 

are dominated by the dimensions of the cube length, and are in fact independent of 

percentage saturation of the pore fluids.     

 

 

 

 

   Table 3.4.3.1: Weights for 3D random checkerboard  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

r    rW 1
2  r    rW 1

2  r    rW 1
2  

0.0 1.0 0.6 0.31199 1.2 0.00857 

0.1 0.85629 0.7 0.23465 1.3 0.00229 

0.2 0.72483 0.8 0.16669 2  0.00032 

0.3 0.60515 0.9 0.10765 1.5 0.00005 

0.4 0.49677 1.0 0.05704 1.6 0.00000 

0.5 0.39921 1.1 0.02404 3  0.0 
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a) 

        

 

b) 

 

 

Figure 3.4.3.1: Cartoon representation of random checkerboard materials. There are 

random checkerboards having cell widths of (a) CL and (b) *CL  where *CC LL  . The two 

point probability density function of checkerboards (a) and (b) are the same when the 

volume fraction of grey to white cells is equivalent.  
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Figure 3.4.3.2 Correlation functions, attenuation and dispersion for random checkerboard 

materials (a) Correlation function for checkerboard material normalised by cube length. (b) 

Attenuation and (c) velocity for checkerboard correlation function for different cube lengths. 
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3.5 Modelling Attenuation and Dispersion from Gas 

Saturation Maps 

 

A significant advantage of using 3DCRM is that it can be utilized to model 

attenuation and dispersion due to any correlation function. In the above section, I 

provided formulas for frequency-dependent P-wave modulus for several well known 

correlation functions. In this section, I show one particular way in which 3DCRM 

can be related to correlation functions extracted from processed X-ray tomographic 

images (Chapter 2). The 3DCRM is the only patchy saturation modelling approach 

capable of taking into account this type of realistic spatial information. For the 

modelling examples below I assume the following rock and fluid properties.  

 

 

Table 3.5.1: Rock properties for MGL2a modelling 

 

 

 

Table 3.5.2: Fluid Properties for MGL2a modelling 

   Kfw     

  Water 

2.25 

GPa 

Kf  

Heavy gas 

0.25 

GPa  

Kf    

Light gas  

0.1  

GPa 

w 990 

Kg/m3 

 400  

Kg/m3 

g 100  

Kg/m3 

w 1e-3  

Pa s 

 6e-5  

Pa s 

2 3e-5  

Pa s 

 

 

 

K 26  
GPa 

Kg 74  
GPa 

 0.25  

 15  
GPa 

g 2650 Kg/m3  5e-12  
m2 
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3.5.1 Continuous Random Media 

 

The correlation function utilized in the 3DCRM model describes mesoscopic spatial 

variation of fluid modulus M about an average value 0M , as a result of spatial 

variations in fluid bulk modulus FK . In general, fluid heterogeneities may exhibit 

either discrete or continuous spatial variation on the mesoscale. Discrete variation 

occurs when the fluid bulk modulus varies spatially as a piecewise constant function 

(see Figure 3.5.1.2 (a)). That is, regions of rock are 100% saturated by either fluid 

one or fluid two. This is usually what we think of when we imagine fluid 

heterogeneities, be it on the porescale or mesoscale.  

 

On the other hand, continuous variation arises when the fluid bulk modulus varies as 

a smooth spatial function about an average fluid bulk modulus (see Figure 3.5.1.1 

(b)). On the pore scale, we wouldn’t normally expect the fluid bulk modulus to show 

this type of spatial variation because distinct fluid-fluid interfaces exist. However, on 

the mesoscale it may be possible, as more than one fluid type may share the pore-

space within a mesoscopic patch (say for instance of cm length). Hence, the fluid 

bulk modulus of the mesoscopic patch will likely assume an effective value due to 

the presence of multiple fluids. Moreover, if there is continuous variation in the 

relative percentage of saturating fluids over mesoscale resolution, the effective fluid 

bulk modulus on the mesoscale will vary continually. 

 

In Chapter Two, when I examined gas saturation maps of MGL2a (Figure 2.2.2 (a)-

(m)), I found evidence for the second type of fluid heterogeneity (continuous 

variation).  For instance, in the early stages of the drainage experiment (gas 

saturations less than 23%) there were distinct mesoscopic patches having gas 

saturations of 10-30%, within an otherwise 100% water saturated rock. Moreover, in 

the later stages of the drainage experiment (gas saturations greater than 23%) most of 

the pore-space was affected by the presence of gas, this created many different 

mesoscopic patches having gas saturations ranging from 10% to 90%.  
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Figure 3.5.1.1 Mesoscopic fluid heterogeneities fluctuating about the average fluid bulk 

modulus. (a) Shows discrete spatial variation in fluid bulk modulus and (b) shows 

continuous spatial variation in fluid bulk modulus.  

 

3.5.2 Gas Saturation Maps  

 

The gas saturation maps (Figure 2.2.2 (a)-(m))) show for a particular rock where gas 

bearing pores exist. Specifically, the CT value of a pixel indicates the percentage of 

gas saturation in the pore-space covered by that pixel (via Equation 2.2.6). That is, 

pixel values range from zero to one, where zero and one indicate 0% and 100% gas 

saturation, respectively; though intermediate values indicate pore-space of mixed 

gas-water composition.  Spatial statistics like the correlation function or correlation 

length can be extracted from these maps. However, this information describes spatial 

characteristics of percent gas variation on mesoscale, and not spatial information on 

the variation of fluid modulus M . Hence, it cannot be utilized directly in CRM 

theory.   

fK

fK

fK

fK

b) 

a) 
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I can however use information on percent gas saturation to construct a new map 

which represents fluid bulk modulus variation on the mesoscale.  This can be used to 

construct a fluid modulus map from which a correlation function consistent with 

CRM requirements can be extracted. In transforming the gas saturation map into an 

effective fluid bulk modulus map, I assume that fluid pressures of gas and water 

within the pore-space of each pixel are equal, then Wood’s fluid mixing equation 

(Equation 1.2.2.1) is used to construct an effective fluid bulk modulus for each pixel.  

However, in principle, it is also possible to utilize other fluid mixing equations, such 

as Brie et al. (1995) or Voigt (Mavko & Mukerji 1998) averages to create an 

effective fluid bulk modulus. Below I propose a procedure to model 

attenuation/dispersion using 3DCRM.  

 

3.5.3 The Methodology  

 

Step 1:  Convert the saturation map into an effective fluid bulk moduli map using 

Woods fluid mixing equation. This can be achieved by  

















fgfw K

GasSatMap

K

GasSatMap
KWoodMap

11 ,                   (3.5.3.1) 

where GasSatMap is a particular gas saturation map (Figure 2.2.2 (a)-(m)), fwK  is the 

fluid bulk modulus of water and fgK is the fluid bulk modulus of gas.  

 

Step 2: Convert the fluid bulk moduli map (KWoodMap) to fluid moduli map M using  

         
















KWoodMapK
M

g

1 .                                    (3.5.3.2) 

Step 3: Calculate mean 0iM of the fluid moduli map:  

            



pN

iP
i iM

N
MM

1
0

1
mean ,                                  (3.5.3.3) 

where PN  is the total number of pixels in the fluid moduli map. Also calculate the 

mean 0jM  of the fluid moduli map using  

              



Nj

j
j jMjvMM

1
0 mean ,                                (3.5.3.4) 
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where M is the fluid moduli map divided into jN  partitions of width M . That is, if  

 iMM min1   and  iMM max2   then MNMM j 12 . Here  jv is the fraction of 

pixels having fluid moduli  jM . The partitioning of the fluid moduli is acceptable 

when 00 ji MM  . This partitioning step is necessary to calculate the variance. 

  

Step 4: Calculate normalised variance of the fluid moduli map using 

 
    

1var
2

0

1

2

0
2 




j

npart

j
jMM

M

jMjv

M ,                                 (3.5.3.5) 

Step 5: Calculate normalised centred autocorrelation function of fluid moduli map   

 

Step 6:  Calculate Woods limit  

                                        
 




Nj

jW jM

jv

M 1

1  and WBGW MLH 2 ,                        (3.5.3.6)  

Step 7: Calculate Hills limit   

 
 

 


Nj

jBGH jML

jv

H 1
2

1


.                                       (3.5.3.7) 

 

Computation of Equations (3.5.3.1-7) together with Equation 3.3.1 yields for a 

particular saturation map the frequency dependent saturated P-wave modulus, from 

which attenuation/dispersion is computed. Below I perform this analysis for gas 

saturation maps (from MGL2a) having average gas saturations of 4.6% and 34.4%. 

 

3.5.4 The Examples  

 

Figure 3.5.4.1 shows (a) the gas saturation map having average gas saturation 4.6 %. 

The colour bar indicates the percentage of gas within the pore-space covered by each 

pixel, blue refers to 0% gas saturation, whilst red refers to 100% gas saturation. (b) 

Shows the effective fluid bulk modulus map derived from the gas saturation map 

having assumed Wood’s fluid mixing equation with water and light gas fluids. The 

colour bar shows effective fluid bulk modulus; dark red indicates an effective fluid 

bulk modulus close to water; whilst blue an effective fluid bulk modulus influenced 

by gas. Note that a small percentage of gas greatly influences the fluid bulk moduli 
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of an effective fluid. (c) Displays the fluid moduli map calculated using Equation 

(3.5.3.2). The fluid moduli map has a variance of 1663.02 MM ; red and blue areas 

highlight fluid moduli least and most affected by gas, respectively. (d) Compares 

correlation functions extracted from gas saturation and fluid moduli maps. An 

important point is shown, that correlation functions extracted from gas saturation 

maps (solid line) are generally not equivalent to correlation functions extracted from 

fluid moduli maps (dashed line).  
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Figure 3.5.4.1: Scan 10 fluid heterogeneity maps and correlation functions. (a) Gas percent 

fluid saturation map (b) Effective fluid bulk modulus map (c) Fluid modulus map (d) 

Correlation functions extracted from the gas percent fluid saturation map (solid line) and 

from fluid modulus map (dashed line). 
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There is one instance in which the correlation functions are equivalent. That is, when 

fluid contrast is small. Figure 3.5.4.2(a) shows the fluid moduli map (average gas 

saturation 4.6%) assuming water and heavy gas pore-fluids. This map has a variance 

of 0038.02 MM . Figure 3.5.4.2 (b) shows the correlation function extracted from the 

fluid moduli map saturated by heavy gas (Figure 3.5.4.2(b)) (dashed line) and the 

correlation function extracted from the gas saturation map (Figure 3.5.4.1(a)) (solid 

line). The two correlation functions are in good correspondence. This indicates that 

when fluid contrast is small, such as with water and heavy gas, one may extract the 

correlation function directly from the gas saturation map. However, when fluid 

contrast is large, such as with water and light gas (or air), one needs to extract the 

correlation function from the fluid moduli map.  
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Figure 3.5.4.2: Scan 10 fluid heterogeneity maps and correlation functions when fluid 

contrast is small (a) Fluid modulus map assuming heavy gas and (b) correlation function 

extracted from fluid modulus map is compared against correlation function extracted from 

the gas saturation map. 
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I now suggest two ways in which spatial statistics extracted from a fluid moduli map 

(ie like Figure 3.5.4.1 (c)) can be utilized in 3DCRM to estimate attenuation and 

velocity. The first approach centres on incorporating the correlation function directly 

into Equation (3.3.3). Clearly this approach requires numerical integration to 

determine the saturated P-wave modulus from which attenuation/velocity can be 

estimated. The second approach centres on approximating the correlation function (in 

Figure 3.5.4.1(d)) by an exponential correlation function with Debye correlation 

length derived from the correlation function (Figure 3.5.4.1(d)). By making this 

approximation, I can use a closed form expression for the saturated P-wave modulus 

(Equation 3.3.2.2) to determine attenuation and velocity. 

 

Figure 3.5.4.3 shows frequency-dependent (a) attenuation and (b) velocity due to 

fluid modulus variation for Scan 10 (Figure 3.5.4.1 (c)). The first approach to 

estimating attenuation/velocity via numerical integration (dotted line with solid 

points) is compared against the second closed form approach (solid line). There is 

reasonable correspondence between attenuation and velocity estimated from both 

approaches at low frequencies. The peak magnitude of attenuation is also similar. For 

a small percentage of gas saturation (4.6%), attenuation is of the order 1.01 Q , 

which is significant. Unfortunately, at high frequencies the numerical integration of 

Equation (3.3.3) central to the first approach was found to break down. This caused 

significant errors in the attenuation and velocity estimates at high frequencies. The 

same type of error was observed in Section 3.4, where it was necessary to 

numerically integrate Equation 3.3.3 for different correlation functions. In that study, 

I minimized the error by interpolating the correlation function to finer spacings. The 

same approach could also be adopted here to minimize the numerical integration 

error observed in the first approach. 

 

Although not shown here, I use steps 1-2 to construct a fluid moduli map for the gas 

saturation map Scan 15, having average gas saturation of 34.4%. From this map I 

derive the correlation function and follow the procedure (steps (3-7)) to calculate 

attenuation and dispersion. Figure 3.5.4.4 shows frequency-dependent (a) attenuation 

and (b) velocity calculated using spatial statistics extracted from the fluid modulus 

map using the same two approaches.  Relative to Figure 3.5.4.3, the peak magnitude 

of attenuation and degree of velocity dispersion is reduced significantly, attenuation 
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is now of the order 001.01 Q . That is, by increasing gas saturation from 4.6 % to 

34.4% the frequency-dependent effects due to wave induced fluid flow are estimated 

to decrease.  
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Figure 3.5.4.3 Frequency-dependent attenuation and dispersion modelled using statistics 

extracted from fluid heterogeneity maps. (a) Attenuation and (b) velocity due to correlation 

functions extracted from fluid modulus map of Scan 10(average gas saturation 4.6%)  
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Figure 3.5.4.4 Frequency-dependent attenuation and dispersion modelled using statistics 

extracted from fluid heterogeneity maps. (a) Attenuation and (b) velocity due to correlation 

functions extracted from fluid modulus map of Scan 15 (average gas saturation 34.4%). 
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3.6 Conclusions 

 
Reservoir rocks are often saturated by two or more fluid phases forming complex 

patterns on all length scales. In this Chapter I have shown how the 1DCRM model of 

Müller and Gurevich (2004) can be utilized with a variety of different correlation 

functions to model attenuation/dispersion due to complicated 1D fluid 

heterogeneities. In particular, I showed by introducing a quasi-periodic correlation 

function that small uncertainties in the repetition period of layered media has little 

effect on the attenuation and dispersion signatures. Hence, quasi-periodic and 

periodic layering produce almost equivalent attenuation and dispersion of P-waves.  

 
Providing the weak scattering conditions for the DRM (Ciz et al. 2006) model are 

met, I found that there is good agreement between attenuation and phase velocity 

estimates for random and periodic distributions of spherical fluid inclusions. This 

was somewhat surprising as 1D random and periodic structures produced very 

different low frequency attenuation behaviour.  

 

In order to model attenuation and dispersion due to complicated fluid distributions, 

such as those found in X-ray tomographic images of partially saturated rock, I 

developed the 3DCRM model. My patchy saturation model shows greatest versatility 

in modelling attenuation and dispersion due to different types of fluid distributions. 

In particular, I derived close form expressions for the frequency-dependent saturated 

P-wave modulus due to fluid distributions given by exponential and Gaussian 

correlation functions. I also showed that 3DCRM could be used to model fluid 

distributions given by random distributions of regular shaped heterogeneities, such as 

spherical inclusions. Moreover, I found that 3DCRM could be used to model 

attenuation/dispersion due to higher concentrations of fluid inclusions than the DRM 

model.  

 

In my final section of this Chapter, I developed a strategy for modelling attenuation 

and dispersion due to correlation functions extracted from gas saturation maps. I 

illustrated this process for continuous fluid distribution maps. The 3DCRM model is 

the only patchy saturation model capable of taking into account such realistic spatial 

information.  
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Chapter 4  

Extension of the APS framework   

4.0 Introduction  
 

The key difference between the regular cell models (Chapter 1) and the random 

media models (Chapter 3) rests in how fluid distribution is accounted for. The 

regular cell models, such as APS (Johnson 2001) utilize periodic layering or 

concentric sphere fluid distributions, whilst the random media models (1DCRM, 

3DCRM) utilize a correlation function to describe fluid distribution. As was shown 

in the previous chapter, the advantage of utilizing a correlation function is flexibility. 

