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Abstract

Partial saturation of porous rock by two fluids substantially affects compressional wave
propagation. In particular, partial saturation causes significant attenuation and dispersion
due to wave-induced fluid flow. Such flow arises when a passing wave induces different
fluid pressures in regions of rock saturated by different fluids. When partial saturation is
mesoscopic, i.e. existing on a length scale much greater than pore scale but less than
wavelength scale, significant attenuation can arise for frequencies 10-1000 Hz. Models
for attenuation and dispersion due to mesoscale heterogeneities mostly assume fluids are
distributed in a regular way. Recent experiments indicate mesoscopic heterogeneities
have less idealised distributions and distribution affects attenuation/dispersion. Thus,

theoretical models are required to simulate effects due to realistic fluid distributions.

The thesis focus is to model attenuation and dispersion due to realistic mesoscopic fluid
distributions and fluid contrasts. First X-ray tomographic images of partially saturated
rock are analysed statistically to identify spatial measures useful for describing fluid
distribution patterns. The correlation function and associated correlation length for a
specific fluid type are shown to be of greatest utility. Next a new model, called 3DCRM
(CRM stands for continuous random media) is derived, utilizing a correlation function to
describe the fluid distribution pattern. It is a random media model, is accurate for small
fluid contrast and approximate for large fluid contrast. Using 3DCRM attenuation and

dispersion are shown to depend on fluid distribution.

Next a general framework for partial saturation called APS (acoustics of partial
saturation) is extended enabling estimation of attenuation and dispersion due to arbitrary
1D/3D fluid distributions. The intent is to construct a versatile model enabling
attenuation and dispersion to be estimated for arbitrary fluid distributions, contrasts and
saturations. Two crucial parameters within APS called shape and frequency scaling
parameters are modified via asymptotic analysis using several random media models
(which are accurate for only certain contrasts in fluid bulk moduli and percent

saturation). For valid fluid contrasts and saturations, which satisfy certain random media
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conditions there is good correspondence between modified APS and the random media
models, hence showing that APS can be utilized to model attenuation and dispersion due

to more realistic fluid distributions.

Finally | devise a numerical method to test the accuracy of the analytical shape
parameters for a range of fluid distributions, saturations and contrasts. In particular, the
analytical shape parameter for randomly distributed spheres was shown to be accurate

for a large range of saturations and fluid contrasts.




Chapter 1

Introduction, Basic Theory and Thesis Overview

1.0 Introduction

Partial saturation of porous rock by two or more different fluids can occur in a
multitude of geological settings. For instance, gas, oil and brine commonly share the
available pore-space in the upper part of gas capped reservoirs. Underground
aquifers can become infiltrated by contaminating fluids. Earthquake events can
induce ground water variations and in turn; aftershocks have been linked to changes
in pore fluid distribution. In order to better assist the interpretation of seismic data
acquired for the purposes of detecting hydrocarbons, monitoring or tracking saltwater
intrusions into ground water aquifers, or for analysing recorded waveforms from
earthquake events, knowledge of how partial fluid saturation affects elastic wave

propagation is required.

The propagation of elastic waves in fluid saturated porous media is usually described
by Biot’s equations of poroelasticity (Biot 1956a; 1956b; 1962). In the low-
frequency (static) limit these equations yield the so-called Gassmann’s equation
(Gassmann 1951), which expresses the undrained static bulk modulus of the porous
medium as a function of the properties of the dry frame and the saturating fluid. Both
Biot’s and Gassmann’s equations assume that the porous medium is saturated with a

single Newtonian fluid (liquid or gas).

Extending Biot-Gassmann theory to model wave propagation in porous media
saturated by two or more immiscible fluids is not trivial. Immiscibility implies that
the fluids are not dissolved into one another and a distinct fluid-fluid interface exists
which separates each fluid (Bear 1988). When two immiscible fluids are distributed
on a relatively fine scale, they can be regarded as a single composite fluid whose
compressibility (inverse of bulk modulus) is given by an average of its constituent
compressibilities (using the so-called Wood equation (Wood 1941)). In this

circumstance, Gassmann’s equation can be applied to determine an effective bulk

1-1



modulus of the porous medium, in which the fluid bulk modulus is now given by the
composite average. This case is often referred to as uniform saturation, and implies

full pressure equilibration between the two fluids.

This pressure equilibration can only be achieved if the frequency is sufficiently low
so that the characteristic length of fluid diffusion in the pore-space is large compared
to the largest spatial scale of fluid mixing. If the frequency is higher, the pressure in
the two fluids will not have enough time to equilibrate, resulting in a higher
undrained bulk modulus and wave velocity. Hence, the presence of two fluids in the
pores (so called partial saturation) causes an additional dispersion and attenuation of
elastic waves, which is related to relaxation of pore fluid pressures. The frequency
dependency of wave velocity and attenuation in a partially saturated medium is
controlled by the size, shape and spatial distribution of fluid pockets and
permeability and elastic moduli of the solid matrix as well as the properties of the

two fluids.

In the last 30 years a numbers of models have been introduced that correspond to
different spatial configurations of fluid pockets. Most of these models assume regular
fluid patterns such as a cubic lattice of gas pockets of a fixed shape in a liquid-
saturated background medium (White 1975; Johnson 2001; Pride et al. 2004).
However, spatially regular distribution of the fluids may not always give an adequate
representation of the real distribution. Moreover, it has been shown (Gurevich &
Lopatnikov 1995; Miller & Gurevich 2004) that random and periodic 1D
distributions of two different fluids yield very different attenuation/dispersion pairs.
Although 1D alternating fluid distributions may not be realistic, this result gives an
additional motivation to studies of wave propagation in porous media with random
spatial fluid distributions. Recent results show that this approach is promising (Ciz et
al. 2005; Ciz et al. 2006; Toms et al. 2006).

1-2



1. 1 Elastic Wave Propagation in Fully Fluid Saturated Porous
Media

Biot’s equations of dynamic poroelasticity (Biot 1956a; 1956b; 1962) provide a
general framework for modelling elastic wave propagation through porous fluid
saturated media. The equations were derived using a Lagrangian view point with
generalised coordinates given by the average solid and fluid displacements. A
dissipation function was introduced, which depended only upon relative solid and
fluid motion. Subsequently, Biot’s equations have been rederived using a number of
different mathematical techniques, such as volume averaging methods (Pride et al.
1992) and homogenization for periodic structures (Levy 1979; Auriault 1980;
Burridge & Keller 1981). All of these methods yield exactly the same macroscopic
equations, thus confirming the validity of Biot’s original formulation.

The basic assumptions of Biot’s equations (Biot 1956a; 1956b; 1962) are:
)] The porous rock frame is homogeneous and isotropic. It has uniform

porosity 4, bulk modulus K,, shear modulus ,,, density p, and

permeability «, and consists of only one grain type, characterized by
bulk modulus K, shear modulus , and density o, .
i) The porous rock is fully saturated by only one fluid having viscosity 7,

fluid bulk modulus K, and density ,, .

I11)  Relative motion between solid and fluid is governed by Darcy’s law.
IV)  The wavelength of the passing wave is substantially larger than the size

of the largest grains or pores.

Biot’s wave equations describing average solid u and fluid displacement U can be

written in the frequency domain (with time dependenceexp(—iwt)implied) as (Biot
1962)

(H - u)graddivu + 4v°u +aM graddivw + o* ( pu + p,w) =0, (1.1.1)

oM graddivu+M graddivw+a)2(pfu+qw)=0, (1.1.2)
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where w=g¢(U-u) represents the average fluid displacement relative to the solid,
p=(1-¢)p, +¢p, is the density of the porous fluid-saturated rock, o =1-K,/K, is s0
called the Biot-Willis coefficient (Biot & Willis 1957), and H,x, and M are
material properties (defined later in this section page 6). Parameter q(») IS a

frequency-dependent coefficient responsible for viscous and inertial coupling

between the solid and fluid motion, and is given by

|| 1.
q_prﬁ K*(w)wpf} (113)

Here y >1 is the tortuosity, a dimensionless parameter which is responsible for

*

inertial coupling between solid and fluid motion and i=+-1. The parameter " is
the dynamic hydraulic permeability, which in general, is frequency-dependent and
responsible for viscous coupling. For sufficiently low frequencies (lower than Biot’s

characteristic frequency f, = ¢n/(2zxp, )), fluid flow within the pore channels can be

regarded as Poiseuille flow. This means that the flow is laminar (i.e. the Reynolds
number of the flow which expresses the ratio of inertial forces to viscous forces, is
less than a critical Reynolds number (Bear 1980)). In this case the first bracketed
term in the right-hand side of (1.1.3) can be neglected (Bourbie et al. 1987) and the

dynamic permeability reduces to the steady-state permeability «, giving
q=1. (1.1.4)

For most rocks and soils Biot’s characteristic frequency f, turns out to be about 10°

Hz or higher. Therefore, for most seismic and acoustic applications the low-

frequency version of Biot’s theory is adequate.

For a homogeneous porous medium equations (1.1.1) and (1.1.2) form a system of
six linear partial differential equations with constant coefficients for six components
of two vector-functions u and w. By considering a solution of these equations
dependent upon only one coordinate, say X, we can reduce equations (1.1.1) and

(1.1.2) to a system of six second-order linear ordinary differential equations with one
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independent variable x. The equations for u,, u,, w,, and w, describe the

72! y!
propagation of two identical shear modes with two orthogonal polarisations. These
shear waves are very similar in nature to classical shear waves in an isotropic

viscoelastic medium. The remaining system of two equations for u,, w, has a

solution of the form

(”*J:(”*"Jexp(ikx), (1.1.5)
W on

where wavenumber k is the root of its characteristic equation, that is, an eigenvalue
of the linear algebraic system obtained by substituting (1.1.5) into (1.1.1) and
(1.1.2). The characteristic equation is quadratic in k?, and thus yields two pairs of
complex roots +k. and+k_. This shows that in a porous medium there exist two types

of compressional waves with complex velocities v, =a/Refk._| and attenuation

factors (inverse quality factors) Q. = Imfk? }/Ref’ |.

The compressional waves are termed fast (+) and slow (-) P-waves and occur when
solid and fluid particle motion is in phase or out of phase, respectively. The fast wave
is a direct analog of the normal compressional wave in an elastic or viscoelastic
solid; it exhibits small amounts of attenuation and phase velocity dispersion (see
Figure 1.1.1). On the other hand, the slow P- wave behaves very differently at low
and high frequencies. At low frequencies f << f_, the wavenumber of the slow P-

wave is given by k2 =iwy/xN wWhere N =ML/H . In this frequency regime, the slow

P-wave is highly attenuated and is analogous to diffusion or heat conduction. On the

other hand, at high frequencies f >> f_the slow P-wave is propagatory with the
propagation velocity approaching c, 2, where c, is sound velocity in the free

fluid.
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For frequencies less than Biot’s characteristic frequency, the fast P and shear wave

numbers are given by (Berryman 1998)

2 H 2 H
- d] k-2 1, (116)

wherev, =/H/p is the fast P-wave velocity and v, =./u/p is the shear wave
velocity. In this frequency range the attenuation (inverse quality factors) for fast P
and shear waves are Q;* = wp, (L-vZ/v?) /np and Q.* = wwp, /np, Where v, = JaM/p, .
Parameter H that appears in the expression for the fast P-wave velocity v, is called
the saturated P-wave modulus, and can be written asH = K +4 /3, where K and u

are the undrained bulk and shear moduli of the fluid-saturated porous medium given

by the equations:

K=K, +a’M, (1.1.7)
M =[a-g)K, +4/K, |, (1.1.8)
H=Hy, (119)

where the analogous P-wave modulus for a dry medium is given by L =K, +4x,/3.

Equations (1.1.7) - (1.1.9) have first been derived by Gassmann (1951) and are
referred to as Gassmann’s equations. For Gassmann’s equations to be applicable,
several conditions must be met. The pore-space within the rock must be connected so
that pore fluid can achieve equilibration. Thus, fluid pressure effects due to isolated
pore-spaces are not accounted for. Furthermore, the frequency must be sufficiently
low, so that, fluid pressures induced by a passing wave have enough time for

pressure equilibration.

In essence, Gassmann’s equations define elastic wave velocities in fluid saturated
porous media in the low frequency limit. These equations are widely used in the
petroleum industry for estimating seismic wave velocities in hydrocarbon reservoirs
(Wang 2001; Smith 2003). However, in general, seismic wave propagation often

violates the quasi-static assumption, causing deviations from Gassmann’s results. In

1-6



particular, wave attenuation and phase velocity dispersion cannot be modelled with
Gassmann’s equation. To account for these effects Biot’s theory is often utilized.

Wave attenuation and phase velocity dispersion within Biot type media is caused by
global or macroscopic fluid flow, which is called “Biot’s loss”. It occurs when pore
fluids develop spatial gradients in fluid pressure induced over the wavelength of an
incident compressional wave. This drives fluid flow relative to the rock frame,

causing wave energy to be lost through viscous dissipation.

Although Biot’s theory provides a mechanism for the dissipation and dispersion of
elastic waves, it is generally accepted that it cannot adequately explain observed
magnitudes of attenuation and dispersion, especially within the low frequency regime
(Johnston et al. 1979; Winkler 1985; Gist 1994; Bukingham 2000). However, it is
widely accepted that Biot’s theory is correct in predicting the existence of the slow
P-wave. It has been confirmed by a number of laboratory experiments (Plona 1980;
Nagy et al.. 1990; Kelder & Smeulders 1997).
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Figure 1.1.1: Biot’s attenuation (inverse quality factor) and dispersion for porous rock
containing different fluids. (Top) 100 % water saturated and (bottom) 100% heavy gas
saturation of porous rock. Very modest amounts of attenuation and dispersion are predicted

at high frequencies using Equations 1.1.6.
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1.2 Elastic Wave Propagation in Partially Fluid Saturated

Porous Media

Partial fluid saturation of porous rock by multiple types of pore fluids was first
proposed as a cause for the mismatch between experimental measurements of
attenuation and phase velocity dispersion, and theoretical predictions given by Biot’s
theory (Biot 1956a; 1956b; 1962). JE White and his co-authors were the first to show
theoretically that partial fluid saturation can cause significant attenuation and phase
velocity dispersion (White 1975; White et al. 1976). Experimental studies conducted
around the same time (Domenico 1976; Gregory 1976) also indicated that partial
fluid saturation of porous rock causes different phase velocity behaviour then fully

saturated porous rock.

Since 1970s, the study of elastic wave propagation in partially fluid saturated media
has become a field of interest in its own right, generating a number of experimental
(Gist 1994; Murphy 1984; 1985; Cadoret et al. 1995; Cadoret et al. 1998), numerical
(Dutta & Ode 1979a; Dutta & Ode 1979b; Dutta & Seriff 1979; Carcione et al. 2003;
Helle et al. 2003) and theoretical studies designed to elucidate key features that cause

attenuation and phase velocity dispersion.

There are a number of different approaches to theoretically modelling attenuation
and dispersion due to the presence of partial fluid saturation. Each approach
emphasizes a particular physical aspect, thought to significantly affect attenuation

and dispersion estimates. Broadly speaking, most approaches focus on:

I) Porescale distribution of immiscible fluids: These models are often called
local or “squirt” flow models (Mavko & Nur 1979; Palmer & Traviola
1980; Murphy et al. 1986; Jones 1986). Attenuation and phase velocity
dispersion arise due to fluid flow occurring between gas and liquid filled
areas of the same pore or crack.

I1) Mesoscale distribution of immiscible fluids: fluid heterogeneities occur on

the scale greater than the pore scale, but less than wavelength scale. Fluid
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heterogeneities can be modelled using a periodic distribution (White 1975;
Johnson 2001; Pride et al. 2004; White et al. 1976) or a random distribution
(Mdaller & Gurevich 2004; Ciz et al. 2005; Toms et al. 2005). Attenuation
and phase velocity dispersion arises due to induced pressure gradients on

the mesoscale, which causes fluid to flow.

I11) Defining an effective pore fluid: incorporating free bubble oscillations
(Bedford & Stern 1982; Lopatnikov & Gorbachev 1987; Smeulders & van
Dogen 1997; Aurialt et al. 2002). Attenuation can arise due to viscous and
thermal damping, which occurs when the free gas bubble oscillates in

response to pressure fluctuations in the surrounding pore liquid.

There are many different types of porous rocks, such as sandstones, limestones,
shales etc, which are often saturated by different combinations of pore fluids, such as
water, oil and gas. As such, in some situations, one theoretical approach may be

more applicable than another.

Category | models are good for situations where porous rocks are known to contain a
large number of very compliant grain contacts or cracks. This becomes especially
important for laboratory studies where rock samples have undergone distortion due
to removal from in situ conditions, which can either induce fracturing on the grain
scale or cause the opening of otherwise closed grain contacts, due to changes in
confining pressure (Pride et al. 2004). Furthermore, certain rock samples or in situ
rocks which contain significant grain-scale heterogeneities are also suitable, such as
with carbonate rocks which possess both intergranular and intragranular porosity
(Assefa et al. 1999) or for sandstones having either imperfectly cemented grain
contacts (Murphy et al. 1986) or an assemblage of smaller irregularly shaped intra-

pore minerals (Best et al. 1994).

In those circumstances, wetting fluids like water preferentially saturate grain contacts
and cracks, whilst non-wetting fluids like gas assume larger rounder pore-spaces
(Murphy et al. 1986). In response to a passing wave, spatial gradients in fluid

pressure develop which cause fluid to flow between grain cracks, contacts etc and
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rounder pore-spaces. This occurs because cracks, contacts etc are more compliant
(mechanically weaker) than rounder pore-spaces.

This type of pore scale fluid flow also known as local (or squirt) flow causes
attenuation and phase velocity dispersion. The reason is that when wave frequencies
are sufficiently low, there is enough time for fluid to flow between grain cracks into
surrounding pores etc, whilst at higher frequencies there isn’t sufficient time. This
means that a porous rock at lower frequencies is less stiff than at higher frequencies
resulting in lower wave velocities. At intermediate wave frequencies, phase velocity

is frequency-dependent and attenuation is a maximum.

A possible limitation of most squirt flow models is that they assume specific pore
scale geometries. In particular, Murphy et al. (1986) assumes that the grain contact is
perfectly flat and adjacent to a spherical pore, whilst Mavko and Nur (1979) model a
multitude of idealised geometries, such as flat, triangular and parabolic pore shapes.
Thus appropriate application of these models requires knowledge of rock
characteristics on the pore scale, which isn’t always available, certainly for in situ
applications. However, the increasing use of X-ray microtomographic imaging (Arns
et al. 2004) with numerical algorithms (Arns et al. 2002; Saenger et al. 2007) that
compute elastic properties from porescale images of real rock, will provide a direct
means of relating elastic properties to pore structure. Hence, these studies may serve
to improve our understanding of squirt flow mechanisms etc and thus provide

direction on how squirt flow models for certain rock types should be framed.

As it is well known that bubbles affect the acoustic properties of a liquid (Silberman
1957; van Wijngaarden 1972; Commander & Prosperetti 1989), category 11l models
are best suited to applications where fluid-fluid interaction is considered important.
In a free liquid the presence of bubbles has two interconnected effects on the acoustic
properties of the liquid, which can also affect wave propagation when that fluid

saturates porous rock.