That is, one can model attenuation and dispersion due to different fluid distributions 

by simply changing the correlation function. Moreover, for certain geometries like 

periodic layering and randomly distributed spheres, CRM was shown to be in good 

agreement with patchy saturation approaches, such as APS and DRM. Hence, CRM 

can model effects due to different fluid distributions, but is the reverse true: can the 

regular cell models be extended in some way to take into account effects due to more 

complicated fluid distributions?  

 

The driving impetus behind this question is the need to remove (or access) 

restrictions on fluid contrast which may affect the precision of the CRM models. 

That is, the CRM models are precise for low contrasting pore fluids, but are 

approximate for high contrasting pore fluids. On the other hand, the regular cell 

models are precise for any fluid contrast, but are formulated for specific fluid 

distributions.  Hence, if the restriction on fluid distribution can be removed from the 

regular cell approaches, perhaps they may be utilized to model attenuation and 

dispersion due to complicated fluid distributions at any fluid contrast.  

 

In this Chapter, I show how the regular cell approach of Johnson (2001) called APS 

can be extended to model attenuation and dispersion due to complicated fluid 

distributions. This regular cell model was chosen for extension because of its simple 

and generalized framework.  My approach is to modify two special parameters 
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within this framework called “shape” and “frequency scaling” parameters. 

Specifically, I derive new equations for these parameters, which allow other pore 

fluid distributions to be modelled.  By substitution of the new shape and frequency 

scaling parameters into the APS framework, I am able to model attenuation and 

dispersion due to different fluid distributions. 

 

The Chapter is organised as follows. In Section 1, I analyse the frequency-dependent 

characteristics of the Johnson model. In Section 2, shape and frequency scaling 

parameters are derived for layered media; whilst in Section 3 they are derived for 

different types of three dimensional fluid distributions.  

4.1 The Johnson APS model  

4.1.1 APS Framework Specified in terms of Saturated P-wave 

Moduli  

 

The APS framework of Johnson (2001) discussed in Section 1.3.2 is formulated in 

terms of bulk moduli. As I am interested in P-wave attenuation and dispersion, it is 

convenient to specify the framework in terms of saturated P-wave moduli.   

 

According to APS theory (Equation 1.3.2.10), the dynamic saturated P-wave 

modulus can be written as 

        bfHH BGHJ  1
~ ,                                   (4.1.1.1) 

where  

        
2

11

1





i

bf



 .      (4.1.1.2)  

Equation (4.1.1.2) defines a branching function (see Section 4.1.1.2). All of the 

frequency dependence in the APS framework is contained within this function. It is 

defined in terms of a fluid contrast factor (difference between Wood and Hill 

bounds):    

       
BGH

BGWBGH

H

HH 
 ;                                         (4.1.1.3) 

the so-called shape parameter: 
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     
22

3

2 TGKK

H

BGHBGW

BGH
  ,                                         (4.1.1.4) 

and frequency scaling parameter: 

         
2











GK

H

BGH

BGH
 .        (4.1.1.5) 

  

In Equations (4.1.1.4) and (4.1.1.5), parameters T and G define the low and high 

frequency asymptotes. In particular, the low frequency asymptote of the saturated P-

wave modulus is  

   TiKHH BGWBGW 

~
lim 0 ,                             (4.1.1.6) 

 

where the frequency coefficient T  is defined by Equation (1.3.2.2). The high 

frequency asymptote is   

              21~
lim 

   iGKHH BGHBGH ,                      (4.1.1.7) 

 

where the frequency coefficient G is defined by Equation (1.3.2.9).  

 

The low and high frequency asymptotes (Equations (4.1.1.6 - 4.1.1.7)) will be 

utilized extensively in Sections 4.2 and 4.3 where new T  and G  coefficients will be 

derived by equating these asymptotes with frequency asymptotes derived from other 

1D and 3D models (Chapter 3). Once new T and G coefficients are determined, 

shape and frequency scaling parameters can be obtained using Equations (4.1.1.4 - 

4.1.1.5).  These can be substituted into Equation (4.1.1.2) to model attenuation and 

dispersion using Equation (4.1.1.1).   

 

4.1.2 The Logic behind using a Branching Function  

 

In many problems of wave phenomena in dissipative media it is often difficult or 

impossible to express the complex and frequency-dependent parameter of interest in 

closed form, but may be possible to obtain simple asymptotic solutions in both low 

and high frequency limits. A good example is the problem of dynamic permeability 

in a porous medium, where an explicit analytical solution is only known for very 

restricted geometries of parallel circular or flat cylindrical channels (Biot 1956b), but 
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asymptotic expressions can be derived for much more general cases (Johnson et al. 

1987). In such situations it is logical to approximate the solution at intermediate 

frequencies by a simple function which would obey the physical constraints, such as 

energy conservation and causality conditions, and converge to the asymptotic 

solutions in the low and high frequency limits. Such connecting functions are 

sometimes called branching functions.  

 

The APS theory of Johnson (2001) utilizes such a function (Equation 4.1.1.2) to 

describe the frequency-dependent behaviour of the saturated bulk modulus, because 

analytical solutions are hard to obtain over the entire frequency range.  In other 

contexts, such as dynamic permeability, a branching function approximation was 

developed by Johnson et al.. (1987) who showed that for the known cases of circular 

and flat channels it gives a very precise approximation of the exact solutions, see also 

Pride et al. (1993); Zhou and Sheng (1989). Branching functions have also been used 

to approximate the frequency-dependent moduli of porous media with mesoscopic 

inhomogeneities (Pride et al. 2003; Galvin et al. (2007)). 

 

The branching function utilized in any given dynamic problem is in general non 

unique. That is, one could substitute another kind of branching function, which 

serves the same purpose. For instance, Pride et al. (1993) list five different branching 

functions which could replace the branching function utilized in the dynamic 

permeability model of Johnson et al. (1987). However, each function postulated is 

more complicated then the simple function first implemented in the original model 

and produce very similar results.   

 

 

The frequency dependency of the dynamic saturated P-wave modulus in the APS 

framework is embedded within the branching function given by Equation (4.1.1.2). 

Hence, to determine possible frequency-dependent behaviour of the saturated P-wave 

modulus (Equation 4.1.1.1), it is sufficient to analyse the frequency-dependent 

characteristics of this function. This can be done by analysing asymptotic behaviour 

at low and high frequencies.  
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4.1.3 Frequency-dependent Behaviour of the Branching Function  

 

Here I study the frequency-dependent behaviour of APS by extracting frequency 

asymptotes from the branching function (Equation 4.1.1.2).  

 

Low Frequency: Relaxed fluid pressure  

 

Two different frequency asymptotes are present for wave frequencies 0 . First 

note that energy conservation requires that 0   (otherwise attenuation would be 

negative). 

 

1) If the shape parameter is finite and 0 , in the low frequency limit we can 

assume   

  1
2



i .                                               (4.1.3.1) 

 Applying the binomial theorem on Equation (4.1.1.2) gives   

 0lim 1
2

i
bf


   .                                         (4.1.3.2) 

In this case wave attenuation is proportional to wave frequency.  

 

2) The case 0   can be considered by rearranging (4.1.1.2),  

 

 
2

1

1
bf

i


  


  
                                       (4.1.3.3) 

 

and taking the limit at 0  . For sufficiently low frequencies such that 1 , 

Equation (4.1.3.3) becomes  

 

   ibf  1lim 0 .                                       (4.1.3.4) 

 

In this case wave attenuation is proportional to the square root of frequency.  
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3) When wave frequency is low and the shape parameter is 10 2   , Equation 

(4.1.3.3) becomes  

 



i

bf



1

1
lim 0 , 

 

applying binomial theorem gives an asymptote of  

 

   ibf  1lim 0 .                                (4.1.3.5) 

 

In this case wave attenuation is proportional to the square root of frequency.  

 

High Frequency: Unrelaxed fluid pressure 

 

For wave frequencies  , two different frequency asymptotes are present.  

 

 

1) The first can be derived directly from Equation (4.1.1.2), where the branching 

function becomes 

 



i

bf




1
lim .                                     (4.1.3.6) 

In this case wave attenuation is inversely proportional to the square root of 

frequency.  

 

 

2) When the shape parameter satisfies  

2

2
1


 
  ,  

the branching function becomes 

  2
lim bf

i

 


.                                            (4.1.3.7) 

 

In this case wave attenuation is inversely proportional to frequency.   
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4.1.4 Varying the Shape Parameter of the Branching Function  

 

In Chapter 3 it was observed that changing the fluid distribution will alter the 

frequency-dependent behaviour of attenuation and dispersion. Hence, if APS has the 

capacity to estimate attenuation and dispersion when fluid distribution is random and 

irregular then APS must be able to exhibit a broad range of frequency-dependent 

behaviour. Here I show by changing the shape parameter within the branching 

function, different types of frequency-dependent behaviour will result. Thus, APS 

has the potential to be utilized to model effects due to complicated fluid distributions.  

 

The imaginary component of the branching function is related to attenuation, whilst 

the real component is related to phase velocity. Figure 4.1.4.1 shows (a) imaginary 

and (b) real components of the branching function as frequency changes.  In (a) and 

(b) each curve has a shape parameter value ranging from 0 to 100. As the shape 

parameter alters different frequency-dependent curves are observed, hence there is 

different frequency-dependent velocity and attenuation. In fact, there appears to be 

four different shaped frequency-dependent curves, this is most easily observed by 

examining the imaginary component of the branching function. Each curve is 

described by different frequency asymptotes (Equations 4.1.3.2, 4.1.3.4- 4.1.3.7).  

Next I define each curve category.  
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Figure 4.1.4.1: Frequency dependence of branching function components. (a) Real and (b) 

imaginary components of the branching function for different values of the shape parameter.  

There appears to be 4 different types of frequency-dependent curves.  
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Category 1 (see Figure 4.1.4.2) arises when the shape parameter 0 . For this type 

of attenuation curve, the branching function in the low frequency limit scales with 

the square root of frequency,  

 

   ibf  1lim 0 , 

 

whilst the high frequency asymptote is inversely proportional to the square root of 

frequency 

 



i

bf




1
lim . 

This type of frequency-dependent behaviour was observed in Section 3.1.3 for 

randomly distributed layers of water and gas.  
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Figure 4.1.4.2: Category 1 attenuation curve. The imaginary component of the branching 

function with 0 (solid line) is defined by one low frequency (asym1) and one high 

frequency asymptote (asym2). The crossover frequency (freq 1) is shown by the circle.      
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Category 2 (see Figure 4.1.4.3) arises when the shape parameter 0 . For this type 

of curve there are three dominant frequency regimes.   The low frequency 

dependence is proportional to frequency 

 0lim 1
2

i
bf


    , 

the intermediate frequency dependence 21    ( 21, defined in Table 4.1.4.1)  is 

proportional to the square root of frequency, 

   ibf  1lim
1

 

whilst the high frequency dependence is inversely proportional the square root of 

frequency.  

     
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Figure 4.1.4.3: Category 2 attenuation curve. The imaginary component of the branching 

function with 005.0 (solid line) is defined by two low frequency asymptotes (asym1 

(dotted) and asym2 (dashed-dotted)) and one high frequency asymptote (asym3 (dashed)). 

There are two cross over frequencies shown by an asterisk (freq1) and circle (freq2) . 
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Category 3 (see Figure 4.1.4.4) arises when there is only one crossover frequency, 

giving a shape parameter of  
2

3

1 . For this type of curve there are 2 dominant 

frequency regimes. The low frequency dependence is proportional to frequency  

 0lim 1
2

i
bf


   , 

whilst the high frequency dependence is inversely proportional to the square root of 

frequency 

 



i

bf



1

lim . 
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Figure 4.1.4.4: Category 3 attenuation curve. The imaginary component of the branching 

function with 1.0 (solid line) is defined by one low frequency asymptote (asym1 (dotted)) 

and one high frequency asymptote (asym2 (dashed)). The crossover frequency (freq1) is 

shown by a circle. 
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Category 4 (see Figure 4.1.4.5) arises when the shape parameter satisfies 

2

2
1


 
    

For this type of curve there are three dominant frequency regimes. The low 

frequency dependence is proportional to frequency  

     0lim 1
2

i
bf


   , 

whilst the intermediate frequency dependence 21   ( 21, defined in Table 

4.1.4.1)   is inversely proportional to frequency  

 

 i

bf




2
lim

2
 

and inversely proportional to the square root of frequency.   
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Figure 4.1.4.5 Category 4 attenuation curve. The imaginary component of the branching 

function with 100 (solid line) is defined by one low frequency asymptote (asym1 (dotted)) 

and two high frequency asymptotes (asym2 (dashed dotted) and asym1 (dashed)). There are 

two crossover frequencies freq1 (circle) and freq2 (asterisk).  
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Figures 4.1.4.1-4.1.4.5 show for different values of the shape parameter, the APS 

framework will exhibit different frequency-dependent behaviour. In particular, I have 

identified four possible categories of frequency-dependent behaviour; refer to Table 

4.1.4.1 for a summary. The next step is to determine how the shape parameter relates 

to spatial characteristics which describe different fluid distributions, i.e. like 

correlation functions. By establishing this type of relationship we can modify the 

shape parameter appropriately for different fluid distributions and substitute into the 

APS framework to calculate attenuation and dispersion.  

 

 

 

 

 

      Table 4.1.4.1:  Different categories of frequency-dependent attenuation curves 
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4.2 1-Dimensional Media: Layering 

 

The intrinsic attenuation of compressional waves due to wave induced fluid flow 

between layers of porous rock containing different pore fluids is well studied for the 

extremes of periodic layering (White 1979; Norris 1993; Johnson 2001) and random 

layering (Gurevich & Lopatnikov 1995; Gelinsky & Shapiro 1997; Gelinsky et al. 

1998; Müller & Gurevich 2004). Here I show that the APS framework can be utilized 

to model both periodic and random layering by simply changing the shape and 

frequency scaling parameters appropriately.  

 

The technique (Toms et al. 2006; Toms et al. 2007) used is to derive low and high 

frequency asymptotes from different types of layered media modelled using 1DCRM 

(such as periodic, quasi-periodic, and random). From these asymptotes, I can extract 

the T and G coefficients to form new shape and frequency scaling parameters, which 

are substituted into the APS framework to model attenuation and dispersion. I start 

with periodic layering, in order to access the accuracy of my approach and then 

proceed to more complicated layering systems.   

 

4.2.1 Layering with Periodic Repetition  
 

Although periodic functions are not random, they can be considered as a realisation 

of a random function with periodic autocorrelation function. Thus attenuation and 

dispersion of waves in a system of periodic layers can be modelled by substituting a 

periodic correlation function into 1DCRM model. Then we can use low and high 

frequency asymptotes of the solution for the saturated P-wave modulus to derive T  

and G , as well as shape   and frequency scaling  parameters (using Equations 

(4.1.1.4) and (4.1.1.5)). Using these parameters I can construct the branching 

function solution. A comparison of such a solution (or its parameters) to either an 

exact solution (Norris, 1993) or the APS solution for periodic flat slab geometry can 

be a good test of the applicability of the branching function solutions based on 

asymptotes derived from CRM.  
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In the limit of low frequencies, the saturated P-wave modulus (Equation 3.1.1.3 and 

Equation 3.1.1.4) now expressed in terms of layer saturations 1S , 2S is  

        







 12

1
2

21

0
0lim

hSS

D

si
HH W

 ,        

comparison with Equation (4.1.1.6) gives 

0

2
21

12 DK

hSSsH
T

BGW

BGW .                                                   (4.2.1.1) 

where s is a non dimensional coefficient given by Equation 3.1.4. In the limit of high 

frequencies, the saturated P-wave modulus (Equation 3.1.1.3 and Equation 3.1.1.4) 

now expressed in terms of layer saturations 1S , 2S is   

 
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







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D
HH BGH

21

0
lim 1 ,    

 

comparison with Equation (4.1.1.7) gives  

     
hKSS

DsH
G

BGH

BGW

21

0 .                                              (4.2.1.2) 

Substitution of Equations (4.2.1.1-2) into Equation (4.1.4.2) and Equation (4.1.4.3) 

gives shape and frequency scaling parameters: 

216 SS ,                                                (4.2.1.3) 

and 

                                                          
0

22

2

2

1

D

hSS
  .                                             (4.2.1.4) 

An important feature of the shape and frequency scaling parameters is saturation 

dependence. In Figure 4.2.1.1 the shape parameter (Eq. (4.2.1.3)) is compared 

against the shape parameter computed using Johnson’s T  coefficient (applicable for 

periodic layering having any fluid contrast (Equation 1.3.2.1)). There is 100% 

correspondence between the two shape parameters when fluid contrast is low.  

 

Figure 4.2.1.2 shows frequency-dependent (a) attenuation and (b) velocity calculated  

using three approaches:  APS with T coefficient for periodic layering (Equation 

1.3.2.5) (solid black line with filled circles), APS with shape and frequency scaling 

parameters derived above (Equation 4.2.1.3 and Equation 4.2.1.4) (solid grey line 

with unfilled circles) and 1DCRM with periodic correlation function (solid black line 

with crosses).  Attenuation and velocity are calculated for periodic layering of water 
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( GPaKf 25.2 ) with another fluid having slightly greater compressibility GPaKf 2 , 

water saturation is 70 %. There is good correspondence between all three frequency-

dependent attenuation and velocity estimates over the entire frequency range, which 

indicates that the branching function approximation central to APS theory is 

reasonably accurate at intermediate frequencies.  
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Figure 4.2.1.1: Shape parameter versus water saturation for low fluid contrast periodic and 

quasi-periodic layering 
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Figure 4.2.1.2: Frequency-dependent attenuation and dispersion due to low fluid contrast 

periodic layers. (a) Attenuation and (b) velocity for periodic layering of water with another 

fluid having slightly greater compressibility, water saturation is 70 percent. 
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Figure 4.2.1.3 shows shape parameter versus water saturation calculated using 

Johnson’s T coefficient (Equation 1.3.2.5) for layering of water with more 

compressible fluids (bulk moduli ranging from GPaKf 2 to MPaKf 1.0 ). The shape 

parameter is no longer symmetric about 50 % water saturation. Moreover, the shape 

parameter dependence on percent water saturation changes significantly as the 

difference in fluid bulk moduli between the layers increases. That is, for low fluid 

contrast GPaKf 2 , the shape parameter curve is symmetric about percent water 

saturation where as for large fluid contrast MPaKf 1.0 the shape parameter shows 

very different dependence on percent water saturation. Hence, the shape parameter 

for periodic layers exhibits dependency upon both fluid contrast and percent water 

saturation. 

 

Figure 4.2.1.4 shows frequency-dependent (a) attenuation and (b) velocity calculated  

using three approaches:   APS with T  coefficient for periodic layering (Equation 

1.3.2.5) (solid black line with filled circles), APS with shape   and frequency 

scaling  parameters derived above (Equation 4.2.1.3 and Equation 4.2.1.4) (solid 

grey line with unfilled circles) and 1DCRM with periodic correlation function (solid 

black line with crosses).  Attenuation and velocity are calculated for periodic 

layering of water ( GPaKf 25.2 ) with another fluid of greater 

compressibility MPaKf 100 , water saturation is 70 %. The magnitude of attenuation 

predicted using all three approaches is similar. However, the peak frequency of 

attenuation predicted using the Johnson model (APS with T coefficient given by 

Equation 1.3.25) is somewhat shifted, also the shape of the attenuation and 

dispersion curves are slightly different than the attenuation and dispersion curves 

predicted using 1DCRM and APS with Equation 4.2.1.3.  

 

The discrepancy between attenuation/dispersion (Figure 4.2.1.4 a,b) arises because 

the shape parameter predicted using Johnson’s T coefficient (Equation 1.3.2.5) 

accounts for fluid contrast, whilst the shape parameter given by Equation 4.2.1.3 is 

independent of fluid contrast. As the shape parameter (Equation. 4.2.1.3) was derived 

from 1DCRM theory which is precise at low fluid contrast, substitution of the new 

shape parameter into the APS framework will affect the accuracy of the APS 

approach. That is, APS becomes precise (approximate) for low (high) fluid contrast. 
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Figure 4.2.1.3: Shape parameter versus water saturation for periodically layered media 

having a range of fluid contrasts 
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Figure 4.2.1.4: Frequency-dependent attenuation and dispersion due to high fluid contrast 

periodic layers.  (a) Attenuation and (b) velocity for periodic layering of water with another 

fluid having greater compressibility MPaKf 100 , water saturation is 70%.  

 
 

4.2.2 Layering with Quasi-Periodic Repetition  
 
Shape and frequency scaling parameters can also be derived for quasi-periodic 

layering of fluid heterogeneities by using 1DCRM results obtained in Section 3.1.2. 

At low frequencies the saturated P-wave modulus is 
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comparison with Equation (4.1.1.6) gives 
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At high frequencies the saturated P-wave modulus is 
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comparison with Equation  (4.1.1.7) gives  
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Substitution of Equations (4.2.2.1) and (4.2.2.2) into Equations (4.1.1.4) and 

(4.1.1.5) gives shape and frequency scaling parameters of  

  213 SS ,                                              (4.2.2.3) 

and 

0
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D

hSS
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In Figure 4.2.1.1, the shape parameter for quasi periodic layering (solid line with 

grey circles) is compared against the shape parameter for periodic layering. The 

shape parameter for quasi periodic layering never exceeds the value of 1, hence 

certain frequency-dependent attenuation and velocity will not occur for this type of 

layered system (at least at low contrast). 

 

Figure 4.2.2.1 shows (a) attenuation and (b) velocity for quasi periodic layering of 

low fluid contrast, as predicted using Johnson’s framework with shape and frequency 

scaling parameters derived above. This is compared against 1DCRM with quasi 

periodic correlation function (Equation 3.1.2.12 and Equation 3.1.1.3) and Johnson’s 

framework with periodic shape and frequency scaling parameters. The attenuation 

curve is broader for quasi-periodic layering than for periodic layering. At 

intermediate frequencies, there are discrepancies between the estimates of the 

1DCRM and Johnson’s framework (with Equations 4.2.2.3-4). This again is a small 

error which can be attributed to the branching function approximation.    
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Figure 4.2.2.1: Frequency-dependent attenuation and dispersion due to low fluid contrast 

quasi-periodic layers.  (a) Attenuation and (b) velocity, there are small differences between 

the branching function solution and the 1DCRM estimate at intermediate frequencies. 
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4.2.3 Random Layering 

 

When rock/fluid heterogeneities are randomly layered, it is well known that the low 

frequency asymptote of the saturated P-wave modulus is proportional to the square 

root of frequency. In order for the Johnson framework to exhibit the same type of 

low frequency behaviour, the shape parameter must be set to zero (as per Section 

4.1.1).  

 

In this section, I show that the Johnson framework (with shape parameter equal to 

zero) can be utilized to model the effects of random layering as described by an 

exponential correlation function. My approach is to equate the high frequency 

asymptote of the 1DCRM model with the high frequency asymptote of the Johnson 

framework, so as to derive a G  coefficient. I then show that if the G  coefficient is set 

according to the CRM model, the low frequency asymptotes of both models 

coincide.  

   

Firstly, consider the saturated P-wave modulus for exponentially correlated layering 

as given by the 1D CRM 
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It has a high frequency asymptote of 
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Comparison of asymptote (Equation 4.2.3.2) with the high frequency asymptote of 

Johnson’s framework (     21~
lim 

   iGKHH BGHBGH ) gives  
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At low frequencies the asymptote of the 1DCRM (Eq. 4.2.3.1) is  
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When the shape parameter in Johnson’s framework is set to zero, the saturated P-

wave modulus (Equation (4.2.0.1)) becomes  
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It has a low frequency asymptote of   
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Substitution of the G  coefficient into (Equation 4.1.1.5) reduces the low frequency 

asymptote of Johnson’s framework to  
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Hence, Equations (4.2.3.4) and (4.2.3.6) show that the low frequency asymptotes of 

both models coincide when the G  coefficient of Johnson’s framework is interpreted 

in terms of Equation (4.2.3.3). Moreover, with a little bit of algebra it can be shown 

that both models coincide over the entire frequency range.  

 

That is, the 1DCRM saturated P-wave modulus (Equation 4.2.3.1) can be rearranged 

to:  
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i
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where BGWBGHBGW sHHH  is utilized. Equation (4.2.3.7) simplifies to  
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Hence, when G  is given by Equation (4.2.3.3) and 0 , the Johnson framework is 

directly equivalent to CRM with exponential correlation function. In Figure 4.2.3.1, 

(a) attenuation and (b) velocity are compared using both approaches, as expected 

from the above analysis, there is exact correspondence between the results. Thus the 

branching function approximation is shown to be accurate for random layering.    
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Figure 4.2.3.1: Frequency-dependent attenuation and dispersion due to low fluid contrast 

randomly distributed layers of moderate fluid contrast. (a) Attenuation and (b) dispersion 

curves for the Johnson model with 0  (grey line with circles) versus the 1DCRM with 

exponential correlation function. 

  



Extension of the APS framework 
__________________________________________________________________________ 

____________________________________________________________________ 
4-171 

 4.2.4 Generalised Correlation Function  
 

Generalised shape and frequency scaling parameters can be determined for layered 

media having an unspecified correlation function of  r .  At low frequencies, 

Equation (3.1.1) reduces to  
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where  rik2exp  is replaced by its Taylor’s series expansion. Substitution of the wave 

number 
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i
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  into Equation (4.2.4.1) gives  
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This equation reveals that the saturated P-wave modulus has two dependencies at 

low frequency. The first scales with the square root of frequency, which arises when 

fluid stratification is random (as shown in Section 4.2.3), whilst the second is 

proportional to frequency, which is associated with periodic stratification of pore 

fluids (Section 4.2.1).   

 

If  



0

0drr , which arises when pore fluid stratification is periodic, one can 

determine theT coefficient of Johnson’s framework by comparing Equations (4.2.4.2) 

and (4.1.1.6). This gives 

         drrr
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For high frequencies, it is only important to consider the correlation function at small 

offsets. Hence  r can be expanded in a Taylor series 

    2
10 rOrr   ,  

where   100   and  
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The saturated P-wave modulus is  
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where  
BGH

BGWBGH

H

HH 
 . Comparison with Equation (4.1.1.7) yields a G coefficient of  
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Substitution of the T  and G coefficients into Equation (4.1.1.4) gives a shape 

parameter of  
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whilst substitution of Equation (4.2.4.5) into (4.1.1.5) gives a frequency scaling 

parameter of  
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It must be stressed that the shape parameter formula (Eq. (4.2.4.6)) is only valid 

if  



0

0drr . When  



0

0drr  which is the case for most correlation functions 

(such as exponential or Gaussian etc), the second term in Equation (4.2.4.2) 

dominates, that is  
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When the second term in Equation (4.2.4.2) dominates, the saturated P-wave 

modulus at low frequencies is proportional to the square root of frequency. To enable 

the APS framework to be utilized to model this type of frequency behaviour, the 

shape parameter must be set to zero.    
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4.3 Three-dimensional Media  

 

One motivation behind the development of the 3D patchy saturation models (given in 

Chapter 3) was to investigate whether 3D random and periodic poroelastic structures 

exhibit similar difference in the low frequency asymptotic behaviour as observed in 

1D random and periodic structures. In Chapter 1 and 3, I showed that the frequency-

dependent asymptotic behaviour is in general similar between periodic and most 3D 

random structures. In Sections 4.3.1-4.3.3, shape and frequency scaling parameters 

are derived for different 3D random structures. One question addressed will be 

whether 3D random and periodic structures are identifiable in terms of different 

shape and frequency scaling parameters, even though the low and high frequency 

asymptotic behaviour has similar frequency dependencies.     

 

4.3.1 3D Discrete Random Media  

 

Shape and frequency scaling parameters for a random distribution of non-

overlapping spherical inclusions (of a different pore fluid) can be determined by 

deriving low and high frequency attenuation asymptotes from the discrete random 

media model (Section 3.2). The attenuation described by DRM (Equation (3.2.2.5)) 

can be rewritten as  
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where  
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Derivation of low and high frequency asymptotes from Equation 4.3.1.1 requires 

analysing the low and high frequency behaviour of the Bessel functions (i.e. 

02,1 z and 2,1z ). For low frequencies 02,1 z , the Bessel functions of the first kind 

reduce to 
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which simplifies to  
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Equation (4.3.1.2) shows that the low frequency asymptote of attenuation is directly 

proportional to frequency.  This means that the T coefficient of Johnson’s framework 

can be determined for a random distribution of spherical inclusions.  By taking the 

real and imaginary components of the low frequency asymptote of the saturated P-

wave modulus    TiKHH BGWBGW 
~

lim 0 , attenuation is derived as    
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Comparison of Equation (4.3.1.2) and Equation (4.3.1.3) gives a T  coefficient of    
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At high frequencies, the ratios of the Bessel functions are 
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Substitution of these results into (4.3.1.1) gives  
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Equation (4.3.1.5) shows that the high frequency asymptote of attenuation is 

inversely proportional to the square root of frequency. Thus, the G coefficient of 

Johnson’s framework can be determined. By taking the real and imaginary 

components of the high frequency asymptote of the saturated P-wave 

modulus     21~
lim 

   iGKHH BGHBGH , attenuation is derived as   
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Comparison of Equation (4.3.1.5) and Equation (4.3.1.6) gives 
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Substitution of the T  (Equation 4.3.1.4) and G  (Equation 4.3.1.7) coefficients into 

Equation  (4.1.1.4) gives a shape parameter of     
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and a frequency scaling parameter of  
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These expressions for the shape and frequency scaling parameters are only valid for 

fluid contrasts and fluid percentages which don’t violate DRM limitations. For 

instance, Equation (4.3.1.1) is valid for high contrasting pore fluids, but only for 

small inclusion concentrations of the more compressible fluid (see Section 3.2).  

Hence, in order to model shape and frequency scaling parameters at larger inclusion 

concentrations, a low contrast approximation is made. That is, I assume that the bulk 



Extension of the APS framework 
__________________________________________________________________________ 

____________________________________________________________________ 
4-176 

modulus of the included fluid is comparable to the bulk modulus of the host fluid.  

When this is done, the shape parameter (Equation 4.3.1.8) reduces to  
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with frequency scaling parameter of  

 

               221
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
 
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HRS i .                                    (4.3.1.11) 

In Figures 4.3.1.1-3 the shape parameter computed using Johnson’s T  coefficient for 

concentric spheres (Equation 1.3.2.7) (dashed black line) is compared against shape 

parameters computed using Equations (4.3.1.8) (solid black line) and (4.3.1.10) 

(dotted black line). Shown are shape parameters when one fluid is water and the 

other fluid has (a) low contrast ( GPa2fK ) (b) moderate contrast GPa1fK  and (c) 

large contrast GPa01.0fK in fluid bulk moduli, respectively.  

 

When fluid contrast is (a) small, the shape parameters calculated using Equations 

(4.3.1.8) and (4.3.1.10) are identical. The shape parameter for the periodic 

distribution of spheres differs from the shape parameter for a random distribution. 

All shape parameters are dependent on percentage saturation and approach the 

limiting value of 9
5  at small inclusion saturations.  

 

When fluid contrast is (b) moderate, the shape parameters for periodic and random 

distributions of spheres (Equation 4.3.1.8) are no longer symmetric in saturation. 

That is, the shape parameter value for a rock which is 20 percent saturated by gas and 

80 percent saturated by water is not the same as the shape parameter for a rock which 

is 80 percent saturated by gas and 20 percent saturated by water. There are also 

discrepancies between the shape parameter values calculated using Equations 

(4.3.1.8) and (4.1.3.10). This is expected as the first equation takes into account fluid 

contrast, whilst the second equation doesn’t. In Chapter 5, these Equations (4.3.1.8) 

and (4.1.3.10) will be studied to identify which is representative at what fluid 

contrast and inclusion saturation.    
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When fluid contrast is (c) large, the shape parameters for periodic and random 

distributions of spheres (Equations 4.3.1.8) depend heavily on percent fluid 

saturation. A rock which is less then 10 percent saturated by gas will have a shape 

parameter (for both periodic and random distributions of spheres) that suggests 

entirely different frequency-dependent attenuation behaviour, than a rock which is 

saturated by more then 10 percent gas. 
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Figure 4.3.1.1: Shape parameters for low fluid contrast spherical inclusions as a function of 

water saturation.  Shape parameters for periodic spheres (dashed line) are different from 

shape parameters of randomly distributed spheres (DRM Equation (4.3.1.8) solid line) and 

randomly distributed spheres of low contrast (DRM Equation (4.3.1.10)). Fluid contrast was 

small, so there is good correspondence between the DRM shape parameters.  