Firstly, the presence of bubbles affects the compressibility of the liquid; this changes
the propagation velocity of waves. Secondly, pressure fluctuations within the liquid

stemming from wave propagation, forces bubbles to oscillate about their equilibrium
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radius. This causes attenuation, as wave energy is transferred into energy which
drives bubble oscillations. As sound wave attenuation has a maximum at the resonant
frequency of the bubble, it is anticipated that these models will be of most use at high
frequencies, as the resonant frequency of the bubble is inversely proportional to

bubble radius which is typically small (Silberman 1957).

On the other hand, category Il models are best suited to applications where wave
frequencies are low and the porous rock is saturated by relatively large (mesoscopic)
fluid patches. For the rest of this Chapter, I will focus only on category Il models;
however | wish to acknowledge that both category | and category Il models are

important.

1.2.1 Mesoscopic Distribution of Fluids

Fluid heterogeneities existing on a scale which is greater than pore scale, but less
than wavelength scale are called mesoscopic. A mesoscopic distribution of two pore
fluids can arise due to variations in porosities, permeabilities and grain types within a
porous rock. These features will cause pore fluids to be preferentially located in

different positions, e.g., in a way shown in Figure 1.2.1.1

On the pore scale, numerical studies (Knight et al. 1990; Silverstein & Fort 2000a;
2000b; 2000c; Berkowitz & Hansen 2001) have shown that water preferentially
locates in grain contacts and smaller pore-spaces, whilst gas prefers larger rounder
pore-spaces. Presumably, the same physics which dictates fluid distribution on the
pore scale, such as minimization of interfacial surface area, between grains and
fluids, and fluids and fluids, history of fluid saturation, processes of fluid saturation,
wettability of the rock, capillary effects etc will also influence fluid distribution on
the mesoscale, in addition to gravitational forces which leads to the separation of

fluids that have significantly different densities (i.e reservoir scale-gas cap rocks).
Mesoscopic fluid distributions have been observed in recent experiments (Cadoret et
al. 1995; 1998; Monsen & Johnstad, 2005). In these studies, clusters or patches of

different pore fluids are distributed throughout the porous rock samples. These
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experiments have revealed that the shape and distribution of mesoscopic fluid
patches depends upon the degree of saturation and also upon the process of fluid

saturation.

X-ray tomographic images of Cadoret et al. (1995) show that imbibition experiments,
where water displaces gas, produce more or less regular patches of fluids distributed
uniformly throughout the porous rock at high water saturations, whilst drainage or
evaporative experiments, where the reverse fluid substitution process occurs, produce
gas clusters distributed non-uniformly through out the porous rock at high water

saturations.

As drainage and imbibition produce different saturation patterns at the same level of
saturation, differences in attenuation and phase velocity measurements have been
attributed to differences in fluid distribution. Moreover, phase velocities measured
from drainage experiments are appreciably higher than those from imbibition
experiments (Cadoret et al. 1995; Knight & Nolen-Hoeskema 1990) and differences
between attenuation values have also been observed (Cadoret et al. 1998). Hence,
estimates of attenuation and phase velocity are affected by the distribution of

immiscible fluids.
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Figure 1.2.1.1: Mesoscale distribution of two different pore fluids within a porous rock
having lithological variations. The scale of fluid heterogeneities is greater then pore scale,

but much less then wavelength scale

1.2.2 Low and High Frequency Elastic Moduli

In response to a passing compressional wave, the porous framework of grains is
compressed and rarefied on time scales imposed by the wave speed. When spatial
heterogeneities in saturating fluids (and/or rock properties) exist, the compression or
rarefaction of the frame causes spatial gradients in fluid pressure to develop.
Providing that heterogeneities exist on length scales less than a wavelength, but
greater than pore scale, gradients in fluid pressure develop on the mesoscale. This
drives the so called mesoscopic fluid flow, which causes the attenuation of elastic

energy and the dispersion of a propagating wave form.
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In the limiting cases of very low and very high wave frequencies, theoretical values
of phase velocities can be determined. For intermediate wave frequencies, phase
velocities are frequency-dependent and lie between these limiting values. Following
Mavko and Murkerji, (1998), Johnson (2001), Mller and Gurevich (2004), the upper
and lower-frequency limits on phase velocities are presented below.

For a porous rock having only heterogeneities in saturating fluids, Norris (1993) has
shown that the distribution of fluid pressures is governed by the diffusion equation
with a diffusion length of

where N = ML/H , @ is wave frequency, and L and H are P-wave moduli of the dry

and fluid-saturated rock, respectively.

When the frequency o of the incident wave is sufficiently low and the characteristic

patch size of fluid heterogeneities is less then the diffusion length A,, there is

enough time for fluid to flow and equilibrate at a constant pressure. In this limit,
Wood’s law (Wood, 1941) can be applied to determine an effective fluid bulk

modulus K, given by,

va = Sl/Kfl + Sz/Kfz ) (1.2.2.1)

where S,,S, are volume concentrations of fluids having bulk moduli K, , K,,.

Once the effective bulk modulus of the pore fluid is defined, Gassmann’s relations
(1.1.7)-(1.1.9) can be applied to estimate the low-frequency phase velocity for a
partially fluid saturated rock (Figure 1.2.2.1). This quasi-static limit is known as

uniform saturation or Gassmann-Wood limit.
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Conversely, when the wave frequency @ is sufficiently high, and the characteristic

patch size is larger than the diffusion length A, , there isn’t enough time for pressure

equilibration and fluid flow effects can be ignored. In this circumstance, patches of
rock will remain at different pressures. Then, application of Gassmann’s theory on
individual patches allows the saturated bulk modulus of each patch to be determined.
According to Gassmann’s equation (1.1.9), the saturated shear modulus of each patch
is independent of fluid bulk modulus. Thus Hill’s theorem (Hill 1963) can be applied
to determine the overall saturated bulk modulus:

[KH + 4:“/3]_1 = Sl/(Kl + 4/1/3)"' S2/(K2 + 4#/3)' (1.2.1.2)

Where K, and K, are the saturated bulk moduli determined by applying
Gassmann’s theory on each fluid patch (Figure 1.2.2.1). This high-frequency or no-

flow limit is known as patchy or Gassmann-Hill limit.

The elastic moduli in both the low- and high frequency limits are given by real
numbers and are frequency independent. Johnson (2001) has shown that 1) for any
non-zero saturation the homogeneous moduli are always smaller than those for
patchy saturation, and 2) at intermediate frequencies the bulk modulus lies between
these limits. Thus for any intermediate saturation level the partially fluid saturated
rock exhibits frequency-dependent phase velocity.
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Figure 1.2.2.1: Lower and upper bounds on P-wave velocities for partially water saturated

porous rocks with light gas or heavy gas inclusions.
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1.3. Regular Cell Models

1.3.1 White’s Models

There are a number of approaches to modelling attenuation and phase velocity
dispersion due to mesoscopic fluid flow. Most approaches assume that
heterogeneities in fluid content or lithology are distributed periodically throughout
the porous medium. This approach was proposed by White et al. (1976) and White
(1975), who were the first to illustrate that significant amounts of attenuation and
phase velocity dispersion could arise from mesoscopic fluid flow. White et al. (1976)
modelled fluid heterogeneities as periodically alternating layers of gas and water in a
uniform solid frame. White (1975) modelled fluid heterogeneities as a periodic array
of spherical gas inclusions, embedded within a water saturated rock having uniform
frame properties, see (Figure 1.3.1.1).

In these approaches, an elementary composite volume consisting of porous rock
saturated by each fluid is considered representative of the entire periodic system of
fluid heterogeneities. In 1D, the representative volume spans the interface between
different fluid layers from the centre of each layer. In 3D, the representative volume

is spherical enclosing a single gas inclusion. See Figure 1.3.1.1.

In White et al. (1976) and White (1975), the frequency-dependent complex bulk
modulus is derived by considering the ratio of the imposed pressure amplitude to the
corresponding fractional change in volume (including effects of fluid flow). Later
these models were recast using Biot’s equations of dynamic poroelasticity (Biot
1962) for 1D periodic layering by Norris (1993) and for 3D spherical gas inclusions
by Dutta and Ode (1979a; 1979b). These studies validated the conclusions that wave
induced fluid flow causes attenuation and phase velocity dispersion, and
demonstrated that Biot’s theory of poroelasticity provides a powerful and versatile

tool to study this phenomenon.
Recently, two more general models for patchy saturation have been developed which

also utilize 3D regular patch geometries (Johnson 2001; Pride et al. 2004). These

new models allow attenuation and phase velocity to be determined for arbitrary
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Introduction, Basic Theory and Thesis Overview

shaped fluid inclusions. However, explicit analytical expressions are only given for
White’s periodic layering and concentric sphere geometries.

a

Poexp(iot)

Y]

| |
= |
4]

b)

Poexpliot)

Figure 1.3.1.1: White’s periodic fluid distribution geometries. (a) Shows 1D periodic
layering and its composite volume. (b) Shows spherical inclusions distributed in a 3D
periodic array and (c) the composite volume used to approximate the 3D periodic array
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1.3.2 The APS Framework -Johnson’s Model

The Acoustics of Patchy Saturation (APS) model of Johnson (2001) will be utilized
extensively in Chapters 4 and 5. Here | will give a precursory introduction, leaving

the detailed discussions to subsequent chapters.

Johnson’s APS (Acoustics of Patchy Saturation) approach was developed within the

context of low-frequency Biot’s theory. The dynamic bulk modulusk(w) of a

partially fluid saturated porous rock is developed by firstly considering its response
to low and high wave frequencies (however where ‘high frequency’ is still assumed

smaller than Biot’s characteristic frequency f, = (/ﬁn/(27n<,of )).

When wave frequencies are sufficiently low, the rock is “relaxed” as fluid pressure is

equilibrated. In this limit the low frequency asymptote of K(w) converges to

Gassmann-Wood limits (see Section 1.2.2),
K, (@) = Kggy [1-iaT +0(w)] . (1.3.2.1)

Here T is a parameter which depends on: percent fluid saturation, contrast between
pore-fluid properties and fluid patch geometry. This parameter only has analytical
solutions for very simple fluid distributions, such as White’s concentric spheres, etc.

The general expression for T is

T = e (e jo(r)av (1.3.2.2)

In Equation (1.3.2.2)

)= a(%(w_%( f(r)j (1.3.2.3)
- He, v K,

where K, is the effective fluid modulus given by Wood’s law (Equation 1.2.2.1)

g(r

and K, (r) is the fluid bulk modulus at some spatial position r, and o(r) is a solution

to the potential equation:
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v.{%vqﬂ —g(r) (1.3.2.4)

Here #(r) is fluid viscosity at position r.

Equations (1.3.2.1) and (1.3.2.4) can only be analytically solved for simple fluid
distributions. For periodic layering (Johnson, 2001):

K 2
T:6 sow —{771912Lf+37719192LfL2+3nzglgzL1L22—nzgfLi}, (1.3.2.5)
(L, +L,)

where L, and L, are layer widths. In analogy to the concentric sphere model of
White et al. (1976) and Johnson (2001); Krzikalla et al. (2006) derived
the T coefficient for concentric circles in a two-dimensional medium (corresponding

in 3D to circular cylinders):

_KBGW¢2{[ 2,9 (7, —1,) - 2]R4_2 (7, -, )RZR?
= 8KR22 17,9, 919, — 17, ) — 19y [~y 0,9, — 1, )Ry R,

R

+477292(gl_92)|n(R_1jR12R22 _UzgzzR;}: (1326)
2

where R, and R, are radii for the inclusion and host. For the concentric sphere model

(Johnson, 2001):

K 2
T :%{[3772922 +5(’71 _772)9192 _377193]R15 _1577292(92 _gl)RfRzz
2

+5gz[377292 _(2’72 +771)91]R12R§ _3’729§R25}' (1327)

Conversely, when wave frequencies are sufficiently high, the rock is “unrelaxed” as
fluid pressures are unequilibrated. In this limit, the high frequency asymptote of
K(w) converges to Gassmann-Hill limit (see Section 1.2.2), leading to an expansion
of the form

K, (0) = Kgon [1—6(—@)’“2 +0(a)'1/2)} : (1.3.2.8)
Here G depends on: contrast between pore-fluid properties and volume to surface

ratio of the patches, such that

KK goi I|Apf|2ds

G- ,
myD; +m,3/D, [PV

(1.3.2.9)
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where 7, and D, are viscosity and diffusivity of fluid i, ds/v is the surface area to

volume ratio of the fluid inclusion and |Apf| /|Pe| is the change in pore pressure due

to external pressure applied on the sample.

For intermediate wave frequencies, the dynamic response of the porous rock is
constructed using a branching function, which ensures causality of the solution and
convergence to lower-frequency (Equation 1.3.2.1) and higher-frequency (Equation
1.3.2.8) limits. The dynamic saturated bulk modulus is given by:

K, (@)= Ky (1— bf (0)), (1.3.2.10)

with a branching function of

bf (a))z[l—mg,/l—im/gz T, (1.3.2.11)

and fluid contrast factor

5= Koot ~Kaou ). (1.3.2.12)

KBGH
The branching is defined in terms of two parameters. The first is called the shape
parameter
¢ = (Ko = Koon )’ /(2K go K TG?). (1.3.2.13)
and controls the shape of the attenuation curve. The second is called the frequency
scaling parameter
7=(Koon = Kaon /' /(KeenG)’ » - (1.3.2.14)

and controls the frequency at which attenuation reaches its maximum value.

Utilizing this theory, Tserkovnyak and Johnson (2002) deduced values for the
specific surface area and effective patch size from experimental data (Cadoret et al.
1995; 1998). They found that APS theory could be used to interpret geometrical
measures of partial fluid saturation from attenuation and phase velocity
measurements. Their interpretation produced effective patch sizes which were in
general plausible; however the volume to surface ratios exceeded theoretical limits at
large water saturations. Tserkovnyak and Johnson (2002b) have extended the

approach to incorporate surface tension at the interface between pore fluids.
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1.3.3 Double Porosity Dual Permeability -Pride and Berryman

A more general approach based broadly on similar principles as APS theory was
recently developed by Pride and Berryman (2004a; 2004b). This approach yields
estimates of attenuation and phase velocity in a general double-porosity dual-
permeability medium. The theory utilizes Biot’s equations (Biot 1962) of
poroelasticity to determine the poroelastic response of a composite body comprising
two different poroelastic materials (each described by Biot’s equations of

poroelasticity).

Central to the double-porosity dual-permeability theory is a model for fluid transport
(Pride and Berryman 2004b). That is, they aim to directly model mesoscopic fluid
flow arising between different regions of rock. They assume that it is proportional to
fluid pressure differences (between each material), with a frequency-dependent
proportionality coefficienty. The average rate &, at which fluid volume is
transferred from material 1 into material 2 is given by

—i&, = 1(@\p - Pi2), (1.3.3.1)
where p, refers to fluid pressure in material i. It is this quantity &, that represents
mesoscopic fluid flow, when wave frequency is much less than Biot’s characteristic

frequency. This flow is responsible for significant attenuation and dispersion of

compressional waves.

The fluid transport coefficient 7 in Equation (1.3.3.1) is obtained using a similar

approach to that of Johnson (2001). That is, the fluid transport coefficient is only

exactly determined at low and high frequency limits. To estimate 7 at intermediate

frequencies, Pride and Berryman (2004b) use a branching function given by

7(@)=7p 11", (1.3.3.2)

which converges to theoretically derived low and high frequency limits. The

parameters o, and y, depend on mesoscopic geometry and constituent properties

(see Pride et al. 2004).
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In the important case where one porous phase is entirely embedded in the other, the
double porosity equations of Pride and Berryman (2004a, 2004b) reduce to an
effective Biot’s theory having complex frequency-dependent coefficients. That is, the

drained bulk modulus K , (), saturated bulk modulus K, () and fluid modulus M (w)

all depend on wave frequency. This is possible because in this case the flux into and
out of the volume element for the embedded fluid is zero. Wave attenuation and
velocity dispersion are then modelled by substituting these equations into the wave
slowness obtained from Biot’s theory. Hence, attenuation and dispersion due to
heterogeneities in rock (or fluid properties) can be predicted for both the low and
high frequency regimes of Biot’s theory. This shall be shown in Figure 1.3.3.1.

Pride et al. (2004) specialised the general results of Pride and Berryman (2004a,
2004b). to the specific case of patchy saturation, where only heterogeneities in
saturating fluids exist. They also derive analogous results for squirt flow. Rather then
list the multitude of equations required to use their theory, I shall show below a
patchy saturation version that | simplified assuming that the frequency is much lower

than Biot’s characteristic frequency.

The saturated P-wave modulus is

H(w):_Ai P +%,u, (1.3.3.3)

whereyis the fluid transport coefficient given by Equation (1.3.3.2). The

A, coefficients are:

A = K:ZBO (1.3.3.4)

A, = Kd‘f’BO (1-aB,) (1.3.3.5)

A, =;’—[gé j(Bl -B,) (1.3.3.6)

A, = ;:‘;Bﬁo (L-aB, )+ :‘:‘E’{\;z (1-aB;). (1.3.3.7)
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Here B,,(i=12) are Skempton coefficients for regions of rock saturated by fluid one
and fluid two. The Skempton coefficient is a ratio of the change in fluid pressure of
the undrained rock due to changes in confining pressure (Shempton 1954). That is, it

is a measure of induced fluid pressure and is given by (Pride et al. 2004):

In Equations (1.3.3.4)-(1.3.3.7), B, and B, are harmonic and arithmetic averages of

the Skempton coefficients for the two phases,

and

Figure 1.3.3.1 shows (a) attenuation and (b) velocity calculated using Pride and
Berryman’s (P.B) patchy saturation model; this is compared against Equation
(1.3.3.3). Clearly, Equation (1.3.3.3) is a good approximation at low frequencies, as
the predicted attenuation and velocity curves are identical to P.B. (a) Shows two
attenuation peaks, the first at low frequencies is due to mesoscopic fluid flow, whilst
the second at higher frequencies is due to macroscopic fluid flow. There is a large
difference in the magnitude of attenuation, at high frequencies as Equation (1.3.3.3)
does not account for macroscopic flow (which is negligible at low frequencies).
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Figure 1.3.3.1: Attenuation and dispersion due to the Pride et al. (2004) patchy saturation
model and approximation. (a) Attenuation and (b) velocity modelled using Pride et al.
(2004) full Biot’s model (solid line with circles) and modelled using my low frequency

approximation Equation (1.3.3.3).
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1.3.4 Comparison of Regular Cell Concentric Sphere Models

Here 1 model attenuation and dispersion using three regular cell models (White,
Johnson, Pride and Berryman approaches) assuming the concentric sphere fluid
geometry. The motivation is to identify whether differences in physical approaches
used to account for mesoscopic fluid flow will affect attenuation and dispersion
estimates. For 5% of air inclusions within an otherwise water saturated host rock of
porosity 0.15, attenuation and phase velocity are shown in Figure 1.3.4.1 (a) and (b),
respectively. These figures show that there is a good agreement between all periodic
models for estimates of attenuation and phase velocity. In particular, (a) shows that

attenuation at low frequencies is proportional to @, whilst for high frequencies it is

proportional to @ 2. (b) Shows that phase velocities converge to low (Gassmann-
Wood) and high frequency (Gassmann-Hill) limits and at intermediate frequencies
the phase velocities are bounded by those limits. Clearly, the differences in

theoretical formulations do not affect attenuation and velocity estimates.

The regular cell approaches are limited to modelling attenuation and velocity
dispersion due to wave induced flow arising between fluid heterogeneities that are
identical in shape and distributed regularly throughout the porous medium. The use
of idealised modelling geometries has clearly been helpful in identifying the effects
of mesoscopic fluid flow. However, other types of patchy saturation models that
allow more realistic fluid distributions to be modelled, like the random media
approaches (Miller & Gurevich 2004; Ciz et al. 2006) are required in order to
evaluate whether fluid distribution will influence attenuation and velocity estimates.
We know from 1D analyses (Gurevich & Lopatnikov, 1995; Muller & Gurevich,
2004) that random and periodic 1D distributions of two different fluids yield very
different attenuation/dispersion pairs. Although 1D alternating fluid distributions
may not be realistic, this result gives additional motivation to studies of wave

propagation in porous media with 3D random spatial fluid distributions.
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Figure 1.3.4.1: Attenuation and dispersion modelled using the regular cell approaches. (a)
Attenuation and (b) velocity estimates modelled using the periodic models of White, Johnson
and Pride et al. 2004. Very good agreement between all approaches for the case of 5 % air
inclusions in an otherwise water saturated host rock of porosity 15%. The inclusion radius is
25 cm.
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1.4 Thesis Overview — My Contribution

I once sent a dozen of my friends a telegram saying ““flee at once- all is discovered™.
They all left town immediately. - Mark Twain

Well, fortunately (or unfortunately) | never received Twain’s telegram, was he
talking about patchy saturation? Yes and No. It is true that the effect has been
identified and the physics is pretty much understood; however there are still two
aspects of this phenomenon (amongst others) which require further research. They
are (1) how fluid contrast and (2) fluid distribution influence patchy saturation
signatures (attenuation and dispersion). Both aspects are interrelated and are the

focus of my thesis.

My first study concerns fluid distribution, that is, how fluids are spatially arranged on
a scale that is greater than pore scale but less than wavelength scale. Specifically, in
Chapter 2, | examine a series of X-ray tomographic images of partially saturated
rock. The objective is to identify which statistical measures are useful for
characterizing mesoscopic fluid distributions and to study how those measures
change as average gas saturation increases. From this chapter, | show that the
correlation function and correlation length provide the most useful statistical

information for spatial characterisation of mesoscopic fluid heterogeneities.

By learning how to describe fluid distribution (and changes in fluid distribution)
from experimental data, we can identify how to characterise fluid distribution in our
theoretical models. That is, if we want to model patchy saturation signatures
(attenuation and dispersion) due to realistic fluid distributions, then we need a way of
incorporating realistic spatial information into our theoretical models. In Chapter 3, 1
detail two models based on concepts of random media and build a new random
media patchy saturation model. In particular, my model called 3DCRM implicitly
assumes that fluid distribution is described by a correlation function. Hence it is well

suited to modelling patchy saturation signatures due to realistic fluid distributions
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that arise in X-ray tomographic images. In this Chapter, 1 show how these signatures
change for different types of correlation functions.

The Chapter 3 patchy saturation models allow us to connect realistic fluid
distributions to patchy saturation signatures. However, the models are not without
their limitations and restrictions. Perhaps the most significant of these is that they are
in general accurate for low fluid contrast and approximate for large fluid contrast
(fluid contrast refers to the difference between the bulk moduli of the fluids). That is,
low contrast implies that there are only small differences in the fluid bulk moduli,
this may occur with a water and oil in the system; whilst high contrast implies that

there are large differences, such as with a water and gas system.

When modelling patchy saturation signatures due to realistic fluids, it is necessary to
be able to take into account realistic fluid contrasts (in bulk moduli, viscosity etc), in
addition to realistic fluid distributions. In Chapter 4, | express the patchy saturation
models from Chapter 3 in a single framework, a unified parameterization. The
framework utilized is APS (Section 1.2), which is valid for high contrast between
fluids, but is analytically restricted to very simple geometries. Specifically, | derive
expressions which allow APS to estimate attenuation and dispersion due to the fluid
distributions employed by the Chapter 3 models.

Central to the APS framework is a branching function, which provides a simple way
to approximate the dynamic solution at intermediate frequencies from knowledge of
low and high frequency asymptotes. Via comparison with the Chapter 3 models,
which predict attenuation and velocity explicitly over the entire frequency range, |
show that the branching function provides an excellent approximation of frequency-
dependent attenuation and velocity at intermediate frequencies. These comparisons
are performed at fluid contrasts for which the Chapter 3 models are precise. Hence,
the question remains can APS with modified parameters be used to model

attenuation/dispersion when pore fluid contrast is large, such as with water and air.
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In Chapter 5, I use numerical methods to examine how the shape parameter for a
specific model varies as fluid contrast increases. The results of this analysis show
that the shape parameter for a random distribution of spherical inclusions is governed

well by the shapes parameters derived in Chapter 4 for most fluid contrasts.
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Fluid Distribution from Saturation Experiments on Porous Rock

Chapter 2

Fluid Distribution from Saturation Experiments on

Porous Rock

2.0 Introduction

Understanding how the percentage of two (or more) different pore fluids will affect
P-wave velocities is important for interpreting time lapse seismic data, in particular
tracking fluid front movements. Application of Gassmann’s fluid substitution
relations (Gassmann 1951) in addition to fluid mixing equations like Brie et al..
(1995) or Wood’s (1941) is one approach which could be used to make forward
modelling estimates of P-wave velocities at different percentages of fluid saturation.
However, the problem with these approaches is that partial fluid saturation effects

such as mesoscopic fluid flow are completely ignored.

Mesoscale fluid flow arises when a passing wave induces different fluid pressures in
regions of rock saturated by different fluid types, where mesoscale specifically refers
to a length scale greater than pore scale, but less than wavelength scale. The presence
of spatial gradients in fluid pressure causes fluid to flow relative to the rock frame.
This causes dissipation of energy and results in the attenuation and dispersion of a
propagating waveform. A number of different patchy saturation models accounting
for the mesoscale distribution of fluid heterogeneities have been proposed:
concentric sphere model of White et al. (1977), Acoustics of Patchy Saturation
(APS) model of Johnson (2001) and the so-called Continuous Random Media (CRM
model, Chapter 3) of Toms et al. (2006; 2007).

These theoretical models allow us to calculate dynamic-equivalent elastic moduli as
a function of percent fluid saturation and wave frequency. However, one must
assume either a fixed geometry of the patch distribution (such as periodically

distributed spherical inclusions in White’s model) or fluid distribution given by a

2- 32



Fluid Distribution from Saturation Experiments on Porous Rock

specific correlation function (for CRM). Thus, the applicability of these models
hinges on knowledge of the real spatial distribution of pore fluids in rocks. The
spatial distribution is influenced by rock heterogeneity, the prior history of fluid
movement, and density and viscous effects such as viscous fingering (Homsy 1987).

The most suitable tool to assist with imaging fluid distributions of partially saturated
rocks is X-ray tomography. It is already routinely applied in petroleum engineering
to image reservoir lithologies undergoing secondary and tertiary recovery processes
(Wellington & Vinegar 1987, Dunsmuir et al.. 1991, Withjack et al.. 2003). It is also
increasingly used for characterization of soils (Peyton et al.. 1992; De Gryze et al.
2006) and rocks (Arns et al. 2002; Arns et al. 2004); to produce input models for
numerical algorithms which calculate transport properties of rocks (Arns et al. 2001,
Knackstedt et al. 2004) and for calculation of elastic properties (Arns et al. 2002). In
fact, it is being used in numerous other applications spanning the entire geoscience
field (Ketcham & Carlson 2001).

The simultaneous acquisition of X-ray tomographic images and acoustic
measurements during fluid saturation experiments on porous rock will provide the
most direct means of relating velocity saturation information to pore fluid
distribution. There have been several recent studies of this kind (Cadoret et al. 1995;
Cadoret et al. 1998; Monsen & Johnstad 2005). Cadoret et al. (1995) use X-ray
tomographic images to explain why velocities at the same percentage of water
saturation may be different for drainage and imbibition experiments. Where the
velocities differed the drainage images showed the presence of distinct gas bearing
clusters (for water saturations greater than 80%), whilst the imbibition images
showed no such clustering. This suggests that differences in fluid distribution will
cause differences in velocity measurements. The same conclusion has been drawn for

attenuation measurements (Cadoret et al. 1998).

Although X-ray tomographic images are central to the experiments of Cadoret et al.
(1995) and Monsen and Johnstad (2005), the images themselves are only analysed
qualitatively. That is, apart from identifying images which have clustering (Cadoret

et al. 1995) or show fluid displacement in preferred directions (Monsen & Johnstad
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2005), no further analysis of the fluid saturation patterns is performed. Thus,
variations in velocities and attenuation are linked qualitatively to changes in fluid

saturation patterns; missing still is a quantitative description.

In this chapter |1 examine a series of X-ray tomographic images (with mesoscale
resolution) obtained from a drainage experiment performed on Mount Gambier
Limestones (Paterson & Lupton 2003, unpublished results). The objective is to
analyse fluid saturation patterns quantitatively, thus showing how they can be
described and how they vary as saturation changes. In particular, the applicability
and significance of correlation type measures on mesoscopic fluid patch patterns is
investigated. Unfortunately, reliable velocity data was not acquired during the

experiment so these results can not be linked to experimentally measured velocities.

The chapter is organised as follows: Section 1 describes Paterson’s fluid saturation
experiment and briefly outlines the basics of X-ray tomography. Section 2 covers
processing of raw tomographic scans to produce saturation patterns. Section 3 is the
main contribution, where | introduce and extract quantitative statistics which allow
description of fluid saturation patterns. Section 4 summarizes the results, compiling a

list of reasonable fluid assumptions for modelling velocities due to patchy saturation.
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2.1 The Experiment

Paterson and Lupton (2003) performed a series of drainage experiments on Mount
Gambier limestone samples. The experimental setup is shown in Figure 2.1.1. There
is a cylindrical core sample encased in PVC pipe connected to pipe work which
controls pressured fluid injection of nitrogen gas and subsequent water extraction.
The medical X-ray imager is shown in the background, at various stages during the

saturation experiment images are taken of the core sample.

The experiment proceeds by initially taking an image of the dry core sample. The
core sample is then fully saturated with water. A vacuum is applied to ensure
uniform saturation of the water through out the pore-space and to draw out any
remaining air. An image is then taken of the fully water saturated sample. Then fluid
replacement begins by injecting pressurized nitrogen gas into the end of the core.
The flow rate is kept continuous at constant pressure (but not at a constant rate)
throughout the experiment. Images were taken at different times.

The core samples are Mount Gambier limestone (MGL), which come from the Bruhn
quarry in South Australia (www.bruhn.com.au). They generally have a high
permeability (around 5 Darcy) and typical effective porosities in the range 36-44%
Although the saturation experiments were performed on a number of different core
samples, only one experiment (performed on sample MGL2a) is suitable for

thorough analysis, as images are taken at both low and high gas saturations.
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Figure 2.1.1: Paterson’s (2003) experimental setup for imaging the core sample during the

fluid replacement experiment.

2.1.2 X-ray Tomography

The X-ray tomography method was originally developed for medical applications,
specifically the imaging of bones and soft tissue (Hounsfield 1972). Typical medical
X-ray tomography machines, such as the one shown in Fig. 2.1.1 employ a single
source which is rotated around the object being scanned. The source is an X-ray tube
which emits a beam of photons that are received by a fixed set of detectors located in
a ring around the object. They measure the intensity of the received X-ray which is
related to the intensity of the source X-ray for homogeneous materials by Beer’s Law
(Wellington & Vinegar 1987)

I = l,exp(-ux), (2.1.2.1)
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where ;. is the linear attenuation coefficient of the scanned material and x is the

distance travelled through the material. When the material is heterogeneous Beer’s

law is

| = Ioexp[Z—yixi}, (2.1.2.2)

where 4 is the linear attenuation coefficient of each material and x is the distance

travelled through each material i.

Different types of heterogeneities (materials) in a porous rock such as saturating
fluids and mineral grains can be imaged providing there is sufficient contrast in the
linear X-ray attenuation coefficient of each type of material. The linear attenuation
coefficient, in turn, depends on how atoms in a material absorb and scatter energy.
Absorption of X-ray energy is due to the photoelectric effect, where the entire energy
of the photon is transferred to the atom resulting in the emission of an electron. This
effect is dominant for X-ray energies less than 100keV.

When X-ray energies are greater than 100keV but less than 10 MeV, Compton
scattering dominates. This effect causes some of the photon energy to be transferred
to the atom resulting in the emission of an electron and deflection of the photon in
another direction. The degree of Compton scattering depends upon the electron
density of the material. In general, the linear attenuation coefficient of a material can
be expressed as the sum of photoelectric and Compton scattering terms:

p=o(E)p, +(bZ%/E%)p, (2.1.2.3)
where is the Klein-Nishina coefficient and p,is the electron density, Z is the

effective atomic number, Eis the photon energy inkev and b=9.8x10*(Vinegar &
Wellington 1986).

Although the detectors measure the intensity of the received X-rays, the output of a
CT scanner is in Hounsfield units (HU). Hounsfield units come from the
reconstruction of linear attenuation coefficients from the measured X-ray intensities
using methods such as the Shepp-Logan filter (Shepp and Logan 1974). In general,
medical imagers are calibrated such that the CT value of water is zero (HU) and the

CT value of air is -1000 (HU). However, other types of calibration (Amos et al.
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1995; Orsi & Anderson 1999; Johns et al. 1993) can be adopted, which linearly relate
CT values to a materials bulk density, this is especially useful for geological

applications.

As fluids such as water, brine, oil etc all have simular linear attenuation coefficients
(and thus CT values), petroleum engineers often utilize dopants which are added to
one of the fluids to increase the linear attenuation coefficient and thus create contrast
in properties. Typical substances utilized are sodium iodide and bromide. In
Paterson’s experiment sodium iodide was added to water to help distinguish it from

Nitrogen.

Imaging of pore-spaces and individual mineral grains requires the use of high
resolution tomography machines. Typically, pore scale imaging of most materials
requires resolutions of 3 to 5 microns (Olafuyi et al. 2006). When combined with a
typical field of view of 512 x 512 or 1024 x 1024 pixels, this limits the size of the
scanned sample to 5 mm-1 cm. In Figure 2.1.1.1 we show porescale images of a
typical sample of MGL containing no saturating fluids (Toms et al. 2008). The MGL
samples have a very complicated microstructure composed of macroporosity, and
microporosity (not resolvable at this scale). Variations in rock porosity will have a
significant affect on the distribution of different pore fluids.

Porescale images of a drainage experiment performed on a Berea sandstone and
mono-disperse bead pack show that the wetting fluid is present as pendular rings,
bridges between adjacent grains and as lenses within pore throats (Turner et al.
2004). This degree of detail is not visible in the images obtained during the Paterson
and Lupton (2003) experiments as the resolution of the medical imager utilized was
less, but the field of view larger. The relatively large core samples have a radius of
0.050 m and length 0.24 m, and were imaged with a minimum pixel size of 0.36 mm.
Hence, in order to visualize changes in fluid distribution the images must be

processed as specified in the following section.
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(@)

(b)

Figure 2.1.1.1 Porescale images of a typical sample of MGL containing no saturating fluids.
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2.2 Processing Images

As the resolution of the tomographic scanner is not sufficient to image the interface
between gas, water and mineral grains, the CT value of each pixel is approximately
equal to the average of CT responses due to different percentages of mineral grains,
pore-spaces, and pore fluids. That is, dry map pixels have CT values (See Figure
2.2.1 (a)) given by

CTory = (L= #)CTemam + KT am » (2.2.1)
where ¢ is rock porosity, and CT,,,, ,CT,s are the CT values of the grains and air filled
pore-spaces, respectively. Pixels belonging to the fully water saturated map have CT
values (see Figure 2.2.1(b)) :

Clepuusar = (1= #)CToran + #CTouaren s (22.2)
whilst pixels of the partially saturated maps have CT values (see Figure 2.2.1 (c))
given by

Clomersar = (1= 8)CTeran +#(V.Cluyarer +ViCloss ) (2.2.3)

wherecT,,.. and cT,, are the CT values of water and nitrogen and v, andyv, are the

percentages of water and gas occupying the pore-space, respectively.

In essence, Equations (2.2.1-3) assume that the CT value of a pixel at mesoscale
resolution is linearly related to CT values of its constituents in proportion to volume
fractions. Thus for large differences in CT values, which may occur at interfaces
between mineral grains and pore-spaces, the above approximations can have
considerable errors. Ketchom and Carlson (2001) suggest that these errors can in
general be ignored as mineral/grain interfaces are rotated randomly relative to the
plane of the scan; however when the interfaces are parallel to the plane of the scan
errors can be as high as 10%. A further assumption of the approach is that the grain

space is mono-mineralic (or has constant X-ray density).

In general, the CT value (at mesoscale resolution) does not change greatly as the
relative percentage of gas to water in the pore-space alters. That is, the change in CT
value associated with changes in percentage gas saturation is much less than the CT

values of the rock frame itself. Thus in order to identify regions of the core sample
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that contain gas; the processing procedure of Cadoret et al. (1995) is implemented.
This procedure also removes CT artefacts arising from multi-mineralogical grain

spaces.

Cadoret’s procedure involves creating three different types of maps:
(1) Porosity map = {fully water saturated image} — {dry image},

(2) Gas content map = {fully water saturated image} — {partially water saturated images},

(3) Gas saturation map = Gas content map / porosity map.

The pixels in each of the created maps have CT values of:

(1) CTPOROSITY = CTDRY—CTFULLSAT = ¢(CTWATER _CTAIR) (See Flg 221(d))! (224)
(2) CTonscont = CTrurisar — CToarrsar = Wl(CTWATER _CTGAS) (See Flg 221(6)), (225)
(3) CTo = STossconr _ ¥o(Clusren = Closs) (see Fig. 2.2.1(f)). (2.2.6)

CTPOROSITY (CTWATER - CTAIR )

In theory Equation (2.2.4) can be used to estimate spatial fluctuations in rock
porosity (in addition to the average rock porosity). Unfortunately, it cannot be
utilized in this study as the CT value of the doped water wasn’t measured.

Determination of percentage gas saturation of each pixel comes from Equation
(2.2.6), where it is assumed that the CT value of Nitrogen gas is close to the CT
value of air. If this assumption is accepted then maps generated in Step (3) show the
spatial location of gas saturating pores and the percentage of gas saturation in those
pores. Pixel values range from 0 to 1, where 0 indicates fully water saturated pores
and 1 indicates fully gas saturated pores, whilst intermediate pixel values indicate
that the pore-space is of mixed gas-water composition. The average gas saturation

(v,) of the core sample is calculated from the gas saturation of each pixel by

W) ==3u6), (2.2.7)

where N is the total number of pixels.
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To convert the images into binary media (which is necessary to extract certain types
of quantitative statistics), a simple global-threshold-technique is applied; where
pixels below a certain threshold value are counted as water, whilst above the
threshold they are counted as gas. The threshold value utilized here is the arithmetic
mean of the statistical distribution of pixel values. Thus the threshold value is
representative of an average pixel that contains some percentage of gas, whilst pixels
below (or above) the threshold are to be understood as containing less (or more) gas
relative to the average pixel.