Extension of the APS framework 
__________________________________________________________________________ 

____________________________________________________________________ 
4-178 

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Water saturation 

ζ

 

 

DRM
DRM (Low contrast approx)
Periodic spheres

 

 

Figure 4.3.1.2: Shape parameters for moderate fluid contrast spherical inclusions as a 

function of water saturation.  Shape parameters for periodic spheres (dashed line) are 

different from shape parameters of randomly distributed spheres (DRM Equation (4.3.1.8) 

solid line) and randomly distributed spheres of low contrast (DRM Equation (4.3.1.10)). 

Fluid contrast was moderate; hence the DRM shape parameters are differing 

.   
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Figure 4.3.1.3: Shape parameters for high fluid contrast spherical inclusions as a function of 

water saturation. Shape parameters for periodic spheres (dashed line) differ from shape 

parameters for randomly distributed spheres (DRM Equation (4.3.1.8) solid line) and 

randomly distributed spheres of low contrast (DRM Equation (4.3.1.10)).  
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4.3.2 3D Continuous Random Media  

 

If some particular normalised autocorrelation function  r  describes the spatial 

distribution of pore fluids in three spatial dimensions; shape and frequency scaling 

parameters may be derived from the 3DCRM model (Section 3.3), providing that the 

low and high frequency dependence of the saturated P-wave modulus is proportional 

to   and  1 , respectively. This is not always the case for certain types of 

correlation functions, such as Gaussian, fractal etc., see Discussion 4.3.2.3.  

 

First, I simplify the 3DCRM framework to   
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where  
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In the limit of low frequencies the saturated P-wave modulus (Equation 4.3.2.1) 

reduces to  
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Comparing Equation (4.3.2.3) with Equation (4.1.1.6) yields a T coefficient of     
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
00

drrr
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sH
T

BGW

BGW  .                                (4.3.2.4) 

At high frequencies only behaviour at small offsets is important. Assume that the 

normalised autocorrelation function can be expanded in a power series  

 

           2
10 rOrr   ,   

 

where   100   and  
r




0
1

 .  
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Then, the integral in Equation (4.3.2.1) is reduced to         
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Substitution of Equation (4.3.2.5) into Equation (4.3.2.1) gives a high frequency 

saturated P-wave modulus of  
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comparison with Equation (4.1.1.7) gives a G coefficient of  

 

BGH
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K

DH
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 .                                             (4.3.2.7) 

 

By substituting the T and G coefficients derived above into Equations (4.1.1.4) and 

(4.1.1.5), the shape parameter corresponding to a generalised correlation function is 

obtained  
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with a frequency scaling parameter of  
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Below I use Equations (4.3.2.8) and (4.3.2.9) to derive shape and frequency scaling 

parameters for different three dimensional fluid distributions described by specific 

correlation functions. However, it must be stressed that Equations (4.3.2.8) and 

(4.3.2.9) and hence, the results derived below are only precise for low contrast in 

fluid properties due to approximations made within the 3DCRM approach.  
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4.3.2.1 Relationship to Statistics from Gas Saturation Maps  

 
Further analysis of Equations (4.3.2.8) and (4.3.2.9) reveal that the shape and 

frequency scaling parameters can be directly related to statistical measures (aside 

from the correlation function  r ) extracted from tomographic images. By 

recognizing that the derivative of the correlation function  r  is related to the surface 

to volume ratio of fluid heterogeneities by   
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the shape parameter can be written as  
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and the frequency scaling parameter as  
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where 
V

S  is the surface to volume ratio of the fluid patches and Ma is the mean 

correlation length defined by Equation (2.3.1.5.2) as 
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Equations (4.3.2.1.1) and (4.3.2.1.2) show how to determine the shape and frequency 

scaling parameters directly from characteristics of the tomographic images. 

 

4.3.2.2 Debye Random Media  

 

For a Debye random distribution of fluids which can be modelled using an 

exponential correlation function given by   





 

a

r
r exp , the shape parameter derived 

using Equation (4.3.2.8) is 81E . It is a constant value independent of correlation 

length, percent fluid saturation and fluid contrast. This means that the shape of the 

attenuation and velocity curves will not change as the correlation length, percent 

fluid saturation and fluid contrast is altered. The corresponding frequency scaling 
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parameter is  0
2 4DaE  , which is proportional to the square of the correlation 

length. Thus changing the correlation length will shift the curve in frequency.  

 

Figure 4.3.2.2.1 shows (a) attenuation and (b) velocity obtained from Johnson’s 

model with shape and frequency scaling parameters 
E  and 

E  (obtained above). This 

is compared against the CRM model having an exponential correlation function. The 

contrast between pore-fluid bulk moduli is kept small, with an included fluid of bulk 

moduli GPa21 fK  within a rock 90% saturated by water ( GPa25.22 fK ). For this 

scenario, the CRM model is precise. Thus the shape of attenuation and velocity 

curves predicted via CRM are accurate over the entire frequency range.  Only small 

differences are observed between the Johnson model and CRM at intermediate 

frequencies. This means that the branching function is reasonably accurate at 

intermediate frequencies and thus the dynamic behaviour is well approximated using 

Johnson’s model with shape and frequency scaling parameters of 
E  and 

E . 
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Figure 4.3.2.2.1: Frequency-dependent attenuation and dispersion due to 3D exponential 

fluid distribution. (a) Attenuation and (b) velocity estimates using Johnson’s model (dashed 

line) with shape and frequency scaling parameters appropriate for an exponential 

correlation function and for CRM with exponential correlation function (solid line). The 

theoretical bounds on velocity are given by Wood (dashed–dotted line) and Hill (dotted line). 
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When the distribution of fluids can be modelled using a double Debye correlation 

function  
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which may be appropriate for modelling the fluid distribution towards the end of a 

drainage experiment (see Section 2.3.1.5), the shape parameter and frequency 

scaling parameters are  
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For instance, the shape parameter of the average correlation function of MGL2a 

(during the latter stages of the drainage experiment) is 0.0243 . In general, if the 

distribution of fluids can be modelled using many different Debye correlation 

functions  
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 then the shape parameter and frequency scaling parameters are   
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4.3.2.3 Overlapping Sphere Models 

 

When the fluid distribution is described by an overlapping sphere model having 

autocorrelation function: 
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the shape parameter needs to be determined via numerical integration as an analytical 

solution to the integral (in Equation  (4.3.2.8)) was not found.  In Figure 4.3.2.2 

(dotted line) the shape parameter is shown for the overlapping sphere distribution; it 
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depends on the relative percentage of two pore fluids but is independent of the sphere 

radius.   The frequency scaling parameter is  

 
2
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4

log9
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vD
 , 

which depends on both relative percentage of pore fluids and the square of the 

inclusion radius. Figure 4.3.2.3.1 shows that the shape parameters for random 

distributions of spherical inclusions (both non-overlapping-DRM and overlapping) 

differ from periodic distributions of spherical inclusions.  

 

However, one can make a linear approximation to the non-overlapping sphere 

correlation function; this serves to preserve some of the spatial characteristics of the 

original function, whilst allowing (Equation 4.3.2.1) to be solved analytically. The 

approximation used is  
R

r
r

2
1 for Rr 2 and   0r for Rr 2 . The corresponding 

shape parameter is a constant 
4

3
  and the frequency scaling parameter is
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Figure 4.3.2.3.1: Shape parameters for different 3D distributions of spherical inclusions of 

low fluid contrast. Periodic (dashed line), random (DRM Equations (4.3.1.8) and (4.3.1.10)) 

and overlapping sphere distributions (numerically calculated using Eq. (4.3.2.1)) shape 

parameters all depend differently on water saturation.   
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4.3.2.3 Discussion  

For the Gaussian correlation function   






 
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2

2
exp

a

r
r utilized in Section 3.3.2 for 

which attenuation doesn’t have the required frequency dependence, the shape 

parameter is infinite. This can be seen by taking the derivative of the frequency 

scaling parameter  







 


2

2

2
exp

2
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r
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r
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rd  which is equal to zero at the origin ( 0r ). 

Thus, the G  coefficient is zero and the shape parameter and frequency scaling 

parameter are infinite.  

 

This can be taken one step further by considering a fractal distribution of pore fluids. 

Müller and Toms (2007) have shown that the high frequency asymptote of 

attenuation for a fractal distribution of pore fluid is   1Q , where  is the Hurst 

exponent. For 21 , the fractal medium is exponential and thus the shape and 

frequency scaling parameters are given as above. However, when the Hurst exponent 

21 , the VS  as the ratio of the surface area of the patches increases, which 

means the G coefficient approaches zero and the shape and frequency scaling 

parameters are infinite.   

 

This shows that shape and frequency scaling parameters (for the Johnson framework) 

do not have finite values for all correlation functions. The only model having the 

flexibility to estimate attenuation and dispersion due to any 3D fluid distribution is 

the 3DCRM modelling approach. However, it is precise for low fluid contrast and 

only approximate at large fluid contrast.   

 

4.4 Chapter Summary  
 

The main results of this Chapter are given in the Tables. They showT and 

G coefficients along with shape and frequency scaling parameters for different types 

of fluid distributions. Note that, outside the validity of the original models (please 

refer to the discussions in Chapter 3), the shape and frequency scaling parameters 

should only be taken as a rough guide.    

Table: 4.4.1: T and G coefficients for 1D fluid stratifications. 
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Table: 4.4.2: Shape and frequency scaling parameters for 1D fluid stratifications. 
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Table: 4.4.3: T and G coefficients for 3D fluid distributions. 

 

 

Table: 4.4.4: Shape and frequency scaling parameters for 3D fluid distributions. 
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4.5 Chapter Conclusions  

 

In this Chapter I have shown that shape and frequency scaling parameters depend 

upon fluid distribution. The substitution of shape and frequency scaling parameters 

(given in the tables) into Johnson’s framework provides a simple means to model 

attenuation and dispersion due to many different types of pore fluid distributions. 

That is, both fluid layering and 3D spatial distributions can be easily modelled. 

However, there are still limitations on the use of the tabulated shape and frequency 

scaling parameters, as the accuracy of the models used to derive the parameters are 

limited to certain scenarios, such as low fluid contrast.  

 

The comparison of Johnson’s framework with modified shape and frequency scaling 

parameters against modelling approaches which are explicit over the entire frequency 

range (DRM, 1DCRM, 3DCRM, etc) provides a method of testing the accuracy of 

the branching function at intermediate frequencies. Throughout the Chapter it has 

been shown that the branching function (via comparison) is reasonably accurate at 

intermediate frequencies for many different fluid distributions.   

 

An issue which has not really been addressed in this Chapter, is, how the shape and 

frequency scaling parameters vary with fluid contrast. For a periodic and random 

distribution of spherical inclusions, initial modelling suggests that fluid contrast will 

have a large effect upon shape and frequency scaling parameters at small inclusion 

concentrations. In the next Chapter, I will investigate this issue further.  
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Chapter 5 

Numerical Analysis of APS Shape Parameter  

5.0 Introduction  

 

All attenuation/dispersion models discussed in Chapters 1 and 3 of this thesis have 

advantages and disadvantages. The regular cell models (Chapter 1) are analytically 

limited to simplistic fluid distribution geometries (such as concentric spheres) but 

capable of modelling any fluid contrast. The random media models of Chapter 3 are 

mostly limited to low contrast pore fluids, but are capable of modelling complex and 

irregular distributions of fluids. In order to model compressional wave attenuation 

and dispersion when porous rock is saturated by “realistic fluids” in a “realistic 

way”, both fluid contrast and fluid distribution effects need to be understood and 

addressed in unison.  

 

My motivation behind creating a synergy between the Chapter 1 and Chapter 3 

modelling approaches is aimed at addressing this need, through combining the 

strengths of each type of approach. In Chapter 4, I have demonstrated that the APS 

framework (Johnson 2001) can be exploited to consider effects due to complicated 

fluid distributions. Prior to this, usage of the APS framework was restricted to simple 

fluid distributions, such as periodic layering, concentric circles (Krzikalla et al. 2006) 

and concentric spheres  

 

Specifically, I show how two special parameters within the APS framework (called 

shape and frequency scaling parameters) can be suitably modified to account for 

effects due to: random layering, randomly distributed spheres and random fluid 

distributions given by a variety of correlation functions.  However, the usage of the 

new shape and frequency scaling parameters, maybe constrained to certain fluid 

contrasts and fluid saturations.  
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The possible restrictions on the use of the new shape and frequency scaling 

parameters are a consequence of models which underpin their derivation, such as 

1DCRM, DRM and 3DCRM. These models are precise for only certain fluid 

contrasts and fluid saturations.  Hence, it is necessary to demarcate the range of 

volume concentrations and fluid contrasts for which my derived parameters (see 

Table 4.4.2 & Table 4.4.4) can be accurately utilized. In this Chapter, I investigate 

this issue when the fluid distribution is given by a 3D random distribution of 

spherical inclusions.  

 

There are two possible ways one could investigate the applicability of the shape and 

frequency scaling parameters. Both approaches are based on numerical computation 

and require generating the appropriate synthetic models of interest (such as a 3D 

random distribution of spheres). The first approach is to use finite-difference 

approximations to forward model either the equations of poroelasticity (Dai et al. 

1995; Ozdenvar & McMechan 1997; Helle et al. 2003) or the elastic wave equation 

with a Navier-Stokes equation for viscous fluid flow (Saenger et al. 2007). Once the 

synthetic wave field has passed through the synthetic model, wave attenuation and 

dispersion can be estimated. This allows shape and frequency scaling parameters to 

be determined using Equations (4.1.1.4) and (4.1.1.5). When simulations are run over 

models of different fluid contrast and volume concentrations, changes in shape and 

frequency scaling parameters can be related to changes in fluid contrast and volume 

concentration.  

 

However, there are several drawbacks to using this approach. Firstly, it is 

computationally expensive to perform the necessary calculations for 3D distributions 

of fluids. Secondly, there are numerical issues with approximating wave equations, 

such as numerical stability and numerical dispersion (Trefethen 1982) which need to 

be handled with care, when the equations to be approximated are highly attenuative 

and dispersive, although, as illustrated by Saengar et al. (2007) numerical accuracy 

issues can be resolved and minimized by judicious choice of  parameters.  Thirdly, in 

the frequency range where attenuation is a maximum and P-wave velocity changes 

most rapidly, it may not be possible to estimate from the synthetic wave field the 

shape and frequency scaling parameters accurately.  
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The second approach to calculating shape and frequency scaling parameters for 

complicated fluid distributions having any fluid contrast, involves determining the 

shape parameter from direct numerical computation of the T coefficient (see 

Equation 4.1.1.6). The T coefficient governs the low frequency approach of the 

frequency-dependent saturated bulk modulus to the static limit given by Gassmann-

Wood equations. Although, the Gassmann-Wood limit depends only on fluid volume 

fraction and fluid bulk moduli, the T coefficient also depends on fluid distribution via 

an auxiliary function  (and partial differential equation) defined within the APS 

framework.  

 

The APS auxiliary function   is a solution of a potential equation that is related to 

the final stages of fluid pressure equilibration. It can be likened to a steady state 

diffusion equation for fluid pressure equilibration. In practice, the potential equation 

can only be solved analytically for very simple fluid geometries, such as periodic 

layering, concentric spheres etc.  Hence determination of shape and frequency 

scaling parameters using the APS auxiliary function   has until now been restricted 

to simple regular geometries. However, in principle, the APS auxiliary function   

can be solved for numerically (using finite-differences or finite elements) in cases 

where the fluid distribution is complicated, such as with randomly distributed 

spheres.  

 

There are several advantages of numerically approximating the potential equation, 

over numerically approximating the analogous system of wave equations (the 

previous approach) in order to study shape and frequency scaling parameters. Firstly, 

it is computationally less expensive, especially in three spatial dimensions (as only 

one computation is required to obtain the solution for all frequencies). Secondly, the 

mathematical behaviour of the potential equation is far simpler, and hence the 

approach is easier to implement accurately. Thirdly, the approach is direct, enabling 

computation of the shape parameter (via theT coefficient defined in terns of the 

auxiliary function ) without having to process synthetic seismograms, etc.  
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In this Chapter, the latter approach is trialled. I compute the shape parameter for a 

random distribution of spherical inclusions, in particular studying how   varies 

when spherical inclusion concentration and contrast is altered. The numerical 

estimates of the shape parameter are then compared against the analogous analytical 

shape parameters derived in Chapter 4 (Equations (4.3.1.8) and Equations 

(4.3.1.10)). This type of analysis could also be performed for other types of fluid 

distributions and their analytical shape parameters (Table 4.4.2 and Table 4.4.4). 