In Fig. 2.2.2 (a) — (m) the gas saturation maps are shown for the drainage experiment
on MGL2a (only the inner square of the core sample is shown). During the initial
stages of the experiment (Figure 2.2.2 (a)-(f)) gas saturations less than 20%) distinct
patches of gas bearing pores exist. Once average gas saturations (Figure 2.2.2 (g)-
(m)) have exceeded this value, distinct clusters of gas bearing pores are no longer

visible.

In Figure 2.2.3 the gas saturation map (left) is compared with its corresponding
binary map (right). It shows that applying a threshold about the mean produces a
binary map which preserves the main features of the full gas saturation map. This is
true for most scans; however more elaborate thresholding techniques like indicator
kriging could be used (Oh & Lindquist 1999).
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Figure 2.2.1 X-ray images and fluid heterogeneity maps. X-ray images of (a) dry core (b)
fully water saturated core and (c) partially water saturated core, (d) Porosity map, (e) gas
content map and (f) gas saturation map. The colour bar in (a-e) refers to CT values, whilst
the colour bar in (f) refers to percent gas saturation divided by 100.
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Figure 2.2.2 Gas saturation maps for Scans 3 through to 20. The colour bar indicates the
average gas saturation of a pixel. Red corresponds to 100 % gas saturation, whilst blue
corresponds to 100 % water saturation. Intermediate colours such as green and yellow,

indicate pixels of mixed gas-water composition.

2-44



Fluid Distribution from Saturation Experiments on Porous Rock

Ave Gas Sat: 0.063859 Scan Mumber: 11

o om an 60 &0 100
nz = 6250

Ave Gas Sat: 0.34633

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2

0.1

nz = 4453

(c) (d)

Figure 2.2.3: Example of global thresholding applied to saturation maps (a) Scan 11 and (c)
Scan 15 to create binary maps (b) and (d)
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2.3 Statistical Analysis of the Binary Maps

As the drainage experiment proceeds, the gas saturation maps (Figure 2.2.2 (a)-(m))
become more complicated as more of the pore-space becomes affected by the
presence of gas. To characterise the fluid distribution (and changes in fluid
distribution) of each mesoscale image, descriptive statistics (such as the correlation
function, correlation length, linear path function, etc) are extracted from the binary
images using Monte Carlo methods. By comparing statistics derived from each map,
it is possible to characterise changes in fluid distribution caused by changes in gas

saturation.

For each binary map an indicator function is defined which describes the

segmentation of the map into different subdomains. The indicator function is given

by

I(i)(r;w)z{l if reVi(a)), (2.3.1)

0 otherwise
where 1Wis the indicator function for the gas saturated domain v,and 1@is the

indicator function for the water saturated domainyv, .

The role of the indicator function can be elucidated by considering all points

r, = {(xy):(x.y)eVv,} belonging to the gas saturated domain and the values assumed by

the different indicator functions. For this set of points the indicator function for the

gas saturated domain1®(r,)=1, whilst the indicator function for the water saturated
zone 1(r,)=0. For all points belonging to the water saturated domain, the reverse is

true. Hence, 19(r)+19(r)=1 v r=(x,y) eV =V, LV,.

The average of either indicator function 19(r) is equal to the volume concentration of

that domain, that iS<|(i)>:¢i. This is equivalent to the probability that a randomly

chosen point on the map will belong to either the gas saturated (or water saturated)

domain. That is (1) =P{i®(r)=1}=¢, and (1¥)=Pi®(r)=1}=y, . It is not necessarily the

case that the volume concentration of the gas saturated domain is equal to the
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average gas saturation of the partially saturated core sample, that is

(po2v, = @, 2V,).

2.3.1 Autocorrelation Functions and Correlation Length

The autocorrelation function 4(r) for the binary map is related to the indicator
functions of the gas and water saturated domains by

Z(dr)= <I (1)(r)—(p1><l O(r + dr)—(p1> = <I @(r)- (pz><| @(r + dr)—(pz> : (2.3.1.1)

where dr is the scalar distance separating two points. Relation (2.3.1.1) is
appropriate for isotropic maps where 4(r) does not vary with line orientation (see
Section 2.3.1.2). As the indicator function of each domain is equivalent to the
probability of a random point residing in that domain, the correlation function can be
determined from

2(r)=5Y(r,r + x)— % =S(r,r + x) - 92, (2.3.1.2)
where s¥(r,r+x)and s?(r,r +x)are the two point probability functions for the gas and

water saturated domains, respectively.

The two point probability function refers to the probability that two random points
displaced by a scalar distance dx reside in the same domain. That is, s®(r,r +x) is the
probability that two random points will reside in the gas saturated domain and
s@(r,r+x)is the probability that two random points will reside in the water saturated
domain. Clearly as the distance separating the points reduces to zero the two point
probability functions reduce to one point probability functions
lim, o SV(r,r+x)=59(r,r)=5"(r)= g, (2.3.1.3)
accordingly. Moreover, if no long range order exists the two point probability
function converges to
lim,,_,, SY(r,r+dx)=g?. (2.3.1.4)
Substitution of Equations (2.3.1.3) and (2.3.1.4) into Equation (2.3.1.2) shows that

the correlation function has limiting values of #(0)= ¢, — ¢? = p,p,and y(x)=0.
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To determine the correlation function for each binary map, we extract the two point
probability function using Monte Carlo methods. From Equation (2.3.1.2) it is clear
that the correlation function can be determined using either two-point probability
functions for the gas or water saturated domain. Here | choose to extract the two
point probability function corresponding to the gas saturated domain. Note that the
two point probability function of the water saturated domain can be calculated from
the two point probability function for the gas saturated domain using

SA(r,r+dx)=SY(r, r+dx)-g? +p? =SY(r,r +dx)+1-2¢, . (2.3.1.5)

The one point probability function for the gas saturated domain is determined by
randomly sampling the image at one point and recording the total number of times
that one point corresponds to gas saturated domain. This total is divided by the total
number of points sampled to give the one point probability density function. It is

equivalent to the volume fraction of the gas saturated domain within the binary map.

The two point probability function of the gas saturated domain is obtained by

randomly sampling the image at two points separated by scalar distancesdx,. A

record is made of the total number of times both sample points simultaneously reside
in the gas saturated domain for each scalar distance dx . Refer to Figure 2.3.1.1 for an
illustration of which events are counted in the record. To determine the two point
probability density function, the record is divided by the total number of times the

binary map was sampled at each scalar distance.
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Figure 2.3.1.1: Cartoon representation of two point probability functions. () Two point
probability function for the grey phase 1. (b) Two point probability function for the white
phase 2.
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2.3.1.1 Correlation Function of Binary Map with and without Periodic
Boundary Conditions

The computational domain of each binary map is finite. As the scalar distance
between random points on the map increases, the total number of potential pairs of
sample points decreases. For instance, when the scalar distance is equal to the size of
the map, only pairs of points residing on the map edge can be sampled; no other
combination is possible. In general, the statistical sample size decreases as the scalar
distance between points increases. This affects the accuracy of the correlation
function at larger offsets.

To minimize the effect small statistical sizes have on the two point probability
function (and thus the correlation function), boundary conditions can be applied on
the edge of the map. The most widely used boundary conditions are periodic in
character (Gadjdosik et al. 2006; Torquato 2002), which can be easily implemented
by replicating the map spatially, as per Figure 2.3.1.1.1 (b). The adoption of
periodic boundary conditions ensures statistical consistency with the original map
and an increased statistical sample size at larger scalar distances.

Another type of boundary condition, which can be implemented, relies upon deriving
statistically equivalent binary maps by transforming the original map by certain types
of transformations. These statistically equivalent maps can be added to the edges of
the original map in order to expand the computational domain. In particular, the
binary map can be rotated 90, 180 and 270 degrees and flipped horizontally about the
middle column or flipped vertically about the middle row. A random representation
of the original binary map is then formed by randomly rotating or flipping the

additional boundary condition maps. This can be seen in Figure 2.3.1.1.1(c).

Alternatively, no boundary conditions can be added to the edge of the map (see
Figure 2.3.1.1.1(a)). In which case, the correlation function at long offsets should be
disregarded. Figure 2.3.1.1.2 (a) - (b), compares correlation functions extracted from
each of type of representation: no boundary conditions (dotted line), periodic

boundary conditions (dashed line) and random boundary conditions (solid line) for
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gas saturations of 6% and 48%. All three curves are in good correspondence for
small offsets and thus extraction of the Debye correlation length (see Section 2.3.1.4)

from either correlation function will be consistent.

As offsets become large (but still less than half the sample width), there is reasonable
correspondence between periodic and random map correlation functions. However,
correlation functions extracted from the no B.C map differ significantly. For offsets
greater than half the sample width (but still less than the width of the sample) the
periodic and random map correlation functions differ. The reason is that the periodic
map correlation function is an even function (symmetric) about the mid point of the

sample width whilst the random map is not.

Figure 2.3.1.1.3 shows for gas saturations of (a) 6% and (b) 48% that correlation
functions extracted from thresholded (binary) maps having periodic (dashed line) and
random (solid line-circles) representations are different from correlation functions
from non-thresholded maps (continuous) of periodic (dash-dotted line) and random
representation (solid line solid circles). Furthermore, there are considerable
differences between the non-thresholded correlation functions. This results from the
artificial manner in which maps are added to the boundaries of the original map. That
is, large differences in pixel values may arise across the map boundaries, destroying
the continuous variation of the pixel values. Thus boundary maps should not be

added when extracting correlation functions from continuous maps.
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Figure 2.3.1.1.2: Correlation functions extracted from binary map and its periodic and

random representations. (a) Shows for scan 11 and (b) shows for scan 23.
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Figure 2.3.1.1.3 Correlation functions extracted from random representations of binary and

continuous media.
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2.3.1.2 Correlation Function Testing for Anisotropy

Relations 2.3.1.1 and 2.3.2.2 are applicable for statistically homogeneous and
isotropic materials. The first condition implies that the correlation function does not

depend on the absolute positions of the pointsr, and r,, but only on the distance

separating the points dr. This is called translational invariance (Berryman 1987,
Torquato 2002). See Fig 2.3.1.2.1 (a). The second condition implies that the
correlation function does not depend on the orientation of the vector connecting r,

and r,=r,+dr, relative to some fixed coordinate system. This is called rotational

invariance; see Fig. 2.3.1.2.1 (b). Thus, correlation functions obtained by sampling
the maps at 0, 45 and 90 degrees should be the same.

For anisotropic statistically homogeneous materials the correlation function is
Z(Fz) = <| (1)(F)_¢1><| (1)(F + l72)_¢71> = <| (2)(F)_ ¢2><| (2)(F + F2)_¢72> (23121)
wherer andr,are vectors. It depends on the magnitude of vector |r,|and its orientation.

The two point probability function can also be modified appropriately for anisotropic

media.

The correlation functions extracted in Section 2.3.1.1 are obtained by: (1) sampling
the map in two orthogonal directions at orientations of 0 and 90 degrees relative to
map edges, thus forming vertical (Ver) and horizontal (Hor) correlation functions. (2)
By taking the average of both correlation functions. In Fig. 2.3.1.2.2 (a) the vertical
and horizontal correlation functions are plotted for binary map (BM Scan 11) and for
the periodic map (PM). There are significant differences between vertical and
horizontal correlation functions of both maps. Furthermore, the anisotropy inherent
in the binary map (differences in the vertical and horizontal correlation functions) is
directly reflected in the correlation functions extracted from the periodic map. This is
evident as correlation functions at the same orientation are in close correspondence

for each map type.

On the other hand, in Fig. 2.3.1.2.2 (b) the vertical and horizontal correlation
functions are plotted for periodic and random maps (Scan 11). Only small differences

exist in the correlation functions (RM ver and RM hor) extracted from the random
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map. Thus anisotropy present in the single binary map is not reflected in its random
map representation. Thus, small differences will exist in the average periodic and
random correlation functions (PM/RM ver + PM/RM hor) when maps are

anisotropic.

For the rest of the Section 2.3.1 statistics will be extracted from random map
representations of the binary maps, as there is greater accuracy at longer offsets and

anisotropy is reduced.

(a) (b)

Figure 2.3.1.2.1: Cartoon representations of statistically inhomogeneous and anisotropic

media. (a) Statistically inhomogeneous media: S,(r,r,) will depend on the absolute positions
of r,,r, relative to the origin, as the top and bottom regions of the model are densely and
sparsely populated by overlapping spheres. (b) Statistically anisotropic media: s,(r,r,) will

depend on the orientation of the vector connecting r,,r, .
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Figure 2.3.1.2.2: Correlation functions extracted horizontally (Hor) and vertically (Ver)
across different heterogeneity maps. (a) Shows the correlation functions extracted from the
binary (BM) and periodic maps (PM). (b) Shows the correlation functions extracted from the
periodic (PM) and random maps (RM). The application of random boundary conditions

produces statistically isotropic media from anisotropic media.

2.3.1.3 Correlation Function versus Relative Percentage Fluid

Saturation

The objective of this section is to access whether the correlation function is sensitive
to changes in percentage fluid saturation. To this end, | extract correlation function
from random map representations for the sample MGL2a. By visual inspection of the
shape of the correlation functions two predominant sets are identified. The first set
contains correlation functions which have an exponentially decreasing appearance,

whilst the second set contains correlation functions of a different shape.

In Figure 2.3.1.3.1 (a) the first group of correlation functions are plotted. The relative
percentage fluid saturation is shown in the legend. There are only small observable
differences between each correlation function. Also plotted is the average of these
correlation functions (thick dashed line) obtained by taking the mean of this group.
The un-normalised variance is shown in Figure 2.3.1.3.2 (b) (dotted line with
circles). In Figure 2.3.1.3.1 (b) the second group of correlation functions are plotted.
There are no real observable differences between each correlation function. The

average correlation function of this set (thick dashed line) is plotted and the variance
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between correlation functions at various saturations is shown in Figure 2.3.1.3.2 (b)

(dotted line with crosses).

Note, the first set of correlation functions are obtained from random maps of low gas
saturations (<23%), whilst the second set are obtained from random maps of higher
gas saturations (>23%). Comparison of the average correlation functions for each

group (Figure 2.3.1.3.2 (a)) shows that the shape of each curve is different.

On the basis of Figures 2.3.1.3.1 and 2.3.1.3.2, it appears that correlation functions
are only sensitive to changes in fluid saturation below a critical percentage (here it is
approximately 23%). Above this value there are only minor changes in the
correlation function as gas saturation is increased (the variance shows that small
changes occur around the Debye correlation length, Section 2.3.1.5). However, it
must be noted that at greater X-ray tomographic resolutions the correlation functions
may show an increased dependence on gas saturation (when percentages are high).
That is, perhaps differences cannot be observed at mesoscale resolution.

— — —0.035027 — — — 0.2696
0.9 0.034702 | 0.9 031147 |
—-—-0.041374 — —0.34633
0.063859 0.8F} —e—0.36496 |
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051669 |

= = = Averagey

(a) (b)

Figure 2.3.1.3.1: Correlation functions extracted from random binary maps of MGL2a

divided into saturation sets. (a) #(r) small gas saturation and (b) x(r) large gas saturation.
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Figure 2.3.1.3.2 Average correlation functions and variance of correlation functions. (a)
Average of each set of correlation functions extracted from maps having small (line with
circles) and large gas saturation (dashed line with crosses). (b) The variance of each set of

small (dotted line with circles) and large gas saturation (dotted line with crosses).

2.3.1.4 Correlation Function versus Rock Type

Percentage fluid saturation influences the shape of the correlation function (as shown
in Figures 2.3.1.3.1 and 2.3.1.3.2), but it is not the only influencing factor. In Fig.
2.3.1.4.1 (a) the average correlation function and (b) variances (for gas saturations
greater than the critical percentage) are shown for three different types of rocks:
MGL 8 (crosses), MGL 6 (circles) and MGL2a (triangles). The average correlation
functions (in Fig 2.3.1.3.1 (a)) differ in shape.

As the average correlation function for each rock type is obtained from maps having
gas saturations greater than the critical percentage, the shape differences are not
caused by different percentages of gas. But rather it is a consequence of each rock
having different fluid transport properties; that is porosity and permeability
variations (wettability characteristics may not play a significant role here as all rock
are of similar type, i.e. composed of the same mineral grains, etc). Unfortunately,
experimental measurements of rock porosity and permeability are not known for

these rock samples.
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Figure 2.3.1.4.1: Average correlation function and variance of correlation functions
obtained from binary maps of MGL2a, MGL6 and MGLS8 at large gas saturation. (a) Shows
the average correlation functions for MGL2a (line with triangles), MGL6 (line with circles)
and MGLS (line with crosses). (b) Shows the variance in the set of correlation functions

obtained from each rock sample.

2.3.1.5 Correlation Lengths

There are a host of different types of length scales which can be derived from a
correlation function. Two common ones are the “Debye” and “mean” length scale.
The first length scale can be derived from the correlation function by assuming that
the binary map is a Debye random material (Debye & Bueche 1949). That is, for
structures in which one phase consists of random shapes and sizes, the correlation

function obeys

)=o), (2.3.1.4.1)

Hereais the Debye correlation length which is defined asy(a)=yeand e is

Boltzman’s constant, see Fig 2.3.1.5.1.
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The second length, termed here as the mean length is derived from the correlation

function as
. 2
) :{ [ r;((r)ir} . (2.3.1.4.2)

This length scale arises in rigorous bounds on the fluid permeability and trapping
constant of three dimensional isotropic random porous media (Berryman & Blair
1987, Torquato 2002). If the correlation function in Equation (2.3.1.5.2) is an
exponentially decreasing function (Eg. 2.3.1.5.1), the mean length scale is equal to

the Debye length scalel , =a.

Any length scale derived from a correlation function will produce a length scale
representative of the average spatial properties of the medium (a consequence of Eq.
2.3.1.2). That is, the Debye or permeability lengths are a measure of how coarse or
fine the material is rather than indicating an average size of either phase. Thus,
either length scale (2.3.1.4.1 or 2.3.1.4.2) derived from the correlation function will

not indicate the size of the gas or water patches within the binary map.

Figure 2.3.1.5.2, shows the Debye correlation length extracted from the correlation
functions of samples MGL 2a (circles), MGL 6 (asterixis) and MGL 8 (plus signs). It
shows that the Debye length of MGL 2a decreases as gas saturation increases. The
decrease is approximately linear. The Debye length of MGL 8 also decreases
approximately linearly with saturation and a simular trend can be observed with
MGL 6. Note that, the variances extracted in the previous section indicate that small
changes in the correlation functions occur around the Debye correlation length. Thus
these results are perfectly consistent with the conclusion that the correlation function

is mostly insensitive to percentage fluid saturation at large gas saturations.

By analysing the mean correlation functions for MGL 2a at both low and high gas
saturations, an interesting observation can be made. It appears that the mean
correlation function for small gas saturations (solid line) is approximated well by a
Debye correlation function (dotted line) with correlation length ofa=35; see Fig.
2.3.1.4.3. On the other hand, at high gas saturations there is only a good
correspondence between the mean correlation function (dashed line) and the Debye
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correlation function (dashed-dotted line) at small offsets. This was also observed for
MGL 6 (not shown here).

In Figure 2.3.1.4.4 the mean correlation function for large gas saturations (MGL 2a)
is approximated well by two Debye correlation functions: one which models small

offset behaviour ,,, and one which models large offset behaviour 4 _,,.. Thatis,

0)= a2 o] - oo - L |- - L|eanjeof L] (23143)

S L S L

where b, b,_are weighting coefficients of the correlation functions (with 1> b, >b >0),
whilst a,,a are the usual Debye correlation lengths (with a >a,>0). In Table
2.3.1.4.1, 4,(r)is given for the mean correlation functions for large gas saturations of:

MGL 2a, MGL 6, and MGL 8.

Table 2.3.1.4.1: Double Debye coefficients

Data ag bs a, b RMSE

MGL?2a 2.30 0.73 12.28 0.27 0.02234
MGL 6 2.02 0.93 12.58 0.07 0.01357
MGL 8 2.77 0.85 9.11 0.15 0.01153

On the basis of this three conclusions could be made regarding fluid distribution

versus saturation.

1) Decrease the correlation length linearly as gas saturation is increased.

2) Small gas saturations v,<20% can be approximated well by a single

Debye correlation function.

3) Large gas saturations v, >20% can be approximated reasonably well by

two Debye correlation functions which are weighted.
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Figure 2.3.1.5.1: The Debye correlation function shown at different correlation lengths.
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Figure 2.3.1.5.2: The Debye correlation lengths for different gas saturations for MGL 2a,
MGL 6 and MGL 8.
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2.3.2 Linear Path Function

To shed light on what sort of spatial information is contained in different types of
microstructural functions, such as the correlation function and the linear path
function, it is useful to perform reconstruction studies. Such studies involve the

following stages:

(1) a target model is sampled using the microstructural function of interest.

(2) An initial starting model is chosen and sampled using the microstructural
function

(3) The initial starting model is perturbed (in some way) and sampled by the
microstructural function. This is repeated until the microstructural function is
the same as that of the target model (the real image).

(4) The final model is compared against the target model.

The reconstruction of 1-dimensional models of randomly positioned overlapping
rods (Yeong & Torquato 1998a) and 2-dimensional models of randomly positioned
overlapping discs (Yeong & Torquato 1998b) indicates what sort of descriptive
information is contained in the correlation and linear path functions. It was found
that reconstruction procedures which target only a correlation function produce
models having the distribution characteristics of the original model, but not the
clustering characteristics, whilst procedures which solely target the linear path
function reproduce clustering characteristics, but not distribution characteristics.
Moreover, optimum reconstruction strategies were ones which targeted both the
correlation function and the linear path function simultaneously, thus generating
models which “most closely” resembled the original models.

This suggests that the correlation function and volume concentration extracted
together will contain necessary but not sufficient information to fully describe fluid
saturation patterns. Furthermore, changes in fluid saturation patterns may not be
quantifiable in terms of the correlation function as it may not be the most sensitive
measure. Thus, in the following sections several other statistical measures will be

extracted, such as the linear path function (this section), chord length density
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function (Section 2.3.3) and cluster statistics (Section 2.3.4). We would like to assess
whether these other types of statistics are better suited to quantifying changes in fluid

saturation patterns associated with changes in gas saturation.

The linear path function L"(dz) is defined for a statistically isotropic material as the
probability that a line segment of length dr lies completely in either subdomain
when randomly thrown into the sample (Torquato 2002), Fig. 2.3.2.1. That is,
LW(dr)is the probability that a line segment of length dr lies entirely in the gas
saturated domain, whilst LY(dr)is the probability that a line segment of length dr lies
entirely in the water saturated domain. As the length of the line segmentdr
increases, the linear path functions L"(dz) will decrease monotonically, because the
space available in either subdomain decreases with increasingdr . Thus, the limiting
values for the linear path functions for small and large line segments

arelim,, ,, LY(dz)=¢, andlim,  L"(dz)=0. In particular, the linear path function

contains some information on the connectivity LY(z)+L?(z)+L®(z)=1
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Figure 2.3.2.1: Cartoon representations of the linear paths. (a) Linear paths for phase 1 and

(b) for phase 2.
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Figure 2.3.2.2 shows the linear path function for the gas saturated and water
saturated domains during the initial stages of the drainage experiment (i.e. small gas
saturations). There initially is a clear separation in the linear paths of each domain.
As gas saturation increases the linear path function of the gas saturated domain
broadens and the linear path function of the water saturated domain sharpens. As gas
saturation is increased further (Figure 2.3.2.3) the linear path functions for the gas
saturated and water saturated domains converge. This suggests that linear paths of

the two different domains are constant as saturation increases.

Analysis of the linear path function in addition to the correlation function indicates
that:

1) The fluid saturation patterns during the later stages of the drainage
experiment (i.e. high gas saturations) don’t change significantly. The
correlation function which characterised the distribution of fluids and the
linear path function which characterises connectedness (in a linear path) are
both relatively constant.

2) The fluid pattern during the initial stages of the drainage experiment (i.e.
small gas saturations) changes significantly with saturation.

3) During the initial stages of the drainage experiment there is a clear separation
of length scales between the water saturated domain and the gas saturated
domain. For the rest of the experiment there is not a clear separation between

the length scales.
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Figure 2.3.2.2 : The linear path function for the gas L¥(dr) and water L?(dr) saturated domain

during the initial stages of the drainage experiment.
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Figure 2.3.2.3: The linear path function for the gas L¥(dr) and water L?(dr) saturated domain

during the final stages of the drainage experiment.
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2.3.3 Chord Length Density Function

The chord length density function p‘(dr)is defined as the probability of finding a
chord of length between r and r+drin subdomaini (Lu & Torquato 1992). It is

related to the linear path function by

(i) 421 ()
p«)(dr)_%d%gdr), (2.3.3.1)

Conceptually speaking chords are all of the line segments between the intersections
of an infinitely long line with the subdomain interfaces, as shown in Figure 2.3.3.1.
From the chord length density function the mean chord length can be derived by

)

10 :J.rp(i)(r)dr , (2.3.3.2)

0

The mean chord length is related to the specific surface area via

29
d’ d=1

19 = ”S"", d=2. (2.3.3.3)
A0 d=3

S

v

Figure 2.3.3.2 (a) shows the chord length density function for the gas saturated
domain during the initial stages of the drainage experiment on MGL 2a. As gas
saturation is increased, the probability of chords of width 2-3 pixels increases. For
the smallest gas saturations the chord length density function has an exponential
shape (solid line and dashed line). This is most likely a result of noise during the
initial scans (which may be greater than the mean threshold of the map). As gas
saturation increases further the shape of the probability density function becomes
more bell like, with the most probable chord lengths having widths of 2 to 5 pixels.
Similarly, the chord length density function of water (shown in (b)) has a bell like
shape and peaks around 2 to 5 pixels with probabilities increasing as gas saturation

increases.
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Fig.2.3.3.2 (c) and (d) show the probability density function for the gas and water
saturated domains during the later stages of the drainage experiment. As gas
saturation increases there is very little change in the chord length density functions
for either subdomain except within the 2-5 pixel range, where probabilities still

increase with gas saturation.

Fig. 2.3.3.2 (e) shows the mean chord lengths for the gas (asterixis) and water
(circles) saturated domains derived using Equation (2.3.3.2). As gas saturation
increases, the mean chord length for the gas saturated domain decreases, whilst the
mean chord length of the water saturated domain increases. (f) Shows the specific
surface derived using the mean chord lengths (via Eq (2.3.3.3)) of (e). There is a
large discrepancy between the specific surfaces obtained from the mean chord length
of the gas saturated patches (asterixis) and from the mean chord lengths of the water
saturated patches (circles). Certainly, the mean chord lengths for the gas saturated
patches should be more accurate then the mean chord lengths of the water saturated
patches for lower gas saturations, as the gas patches are distinct and isolated (keeping
in mind that noise may be a factor at very small gas saturations). For lower gas
saturations there are very few lengths which are counted as water saturated chords,
because they may not intersect the gas water interface at the two end points (see
Figure 2.3.3.1 (b)).
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Figure 2.3.3.1: Cartoon representation of chord lengths. (a) Shows the chord lengths (solid
line with bars situated on the domain interface) which contribute to the chord length density
function for subdomain 1 and (b) subdomain . The dashed lines represent infinite lines laid

down over the map.
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Figure 2.3.3.2 Chord length density functions during the initial and final stages of the
drainage experiment. (a) Shows gas and (b) water saturated domain during the initial stages
(final (c) and (d)) of the drainage experiment. (¢) Mean chord lengths for the gas and water

saturated patches and (f) specific surface.
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2.3.4 Cluster Statistics

A cluster of subdomain i refers to that region of subdomain i which can be reached

from a point in subdomaini without passing through subdomain j,(j =i) (Torquato et

al. 1988). That is, a set of pixels which belong to the gas saturated subdomain will
form a cluster when every member of that pixel set can be accessed via at least one
pathway consisting entirely of pixels belonging to the gas saturated subdomain, see
Figure 2.3.4.1.

To identify clusters within the gas saturated subdomain (or water saturated
subdomain) the Hoshen and Kopelman (1976) cluster labelling algorithm was
implemented. The output of this algorithm is cluster labels and cluster numbers for

each separate cluster label.

In Figure 2.3.4.3 cluster labels are shown for (a) gas and (b) water saturated
subdomains of Scan 8, respectively. The colour bar (in a and b) shows the number of
different clusters in each map. In (a) there is over 60 different gas clusters, whilst in
(b) there is only 14 different water clusters. In (c) gas and (d) water cluster numbers
are shown for each different label. The colour bar (in ¢ and d) shows the population
of pixels in each cluster. The largest gas cluster in Scan 8 has a population of over
700 pixels, whilst the largest water cluster in Scan 8 has a population over 6000

pixels.

In Figure 2.3.4.4 cluster labels are shown for (a) gas and (b) water saturated
subdomains of Scan 15, respectively. The colour bar shows the number of different
clusters in each map. In (a) there are 14 different gas clusters, whilst in (b) there are
47 different water clusters. In (c) gas and (d) water cluster numbers are shown for
each different label. The colour bar (in ¢ and d) shows the population of pixels in
each cluster The largest gas cluster in Scan 8 has a population of over 5000 pixels,

whilst water cluster in Scan 8 has a population of approximately 2000 pixels.
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Comparison of Figures 2.3.4.3 (a) and 2.3.4.4 (a) show that with increasing gas
saturation the total number of gas clusters decreases from 60 to 14 clusters; whilst
the average number of pixels belonging to a single cluster decreases (as seen in
Figures 2.3.4.3 (c) and 2.3.4.4 (c)). This arises because the gas clusters within scan 8
join up to form one major cluster in scan 15. Conversely, when gas saturation
increases the number of water clusters increases from 13 (in Figure 2.3.4.3 (b)) to 46
(in Figure 2.3.4.4 (b)); whilst comparison of Figure 2.3.4.3 (d) and 2.3.4.4 (d) show
that there is one dominant water cluster at low gas saturation and an increasing

number larger populated water clusters at larger gas saturations.

When all of the different clusters within the gas saturated subdomain (or water
saturated subdomain) are identified, it is possible to decompose the two point

probability function s®(r,r,) into two different types of probability functions
sO(r,.r,)=Cr.,1, )+ EVr.,1,). (2.3.4.1)
Herec(r,r,) is the cluster function which is the probability of finding two points at
positions r, and r, that belong to the same cluster of subdomain i, whilst E"(r,r,)is
the blocking function which is the probability of finding two points at positions r,

and r, which belong to different clusters of subdomain i, refer to Figure 2.3.4.2.

Decomposition of the two point probability function s®(r,r,) into c%(r,r,) and "(r,r,)
gives information on “connectedness” and “disconnectedness” within the map. The

same basic algorithm which was employed in Section 2.3.1 to extract s%(r,r,) can be
employed to determine c(r,r,) and e¥(y,r,) from the cluster labelled maps (see Figure

2.3.4.3 (a) and (b) and 2.3.4.4 (a) and (b)).

Here no boundary conditions are added to extend the binary map domain (see
Section 2.3.1.1) as this may create artificial cluster information. For instance, what
may be labelled as two different gas saturated clusters in the single binary map could
be labelled as one single cluster when boundary condition maps are added to single
binary map. This would arise when the boundary maps provide a connecting path of
pixels between the two different clusters within the binary map.
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Figure 2.3.4.5 (a) shows three different probability functions for scan 8. They are the

two point probability function s%(,r,) (solid line) which is decomposed into the
cluster probability function c®(y,r,) (dashed line with crosses) and the blocking
probability function E%(r,) (dashed-dotted line). The contribution made by the

cluster function to the two point probability function decreases as the scalar distance
between points increases; whilst the contribution made by the blocking function
increases as the scalar distance between points increases. Evidently for scan 8, the
two point probability function does not accurately convey information on gas patch
connectedness throughout the binary map as there are significant differences between

the two point probability function and connectedness function as offset increases.

Figure 2.3.4.5 (b) shows three different probability functions for scan 15. They are

the two point probability function s%(r,r,) (solid line) which is decomposed into the
cluster probability function c%(,,r,) (dashed line with crosses) and the blocking
probability function E%(r,) (dashed-dotted line). The contribution made by the

blocking function to the two point probability function is insignificant, as there is
close correspondence between the cluster function and the two point probability
function. Evidently when there is one large gas cluster the two point probability

function (for gas saturation) captures information on connectedness.

To summarise, the use of cluster statistics and decomposition of the two point
probability function provides valuable insight into the spatial distribution of pore
fluids. The cluster statistics are useful for assigning inclusion/host fluid relationships,
when there are large differences between cluster numbers and cluster populations.
Although only shown here for gas saturated domains, decomposition of the two point
probability function into blocking and cluster functions provides a measure of

connectedness and disconnectedness of fluid heterogeneities on the mesoscale.
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Figure 2.3.4.1: Clustering pixels. The grey and white pixels belong to different subdomains.
There are four different clusters of size 1 and two different clusters of size 2 and one cluster
of sizes 3, 4, 5, 6, 7, and 8. The grey pixels enclosed in the ellipse are not part of the same
cluster as a path which connects the clusters that consists entirely of grey pixels doesn’t

exist.

PY Ez(m ,r‘z)
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Figure 2.3.4.2: Cartoon representation of two point probability functions. The two point

probability functions®(r,r,) can be decomposed into the cluster probability function c(r,r,)

and the blocking probability function g%(r,r,).
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(@) (b)

(c) (d)

Figure 2.3.4.3: Cluster labels and cluster numbers for gas and water saturated subdomains
of the binary map for scan 8. (a) Shows cluster labels for the gas saturated domain and (b)
shows cluster labels for the water saturated domain. (c) Shows cluster numbers for the gas

saturated domain and (d) shows cluster numbers for the water saturated domain.
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Figure 2.3.4.4 Cluster labels and cluster numbers for gas and water saturated subdomains
of the binary map for scan 15. (a) Shows cluster labels for the gas saturated domain and (b)
shows cluster labels for the water saturated domain. (c) Shows cluster numbers for the gas

saturated domain and (d) shows cluster numbers for the water saturated domain.
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Figure 2.3.4.5: Two point probability function decomposition into cluster and blocking
functions. (a) Shows s(r,r,) (solid line), c®(x,r,)(dashed line with crosses) and E"(r,r,)

(dotted line) for gas saturated domain extracted from the binary map of scan 8.(b) Shows the

probability functions extracted from the binary map of scan 15.
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2.4 Summary of Results

Four different types of statistics were extracted from binary map representations of
gas saturation maps. The first statistic was the normalised autocorrelation
function 4(r). It was derived from the two point probability function s(r,r,) extracted
from the binary maps using Monte Carlo methods. During the initial stages of the
drainage experiment, the autocorrelation function changed significantly as gas
saturation increased. Moreover, for small gas saturations »(r)was approximated well
by a single Debye correlation function. However, during the latter stages of the
drainage experiment (i.e. for large gas saturation) 4(r) did not vary much as gas
saturation increased. For those gas saturations y(r) was approximated well by two
Debye correlation functions: one which models short range behaviour and one which

models long range behaviour.

In terms of length scales two different types of measures were considered, the Debye
correlation length and the mean chord length. Of these two measures the Debye
correlation length is considered more reliable. The reason is that the mean chord
length derived from the water saturated subdomains may be erroneous if water has
the role of host fluid. This occurs because the mean chord length for the water
saturated domain needs to be extracted from the intersection of two endpoints lying
on the gas/water interface, which doesn’t always arise when water is a host fluid with

gas inclusions.

The Debye correlation length showed “almost” a linear decrease with percent gas
saturation. In particular, the variance of the correlation functions obtained during the
initial and latter stages of the drainage experiment showed that largest changes in
correlation functions generally occur around the Debye correlation length. Here,
double Debye correlation lengths were not examined for saturation dependence; this

Is a subject of future work.
The third statistical measure of use is the linear path function. It is useful for

obtaining a thorough description of the fluid saturation pattern, in that the linear path

function is a measure of connected linear paths within the binary maps. As a statistic
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in its own right, the linear path functions of the gas and water saturated domain were
considerably different during the initial stages of the experiment. However, during
the final stages of the experiment the shape of the linear path functions of both
domains closely resembled one another. In conjunction with the correlation functions
it indicates that the saturation patterns do not change significantly during the latter

stages of the experiment.

The last statistics extracted from the binary maps were based on cluster analysis.
That is, identifying how many gas and water saturated clusters were present in a
particular binary map. Probability functions extracted from cluster labelled binary
maps showed that connectedness and disconnectedness within an image can be
identified using cluster and blocking functions.

It must be noted that these results are preliminary due to the limited number of
samples analysed. Moreover further work needs to be conducted to characterise how
binary mesoscale maps should be created from gas saturation mesoscale maps.
Should we be seeking to identify “predominantly” or “average” gas/water saturated
subdomains. In this study | used a simple thresholding technique about average gas
saturation of a map. Hence the statistics extracted in this chapter are all relative to
some average pixel which generally contains a percentage of both gas and water.

One could possibly improve on this thresholding technique.

2.5 Chapter Conclusions

In this chapter statistics were extracted from X-ray tomographic images of partially
saturated core samples so as to enable description of realistic fluid distributions. By
analysing the saturation dependence of these statistics, it was shown how saturation
patterns change as gas saturation is increased during drainage experiments on
different types of limestone rocks. In particular, the correlation function and the
correlation length are identified as being the most useful statistics for describing fluid

saturation patterns and changes in fluid saturation patterns.
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Chapter 3

Patchy Saturation Models for Complex and Irregular
Fluid Distribution

3.0 Introduction

Maximising the recovery of known hydrocarbon reserves is one of the biggest
challenges facing the petroleum industry today. One of the causes of low recovery
rates is the creation of a production-induced transition zone, where the reservoir rock
is saturated with a mixture of oil, gas, and/or water. In the transition zone the fluids
form patches of various sizes, with the spatial distribution of patches largely
controlled by the heterogeneity of the rock itself. Identification of this zone and
determination of its properties (oil, water and gas saturations) is a key problem in the
monitoring of petroleum production using time-lapse (4-D) seismic data (Calvert
2005). In order to solve this problem, it is necessary to know the relationship
between fluid saturation and seismic characteristics (elastic moduli, velocity and

attenuation).