Hence, enabling demarcation of volume concentrations and fluid contrasts, for 

which, the analytical shape parameters could be used to extend the analytical 

capacity of APS to realistic fluid distributions.  

 

The Chapter is organised as follows. In Section 1 the potential equations are defined. 

In Section 2, finite-difference theory is introduced and finite-difference 

approximations are made for the derivatives in the potential equations. Section 3 

covers testing aspects of the algorithm. Section 4, includes a discussion on the 

synthetic media and presents the results of comparing numerical shape parameters 

versus theoretical shape parameters at different fluid contrasts.   

 

5.1 The Physics  

5.1.1 The APS Potential Equation 

 

The potential equation for the auxiliary function  plays an important role in 

determining the shape parameter, as it affects the T coefficient governing the low 

frequency approach of the dynamic saturated bulk modulus to the static limit given 

by Gassmann-Wood equations. In this section, I explain the technique and physical 

considerations employed by Johnson (2001), when he derives the T coefficient and 

potential equation central to APS theory.  

 

Johnson (2001) states that the macroscopic expression for energy dissipation per 

wave cycle expressed in terms of the dynamic saturated bulk modulus  K
~ of an 

elementary volumeV  must be equivalent to the same quantity expressed as a volume 

integral of the appropriate combination of microscopically varying field variables. In 
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other words, Johnson’s technique centres on equating: 1) the power per wave cycle 

(i.e. energy loss) caused by an oscillatory external stress applied to the surface of a 

partially saturated volumeV with 2) the power per wave cycle of relative fluid-solid 

displacement averaged over the volume of the sample. Relative fluid-solid 

displacements occur because of fluid pressure equilibration. See Figure (5.1.1.1)  

 

The same technique has subsequently been utilized by Tserkovynak and Johnson 

(2002) to study the effect capillary forces have on compressional wave attenuation. 

More recently, Müller and Rothert (2006) have applied a similar recipe to explain 

why there is a difference in frequency-dependent attenuation when heterogeneities 

are randomly and periodically layered. 

 

The Johnson Approach:  

 

(1) The power per wave cycle on the mesoscale is  
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where V  is the composite volume, eP  is the effective pressure and  K
~  is the 

frequency-dependent saturated bulk modulus (at the low frequency limit) given by  
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lim 0 .                   (5.1.1.2) 

Here BGWK  is the Gassmann-Wood static limit. Substitution of Equation (5.1.1.2) into 

Equation (5.1.1.1) gives  
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Hence, mesoscale power per wave cycle is expressed in terms of the parameter of 

interest, the low frequencyT coefficient.  

 

(2) Power per wave cycle from microscale consideration is  
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where Uu, are solid and fluid displacements, respectively and * refers to complex 

conjugation. 
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The spatial gradient in fluid pressure fp can be related to relative fluid-solid 

displacement through Darcy’s law given by  

 uU
k

i
p f 

 . 

 

Here it is assumed that the displacements  Uu,  have time variations of the 

form:  tiexp .  Substitution of Darcy’s law into Equation (5.1.1.4) gives  
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(3) The mesoscale power MESP (Eq. (5.1.1.3)) is equated with the microscale power 

MICP  (Eq. (5.1.1.5)) and rearranged so as to obtain the T coefficient:   
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Here Johnson defines an auxiliary function  by 
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(4) Upon taking the divergence of both sides of Equation (5.1.1.7) the potential 

equation central to APS theory is formed: 
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Here the auxiliary function   is related to difference in solid and fluid static strains 

and                                                                    
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Numerical determination of the T coefficient and shape parameter  

 

In this Chapter, I shall approximate Equation (5.1.8) by finite-differences. Once   

has been approximated, it can be integrated with weight  g r  to yield the low 

frequency coefficient of the saturated bulk modulus.  That is  
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.      (5.1.1.9) 

 

To determine the shape parameter , I substitute the numerically determined T  

coefficient into  
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the G  coefficient can be obtained.  

 

For the case of randomly distributed spheres, the surface to volume ratio is known 

exactly. However, when fluid distributions are more complicated it can be 

numerically extracted from the synthetic model of interest using Monte Carlo 

methods, or obtained from the derivative of the correlation function describing the 

fluid distribution. 
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Figure 5.1.1.1: Schematic of the Johnson (2001) approach. Energy loss on the macroscale is 

equated with the volume average of losses due to fluid flow relative to the rock frame.  
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5.1.2 APS Potential Equations in 1, 2 and 3 Spatial Dimensions  

 

The potential equation embedded in the APS framework (Equation 5.1.1.8) can be 

expanded to reveal spatial derivatives in viscosity and potential. For 1-dimensional 

fluid distributions:    

   
 xg

dx

d

dx

d

xdx

d

x




 








 



 22

2 11 .      (5.1.2.1) 

For 2-dimensional fluid distributions:    
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and 3-dimensional fluid distributions: 
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As fluid viscosity can vary between the saturating fluids (often by several orders of 

magnitude), the spatial derivatives of viscosity specified in Equations (5.1.2.1-

5.1.2.3) may not exist, because in general the viscosity variation is not a smooth 

function across the interface of two pore fluids. Hence, some sort of smoothing of the 

fluid viscosity is required along the fluid-fluid interface to make viscosity a smoothly 

varying function. However, when viscosity contrast is small, a simplified system of 

Equations detailed in the Section 5.1.3 can be useful.  

5.1.3 APS Potential Equations with Small Fluid Viscosity Contrast  

 

 When contrast in fluid viscosity is small and thus can be considered negligible, 

spatial derivatives in viscosity are zero or small; thus   *,,  zyx where * is an average 

viscosity. In these circumstances, Equations (5.1.2.1-5.1.2.3) reduce to Poisson’s 

equations of the general form 

  )(*2 rg       (5.1.3.1) 

where      zyxryxrxrr ,,,,, .  
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For 1-dimensional fluid distributions having only variations in fluid bulk moduli 
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For 2-dimensional fluid distributions    
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and 3-dimensional fluid distributions 
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5.1.4 Boundary Conditions  

 

The boundary conditions existing on Equations (5.1.2.1)-(5.1.2.3) are:  

 

(1) Continuity of the potential across the interface between two media in contact. 

That is,  

  21  ,        (5.1.4.1) 

where 1 and 2 designate the potential within the porous rock saturated by fluid 1 and 

fluid 2, respectively. 

 (2) Continuity of relative flux of the potential across the boundary. That is,  
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where n refers to the normal to the surface, whilst 21, refer to viscosities of fluid 1 

and fluid 2. 

 (3) As the medium is enclosed, there is a zero flux across the outer boundary  

0


n

at S .         (5.1.4.3) 

 

The potential problem (Equations 5.1.2.1-5.1.2.3 with Equations 5.1.4.1-5.1.4.3) 

stands in direct analogy to a well known electrostatics problem of determining the 

electric field vector E  in a material having varying dielectric constant   and varying 

electric charge density  . The electric field E  is expressible in terms of the 

electrostatic potential as E where the electrostatic potential satisfies the 

elliptical P.D.E given by    4  (Sneddon 1957; Johnson 2001). 
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In practice analytical solutions to the system of Equations (5.1.2.1-5.1.2.3 and 

5.1.4.1-5.1.4.3) are obtainable for only the most simple geometries, such as periodic 

layering in 1D, concentric circles in 2D and concentric spheres in 3D (see Chapter 1, 

Section 1.4). I shall use the derived solutions to these simple idealised geometries to 

check the accuracy of my finite-difference solutions (refer to Section 5.3). Once the 

potential  is approximated, the T coefficient is determined by integration (Equation 

5.1.1.9).  

 

5.2 Basic Finite-difference Theory 

 

In this section, I briefly introduce the theory utilized to develop the finite-difference 

solution of the APS potential equation. If further theoretical explanations are 

required, a good source of information can be found in Thomas (1990), Morten and 

Mayers (1988) and Ames (1977)   

 

5.2.1 Finite-difference Approximations 

 

To approximate the spatial derivatives in Equation (5.1.1.8), second order accurate 

centred finite-difference approximations are employed. The centred-difference 

approximation for the first spatial derivative of  with respect to the x  direction is 
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and the second derivative is 
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where 0x , 00 , zy are grid point locations and x is the grid size in the x  direction. Here 

 2x  refers to the order of accuracy of the difference approximation, which is 

second order accurate. Similar approximations are employed for spatial derivatives in 

the y and z directions.  
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In effect, the application of finite-difference approximations to Equation (5.1.1.8) 

can be understood as taking a continuous spatial equation and converting it to a 

discrete spatial equation. Furthermore, it should be noted that approximations are 

made for each equation. Hence, finite-differences operate by approximating how the 

rate of change of the potential in one particular direction will vary with respect to the 

rate of change of the potential in another direction. This is in contrast with other 

numerical techniques, such as finite elements which seek to approximate the solution 

 directly.  

 

5.2.2 Forming Difference Equations  

 

In this section, I give the difference equations for 1D and 2D potential problems. 

They are formed by replacing the continuous spatial derivatives in Equations 

(5.1.2.1) and (5.1.2.3) with their discrete analogues given by Equations (5.2.1.1) and 

(5.2.1.2). The difference equation for the 3D potential problem will not be listed 

here, as it is very cumbersome to express.  

 

When there are 1D heterogeneities in fluid bulk moduli and viscosity, the difference 

equation is:  
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               (5.2.2.1)  

The first bracketed term represents the second spatial derivative in potential, whilst 

the second bracketed term represents the first spatial derivative in viscosity, and the 

last bracketed term represents the first spatial derivative in potential. Hence, the 

second and third bracketed terms only contribute to the difference equation when 

neighbouring nodal points have different viscosities. Equation (5.2.2.1) can be 

rearranged to give  
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
,  

                                                                                                                          (5.2.2.2)  
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Equation (5.2.2.2) shows that in the absence of viscosity gradients, the potential at 

some point 0x  depends only upon the average of the potentials at neighbouring points 

xx 0 and xx 0  and on the fluid properties of that point 0x . A quick inspection of 

this equation also shows that the boundary condition that the potential must be 

continuous across the interface separating the two different types of fluid can be 

satisfied when x approaches zero.  

 

When there are two-dimensional heterogeneities in fluid bulk modulus and fluid 

viscosity, the difference equation is: 
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.               (5.2.2.3)  

 

Refer to Figure 5.2.2.1 for the geometrical layout of spatial derivatives of potential 

and viscosity. If the nodal points in the finite-difference grid are separated, such 

that lyx  ; Equation (5.2.2.3) can be rearranged to form:   
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Figure 5.2.2.1: Showing the spatial location of the bracketed terms involved in the 2D 

difference equation (Equation 5.2.2.3). The first bracketed terms is the second spatial 

derivative in potential, we see that 5 potential values are utilized. The second bracket term 

represents the first spatial derivation in potential and viscosity in the x -direction. The third 

bracketed term shows the first spatial derivation in potential and viscosity in the y -

direction. The bottom grid shows where the location of the g  coefficient is for this 

calculation. 
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5.2.3 Implementing Boundary Conditions  

 
The difference equations equivalent to no net-fluid flow boundary conditions 

(Equation 5.1.4.3) have the form:   

 

     
0

2

,,,,,, 111111111 








l

zylxzylx

x

zyx
,      (5.2.3.1) 
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




l

zlyxzlyx

y

zyx
,     (5.2.3.2)  

 

where points  111 ,, zyx  and  222 ,, zyx  lie on boundaries parallel to the x and y axes, 

respectively. A similar difference equation can be formed for points lying on the 

boundary parallel to the z axes for 3-dimensional problems.  

 

The easiest way of incorporating Equations (5.2.3.1 and 5.2.3.2) into the finite-

difference schema is to align the boundary of the computational domain with the 

sample boundary (see Figure 5.2.3.1). When this is done, a series of “pseudo nodes” 

can be positioned outside the computational domain. These nodes assume values 

which enable Equations (5.2.3.1 and 5.2.3.2) to be satisfied. That is,   

 

   111111 ,,,, zylxzylxP  ,      (5.2.3.3) 

   222222 ,,,, zlyxzlyxP  ,      (5.2.3.4) 

 

where P are pseudo nodes for boundary points  111 ,, zyx  and  222 ,, zyx .  

 

Equations (5.2.3.3) and (5.2.3.4) indicate that the value taken by a pseudo node is the 

same as the value of the node nearest to the boundary, see Figure 5.2.3.1. The value 

of the potential  111 ,, zyx  at the boundary node can then be calculated using 

Equation (5.2.2.4) with one true (interior) node and one pseudo node. 
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Figure 5.2.3.1: Application of no-net flow boundary conditions in the finite-difference 

schema. The no-net flow boundary conditions (red) are implemented on the edge of the inner 

computational domain, whilst pseudo nodes (blue) are placed outside the computational 

domain. The pseudo nodes assume the value of the potential immediately before the 

boundary.   

 

5.2.4 Solution of Difference Equations  

 

When centred-difference operators are substituted into the APS potential equation, 

the resulting finite-difference schema will be implicit. This means that the potential 

at points interior to the boundary can only be determined by solving a simultaneous 

set of linear algebraic equations, given by  

     vCu  .        (5.2.4.1) 

Here C  is a square matrix of known coefficients, u  is a column vector of unknown 

potential values and v  is a column vector of known values. This type of schema is in 

contrast to schemas generated from hyperbolic (wave) and parabolic (diffusion) 

partial differential equations, which can take an explicit form for a particular choice 

of difference operators. That is, for wave equation schemas, its variables (particle 

displacements, particle velocities or stresses etc) at the newest time level can be 

solved for directly from previous values, at earlier time levels.  
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The implication of having an implicit finite-difference schema is that an extra step is 

generally required in order to obtain a solution. That is, for most practical problems 

the automatic solution to an implicit difference schema is not feasible, as it will 

require the inversion of a massive sparse tri-diagonal matrix, which certainly is the 

case for my APS application.  

 

To circumvent this problem, I use successive over relaxation (SOR). This technique 

was developed by Frankel (1950) and Young (1954).  To apply this technique, the 

order in which computations are performed through out the computation domain 

must be defined (using Equations 5.2.2.2 and 5.2.2.4). It is necessary to define an 

order because newly calculated nodes are used to update surrounding nodal points 

during future computations. I choose to perform computations throughout the grid 

along all columns of a particular row going from left to right. I start at the bottom-

most row first and finish at the top row last.  See Figure 5.2.4.1. A similar idea is 

applied for the 3D mesh.   

 

Like the Gauss-Seidel method (Seidel 1874), SOR is an iteration technique that 

immediately utilizes the latest value of the iterant potential to calculate future values 

of the other potentials. The difference between the two approaches is that SOR 

includes a damping step. This step takes the new value of the potential NEW  to be a 

weighted average of the old potential O  and the latest calculated potential 

U according to    

      OLDdcUdcNEW   1 ,      (5.2.4.2) 

here dc is the damping coefficient.  

 

This step is incorporated to reduce the number of iterations required for convergence 

to the solution. When 0.1dc the method reduces to being Gauss-Seidel, when 

0.1dc it is termed under relaxation and when 1dc the method is over-relaxed. 

SOR is convergent for 20  dc  (Morten & Mayers 1995). I generally use the value 

6.1dc . Further experiments may be useful to determine the value of the damping 

coefficient that will optimise the rate of convergence.  
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Figure 5.2.4.1: The order in which finite-difference computations are performed over the 2D 

grid. The computation starts at (bottom row-column left) and continues across the row until 

column right. Then computations start at row immediately above and continue across the 

row until column right etc.   
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5.2.5 Errors 

 
In theory, any discrepancy existing between the finite-difference solution and the 

analytical solution arises because of error accumulation. For the finite-difference 

solution, the main sources of error can be categorized as: 

    

(1) Differentiation errors: those arising because spatial approximations have been 

made to the spatial derivatives in potential and viscosity.   

(2) Boundary errors: those arising because of inaccurate implementation of 

Neumann boundary conditions on the edge of the cell. 

(3) Medium errors: those arising because of the discretisation of the synthetic 

model. 

(4)  Iteration errors: those arising because not enough SOR iterations are 

performed.  

 

Clearly, it is of interest to develop the most accurate finite-difference solution 

possible; however it is also important to be pragmatic.  

 

For instance, differentiation errors (1) can be minimized by utilizing higher order 

finite-difference operators, such as 4th or 8th order etc; however implementation of 4th 

or 8th order operators requires the potential to be calculated from a greater number of 

surrounding nodal point potentials. This in itself is not difficult to implement, 

however one must be consistent and also implement 4th order no net fluid flow 

conditions. Otherwise, there are no accuracy gains from using higher order finite-

difference operators, as the accuracy of the schema is determined by the lowest 

accuracy of any component, such as a boundary condition (Thomas 1995). This 

occurs because the solution obtained from the boundary is propagated back into the 

interior computational domain by the finite-difference schema.      

 

So, if I choose 4th order accurate finite-difference operators in the interior 

computational domain, then I am committed to also choosing 4th order accurate no 

net fluid flow boundary conditions. In order to implement the boundary conditions 
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having 4th order accuracy, more pseudo nodes are required external to the interior 

computational domain.  

 

The issue with introducing more pseudo nodes is that for a fixed number of possible 

computational points, which is 300x300x300 (system restriction) less computational 

points become available to the interior computational domain.  Consequently, coarser 

finite-difference grids are required, thus the grid spacing increases, which decreases 

the accuracy of the difference operator and also causes discretisation errors of the 

synthetic model. Hence, in trying to fix one sort of error, other errors may be 

introduced.   

 

My finite-difference schema has:  

(1) Second order accurate finite-difference operators 

(2) Second order accurate implementation of the boundary conditions. 

(3) Smallest feasible grid spacing 

 

5.3 Testing of the Algorithm   

 

In this section I test the accuracy of the finite-difference algorithm against known 

analytical results. The input to the finite-difference algorithm is different 1D, 2D and 

3D synthetic models; they digitally represent viscosity and fluid bulk modulus spatial 

variation.  In 1D, the synthetic models generated are layered with periodic repetition.   

In 2D, models are generated consisting of circular inclusions (of uniform radius) that 

are distributed periodically and randomly (with and without overlap). In 3D, the 

algorithm is tested against the concentric sphere model of White (1975).  

 

By testing the finite-difference algorithm like this, the strengths and weaknesses of 

the approach can be identified. This enables the algorithm to be applied accurately in 

Section 5.5, when the shape parameter is determined for a 3D random distribution of 

spherical inclusions.   
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5.3.1 1-Dimensional: Periodic Layering  

Potential  

In this section, I compare an analytical solution derived to the potential equations 

(Equations (5.1.3.2) and (5.1.2.1)) against the solution from the finite-different 

schema (incorporating difference Equation (5.2.2.2), boundary conditions (B.C) and 

SOR). The schema has a grid spacing of mx 01.0 . Layer properties are given in 

Table 5.3.1.1. The effect that viscosity variation has on the finite-difference schema 

is examined by trialling different layer viscosities.       

   

 Table 5.3.1.1: Parameters for FD computation of auxiliary function 

 

      Properties           Layer 1             Layer 2 

 Layer thickness ( iL )              3                4 

           rg               1e1 
          

2

11

L

Lg
      

     Case One           r               1e-3               1e-3 

     Case Two            r               1e-3                 0.4e-4  

     Case Three            r               1e-3                 1e-5 

 

 

Case One: there is no variation in fluid viscosity between the layers. Figure 5.3.1.1 

shows that the finite-difference solution FD  corresponds exactly with the analytical 

solutions given by 1  and 2 (in Layers One and Two), respectively. This shows 

that in the absence of fluid viscosity contrast, the 1D finite-difference schema is very 

accurate.  

 

Case Two:  Both layers have different viscosities; all other properties are the same as 

Case One. Figure 5.3.1.2 shows discrepancies between the finite-difference solutions 

FD  and the analytical solutions 1  and 2 (in Layers One and Two). These 

discrepancies occur because Equation (5.1.2.1) requires viscosity to be smooth 

spatial function, and hence when the value in the viscosity jumps, the viscosity 

derivative does not exist. Thus the finite-difference solution  gnoSmoothinFD  

becomes very inaccurate.  Moreover, as the magnitude of the viscosity jump 
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increases, the finite-difference solution  gnoSmoothinFD  became non-convergent.  

This source of error can be reduced by averaging the viscosity over a few nodal 

points which has the effect of making the viscosity a smooth spatial function. When 

the viscosity is smoothed across the interface, the finite-difference 

solution  SmoothingFD corresponds reasonably well to the analytical solutions.  

 

Case Three: The viscosity variation across the layer interface is increased, whilst all 

other properties are kept the same. In this example, I study different ways of 

averaging the viscosity across the interface in order to see what works best. Two 

different methods are tried. The first method utilizes the same type of smoothing 

applied to the layer interface as in the previous example. It is simple logarithmic 

averaging over a number of nodal points. That is, I take the logarithm of the viscosity 

values and then average these values over a certain number of nodal points. I then 

take the exponential of the averaged nodal values to obtain the viscosity smoothing. 

The other approach trialled is to convert the viscosity to a smoothly varying function, 

such as a tanh  function. Figure 5.3.1.2 (a) shows the viscosity smoothing (of both 

approaches) as a function of position. Clearly fitting a smoothly varying function like 

the tanh  function to the viscosity will provide the smoothest spatial variation.  

 

Figure 5.3.1.2 (b) shows the finite-difference solutions for both types of viscosity 

smoothed media. The finite-difference computation obtained by using the log 

smoothing method  smoothingFD log  follows the analytical solutions 1  and 2 , 

closely. The finite-difference solution  smoothingFD tanh  of the tanh smoothed 

viscosity medium does not follow the exact solutions as closely. 

 

The above examples indicate that the 1D version of the finite-difference schema can 

provide an accurate approximation for the potential of layered media, providing that 

fluid viscosity contrast is treated carefully.  

 



Numerical Analysis of APS Shape Parameter 
__________________________________________________________________________ 

____________________________________________________________________    
5-211 

150 200 250 300 350 400 450 500
−0.03

−0.025

−0.02

−0.015

−0.01

−0.005

0

r

Φ
(r

)

 

 
Φ

1
 (Analytical)

Φ
2
 (Analytical)

Φ
FD

 

150 200 250 300 350 400 450 500
−0.018

−0.016

−0.014

−0.012

−0.01

−0.008

−0.006

−0.004

−0.002

0

r

Φ
(r

)

 

 
Φ

1
 (Analytical)

Φ
1
 (Analytical)

Φ
FD

 (No Smoothing)

Φ
FD

 (log Smoothing)

 

(a)       (b) 

 

Figure 5.3.1.1: Analytically and numerically determined potentials for periodic layering. (a) 

no viscosity variation and (b) with viscosity variation.   
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Figure 5.3.1.2: The influence of viscosity variation on the potential derived from analytical 

and finite-difference solutions. (a) Shows two different techniques used to smooth viscosity in 

the vicinity of the layer interface. Here viscosity variation between layer one and layer two 

differ by two orders of magnitude. (b) Shows the potential determined from the exact solution 

and the finite-difference solution.   
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Shape Parameter-Low Fluid Contrast  

 

According to Equation (5.1.1.9) the shape parameter can be determined by 

numerically integrating the potential with weight g. For periodic layering, I compare 

the numerical estimate of the shape parameter against both the exact analytical shape 

parameter (determined by substituting Equation 1.3.2.5 into Equation 1.3.2.13), and 

against the low contrast approximate shape parameter (Equation 4.2.1.3).  The rock 

and fluid properties are shown in Tables 5.3.1.2 and 5.3.1.3.  The focus of this series 

of tests is to examine how grid spacing affects the convergence of the finite-

difference solution to the exact solution.  The damping coefficient was set at 1.6 for 

this series of tests. 

 

  Table 5.3.1.2: Rock properties for finite-difference models  

 

    

 

 

 Table 5.3.1.3: Fluid properties for low contrast finite-difference models  

 

Kfw 

Water 

2.25 

GPa 

Kf  

Low Contrast 

2.0 

GPa  

w 990 

kg/m3 

 990  

kg/m3 

w 1e-3 

Pa s 

 1e-3 

Pa s 

 

 

 

K 7  

GPa 

Kg 35  

GPa 

 0.08  

 9  

GPa 

g 2650  

kg/m3 

 1e-13  

m2 
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In Figure 5.3.1.3 the shape parameter constructed using the analytical solution is 

compared against the shape parameter constructed using the finite-difference 

solution. The model assumes that there is periodic layering of water and another 

slightly more compressible fluid, such that fluid bulk moduli contrast between the 

layering is small. In (a) the grid spacing was set at mx 01.0  and the maximum 

number of iterations was kN 50max  . The shape parameter constructed from the 

finite-difference solution (solid line with dots) at low water saturations scatters 

around the exact solution (solid line with plus signs). However at large water 

saturations the finite-difference solution has converged to the exact solution.   

 

In Figure 5.3.1.3 (b) the grid spacing was reduced to mx 001.0  and the maximum 

number of iterations was kept at kN 50max  . Clearly, the finite-difference solution 

(solid line with dots) at low water saturations has converged to the exact solution 

(solid line with plus signs), but at larger water saturations (>30%) it is not 

converging to the exact solution. This indicates that when the grid spacing is fine 

more iterations are required for the finite-difference solution to converge to exact 

solution at large water saturations.  

 

In Figure 5.3.1.3 (c) the grid spacing was kept at mx 001.0  and the maximum 

number of iterations was increased to kN 350max  . The figure shows that the finite-

difference solution has now converged to the exact solution for all water saturations 

less than 83%.   

 

These tests indicate that rapidity at which the finite-difference solution converges to 

the exact solution depends on the grid spacing. Moreover, a coarse grid will require 

fewer iterations to converge to the solution for large water saturations, whereas at 

low water saturations fewer iterations of a finer grid are required for convergence.  

Perhaps by altering the damping coefficient, the efficiency of the convergence of the 

finite- difference solution to the exact solution can be improved (although this was 

not tested here). In the next section I will show that the speed of convergence also 

depends on fluid contrast.  
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Figure 5.3.1.3: Shape parameters (analytical and numerical) for periodic layered media of 

low fluid contrast at different water saturations. (a) Shows coarse grid and (b) fine grid, 

both with a maximum number of iterations of kN 50max  . (c) Shows fine grid  mx 001.0  

with max number of iterations kN 350max  .     
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5.3.2 Two-dimensional: Circular inclusions 

 

In this section, the numerical shape parameter calculated using the 2D finite-

difference schema is compared against an analytical shape parameter over analogous 

2D models (see Figure 5.3.2.1). Specifically, the numerical shape parameter is 

calculated for a circular inclusion centred within a square, whilst the analytical shape 

parameter is calculated for a circular inclusion centred within a circle. The rock 

properties are given in Table 5.3.1.2 and the host fluid has the properties of water 

listed in Table 5.3.1.3. For this set of tests, two aspects are examined for water 

saturations greater then 50%: 

 

(1) whether no net fluid flow boundary conditions imposed on the outer 

boundary of the square and circle will have a significant effect on the shape 

parameter. 

(2) supposing that the solutions in (1) are in reasonable agreement; whether 

contrast in fluid bulk moduli and viscosity will affect the finite-difference 

accuracy.   

 

Figure 5.3.2.2 shows the numerical shape parameter (asterisks) obtained from 

solving the finite-difference problem over a square grid containing a circular 

inclusion of a different fluid. The fluid inside the circular inclusion is more 

compressible than the fluid external to the inclusion; however there is not a large 

difference between fluid compressibilities (nor viscosities). This problem is solved at 

different water saturations, by varying the size of the square. The resolution of the 

grid spacing was m01.0x  and the maximum number of iterations was kN 50max  . 

Also shown is the exact analytical shape parameter (dashed line) for the concentric 

circle fluid distribution model of Krzikalla et al. (2006). Over a very wide range of 

water saturations, the two solutions are in good agreement. This indicates that 

although the no-net fluid flow boundary condition is applied to straight and circular 

boundaries, it has little effect on the 2D solutions.  

 

Figure 5.3.2.3 (a) shows the numerical shape parameter and the analytical shape 

parameter as discussed in the previous example. However, the fluid properties of the 
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inclusion change to a two order of magnitude difference in the bulk modulus of the 

inclusion relative to water (ie the inclusion becomes more compressible 

GPaKfi 01.0 ) and a one order of magnitude difference in viscosity relative to water 

( s mPa1.0i ). There are large differences between the numerical and analytical 

shape parameters for water saturations greater than five percent.  

 

In Figure 5.3.2.3 (b) the resolution of the grid spacing increases m002.0x  and the 

max number of iterations increased ( kN 90max  ), good agreement between the 

shape parameters was achieved over a wide range of water saturations. This indicates 

that the discrepancies in shape parameter estimates observed in Figure 5.3.2.3 (a) can 

be attributed to finite-difference resolution and convergence errors, rather then 

boundary effects. Moreover, it is important increase resolution and maximum 

number of iterations when modeling significant contrasts in fluid properties.  

 

 

                 

 

 

Figure 5.3.2.1: Analogous 2D models for different water saturations. (a) Shows circular 

inclusions of gas within an otherwise water saturated square. (b) Shows the concentric circle 

model.    

Sw=75% Sw=90% 

a) 

b) 

Sw=50% 
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Figure 5.3.2.2: Numerical and analytical shape parameters for low contrast 2D model 

analogues. The numerical and analytical shape parameters are in good agreement at low 

fluid contrast even though the shape of each boundary (upon which B.C are applied) are 

different. Computations were performed with grid resolution m01.0x and maximum 

number of iterations kN 50max  . 
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Figure 5.3.2.3:  High fluid contrast with one order of magnitude difference in viscosity. 

(a)The numerical and exact shape parameters differ significantly at water saturations 

greater than 10 percent, with grid resolution m01.0x and maximum number of iterations 

kN 50max  . (b) Analytical and numerical shape parameters at increased 

resolution m002.0x and maximum number of iterations kN 90max  . There is good 

agreement between the shape parameters curves. 
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5.3.3 Three-dimensional: Spherical inclusions  

 

   “You boil it in sawdust; you salt it in glue; 

                                            You condense it with locusts and tape;  

 Still keeping one principal object in view  

                                            To preserve its symmetrical shape” 

        Lewis Carroll 

 

White’s concentric sphere model is a geometry which has been utilized extensively 

in the literature to approximate the geometry of a sphere centred within a cube, see 

Figure 5.3.3.1. The reason for this is that partial differential equations etc usually 

have an analytical solution for the concentric sphere model, but not for a sphere 

centred within a cube. Recently in the literature (e.g like Vogelaar & Smeulders 

2007) there has been some debate regarding the validity of making a concentric 

sphere approximation for wave induced fluid flow problems. Of which two concerns 

are raised. The first being that the concentric sphere model is a poor approximation 

to a “sphere within a cube” due to the different shaped boundaries, and secondly, that 

the no net fluid flow boundary condition imposed on the outer surface of the sphere 

is too restrictive.       

 

In this section, I shall address the first concern. That is, I will test the analytical 

solution for the concentric sphere shape parameter, against a numerically estimated 

shape parameter for an equivalent sphere within a cube model.   

 

The spatial resolution of the finite-difference grid is mx 005.0  and the max number 

of iterations is kN 50max  . A fluid of compressibility of GPaKfi 01.0  saturates the 

spherical inclusion, whilst the host fluid has the compressibility of water. As 

significant viscosity variations can affect the accuracy of the finite-difference 

solution, I remove this possible source of error, by assuming that both fluids have the 

viscosity of water.  The rock parameters are given in Table 5.3.1.3.   

 

Figure 5.3.3.1 shows that the analytical solution (solid line) for the concentric sphere 

shape parameter is in good agreement with the numerical shape parameter (asterisks) 
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for an equivalent sphere within a cube model. This favourable agreement extends 

over a wide range of water saturations and hence models configurations. Although 

not shown here, similar agreement was observed for a variety of inclusion-host fluid 

contrasts. Also shown are the shape parameter bounds for randomly distributed 

overlapping (see Section 4.3.2.2) and non-overlapping spheres (Equation 4.3.1.8). 