Recent X-ray tomographic studies (Chapter 2; Monsen & Johnstadt 2004; Cadoret et
al. 1995; Cadoret et al. 1998) of partially fluid saturated core samples show fluid
saturation on the mesoscale that is complex and irregular. Acoustic measurements
conducted concurrently (Cadoret et al. 1995; Cadoret et al. 1998) indicate that wave
attenuation and velocity dispersion vary as fluid distribution changes. Most
theoretical models (White 1975; Johnson 2001; Pride et al. 2004, see Chapter 1,
Section 1.3) for attenuation and dispersion due to mesoscopic heterogeneities assume
that fluid heterogeneities are distributed in a regular way. Although, these models
allow us to calculate dynamic-equivalent elastic moduli as a function of percent fluid
saturation and wave frequency, they do not enable us to take into account possible

effects caused by complex and irregular distribution of pore fluids.
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In order to evaluate how complex fluid distributions affect attenuation and
dispersion, we require theoretical models which allow fluid heterogeneities to be
distributed in less idealised ways. In this Chapter | introduce two such models. The
first is the 1D continuous random media (LDCRM) model of Mdller and Gurevich
(2004), which utilizes a correlation function that can be changed to model different
sequences of fluid layers. The second is the discrete random media (DRM) model of
Ciz and Gurevich (2005) which assumes that fluid heterogeneities are randomly
distributed spherical inclusions within an otherwise homogeneously saturated rock. |
also derive a third patchy saturation model, which is a 3-dimensional analogue of
1DCRM (Miller & Gurevich 2004) called 3DCRM. It utilizes a correlation function
to describe the three dimensional spatial variation of fluids within an otherwise

homogeneous rock.

The Chapter is organised as follows. In Section 3.1 | introduce 1DCRM and derive
different correlation functions which show how different layering sequences affect
attenuation and dispersion. In Section 3.2 | introduce DRM and compare attenuation
and dispersion estimates against White’s model for periodically distributed spherical
inclusions. In Section 3.3 | derive 3DCRM and model attenuation and dispersion for
different correlation functions, fluid contrasts, etc. In Section 3.4, | use 3DCRM to
model attenuation and dispersion due to different types of randomly distributed fluid
inclusions, such as spheres In Section 3.5, I show how to use 3DCRM to model
attenuation and dispersion due to fluid heterogeneities observed in imaged saturation

maps (Chapter 2).
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3.1 1-Dimensional: 1DCRM Layering

It is important to study the effect that thin fluid saturated porous layering has on
compressional wave propagation as layering is ubiquitous in nature and seismic
exploration is routinely used to image the subsurface. White et al. (1975) were the
first to illustrate that mesoscopic layering of different fluids could cause significant
intrinsic attenuation of compressional waves at seismic frequencies, due to wave
induced fluid flow. White and co-authors modelled periodically alternating gas and
water layers within an otherwise homogeneous porous rock frame. The results of this
study were later validated by Norris (1993) who recast the problem using Biot’s

equations of dynamic poroelasticity (Biot 1962).

Gurevich and Lopatnikov (1995) modelled attenuation and dispersion due to wave
induced fluid flow also using dynamic poroelasticity (Biot 1962). Their approach is
based on statistical wave theory. They assumed that Biot’s poroelastic coefficients
could be expressed as smoothly varying random functions of one spatial coordinate.
Their study revealed that the low frequency asymptote for frequency-dependent
attenuation due to random layering was proportional to@"?, whilst for periodic
layering, it was proportional to w. Muller and Gurevich (2004) specialised those
results to the case of patchy saturation, where only heterogeneities in fluid properties
exist (this model will be discussed next). Miller and Rothert (2006) provide a
physical explanation for different low frequency asymptotic attenuation behaviour

caused by periodic and random layering.

Gelinsky and Shapiro (1997) study attenuation and dispersion due to random
layering of rock and fluid heterogeneities including (in addition to the wave induced
fluid flow effects) attenuation and dispersion due to elastic scattering at high wave
frequencies (see also Gurevich et al. 2007). Gelinsky and Shapiro (1997) show that
gas saturation of more compliant layers and water saturation of less compliant layers
reduces attenuation due to wave induced fluid flow, but increases attenuation due to
scattering. The reverse was also shown, that gas saturation of less compliant layers

and water saturation of more compliant layers cause wave induced fluid flow
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attenuation to increase and scattering attenuation to decrease. Gelinsky et al. (1998)

verified these results numerically.

Pride et al. (2002) use a numerical approach (Kennett reflectivity code) to investigate
attenuation due to different types of layer sequences. They model attenuation due to
mesoscopic fluid flow, elastic scattering and global flow mechanisms. They show for
layer sequences having large variation in layer widths that attenuation due to wave
induced fluid flow is independent of frequency, whilst for small variations in layer
widths that mesoscopic fluid flow attenuation is dependent on frequency.

My interest is in identifying attenuation effects due to different types of layered
systems; however my approach is much simpler. | derive correlation functions which
can be inserted into the random media model of Miller and Gurevich (2004)
(explained below). In particular, I examine how periodicity and deviations from

periodicity affect attenuation and dispersion.
The patchy saturation model of Muller and Gurevich (2004)

When pore fluid bulk modulus varies continuously in magnitude in one-spatial
dimension according to some correlation function y(-) within an otherwise
homogeneous porous rock; attenuation and dispersion can be estimated using the
patchy saturation model of Miller and Gurevich (2004). This model is a
specialization of the results of Gurevich and Lopatnikov (1995), which model the
effective P-wave number for fluctuations in both frame and fluid bulk modulus. The

saturated P-wave modulus is

1)) = H, {1_ it [ }(r)exp(szryr} , (3.1.1)

where
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is the effective slow P-wave number, which is rewritten in shorthand as

k, = /;—a’ where /D, = W)
0

@)

Here D, is diffusivity defined in terms of averaged fluid viscosity,, permeability «
and by a combination of averaged poroelastic moduli N=ML/H,

where M ,Land H# are given by Gassmann (1951) (defined in Chapter 1, Section
1.1.1). The angle brackets donate ensemble averaging and the normalised

autocorrelation function is

;((r):M (3.1.2)

where & represents fluctuations in poroelastic parameters about the mean

H z) H(Z)

] (3.13)

and s is a dimensionless coefficient given by
s:<i>1[<a_jN>_<£>z<i>1]_ (3.1.4)
H L L N

When there are only variations in fluid bulk modulus Equation (3.1.3) implies

&(z)=~ &,,,(2), as the variation in the saturated P-wave modulus # in Equation (3.1.3)
due to variations in fluid modulus s are small, that is#(z)~ # . As the statistical

approach employed by Gurevich and Lopatnikov (1995) utilizes the so-called
method of statistical smoothing (Karel & Keller 1964) widely used in the theory of
waves in random media; the I1DCRM model (Equation 3.1.1) is accurate for small

contrasts in fluid bulk modulus and approximate when fluid contrast increases.

By varying the correlation function different 1D fluid distributions can be
considered. In particular, when it is assumed that the pore-space is saturated by only
two fluids, attenuation and dispersion due to binary fluid distributions can be
modelled. In the next three subsections, attenuation and dispersion is modelled due to

different types of binary layered media.
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3.1.1 Attenuation and Dispersion: Due to Periodic Layering

In the study of Gurevich and Lopatnikov (1995) and Gurevich et al. (1997) the
random media approach was used to model effects due to periodic layering, even
though the approach was not originally designed for this purpose. They modelled
periodic layering using a saw tooth autocorrelation function, thus restricting analysis
of attenuation and dispersion to periodic layering consisting of layers of equal
thickness (i.e. 50% saturation). Here | derive a new correlation function, which is
less restrictive. It will allow us to investigate whether the 1IDCRM approach can be
adapted to model attenuation and dispersion due to binary periodic layering having
any relative layer widths (i.e. arbitrary percentage fluid saturation). Here we assume

that rock saturated by fluid one and fluid two has layer widths 7, and ,=L, -L,

where L, is the spatial repetition width.

In order to use the 1DCRM it is necessary to derive a correlation function
appropriate for periodic layering. The approach utilized here is to take a rectangular

periodic function (see Figure 3.1.1.1) given by

0 otherwise

rect(r)= {1 ~h/2sr<h/2+nL, n=0...0 (3.1.1.1)

and explicitly perform the autocorrelation (thereby assuming a random shift). This

produces an autocorrelation function which is a triangular periodic function given by

1-2r/L, 0<r<L,/2+nL, n=0..0
tri(r) = 0 L /2+nL, <r<-L [2+(n+1)L, n=0..0 (3.1.1.2)
1-2L, /L +2r/L, =L /2+(n+1)L, <(n+1)L,  n=0..

Here no restrictions are placed on layer width, which means that any percentage fluid
saturation can be considered with Equation (3.1.1.2).This is substituted into Equation
(3.1.1) to obtain an effective saturated P-wave modulus of

1, ()= H yo ik, Bk, ) (31.1.3)

where
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2L, ik,L, +4L, [1— exp[ ik 22L1 ] +explik,L, )((1— ik 22L1 JJ - exp[ ’kZZLl D +ik, L, (explik, L, )-1)

2ik, L, L, (exp(ik,L, )-1)

B(kz):

(3.1.1.4)

In Figure 3.1.1.2, attenuation and dispersion are modelled for periodic layering of
light gas and water; the physical properties are shown in Tables 3.1.1.1 and 3.1.1.2.
The gas layer width z,=6cm and the water layer width is 14cm (Z, =20cm), this
corresponds to 70% layering of water with another low contrasting fluid. Attenuation
and dispersion are estimated using Johnson’s model (Equation 1.3.2.10 and Equation
1.3.2.5) (solid line) and 1DCRM with periodic correlation function (Equation 3.1.1.3
with Equation 3.1.1.4) (dashed line). The figure shows that (a) attenuation and (b)
dispersion estimates obtained from both models correspond closely. Hence, the
random media approach (1DCRM) accurately predicts for arbitrary saturation
percentages the effect of periodic stratification, even though it was not originally

designed for this purpose.

Table 3.1.1.1: Rock properties

K 7 Kq 35 o 0.08
GPa GPa

I 9 Pe 2650 Kgim® | le-13
GPa m’

Table 3.1.1.2: Saturating fluid properties

Kiw 2.25 Kt 1 2.0 Ks 0.25 Kt 0.1
Water | GPa Low contrast GPa Heavy gas | GPa Lightgas | GPa
with water
Pw 990 Puw-lc 990 p 400 Pg 100
Kg/m® Kg/m® Kg/m® Kg/m®
Nw le-3 Nw-le le-3 n 6e-5 2 3e-5
Pas Pas Pas Pas
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Figure 3.1.1.1: Construction of autocorrelation function for periodic layering. (a) Shows

periodic layered media, (b) corresponding periodic pulse sequence and (c) autocorrelation

of periodic pulse sequence as given by a triangular function.
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Figure 3.1.1.2 Frequency-dependent attenuation and dispersion estimates from 1DCRM and
Johnson (2001) for periodic layering. (a) Shows attenuation and (b) shows velocity predicted
using IDCRM (dotted line) and Johnson (solid line). Clearly there is good agreement

between both approaches.
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3.1.2 Attenuation and Dispersion: due to Quasi-Periodic Layering

Strictly periodic systems are unlikely to exist in the earth. | am therefore interested to
explore deviations from periodicity on patchy saturation signatures. Specifically,
layering which is almost spatially periodic is called quasi-periodic. One type of
quasi-periodic layered media arises when a layer of fixed width pPis repeated at a

repetition period comprising of an average spatial periodZ, plus a random spatial
shiftv, . See Figure 3.1.2.1 (a) where layer 1 (cross hatched) is of constant length,

whilst layer 2 (dotted) is almost of constant length.

Layered systems of this kind stand in direct analogy to sequences of binary random
pulses (Levin 1968, Franks 1969), which are characterised by a series of rectangular
pulses of fixed amplitude one separated by periods of amplitude 0, see Figure 3.1.2.1
(b) and (c). Spectral densities and correlation functions derived for binary random
pulse sequences can be suitably modified and incorporated into the 1DCRM
(Equation 3.1.1). Here | derive a correlation function for quasi-periodic layering,
which | substitute into Equation (3.1.1) to obtain the saturated P-wave modulus for

quasi-periodic layered media.

Levin (1968) has derived the (power) spectral density corresponding to the quasi-

periodic random pulse sequence (shown in Figure 3.1.2.1(c)) as
§(a))=P—Zsmc ( j R, (o)* i& w2 (3.1.2.1)
TP n=-0n TP l o

Here s(x) is the Dirac delta function andsinc(x)= sinle) | \whilst R,(») is the

X

characteristic function of the probability density function w of the random variable v,
that is

R, (a))z J.exp(ia)u)g(u)du. (3.1.2.2)

To derive the correlation function, the inverse Fourier transform of Equation

(3.1.2.1) is taken giving
J} : (3.1.2.3)

B(r)= IT)Z [%tri(#ﬂ { (t)-G )+—G Zexp(
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where = refers to convolution, G(r)=g(t)*g(r)and tri(x) is a symmetric triangular

function.

This expression (Equation 3.1.2.3) is manipulated further to give

0

B(t):i[tri[Lj*[ﬁ(t)—G(t)h ZG(t)*tri(t_zr;T” D | (3.1.2.0)

L \2P

n=-—ow

As Equation (3.1.2.4) was obtained for a positive signal with unit amplitude, | need
to subtract the squared mean of the signal to obtain a correlation function for a

centred signal. I also need to normalise the correlation function, when both are done:

B(0)= T [tri[#j—tri(Lj*G(t)—i;+iG(t)*tri(t_zl;Tp D:Ba(t)wm,(t)w,,(t).

2P T, =

(3.1.2.5)

Hence the correlation function due to quasi periodic layering is composed of three

different types of contributions:

(1) aperiodic component given by:

T, () ),
B”O%:TP—P(U{ZPJ U{zpj Gﬁﬂ, (3.1.2.6)
(2) constant component given by:
~P
Bconst (t)_ (TP —P) l (3.1.2.7)
(3) periodic component given by:
T, = . tri t—nT,
5072 [z 6() m(_zp D (3.1.2.8)

To calculate wave attenuation and dispersion due to quasi periodic layering
Equations (3.1.2.6)-(3.1.2.8) can be substituted into Equation (3.1.1).
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For the aperiodic component:

B,(0)= IB (t)exp (- iot )dt = PIw{tri(#j—tri(#J*G(t)}exp (— it )dt

TP

= I trl(ztp)exp(—ia)t)dt JO tl’l( j*(g(t)*g(t))exp(—la)t)dt

CT,-P

] trl( jexp( za)t)dt— [1——Jexp —iot)dt

-7 SOl [zsmc( o jexp[_lﬁwj—l}, (3.1.2.9)

For the constant component:

[lexp (~ior)ar = __r (3.1.2.10)

~ y
B =—
const (CO) Tp —p o CO(TP _ P)

For the periodic component:

JB exp(za)t)dtj. _P(ZG *trl(

ot

=" B, () expzwt)dt+j B, (- T)exp(za;t)dt+f B, (t—2T, )explict )dt +....

0

T,

=" B, (r)explicot dt + exp(~ zcoTj B, (¢t —T,)expliolt - T, ))dt +

0

+exp(—iw2T, )J?: B, (¢ 2T, )explia(t - 2T, ))dt +....

:J‘OTP B,(t)explicr )dt[L+ exp(-ioT, )+ exp(-iw2T, )+ .| = I )exp ’w’)dt{ZeXp’me )}
) LTF B, (¢)exp(~icot )dt

1—exp(-iwT, )

which simplifies after much algebra to

wZTP j (T, - P)sinc(wzpj sinc[ w(TPZ_ P)j
oT, '
;)

- T smc[
~ 1
BP(C‘)): T fPRZ(a))

’ Zsin(

(3.1.2.11)
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The addition of Equations (3.1.2.9) —(3.1.2.11) gives

B(w)=B,(@)+ B, (0)+ B, (@)

.

L [1—R2(a)) sinc[w—Pjexp(_iij + 2
o|T,—P 2 2 . (T
’ sinc| —7%

This is further manipulated to
B(o)= 2; Ir {sin(a)—PJ ex;{_iPwJ—Rz(a))ex;{ﬂJ—w]
WP T,—P 2 2 2
. (wP]
sin| — )
_exp[—iPa)j_ 2 exp(—iPa)jexp(—zm(Tp—P)j i (31212)

. (a)Tj 2 2 @
sinf —
2

where R(w)is defined for any 0<v, <7, - P as
R(o)= sm(a;hJ/(a;hj :

Equation (3.1.2.12) can be substituted into Equation (3.1.1.3) to obtain the saturated

P-wave modulus due to quasi-periodic layering, by setting o =ik,

In this example, | compare estimates from 1DCRM using the quasi-periodic
correlation function against Johnson’s approach for periodic layering. I model 30%
light gas layering which repeats quasi-periodically with water layers. Figure 3.1.2.2
shows (a) attenuation and (b) dispersion for each approach. The quasi-periodic
attenuation curve (dotted line) is slightly broader than the periodic attenuation curve
(solid line) and the quasi-periodic velocity curve has the same velocity as the
periodic curve, at lower wave frequencies. Despite these observations, there is very
little difference in the patchy saturation signatures of quasi-periodic and periodic

layering, unlike the case of random layering which shall be discussed next.
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Figure 3.1.2.1: Quasi-periodic layers and pulses. (a) Shows quasi periodic repetition of

more compressible fluid layers in terms of spatial layers, (b) shows the spatial repetition

period and random shift, (c) Shows the random binary signal analogy from radio physics.
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Figure 3.1.2.2: 1DCRM with quasi-periodic correlation function versus Johnson (2001) for
periodic layering. (a) Shows attenuation and (b) dispersion due to 30 percent layering light
gas within water. The quasi periodic attenuation curve (dotted line) is slightly broader than
the periodic attenuation curve (solid line), whilst rapid velocity dispersion occurs at lower

frequencies for the quasi periodic layering than for periodic layering.
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3.1.3 Attenuation and Dispersion: due to Random Layering

Like periodic and quasi-periodic models, a randomly layered sequence of two
different fluids will consist of individual layers which are fully saturated by only one
type of fluid. However, unlike the preceding layered media models all layers are of
variable width. That is, gas layers and water layers alternate at random spatial
intervals. One way of interpreting such layered sequences is in terms of a random
facsimile signal (Franks 1969). Here | modify Franks’ terminology to suit the
application of random layering of two fluids, hence showing what sort of correlation

function can be utilized to model this type of layering.

One can define a random function x(-)which has a binary output, such that x(-)=ofor
gas saturated layers and x(-)=1for water saturated layers where the probabilities of
gas and water saturated layers are P[x(r)=0]=v,=1-v, andP[x(-)=1]=v,. The spatial
length between successive gas to water and water to gas transitions is a random
variable. This can be modelled by assuming that {;;x=0+1+2+3...} is an ordered
sequence of random variables distributed over the entire real line according to a
Poisson point process with rate parameter1,. The rate parameter ,is equivalent to
the average number of transitions between gas and water in a unit interval. In the
intervals defined by the random points ~ ,x(-)has a constant value of 0 or 1.

Furthermore, the values of x(-)in different intervals are statistically independent.

The layer sequence has a mean value of (x(r)) = Pr[x(r)=1]=v, Which is equivalent to

average water saturation. The autocorrelation function (un-normalised, un-centred) is

2k +R)=Prlx(r+R)=1 & x(r)=1], (3.1.3.1)

where probabilities in Equation (3.1.3.1) depend on whether - and »+ z are in same or

different spatial intervals defined by . Let A refer to event x(-+r)=1and B refer to
the eventx(r)=1. The probability of » and » +  residing in the same interval is:

Prix(-+R)=1 & x(r)=1]=Pr[4&B]= Pr(A)Pr(%): vy, (3.1.3.2)

as events A and B are statistically dependent. The probability that » and » + r reside in

different intervals is:

Prix(r+R)=1 & x(r)=1]=Pr[4& B]=Pr(4)Pr(B)=v,’, (3.1.3.3)

3-97



Patchy Saturation Models for Complex and Irregular Fluid Distribution

as events A and B are statistically independent.