Finite-difference analysis of the randomly distributed non-overlapping spheres model 

will be delayed till Section 5.3.5.    

 

This study indicates that the concentric sphere approximation utilized by White 

(1975) to simplify the mathematics and adopted widely (Johnson 2001; Pride et al. 

2004) will provide a good approximation to the sphere within a cube for patchy fluid 

saturation problems.   

 

                

 

(a)        (b)  

 

Figure 5.3.3.1: Analogous 3D models: sphere within a cube and concentric spheres. (a) 

Spherical gas inclusion (red) situated in the centre of a cubical volume containing water 

(blue). (b) The concentric sphere approximation, which assumes that the cubical volume of 

water can be replaced by a spherical volume of water. This geometrical approximation was 

first utilized by White (1977).  
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Figure 5.3.3.2: Comparison of shape parameters for the analytical concentric sphere model 

and the sphere with a cube geometry.  

 

5.4 3D: Random Distribution of Non-overlapping Spheres  

 

Three-dimensional synthetic models of randomly positioned non-overlapping spheres 

have been generated using the Random Sequential Addition (R.S.A) process 

(Torquato 2002). I extract statistical measures, such as the correlation function and 

correlation length from the synthetic models, using algorithms similar to those 

developed in Chapter 2, but extended appropriately for 3D analysis.  My reason for 

doing this is to access whether the synthetic models generated provide an accurate 

statistical representation of randomly positioned spheres. By doing this, I can access 

whether any discrepancies between the numerically determined shape parameters and 

the analytical shape parameters can be attributed to the synthetic media utilized as 

input to the finite-difference code.  
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5.4.1 Random Sequential Addition     

 

The non-overlapping sphere models have been generated using the random 

sequential addition process (R.S.A). A random distribution of spheres is created by 

randomly inserting a sphere into the volume, such that the sphere doesn’t overlap 

with any previous spheres already inserted. As the process of sequentially adding 

spheres continues, the volume fraction of inclusions increases until no further 

spheres can be added to the volume without causing overlap. Numerical experiments 

have shown that for two-dimensional media the largest volume fraction of inserted 

disks is approximately 0.547 (Feder 1980), whilst in three dimensions the largest 

volume fraction of spheres is approximately 0.38 (Cooper 1988).  Here I generate 

volume fractions of spherical inclusions much less than this limit, restricting 

computations to volume fractions of 31% or less.    

 

In general, random distributions of disks or spheres generated using the RSA process 

produce configurations which are not in “equilibrium”. That is, the spheres do not 

sample the configuration space uniformly, thus resulting in smaller maximum 

inclusion fractions and possible anisotropy (Torquato 2002).     

 

5.4.2 The Synthetic Models  

 

It is necessary to build models having different volume concentrations of 

inclusions 1v  . The fraction of the volume occupied by the spheres is given by  

3

1
1 3

4










B
sp L

R
nv   

where spn  is the total number of spheres of radius 1R  added to a cubic volume of 

side length BL . There are a number of different methods of applying RSA such that 

different volume fractions of inclusions can be generated. Two approaches are 

explored here. In the first approach a fixed number of spheres spn  is added to cubic 

volumes of different sizes. That is, higher volume concentrations of inclusions are 

generated by reducing the length size BL  (unit of x ) of the cubic volume, whilst 
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smaller volume concentrations of inclusions are generated by increasing the length 

size of the cubic volume.   

 

Figure 5.4.2.1 and 5.4.2.2 show typical RSA configurations of non-overlapping 

spherical inclusions at volume fractions of 0.11 and 0.21. Both models have 50 

spheres of radius 0.1. The volume fraction of each model is obtained by randomly 

adding 50 spheres to different sized cubes, thus larger volume fractions are achieved 

by using smaller and smaller cubes.   

 

The second approach of generating different volume fractions of inclusions fixes the 

length size BL  (unit of x ) of the cubic volume, but varies the number of spheres 

added. That is, small volume concentrations of inclusions are achieved by adding 

fewer spheres to the cubic volume than for larger volume fractions (see Figure 

5.4.2.3).  This approach was found to generate synthetic models which are better 

statistical representations of randomly positioned non-overlapping spheres.   

 

Figure 5.4.2.1: Fifty randomly positioned non-overlapping spheres of radius =0.1, inclusion 

concentration is 11 %. The cube has a side length of m234.1BL  and the discretisation is 

008.0x  
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Figure 5.4.2.2: Fifty randomly positioned non-overlapping spheres of radius =0.1, inclusion 

concentration is 21%. The cube has a side length of m999.0BL  and the discretisation is 

008.0x  

 

 

Figure 5.4.2.3: Ninety-four randomly positioned non-overlapping spheres of radius =0.1, 

inclusion concentration is 21%. The cube has a side length of m234.1BL  and the 

discretisation is 008.0x  
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5.4.3 Statistical Properties   

 

The two point probability density function is extracted from the models using the 

process detailed in Section 2.3.1. Each model is sampled in three orthogonal 

directions with the resulting two point probability density function given by the 

average of each orthogonal contribution.  The normalised correlation function is 

derived from the two point probability function using  

   
21

2
12

vv

vrS
rX


 . 

 

As finite-dimensional models are used, periodic boundary conditions are applied to 

each surface of the cube. This has the affect of reducing probability errors, which 

affect the accuracy of the two point probability density function at long offsets. The 

addition of periodic boundary conditions can be implemented by adding a replica of 

the cubic volume to each surface of the cube. This has the affect of preserving the 

statistical properties of the original cubic volume. Another approach is to map 

spheres across the boundaries, such that a sphere close to nxx  continues at 1x . This 

approach to replicating random distributions of spheres is not utilized here, as it will 

make implementation of no net flow boundary conditions (Equation 5.1.4.3) on the 

edge of the computational domain more complicated (see Section 5.2.3).  

 

Figure 5.4.3.1 (a) shows the two point probability density function extracted from the 

random spheres models having volume concentrations of 0.01, 0.06, 0.11, 0.16, and 

0.21. Figure 5.4.3.1 (b) Shows the normalised correlation function derived from the 

two point probability function. For these synthetic models, the side length of the 

cubic volume was fixed at m95.2BL , the model was discretised at a resolution 

of m01.0x , and the sphere radius was m1.01 R   



Numerical Analysis of APS Shape Parameter 
__________________________________________________________________________ 

____________________________________________________________________    
5-225 

0 0.5 1 1.5 2 2.5 3
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

r/D

S
2

 

 
v1=0.01
v1=0.06
v1=0.11
v1=0.16
v1=0.21

 

(a) 

0 0.5 1 1.5 2 2.5 3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

r/D

X
(r

)

 

 
v1=0.01
v1=0.06
v1=0.11
v1=0.16
v1=0.21

 

(b) 

 

Figure 5.4.3.1: Spatial statistics of the randomly distributed sphere models of varying 

inclusion concentrations. (a) Shows the two point probability function and (b) correlation 

function for the non-overlapping randomly distributed spheres  

 



Numerical Analysis of APS Shape Parameter 
__________________________________________________________________________ 

____________________________________________________________________    
5-226 

If the correlation functions extracted from a statistical volume reach their respective 

theoretical limit as r (i.e when the offset becomes large); then the volume can be 

considered as a representative volume element (Torquato 2002). Figure 5.4.3.1 (b) 

shows that as the offset r  increases, the correlation function for larger inclusion 

concentrations (i.e %211 v ) does not quite converge to zero. This indicates that 

spheres at offsets greater than twice the sphere diameter, are still slightly correlated. 

Hence, there may be small statistical errors in the non-overlapping sphere models at 

larger volume concentrations.  

   

To further investigate the statistical characteristics of the generated models, I 

compare the extracted two point probability function (and correlation function) 

against a two point probability function (and correlation function) theoretically 

derived for randomly distributed non-overlapping spheres by Torquato and Stell 

(1986). Unfortunately, the evaluation of their two point probability function requires 

numerical integration and fast Fourier transforms etc, so I only make use results of 

their tabulated results.  

 

In Figure 5.4.3.2  (a) the two point probability and (b) correlation function extracted 

from models having inclusion concentrations of %111 v  and %211 v  are compared 

against tabulated results (Torquato & Stell 1986) at inclusion concentrations of 

%101 v  and %201 v . The figure shows that the extracted curves are in good 

qualitative agreement with theoretical estimates when volume concentrations are 

similar. Hence, the models generated by RSA will provide a sufficient statistical 

representation of randomly distributed spheres. 
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Figure 5.4.3.2 Theoretical (Torquato & Stell 1986) and extracted spatial statistics for 

randomly distributed sphere models. (a) Comparison of extracted and theoretical two point 

probability curves for randomly distributed spheres. (b) Comparison of extracted and 

theoretical correlation functions for randomly distributed spheres. 
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5.5 Numerical Shape Parameters for Random Distribution of 

Spheres 

 

Here I calculate the numerical shape parameter  for a random distribution of non-

overlapping spherical inclusions, in particular studying how  varies when spherical 

inclusion concentration and fluid contrast is altered. The numerical estimates of the 

shape parameter are compared against the analogous analytical shape parameters 

derived in Chapter 4 (Equations (4.3.1.8) and Equations (4.3.1.10)). My objective is 

to delineate the range of spherical inclusion concentrations and fluid bulk moduli 

contrasts for which the corresponding analytical shape parameters are accurate.  

 

Three different fluid contrast scenarios are considered. For all models, it is assumed 

that the more compressible fluid is present as spherical inclusions within an 

otherwise water saturated host. The inclusion fluid bulk moduli for each case are (1) 

low contrast GPaKf i 2  (2) moderate contrast GPaKf i 1 and (3) high contrast 

GPaKfi 01.0 . As significant viscosity variation can affect the accuracy of the finite-

difference solution, I set the inclusion fluid viscosity equal to the viscosity of water. 

For each fluid contrast scenario, I model spherical inclusion concentrations: starting 

at 1%, (or 99% water saturation) incrementing by 5%, to a maximum of 31% (or 

69% water saturation).  

 

In addition to calculating the analytical shape parameters (Equations (4.3.1.8) and 

Equations (4.3.1.10)) for randomly positioned non-overlapping spheres, I also 

calculate the analytical shape parameters for periodically distributed spheres and 

randomly positioned overlapping spheres for the equivalent volume concentrations 

and fluid contrasts. By doing this I can access how the shape parameter for the 

randomly positioned non-overlapping spheres changes with contrast and volume 

inclusion concentration, relative to changes observed for other distributions of 

spherical inclusions.  
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Scenario 1: Low Contrast  

 

Figure 5.5.1 shows the numerical shape parameter (asterisks) and the analytical 

shape parameter (dashed line) for randomly positioned non-overlapping spheres. 

Clearly there is an excellent agreement between the shape parameters derived from 

numerical experiments and those derived from analytical considerations over a wide 

range of inclusion concentrations (6% to 31%). The numerical shape parameter 

differs significantly from the analytical shape parameter for 1% of inclusions. This is 

a numerical artefact, which is attributed to cancellation errors. After examining the 

finite-difference code, I traced the error back too very small differences between very 

large numbers, which occurs within one step when calculating the shape parameter. 

From my analysis performed in Chapter 4, I know that the theoretical limit on the 

shape parameter for low contrast and small volume concentration is 5/9; hence I 

expect that my finite-difference shape parameters would lye on the analytical curve 

at small volume concentrations given the trend observed between 6% to 31% 

inclusion concentrations.      

 

0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4
Low Contrast Shape Parameter

Water Saturation

S
ha

pe
 P

ar
am

et
er

 

 

Overlapping
Non Overlapping
Periodic
FD Computation

 

Figure 5.5.1: Numerical and analytical shape parameters for spherical inclusions having 

low fluid contrast with water. The numerical shape parameters (asterisks) follow the 

analytical relationship (dashed line) for low contrast random spheres.   
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Scenario 2: Moderate Contrast  

 

Figure 5.5.2 shows the numerical shape parameter (asterisks) and two versions of the 

analytical shape parameter for randomly positioned non-overlapping spheres. These 

two analytical shape parameters correspond to shape parameters derived from DRM 

theory, with contrast assumptions (dotted line, Equation (4.3.1.10)) and without 

(dashed line, Equation (4.3.1.8)) contrast assumptions placed on the inclusion fluid, 

respectively.  

 

Clearly there is excellent agreement between the numerical shape parameters and the 

shape parameters derived from DRM theory. Interestingly, for water saturations > 

89% , the numerical shape parameters are situated on the un-approximated analytical 

shape parameter (Equation 4.3.1.8); otherwise they are situated on the low fluid 

contrast approximation (Equation 4.3.1.10) of this shape parameter.  
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Figure 5.5.2: Numerical and analytical shape parameters for spherical inclusions having 

moderate fluid contrast relative to water. The numerical shape parameters (asterisks) follow 

two different analytical relationships. For water saturation >89% the numerical shape 

parameters follow the randomly distributed sphere (dashed line), whilst for water 

saturations <89% it follows the low contrast approximation of the randomly distributed 

sphere shape parameter (dotted line).   
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Scenario 3: High Contrast  

 

Figure 5.5.3 displays the numerical shape parameter (asterisks) and the analytical 

shape parameters for randomly positioned non-overlapping spheres when fluid 

contrast between the inclusion and host fluid is large. Figure 5.3.3 shows that the 

numerical shape parameter does not seem to rest along either analytical shape 

parameter relationships (randomly distributed non-overlapping spheres (dashed line) 

Equation 4.3.1.8) nor does it correspond to the periodic (solid line) shape parameter. 

However, by zooming into the picture Figure 5.5.4 we see that the numerical shape 

parameters follow closely the analytical shape parameter for low fluid contrast 

(dotted line Equation 4.3.1.10) at water saturations less 81%. Clearly more modelling 

is required to understand how the shape parameter varies at high fluid contrast for 

randomly distributed spheres.  
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Figure 5.5.3 High contrast shape parameters for randomly distributed spheres. The 

numerical shape parameters (asterisks) do not follow either analytical derived shape 

parameter relationships given by overlapping spheres (dashed-dotted line), periodic spheres 

(solid line) or randomly distributed spheres (dashed line Equation 4.3.1.8)   
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Figure 5.5.4: High contrast shape parameters for randomly distributed spheres. By zooming 

into Figure 5.5.3 the numerical shape parameters begin to follow the analytical shape 

parameter for randomly distributed spheres (dotted-line Equation 4.3.1.8) at water 

saturations less then 81 %.   

 

5.6 An Example: Attenuation 

 

Tserkovnyak and Johnson (2002) have inverted attenuation and velocity data 

obtained from experiments into shape and frequency scaling parameters, having in 

mind the object of determining spatial characteristics of partial fluid distributions. 

However, crucial to converting experimentally determined shape and frequency 

scaling parameters into quantities that reflect characteristics of the fluid saturated 

porous rock is an interpretation strategy.  For partially saturated rocks, Tserkovnyak 

and Johnson (2002) assumed that water saturation can be modelled as an inclusion 

within the concentric circle geometry.  This allowed shape and frequency scaling 

parameters to be related to volume to surface area and effective patch size.  

However, their method is only one way of possibly relating shape and frequency 

scaling parameters to physically meaningful quantities for partially saturated rock.   

In this Chapter, I have shown how the shape parameter can change as both water 

saturation and contrast in fluid compressibility is increased. Moreover, I have 

demonstrated how the shape parameter changes for different types of 1D, 2D and 3D 
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fluid distributions. This work is especially important when one contemplates 

inverting from attenuation and velocity data for information on saturation or 

geometry parameters such as V/S etc, without some prior knowledge of fluid 

distribution within partially saturated rock.  

 

To illustrate this point, I will forward model the frequency-dependent attenuation 

curve for 21 % heavy gas inclusions within an otherwise water saturated rock. I 

assume two different fluid distribution geometries; they are randomly distributed 

spheres and periodically distributed spheres. To calculate the frequency-dependent 

attenuation curve for the random distribution of spheres, I use APS taking the shape 

parameter value given in Figure 5.6.1 (a). I also compute the attenuation for 

randomly distributed spheres using DRM (see Section 3.2), whilst the periodic 

attenuation curve is calculated using APS with Equation (1.3.2.7) given by the 

redline in Figure 5.6.1 (a).  