Moreover, the probability thatrand-+r reside in the same interval

is P, (R|)=exp(- 4|R|) as it is a Poisson point process.

The correlation function is then
;((R): v, exp(— /1p|R|)+ vz2 [1—exp(— /1p |R|)] =v, (l—v2 )exp(— /1p|R|)+ v22 . (3.1.3.4)

Equation (3.1.3.4) is un-normalised and un-centred, hence it needs to be converted

ZE ol ) (3139

Equation (3.1.3.5) shows that the correlation function for random layering (described

N1

by a Poisson point process) is given by an exponential function. By comparing
Equation (3.1.3.5) with

2r)= exr{i'r'} : (3.1.3.6)

a

we see that

y-2.
a

This means that the correlation length « is an inverse of the rate parameter 2,. That

is, if there are lots of transitions between gas and water saturated layers occurring
within the unit interval, than the correlation length is small. Thus, a small correlation
length could be used to model finely distributed random layers. On the other hand, if
fewer water gas transitions occur within the unit interval then the correlation length
is large. This would produce random layering which is coarse. To model attenuation
and dispersion Equation (3.1.3.6) is substituted into Equation (3.1.3) giving (Mdller
& Gurevich 2004)

H(®)= H y | 14— |, (3.1.3.7)
where H,., is Woods limit on the saturated P-wave modulus and

(HBGH _HBGW) ]
HBGW

S =
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In Figure 3.1.3, | compare attenuation and velocity dispersion for random layering
and periodic layering. | use 1DCRM with an exponential correlation function
(Equation 3.1.3.7) to model wave induced fluid flow arising between random
layering; whilst Johnson’s approach is utilized to model wave induced fluid flow for
periodic layering. For consistency, | assume that there is 30% light gas layers
randomly or periodically distributed within water layers. The rock frame and fluid

properties are the same as those listed in Tables 3.1.1.1 and 3.1.1.2.

Figure 3.1.3 (a) shows that attenuation due to random (dotted line) and periodic
(solid line) layering exhibits different frequency dependency at low frequencies.
Also, the attenuation curve is broader for random layering than for periodic layering.
This means that attenuation due to random layering will be substantially greater at
lower wave frequencies than attenuation due to periodic layering (providing of

coarse scaling of correlation lengths and layer widths are comparable).

Figure 3.1.3 (b) shows velocity dispersion curves for random (dotted line) and
periodic (solid line) stratification of light gas and water. Both models approach the
theoretical limits on velocity given by Gassmann-Wood and Gassmann-Hill. The
bandwidth over which velocity changes most rapidly is wider for random layering

than for periodic layering.
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Figure 3.1.3.1: IDCRM with exponential correlation function versus Johnson (2001) for

periodic layering. (a) Shows attenuation and (b) dispersion due to 30 percent layering of

light gas within water. The attenuation curve for random layering (dotted line) has different

frequency dependence at low frequencies relative to the periodic attenuation curve (solid

line). The velocity dispersion occurs across a wider bandwidth random layering than for

periodic layering.
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3.2 3-Dimensional: Random Distribution of Spherical
Inclusions

Small gas bubbles in water and small liquid drops in gas are likely to assume a
spherical shape because of surface tension. Surface tension is force acting tangential
to the surface of an interface separating two dissimilar fluids (Bachelor 1967).
Surface tension arises because different fluids have different intermolecular cohesive
forces (Chang 1994). For instance, cohesive forces like dipole moments are
responsible for attraction between neighbouring polar molecules within water. Water
molecules away from the gas-water interface experience balanced cohesive forces,
where as water molecules adjacent to the interface experience unbalanced cohesive
forces (due to the presence of neighbouring gas molecules). The unbalanced forces
cause water molecules to be drawn inwards and sideways along the interface, this
minimizes the interfacial surface area. Hence, spherical shaped gas bubbles and

liquid drops are formed (see Figure 3.2.1).

In porous media the physics which dictates the shape of heterogeneous fluid patches,
such as minimization of interfacial surface area (between fluid-fluid and fluid-solid),
the process and history of fluid saturation within rock, the shape of pore-spaces, fluid
transport properties, rock wettability etc., is not fully understood. Hence, as a first
start towards modelling attenuation/dispersion due to realistic three dimensional fluid
distributions in porous rock, some studies (Ciz et al. 2005; 2006; Markov et al. 2007)
have assumed in analogy to bubbly fluids, a random distribution of spherical shaped
fluid inclusions. In this Section I outline the approach of Ciz et al. (2006) as it will be

utilized extensively in Chapters Four and Five.

Ciz et al. (2005, 2006) have derived explicit expressions for attenuation and phase
velocity dispersion due to a random distribution of spherical heterogeneities within
porous rock. I call their model DRM, which stands for discrete random media. The
derivation of their model, involves two main stages. In the first stage a problem of
scattering by a single inclusion is analysed. Under the assumption of mesoscopic
inclusion this analysis yields a closed-form solution for the scattering amplitude (Ciz
& Gurevich 2005). The second stage utilizes the Waterman and Truell (1961)
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theorem of multiple scattering to approximate the scattered wave field of a system of

randomly distributed poroelastic inclusions (Ciz & Gurevich 2005).

Figure 3.2.1: A spherical gas bubble in a liquid. The arrows denote intermolecular cohesive

forces acting between molecules,

3.2.1 Single inclusion scattering

The problem of scattering of an elastic wave in a poroelastic material (host) by a
spherical inclusion of another poroelastic material (inclusion) was first considered by
Berryman (1985). When the incident wave interacts with the inclusion of radius a, it
produces fast and slow compressional waves and a shear wave in the host (called
scattered or reflected waves) and three of the same kinds of waves within the

inclusion (called refracted waves), Figure 3.2.1.1.

Both the inclusion and host medium are described by Gassmann equations (1.1.7-
1.1.9) and Biot’s equations of poroelasticity (1.1.1-1.1.3). Standard boundary
conditions (Dersiewicz & Shalak 1963) apply on the interface between the inclusion

and hostatr =a:

3-102



Patchy Saturation Models for Complex and Irregular Fluid Distribution

I. continuity of normal stress

I1. continuity of tangential stress

I11. continuity of normal average solid displacement
IV. continuity of tangential average solid displacement
V. continuity of fluid pressure

VI. continuity of average relative solid-fluid displacement

Similarly to the corresponding scattering problem in elasticity (YYamakawa 1962), the
solution of poroelastic scattering problem is sought for by expanding the reflected

and refracted waveforms in series of spherical harmonics (Berryman 1985):

—Z h(l)(k r)— h(l’(k r) | P,(cosd),

k2 dr
(3.2.1.1)
S| DYood . D d .
= k, n__— i (k P (cosd),
1/l3r ; (k+) d .]n( ) (k‘_)z dr.]n( _7') n( )

where, u;. and us- are normal displacements in the host and inclusion and B, , B, ,
D;, D, are coefficients corresponding to reflected and refracted fast and slow

harmonics of order n, j®,»™, are spherical Bessel functions of the first and third

kind, P(cosé) is the Legendre polynomial of the order » and &, ,k are wave

numbers of the fast and slow waves. Similar representation is derived for the polar

angle components of displacements, which involve scattering coefficients C, and

E, corresponding to reflected and refracted shear wave.

Application of the standard boundary conditions yields a6x6system of linear
equations in terms of six unknown wave field coefficients of each ordern >1. For
order n=0 a similar 4 x4 system of linear equations in terms of 4 unknown wave

field coefficients is obtained (Berryman 1985).
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The general infinite series formulation of Berryman (1985) gives a complete solution
of the single scattering problem for an inclusion of arbitrary size (larger than the pore
size) and for any frequency. Ciz and Gurevich (2005) showed that this solution can
be greatly simplified if the frequency is small compared to Biot’s characteristic
frequency, and the inclusion is mesoscopic. In particular, they showed that at most
three first terms of the series are significant in this case, and gave explicit analytical

expressions for these terms.

Furthermore, it was shown that the term with »n =2 is proportional to the difference
in shear modulus between the inclusion and the host medium. Thus in the specific
case where the inclusion differs from the host medium by the fluid properties only,
this term can be neglected and the scattering coefficient of the fast compressional
wave is given by the sum of the zero-order and first-order terms with coefficients
(Ciz et al. 2005):

C_iek-K) (Y oalE) . hPE)
B HéH(H H"J/[N e Vs ©eta)
B :f_f(l_ﬁ'j. (3.2.1.3)
3 p

In these expressions,&, =k.a, a prime (or no prime) above a parameter denotes

within the inclusion (or host), whilst p refers to the effective density of the porous

rock.

Incident wave Py Scattered
F1Pz S
\ J a

— e
/ 0\

3 4 43

Figure 3.2.1.1: Shows the incident plane fast compressional wave and the reflected and

refracted waves.
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3.2.2 Random Distribution of Inclusions

Waterman and Truell (1961) showed that the velocity and attenuation of waves
propagating in a medium containing a random distribution of identical inclusions can
be related to the amplitude of the waves scattered from a single inclusion (Figure
3.2.2.1). According to their theory, the complex effective wave number is given by:

ky Y L, 20/ () " Te2mf(n)T (32.2.1)
k k? k? ’ S

where k, =w/v, is the wave number of the fast P-wave in the host, v is the density

or number of scatterers per unit volume, and f(0), f(x) are forward and backward

scattering amplitudes which are related to scattering coefficients by

0

FO =3B ==Y (i) B (3222)

+ n=0

For random distribution of mesoscopic fluid patches the scattering amplitudes are
determined by substituting scattering coefficients (3.2.1.2) and (3.2.1.3) into
(3.2.2.2). Incorporating a weak scattering approximation and neglecting quadratic

terms in v reduces the effective wave number (3.2.2.1) to

1/2
ky =k, {1#‘”‘;—{(0)} ~k, {1+2”';€—f:(0)] (3.2.2.3)

Real and imaginary components of £, , yield the effective phase velocity v, and

eff !

dimensionless attenuation (inverse quality factor) O~/

1 1 30 .
_:—{1+E—3Re{—ng+Bf}] (3.2.2.4)
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(C,H, - C,H,f . 1 _—_—
B - H,H? JolE" h(E?
0 =383 T Ml g-N, pEEg &, (3.2.2.5)

where 6 = U/(4/37m3) Is the fractional volume concentration of the inclusions.

The discrete random media model discussed here models fluid patches of spherical
shape, and in this respect it is similar to the regular cell models (White 1975;
Johnson 2001; Pride et al. 2004). However, unlike these models, DRM is based on
scattering theory and thus implies that fluid inclusions are distributed randomly
through out the rock, which is more realistic. On the other hand, since phase velocity
and attenuation estimates (3.2.2.4) and (3.2.2.5) are based on applying the single
scattering approximation of Waterman and Truell, DRM is limited to small
concentrations of inclusions. The range of admissible concentrations depends on
contrasts in fluid properties between the inclusion and the host medium.

The next example models attenuation and phase velocity due to a random
distribution of spherical inclusions (using the DRM model above) and a periodic
distribution of spherical inclusions (using White’s model (1975) as the reference
model). In Figure 3.2.2.1, attenuation and phase velocity are shown when there are
small contrasts in saturating fluids (a) 0.1% heavy gas and (b) 10% heavy gas within
an otherwise water saturated rock. In both cases, the more compressible fluids are
modelled as inclusions. In (c) the more compressible fluid is modelled as the host
saturating fluid for the situation of large contrasts between fluids. Figure 3.2.2.1, top
row (a) shows good agreement between attenuation and phase velocity estimates for
small contrasts in fluid properties when the volume concentration of the included
phase is small. Figure 3.2.2.1, middle row (b) shows a larger volume concentration
of the included fluid results in different attenuation and phase velocity estimates. In
particular, the phase velocity estimate of the DRM does not converge to the low
frequency Gassmann-Wood limit. This is a consequence of the weak scattering
approximation employed in the models derivation.

When the more compressible fluid is modelled as the host saturating fluid, the DRM

can handle larger contrasts in fluid properties. In (c), attenuation and phase velocity
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dispersion is modelled for 50% water inclusions within an otherwise air saturated
host rock of porosity 0.08. There is very good agreement between attenuation and
phase velocity estimates. Figure 3.2.2.1, shows that the attenuation behaviour of

periodic and random distributions of fluid inclusions is proportional to @ for low

frequencies and proportional to @ ¥*for high frequencies. Providing the weak
scattering conditions are met, there is good agreement between attenuation and phase

velocity estimates for periodic and random distributions of fluid inclusions.

i

. .
=g Incident Wave P

Figure 3.2.2.1: Showing a compressional wave incident on a random distribution of

spherical inclusions of another poroelastic material.
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Figure 3.2.2.2: Attenuation and dispersion estimates from heavy gas inclusions within an
otherwise water saturated porous rock of porosity 0.08. White’s model (solid line)), Ciz and
Gurevich (dotted line)) (a) has an inclusion concentration of 0.1 % (b) has an inclusion
concentration of 10%, (c) attenuation and dispersion when the more compressible fluid is
modelled as the host saturating fluid. In this case, water inclusions are modelled within an

air saturated host rock. Good agreement is seen between periodic and random estimates.
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3.3 3-Dimensional-Continuous Random Media (3DCRM)

Both of the partial saturation models (LDCRM) and (DRM) outlined above allow
attenuation and dispersion to be estimated due to fluid geometries that are more
realistic than the idealised geometries assumed by White’s periodic approach
(Section 1.3.1). However, they are still not suitable for modelling attenuation and
dispersion due to fluid distributions obtained from saturation maps (Chapter Two).
As the first model assumes complex layering and the second model assumes fluid
inclusions are fixed in size and shape, whilst Chapter 2 fluid distributions were
shown to be described well by correlation functions, like an exponential function

(Debye correlation function).

In this section | develop a patchy saturation model, which allows greater versatility
and flexibility in the distribution of pore fluids. Thus, it is more suited to the problem
of modelling attenuation and dispersion due to realistic fluid distributions. The basis
of this model is the generalised 3-dimensional poroelastic model of Muller and
Gurevich (2005a, 2005b). Their model allows attenuation and dispersion to be
predicted due to mesoscale heterogeneities in the bulk and shear modulus of the
porous rock frame, in addition to heterogeneous fluid saturation. Such a medium is
described by Biot’s equations of poroelasticity with poroelastic coefficients that are
continuous random functions of position. The Miller and Gurevich (2005a,b)
approach is the same as that utilized by Gurevich and Lopatnikov (1995). Hence
statistical smoothing is applied, which limits the precision of the model to small

contrast in the physical properties of the heterogeneities.

According to Maller and Gurevich (2005a,b), the complex effective P-wave number

in a 3-dimensional heterogeneous porous solid is

F =k (108, 8007 [z G e (i rhar ], (33.)
with dimensionless coefficients given by,
a’ML L a’M
8= ot ~20t v olu) A = 5o+ Sl (3:32)

wherek, = w\/p/H ,k_=,lion/xN ,are the fast and slow P-wave numbers for the

background medium, »()is the normalised spatial correlation function which
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describes the spatial variation in rock/fluid properties (see Figure 3.3.1) and o ’s

are normalised variances of the different elastic moduli and L, M, N, H are poroelastic

moduli given by Gassmann (see Chapter 1, Section 1.1.1).

For partial fluid saturation, only variances in fluid modulus M exist, so that

o, =0, =0, This reduces the complexity of the dimensionless coefficients in
Equation (3.3.2) to A, =a’Mo?,, /2H and A, =(L/H)A,. To obtain the fast and

slow P-wave numbers for the average background media, it is necessary to calculate
the average properties of the fluid modulus M, saturated P-wave modulus H and fluid
viscosity #. This is accomplished by taking the saturation-weighted average of each

property: (X)=Xxv, +X,v,, where v, v,are percent saturation of each fluid and
v, +v, =1. Thus the average fluid modulus is M, = M,v, + M,v,; the average viscosity

is n, =n,v, +1,v, and the average saturated P-wave modulus is #, = L+a’M, .

By using

He

Equation (3.3.1) can be transformed into an effective complex saturated P-wave

modulus given by:

1, (0)- Ho(l A, - AR jjl(r)exp(ikr)drjz | (33.3)

where H is the average background P-wave modulus determined from Gassmann’s

equation using the average fluid modulus A . Real and imaginary components of
(3.3.3) yield the effective phase velocity v, = ,/Re{Heﬁ E/ p and specific attenuation

(inverse quality factor) Q‘/fl = Im{Heﬂ }/ Re{H eﬁ} respectively.
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Figure 3.3.1: An idealized representation of a random medium described by some

correlation function y(r)

3.3.1 Low and high frequency limits

Application of statistical smoothing in the inception of the generalised framework of
Miiller and Gurevich (2005a) limits the accuracy of Equation (3.3.3) to pore fluids
having small contrast in fluid bulk modulio,,, <<1. This can be seen by studying
the theoretical low- and high frequency limits on the P-wave moduli obtained from
Equation (3.3.3). They are:

H,

low

=H,(1-A,), (3.3.1.1)
and

Hhigh = Ho(l_Az +A1)2' (33.1.2)
respectively. For small contrast in fluid properties o,,, <<1 these moduli approach
theoretical Gassmann-Wood H,, and Gassmann-Hill H, limits as given by

equations (1.1.7)-(1.1.9) and (1.2.2.1), and (1.2.2.2) respectively.
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I will now show that the model does converge to Gassmann-Wood and Gassmann-
Hill limits for small contrasting fluids. Let the fluid moduli for fluid 1 and fluid 2 be
M,=M,-5 and M, =M,+5,, (3.3.1.3)
where s, and s, are displacement fluid moduli for each respective fluid. By taking
the average m, + M,v, = M, ; the second fluid displacement modulus can be formulated

)

in terms of the first fluid displacement moduluss, = , this gives a normalised

2

. M? 2
variance of 62, = < 2> ~1= ﬁiz .
()

Firstly, consider the effective fluid modulus a, obtained using Wood law

i:(V1+Vz)(“—¢)+¢|:L+L} :V{M+L}V{M+i}:L+i:<i>,

MW KS K/'l K/'Z KS Kjl KS K/'Z Ml MZ M

(3.3.1.4)
This shows that effective fluid modulus for Wood’s limit is equal to the harmonic

average of both fluid moduli. Substitution of Equations (3.3.1.3) into (3.3.1.4) gives

(M, —51)[Mo +61”1J )
M, = "2 =M0—51[1—i]—fl—li. (3.3.1.5)
Vl(Mo_51)+V2[Mo+51VIJ "2 0"
v,
The saturated P-wave modulus at Woods limit is then
H, =L+a’M, _Ho—az[é—fﬁ]—aza{l—ﬁj. (3.3.1.6)
o V2 V,

Now consider (3.3.1.1)

2
H,, = Ho(:I-_Az)2 ~ Ho(l_ZAz):Ho ~a*Myoy, = H, _az[é‘_li] =~ H, +a251[ _i]

(3.3.1.7)
where the last term in (3.3.1.7) is small when contrast is small.