 

Figure 5.6.1 (b) shows that the attenuation curves for randomly distributed spheres 

using APS (black curve) and DRM (blue curve) are different. Although not shown 

here, for this volume concentration and fluid contrast, DRM (Non Over Theor -blue 

curve) does not satisfy Gassmann–Wood limits on phase velocity. Hence, the DRM 

attenuation curve is erroneous. The frequency-dependent attenuation for periodic 

(red curve) and random (black curve) spheres generated using APS with appropriate 

shape parameters are significantly different at low frequencies, although there is 

good correspondence at high frequencies.   

 

The importance of this example is that it shows that the value taken by the shape 

parameter will directly influence attenuation (and also velocity). The shape 

parameter in turn is affected by how fluids are distributed, percentage water 

saturation, fluid contrast etc. Hence by inverting experimental data into shape and 

frequency scaling parameters as a middle step to characterising partially fluid 

saturated rock, we must then determine how to transform the shape parameter (and 

also frequency scaling parameter) into the physically meaningful parameters we are 

interested in. For this purpose, relations such as those derived in Table 4.4.2 and 

Table 4.4.4 are crucial.    
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         b)           

 

 

Figure 5.6.1: Shape parameter and frequency-dependent attenuation curves. (a) Shows the 

shape parameters for randomly and periodically distributed spheres containing a heavy gas. 

(b) Shows frequency-dependent attenuation curves calculated using APS with different shape 

parameters. Clearly there is a difference in the attenuation curves for randomly and 

periodically distributed spheres.  
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5.7 Chapter Conclusions 
 

I have trialled a new way of numerically determining shape parameters for 

complicated fluid distributions, this method is promising. The approach was to 

numerically determine the T  coefficient of the APS framework. This coefficient 

governs the low frequency approach of the saturated bulk modulus to the static limit 

by the Gassmann-Wood equations. It is defined in terms of the integral of an 

auxiliary function, which is the solution to a potential equation related to fluid 

pressure diffusion.   

 

The potential equation was approximated using finite-differences. The resulting 

algorithm was tested for a variety of 1D, 2D and 3D modelling scenarios. In 

particular, I have shown that shape parameters can be determined accurately for a 

variety of fluid contrasts, fluid viscosities and fluid saturations.  However, for 

synthetic models where viscosity contrast is of interest, the model must be treated 

carefully.   

 

For 3D fluid distributions described by randomly distributed non-overlapping 

spheres, I have used my numerical approach to validate:  

(1) the accuracy of the low contrast shape parameter (Equation 4.3.1.10)  over 

a wide range of inclusion concentrations (1% to 31%) and fluid bulk moduli 

contrasts, ranging from low to moderate. 

(2) the accuracy of the moderate contrast shape parameter (Equation 4.3.1.8) 

over a wide range of inclusion concentrations of intermediate fluid contrast.   

 

Like any trial, there is still more work that can be performed. In particular, the 

algorithm could be run on many more models of large fluid contrast (such as with 

water and gas) to obtain a better idea of how large contrast will affect the shape 

parameter for randomly distributed spheres. By doing more trials of this kind, one 

could use the numerical shape parameter estimate to develop heuristic shape 

parameters, for situations where an analytical solution of shape parameter is too 

tough to derive.  
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Further work, which is yet to be performed is to validate (or invalidate) the other 

analytical shape parameters, derived in Chapter 4. The same process would be 

performed, by comparing the analytical shape parameters against numerically 

estimated shape parameters. However, one must be very careful and ensure that the 

model generated as input to the finite-difference code, does in fact satisfy the 

statistical requirements of the desired medium, such as with a particular correlation 

function etc. Otherwise, one may be comparing shape parameters which implicitly 

assume different types of fluid distributions.  
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Chapter 6 

Conclusions and Recommendations  

6.0 Introduction  

 

Quantitative interpretation of seismic data and detection of hydrocarbon is largely 

based on seismic amplitudes at different offsets. As hydrocarbons are usually present 

in the reservoir alongside brine, which is especially true during production, 

knowledge of precise relationships between saturation and seismic attributes is 

important for exploration and especially for monitoring of production.  

 

In this thesis, I have determined from first principles, how compressional wave 

attenuation and velocity is affected by partial fluid saturation of porous rock. 

Specifically, I focus on identifying changes in frequency-dependent attenuation and 

dispersion caused by altering the fluid distribution and contrast between pore fluids. I 

concentrate on mesoscale fluid heterogeneities which arise on a length scale greater 

than pore scale, but less than wavelength scale. I choose to investigate effects due to 

mesoscale fluid heterogeneities because significant attenuation and dispersion may 

result within the seismic frequency bandwidth (White 1975; Pride et al. 2004).  

 

Below I summarise the key outcomes of my work. 

 

6.1 Fluid Distribution from Saturation Experiments on Porous 

Rock  

 

In Chapter 2, I studied core samples undergoing a drainage experiment, where 

pressurized nitrogen gas was injected into fully water saturated rock. Specifically, I 

looked for evidence that mesoscale fluid heterogeneities exist. I found sufficient 

evidence using X-ray tomographic images of partially saturated core samples, which 

I processed to form saturation maps. These saturation maps showed heterogeneous 

fluid patches. By applying statistical measures which are typically used in material 
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science to describe the microstructure of materials I investigated how the saturation 

maps change as gas saturation increases. Specifically, I found that the correlation 

function and correlation length provided the most useful spatial information for 

characterising mesoscopic fluid heterogeneities and changes in fluid distribution 

patterns caused by increased gas saturation. The correlation function was shown to 

be well approximated by a single or superposition of two Debye correlation 

functions, whilst the Debye correlation length was observed to decrease almost 

linearly with gas saturation.   

 

6.2 Patchy Saturation Models for Complex and Irregular Fluid 

Distributions  

 

Models based on the theory of statistical wave propagation have the potential to 

accurately simulate the acoustic signatures of partially saturated rocks, because they 

implicitly assume that fluid distribution is described by a correlation function. In 

Chapter 3, I started by analysing one such approach, the  1D patchy saturation model 

of Müller and Gurevich (2004) which assumes layering of fluid heterogeneities. By 

deriving correlation functions for periodic layering and quasi-periodic layering, it 

was shown that small amounts of uncertainty in layer repetition had little effect on 

attenuation and dispersion signatures.  

 

The main outcome of Chapter 3 was the development of a 3D patchy saturation 

model (3DCRM) which allows attenuation and dispersion to be estimated when fluid 

distribution is modelled using a correlation function. By substituting different 

correlation functions into the 3DCRM model, I showed that attenuation and 

dispersion could be estimated for many different types of fluids distributions. By 

comparing attenuation and dispersion curves generated using different correlation 

functions; I was able to show qualitatively that fluid distribution affects the 

frequency-dependent shape of attenuation and dispersion curves.  

 

Another key result of Chapter 3 was the development of a methodology which allows 

one to incorporate statistical information obtained from saturation maps (like 

correlation functions etc) into the 3DCRM model. Having this methodology is very 
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important, because it allows one to calculate frequency-dependent attenuation and 

dispersion due to spatial information obtained directly from realistic fluid 

distributions.  

 

6.3 Extension of the APS Framework   

 

The 3DCRM and 1DCRM models are precise for low fluid contrast and approximate 

at high fluid contrast. This occurs because the statistical approach underpinning the 

derivation of 3DCRM and 1DCRM models is precise for small fluctuations in 

physical properties. In reality, pore fluid contrast may be large, as the bulk moduli of 

two dissimilar fluids can vary by several orders of magnitude; such is the case with 

water and gas saturation. To compensate for effects due to fluid contrast, scaling 

functions were incorporated into each CRM model to ensure convergence to the 

Gassmann-Wood and Gassmann-Hill limits, for low and high frequencies, 

respectively. By making this approximation, it was implicitly assumed that the 

frequency-dependent character of the saturated P-wave modulus is independent of 

fluid contrast. That is, within the CRM framework, the fluid contrast affects only the 

magnitude of attenuation and dispersion, not the shape of attenuation and dispersion 

curves.  

 

In order to test whether the frequency-dependent characteristics of attenuation and 

dispersion change with fluid contrast (for realistic fluid distributions); I utilized the 

APS framework of Johnson (2001). This is a regular cell model with a simple and 

general framework, which is valid for any fluid contrast. However, in its original 

implementation APS was limited to simplistic fluid distributions, such as concentric 

spheres. The first step in utilizing the APS framework was to recognize how to 

extend its range of applicability to arbitrary fluid distributions with low fluid contrast 

(or percent saturation). By doing this I could compare estimates of 

attenuation/dispersion with the random media models (1DCRM, DRM, 3DCRM) to 

check the accuracy of my approach.  

 



Conclusions and Recommendations 
____________________________________________________________________ 

 ____________________________________________________________________ 
6-240  

In Chapter 4, I showed how the APS framework could be extended to model 

complicated fluid distributions. My approach was to modify two special parameters 

within this framework called “shape” and “frequency scaling” parameters. 

Specifically, I derived new equations for these parameters, which allowed other pore 

fluid distributions to be modelled.  By substitution of the new shape and frequency 

scaling parameters into the APS framework, I was able to extend the APS framework 

to model attenuation and dispersion for different fluid distributions. Comparison of 

the APS estimates with the equivalent random media models (1DCRM, DRM, 

3DCRM) showed that the APS branching function approximation was very accurate 

at intermediate frequencies.  

 

Some notable results of this analysis are that the APS framework can be utilized to 

model random layering whereas it was originally designed for periodic layering. I 

also explicitly derived an equation showing how the shape parameter, which controls 

the shape of the frequency-dependent attenuation and dispersion curves, depends 

explicitly on the correlation function and volume to surface area of 3D arbitrary fluid 

distributions. I also showed how the shape and frequency scaling parameters are 

related to statistical measures which can be extracted from x-ray tomographic 

images.   

 

6.4 Numerical Estimation of Shape and Frequency Scaling 

Parameters  

 

The new shape and frequency scaling parameters derived in Chapter 4 were known 

to be accurate for certain fluid contrasts and volume concentrations. As such to 

examine whether these shape parameters are valid for arbitrary fluid contrasts and 

concentrations,   I developed a new numerical approach.  

 

In Chapter 5 I numerically determined the shape parameter for complicated fluid 

distributions. The approach was to numerically determine the T coefficient of the 

APS framework. This coefficient governs the low frequency approach of the 

saturated bulk modulus to the static limit as given by the Gassmann-Wood equations. 
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The T parameter is defined by an integral of an auxiliary function, which is 

determined from the solution to a potential partial differential equation governing 

wave-induced fluid pressure diffusion.   

 

The potential equation was approximated using finite-differences. The resulting 

algorithm was tested for a variety of 1D, 2D and 3D modelling scenarios. In 

particular, I showed that shape parameters can be determined accurately for a variety 

of fluid contrasts, fluid viscosities and fluid saturations.   

 

The outcome of this Chapter was to show that the APS framework could be utilized 

to model attenuation and dispersion due to complicated fluid distributions, such as 

randomly distributed spheres at any fluid contrast.  

 

6.5 Recommendations for Future Work  
 

There are four main areas of research work which could follow on from my PhD 

study. They can be categorized as:  

 

(1) Comparison of experimental attenuation and velocity estimates against 

theoretical predictions using CRM with spatial information extracted from 

tomographic images of partially saturated rock.  

(2) Validation of analytical shape and frequency scaling parameters using APS 

theory. 

(3) Substitution of realistic rock and fluid properties into patchy saturation 

models and modelling seismic attributes.   

(4) Case studies  

 

6.5.1 Experiment versus theory   
 

I have developed a methodology for relating gas saturation maps to the 3DCRM 

patchy saturation model through an autocorrelation function. This method enables 

estimation of phase velocity dispersion and attenuation due to mesoscopic fluid flow.  
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If acoustic measurements are made in parallel to X-ray tomographic images during a 

saturation experiment, one could compare 3DCRM theoretical predictions and 

experimental estimates for attenuation and velocity.  

 

By comparing experimentally derived velocity and attenuation against theoretical 

estimates produced using 3DCRM (having incorporated spatial information extracted 

from tomographic images), one may gain insight into whether mesoscopic fluid flow 

is a controlling factor on the acoustic properties of partially saturated rock. This is 

important to evaluate as there are other possible attenuation mechanisms such as 

squirt flow (Gist 1994) or scattering (Gelinsky et al. 1998) which may be a factor, 

especially at ultrasonic frequencies.   

 

If there are large discrepancies between 3DCRM theoretical estimates and 

experimental observations then it may indicate that mesoscopic fluid flow is not the 

controlling factor on the acoustic response of partially saturated rocks and that we 

should concentrate on modelling effects due to other mechanisms. Alternatively, it 

may indicate that frame heterogeneities, such as porosity, permeability, and dry 

frame bulk modulus variation need to be accounted for.   

 

The advantage of using 3DCRM for this type of analysis, is that unlike other patchy 

saturation models (eg White 1975), the fluid distribution in 3DCRM is 

experimentally defined. This means that there are no parameters within 3DCRM 

theory which can be fiddled with to make theoretical and experimental measurements 

match.  

 

6.5.2 Validation of analytical shape parameters 
 

The analytical shape and frequency scaling parameters derived in Chapter Four 

provide a recipe on how to relate frequency-dependent signatures (attenuation and 

velocity) of partially saturated rock to measures which characterise partial fluid 

saturation, such as fluid distribution, correlation length, volume concentration etc. 

When these parameters are incorporated in the APS framework, a simple unified 

approach to modelling partial fluid saturation signatures is presented. Further work 
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which can be performed is to use the numerical procedure demonstrated in Chapter 5 

to validate and evaluate the accuracy of the shape parameters at a range of fluid 

contrasts and fluid saturations.   

 

The validation of shape and frequency scaling parameters will be important for 

inversion from attenuation and velocity information to properties of partially fluid 

saturated rock.  

 

6.5.3 Forward modelling patchy saturation signatures for specific 
rock properties  
 

The focus of this thesis has been on getting the tools in place to be able to model 

partial fluid saturation signatures due to realistic fluid distributions and fluid 

contrasts. Further work which could be performed is to use these tools to specify 

likely attenuation and dispersion signatures for different rock types and fluid 

saturations. That is, model attenuation and dispersion for a range of rock properties 

having characteristic dry frame bulk modulus, porosity and permeability appropriate 

for carbonates, sandstones etc.  

 

 

In particular, one could identify the range of permeability/correlation lengths for 

which attenuation and dispersion are a maximum within the seismic frequency 

bandwidth. Moreover, one could use the tools within this thesis to model AVO 

signatures including for frequency-dependent effects due to partial fluid saturation.   

 

6.5.4 Case/Field Studies  
 

There are two main areas of application for this research. The first is in exploration 

settings and the second is in production settings. Noting that, one will firstly require 

a reliable means of estimating attenuation from seismic data and secondly be able to 

distinguish attenuation as a result of intrinsic loss (wave induced fluid flow) from 

attenuation due to scattering losses (amplitude loss due to elastic scattering).  
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In exploration, there is a problem of differentiating between rock which is saturated 

by economic and uneconomic quantities of hydrocarbons using both seismic 

amplitudes (Gross & Hood 1998) and AVO signatures (O’Brien 2004). An 

interesting study would be to apply APS theory to see whether seismic amplitudes 

and AVO signatures (such as those discussed by Gross & Hood 1998) could be 

interpreted in terms of shape and frequency scaling parameters. For a number of fluid 

distributions (examined in Chapter 4) the shape and frequency scaling parameters 

were shown to be sensitive to percent fluid saturation and fluid contrast. Hence, a 

rock which is saturated by large percentages of hydrocarbon may have 

characteristically different shape parameters than for same rock saturated by small 

percentages of hydrocarbons. A study comprising of known exploration successes 

and failures would provide optimal data for this type of analysis.   

 

To assist with production of hydrocarbon from reservoirs, time lapse studies are 

conducted. Time lapse seismic interpretation is based on relating differences in 

seismic sections obtained from repeating surveys over producing reservoirs to 

changes in reservoir fluids and pressures. Production techniques, such as 

waterflooding, gas injection and gas dissolution have the potential to create very 

complicated fluid distributions. These complicated fluid distributions often exist on a 

spatial scale far smaller than the resolution of cells within reservoir flow simulators 

(Sengupta et al. 2003; Sengupta & Mavko 2003). In order to track fluid front 

movements accurately it will be of benefit to model seismic velocities as accurately 

as possible, hence there will be a need to model affects due to complicated fluid 

distributions. 
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