Consider high frequencies, using Gassmann (Eq. (1.1.7)-(1.1.9)) the saturated P-
wave modulus for the regions of the rock saturated by fluid 1 and fluid 2 are

H, =L+a’*M,and H, = L+a’M, . (3.3.1.8)
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Substitution of (3.3.1.8) into Hills limit (1.2.2.2) gives

2
(Ho _ azgl{Ho _WJ o5
Hypy = —0t2 )y ok a0 . (3.3.1.9)
Wy 8 )

0
a V.
2 [Ho —51052(1—”1]}
Va v,

Now consider the high frequency limit of the model (Equation 3.3.1.2)

2 462
aM,L , 2 2 v a’d
Oy — & Mooy = Hy—————
H, v, H,

-

H oo = HyL+ A, = A, f = Hy(1+2(A, - A,)) = H,y + . (3.3.1.10)

Thus as contrast becomes small Equations (3.3.1.9) and (3.3.1.10) will converge.

In other words, the moduli given by Equations (3.3.1.1) and (3.3.1.2) are
asymptotically consistent with Gassmann-Wood and Gassmann-Hill limits for small
contrast in fluid modulus. However, in partially saturated rocks the variation in fluid
properties is often large, resulting in significant deviation of predicted low- and high-

frequency moduli from the theoretical limits.

To make the model consistent with the theoretical limits of Gassmann-Wood

equations and Gassmann-Hill equations, I introduce a scaling function:

H,~H, H,(0)-H, | (3.3.1.11)
H H,

low

Hy. (0)=H, (1+

high —
The new complex modulus H. () predicted by Equation (3.3.1.11) behaves

similarly to that predicted by Equation (3.3.3) but is consistent with the theoretical
limits when contrast in fluid bulk moduli is large. This scaled model is called the 3D

continuous random media (3DCRM) of patchy saturation.

The scaling function approximation (3.3.1.11) can be understood as taking the exact
frequency dependence of the saturated P-wave modulus (at low fluid contrast) and
supposing that for high fluid contrast the frequency-dependent characteristics (in
Equation (3.3.1.11)) are the same. That is, the only factor considered to effect the
frequency-dependent characteristics of the saturated P-wave modulus is fluid

distribution, which is described by a correlation function.
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3.3.2 Different Fluid Distributions: Exponential and Gaussian

Correlation Functions

Dispersion and attenuation in CRM depends on the correlation function (r), which

in turn is determined by the spatial distribution of saturating fluids. To obtain closed-

form expressions for Equation (3.3.3) one needs to specify the correlation function.

In particular, for an exponential correlation function (Debye random media)
2(r)=expl-|r/a) , (3.3.2.1)

the effective complex P-wave modulus is

Hq,f(a)):H{l—Az—(ﬂfi{—_al)Z] ) (3.3.2.2)

where b is the correlation length, which characterizes a characteristic length of the

inhomogeneities.

For a double Debye correlation function of:

Zz(r) = Xsman + Xrage = bs exp[—L] + bL exp[_LJ = bs exp(—L] + (1_ bs)exp(—LJ ’ (3323)
a

s a, as a,

the effective complex P-wave modulus is

2
bsay’ (L—bg)a,’
H (0)=H,|1-A, —A,k? Chet S/L . 3.3.24
(@) O[ L [(ikas—l)z +(ik7aL 1) ( )

For a Gaussian correlation function
2(r)=expl-r2/p?), (3.3.2.5)
equation (3.3.3) yields:
Hp (@)= - A, -28,7fi- iz exprerte) ) (3.3.2.6)

where erfc denotes the complementary error function and y =—ik b/2.

I note that for a large class of correlation functions explicit expressions for the
effective P-wave modulus can be obtained, such as for a fractal distribution of fluids
(Mdiller et al. 2008). In the next couple of examples, I will illustrate some general
properties of 3SDCRM.

3-114



Patchy Saturation Models for Complex and Irregular Fluid Distribution

I. Shape of attenuation and dispersion curves

The physical properties used in this example correspond to 30% light gas saturation
in an otherwise water saturated rock (as shown in Tables (3.1.1.1) and (3.1.1.2)).
Figure 3.3.2.1 shows (a) attenuation and (b) velocity estimates obtained using
exponential and Gaussian correlation functions. Both attenuation curves have the
same frequency dependence at low frequencies, being proportional to » . However at
high frequency the attenuation curves display different frequency dependencies, with
the exponential being proportional to »*'?, whilst the Gaussian is proportional too ™.
(b) Shows the frequency bandwidth for which velocity changes rapidly is wider for
exponentially correlated fluid distributions than for the Gaussian correlated fluid

distributions.

I1. Peak frequency of attenuation

The rock properties used in this example are for the same rock as above, the fluid
properties are 30% heavy gas saturation in an otherwise water saturated rock (as
given in Table 3.1.1.2). Figure 3.3.2.2 shows frequency-dependent (a) attenuation
and (b) velocity estimates obtained using an exponential correlation function with
different correlation lengths ranging from a=0.5m to a=0.0625m . As the correlation
length decreases the frequency at which attenuation is maximum shifts towards
higher frequencies. Similarly the frequency bandwidth over which velocity changes
most rapidly, also shifts to higher frequencies. Although not shown here a similar
effect has been observed by having a fixed correlation length and varying the
permeability of the rock. Namely, as permeability decreases the peak frequency of
attenuation will shift to higher frequencies, whilst for lower permeability the peak
frequency of attenuation will shift to lower frequencies (Muller et al. 2007).

Figure 3.3.2.3 shows the peak frequency of attenuation for a range of rock
permeabilities (~1 to 0.001 Darcy) having fluid heterogeneities of different
correlation lengths (50cm to 0.25 cm). As the permeability decreases so does the
frequency at which attenuation peaks for each correlation length. This occurs as fluid
pressure equilibration in less permeable rocks, requires more time than in highly

permeable rocks, for a fixed patch size. As the patch size (in terms of correlation
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length) increases, more time is required for fluid pressure equilibration as the

diffusion length (refer to Chapter 1, Section 1.2.2) is less than the patch size.

| freely acknowledge that certain regions of the permeability-frequency space (within
Figure 3.3.2.3) may be dominated by elastic scattering and other mechanisms, etc.
and that the assumptions of low frequency Biot theory underpinning 3DCRM will be
invalid. Hence, mesoscopic fluid flow will not be controlling factor on the acoustic
response of partially saturated rock for these frequencies and permeability.
Nevertheless, Figure 3.3.2.3 illustrates nicely that attenuation will peak in the seismic

bandwidth for a range of rock permeabilities and saturation correlation lengths.

I11. Magnitude of attenuation

Figure 3.3.2.4 shows maximum attenuation (at peak frequency) as a function of
Biot’s coefficient (see Chapter 1, Section 1.1). The shear wave modulus of the dry
frame is altered as to satisfy Poisson ratio v=0.2. Fluid distribution is assumed to be
exponential and there is 90 % water saturation with 10 % saturation by another fluid

having moduli of K, =0.01, 0.1, 1 GPa. The figure highlights two points: 1) as the Biot

coefficient decreases the magnitude of attenuation deceases. This occurs because
fluid flow effects are diminished for stiff rocks because the fluid pressure induced by
rock frame compression is reduced. 2) When the difference in fluid bulk moduli
decreases, the magnitude of attenuation decreases. This occurs as the rock frame will
induce similar fluid pressure in fluids of similar compressibility, hence reducing the
gradient in fluid pressure between heterogeneities and thus wave induced fluid flow

is diminished.
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Figure 3.3.2.1: Frequency-dependent attenuation and dispersion from 3DCRM with different

correlation functions. (a) Shows attenuation and (b) velocity when correlation functions are

exponential and Gaussian, the correlation lengths are the same. The frequency-dependent

shapes of the attenuation and dispersion curves are different.
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Figure 3.3.2.2: The influence of correlation length on attenuation and dispersion. (a) Shows

attenuation and (b) velocity curves. As the correlation length is reduced, the frequency-

dependent curves are shifted to higher frequencies.
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Figure 3.3.2.3: Peak attenuation frequency for rocks of different permeabilities having

different characteristic fluid heterogeneity length scales (correlation lengths).
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Figure 3.3.2.4: Peak attenuation value as a function of frame stiffness (Biot coefficient) for

90% water saturated rock having fluid heterogeneities of different compressibility.
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3.4 Application of 3DCRM to Special Fluid Distributions

In the previous section, 3DCRM was used to model attenuation/dispersion due to
fluid heterogeneities characterised by specific correlation functions, such as
exponential and Gaussian. These correlation functions typically arise from random
media having complex and irregular variations in material properties (Klimes 2002).
When fluid heterogeneities are distributed using such correlation functions, it is not
always possible to distinguish an “included” fluid from a “host” fluid. Moreover, in
some applications we actually want to model fluid inclusions of regular or fixed
shape. For these situations exponential and Gaussian correlation functions are not

really suitable.

If we wish to use 3DCRM to model attenuation and dispersion due to a random
distribution of fluid inclusions (having regular shape), then we need to search for
appropriate correlation functions. An obvious correlation function to look for is one
which describes a 3D distribution of randomly positioned spheres. This correlation
function would allow us to use 3DCRM to model attenuation and dispersion due
fluid bubbles distributed randomly thorough a rock saturated by another fluid.
Luckily, 1 have found such a correlation function (Torquato & Stell 1985); amongst
two others which are both interesting and relevant: the overlapping spheres
(Weissberg 1963, Torquato 2002) and random checkerboard (Lu & Torquato 1992).
In this section, I will model attenuation and dispersion using these three correlation

functions.

3.4.1 3DCRM for Non-overlapping Spherical Inclusions

The DRM model outlined in Section 3.2 implicitly assumes that fluid heterogeneities
are present as randomly distributed spheres and thus it assumes a geometry enabling
us to model attenuation and dispersion due to bubbles. However, DRM is only
accurate for certain inclusion concentrations and certain fluid contrasts. As such, my
motivation for using 3DCRM is to find a less restrictive approach to model

attenuation and dispersion, due to bubble like fluid distributions.
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The key to using 3DCRM to model attenuation and dispersion due to bubble like
fluid distributions is knowing the right correlation function to substitute into
Equation (3.3.3). The correlation function | use was derived by Torquato and Stell
(1985). It describes the two point probability function of a random distribution of
non-overlapping spheres in equilibrium (see also Section 5.4). As the evaluation of
the Torquato and Stell analytical correlation function requires the inverse Fourier
transform of a complicated function, | use their tabulated results (given in Table
3.4.1.1) for illustration. Noting that in principle, one could perform the necessary
computations to evaluate their correlation function for any inclusion concentrations
which are physically realisable.

To use the results presented in Table 3.4.1.1, one must convert them to a correlation
function. To do this | use Equation (2.3.1.2), which shows that the two point
probability function for the inclusion phase can be derived from the host phase and
vice versa. In Figure 3.4.1.1 the correlation function is shown for 10%, 20% and 30
% spherical inclusions. As the inclusion concentration increases, oscillatory
correlations become more pronounced as there is a higher probability that the two

offset points are more likely to sample spherical inclusions.
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Figure: 3.4.1.1: Correlation functions for a 3D random distribution of spherical inclusions.
The correlation functions for 10%, 20% and 30% saturations are given by symbols *, o, x,

respectively. The correlation functions for higher inclusion saturations have more

pronounced oscillations.
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Table 3.4.1.1: Two point probability function values for the host medium of

randomly distributed non-overlapping spherical inclusions.

Sz(’”) Sz(”) Sz(r)

r v, =0.1 v, =0.2 v, =0.3
0.0 0.9000 0.8000 0.7000
0.2 0.8705 0.7411 0.6119
0.4 0.8441 0.6908 0.5418
0.6 0.8233 0.6539 0.4958
0.8 0.8104 0.6339 0.4758
1.0 0.8072 0.6327 0.4814
1.2 0.8091 0.6393 0.4932
1.4 0.8100 0.6416 0.4943
1.6 0.8102 0.6411 0.4911
1.8 0.8101 0.6401 0.4887
2.0 0.8100 0.6396 0.4889
2.2 0.6398 0.4901
2.4 0.6400 0.4905
2.6 0.6401 0.4902
2.8 0.6401 0.4899
3.0 0.6400 0.4898
3.2 0.4900
3.4 0.4901
3.6 0.4900
3.8 0.4900
4.0 0.4900
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To examine the accuracy of the 3DCRM | make comparisons with DRM. In order to
utilize the DRM model (Equations 3.2.2.4 and 3.2.2.5) accurately at inclusion
concentrations of 10% or more, | need to assume that the less compressible fluid is in
the inclusion, whilst the more compressible fluid is the host. Otherwise, the DRM
model does not converge to Gassmann-Wood limits. Hence, | model 10 % water

inclusions in an otherwise gas saturated host rock.

Figure 3.4.1.2 shows DRM and 3DCRM (with Torquato and Stell (1985) correlation
function) estimates of (a) attenuation and (b) dispersion due to 10 % randomly
distributed water inclusions within an otherwise air saturated rock. The attenuation
and velocity curve for 3DCRM (dashed solid dotted line) are in good agreement with
DRM (solid line) over the entire frequency range. This indicates that 3SDCRM can be
used to model attenuation and dispersion due to randomly distributed non-

overlapping spherical inclusions.

3-123



Patchy Saturation Models for Complex and Irregular Fluid Distribution

-15

log10(Attenuation [1/Q])

-5 DRM i
— ~ — 3DCRM %(r) Non overlapping spheres|
55 ‘ ‘ ‘ ‘ ‘ ‘
-3 -2 -1 0 1 2 3
log10(Frequency[Hz])
()
2840 ‘
H DRM e e e e = g
— = — 3DCRM %(r) Non overlapping spheres|
2830 - — - — - Gassmann-Wood i
— — — Gassmann-Hill
2820
)
E
Py
£ 28101
ks}
(]
>
2800
2790
2780 Il Il Il Il Il Il
-3 -2 -1 0 1 2 3

log10(Frequency[Hz])

(b)

Figure 3.4.1.2: Comparison of DRM and 3DCRM attenuation and dispersion estimates for
randomly distributed spheres. (a) Shows attenuation and (b) dispersion estimates. The

frequency-dependent curves are in good agreement.

3-124



Patchy Saturation Models for Complex and Irregular Fluid Distribution

To compare attenuation and dispersion estimates obtained using 3DCRM with (1)
exponential (Equation 3.3.2.1) and (2) random sphere (Table 3.4.1.1) correlation
functions, it is necessary to relate key parameters which characterize each type of
media. The first is characterized by a correlation function and correlation length;
whilst second (the discrete media) is characterized by a correlation function defined
in terms of inclusion radius, volume concentration, etc. Below | derive an
approximate relationship that links the key parameters of each media. The approach
utilized is to equate the power expansion of the exponential correlation function, to
the correlation function defined by Torquato (2002) for a random distribution of non-

overlapping spherical inclusions.

For a random array of identical three-dimensional non-overlapping spheres of
diameter D, an approximate two point probability function valid for small offset r is

$.0)=n s 22 L] vol), (34.1.1)

where s, is the specific surface, defined to be the interface area per unit volume and

Z is the mean coordination number defined to be the average number of contacts a
given sphere has with its neighbour (Frisch & Stillinger 1963). By assuming that the
spheres are isolated (i.e. not in contact) the coordination number becomes zero.
Furthermore, by considering small offsets and using relation Equation 3.1.2.1 the
correlation function becomes

vl_%w_vf ;

X()~ S (34.12)

vV, 4v,v,

Setting this equal to the exponential correlation function (assuming small offsets)

gives
X(r)=1-— r:exp(—_r)zl_z,
4v,v, a a
thus
4v,v, vV,
v sp

where p, =n, /L, is the number of spheres per unit volume. Equation (3.4.1.3)

allows us to choose the correlation length (Debye) of the exponential correlation

function, such that attenuation and dispersion curves have similar frequency scaling

3-125



Patchy Saturation Models for Complex and Irregular Fluid Distribution

to the attenuation and dispersion curves estimated from the DRM. This relation can
also be modified to enable comparison of 3DCRM with periodically distributed
spheres (i.e. White’s model)

s, 3R’

i

, (3.4.1.4)

where R is the composite volume radius (see Chapter 1, Section 1.3).

In the next example | model a rock which is saturated by 10% gas bubbles (fluid bulk

moduluskx ,, =1GPa) in an otherwise water saturated rock. Hence, the more

compressible fluid is modelled as spherical inclusions, whilst the less compressible
fluid is the host. The spherical inclusions have a radius of r=0.5m and all other rock
properties are as Table 3.1.1.1. Figure 3.4.1.3 shows (a) attenuation and (b)
dispersion as predicted by 3DCRM with exponential correlation function (dotted
line) and with non-overlapping sphere correlation function (dashed and dotted line),
and DRM (solid line). The first aspect to note is that DRM does not satisfy the lower
limit on velocity given by Gassmann-Wood equations and hence the approach is
inaccurate for this modelling scenario. Secondly, the 3DCRM attenuation curve is
broader when the correlation function is exponential. Thirdly, by setting the
correlation length according to Equation (3.4.1.3) the frequency at which both

3DCRM curves peak are in reasonable agreement.

The broadness of the 3DCRM attenuation with exponential correlation function
relative to the DRM attenuation is not surprising, as the correlation length (given by
Equation 3.4.1.3) is an average length scale, whilst DRM has only one length scale
being the inclusion radius. Hence there will be fluid patches (within an exponentially
correlated media) persisting on length scales less than and greater than the
correlation length. This means that when wave frequency increases, patches that are
smaller than the average patch size will remain relaxed, whilst others which are
larger than the average patch size will become unrelaxed. This has the effect of
broadening the attenuation curve of the 3DCRM and extending the frequency band
width for which velocity changes most rapidly.
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Figure 3.4.1.3: Comparison of DRM and 3DCRM attenuation and dispersion estimates for
randomly distributed spheres of heavy gas. (a) Shows attenuation and (b) dispersion
estimates. The DRM approach does not converge to Gassmann-Wood limits and hence the

attenuation estimates are erroneous.
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3.4.2 3DCRM Overlapping Sphere Correlation Function

In the previous section, 3DCRM was compared against DRM when fluid
heterogeneities were randomly distributed non-overlapping spherical inclusions. That
is, there were randomly distributed spherical fluid inclusions (existing on a
lengthscale greater than pore scale, but less than wavelength scale) within an
otherwise homogeneously fluid saturated rock. It was found that 3DCRM and DRM
were in good agreement for cases where DRM satisfies the Gassmann-Wood limit.
Another fluid heterogeneity/geometry which is very similar and also of interest is
randomly distributed overlapping spherical inclusions (i.e. inclusions may have non
zero intersection volume). This type of fluid distribution may arise when the discrete
spherical fluid patches join together to form larger patches, which could occur when
the included fluid concentration increases. Here | show by choosing an appropriate
correlation function that 3DCRM can be used to model attenuation and dispersion

due to more complicated spherical shapes.

The two point probability function of randomly distributed overlapping spheres
having sphere radius R (Torquato 2002) is :

S,(r)= exp[— 7 VZ(F’R)} : (3.4.2.1)

Here 7" is the reduced density given by
S, =v, =exp(—77*), (3.4.2.2)
where v, is the volume fraction of the host fluid. For overlapping spheres there is

reduced density, because the union volume of a system of overlapping spheres is less
than the union volume of a system of non-overlapping spheres (refer to Figure

3.4.2.1 a). Specifically, the union volume of two overlapping spheres (Figure 3.4.2.1

(b)) is

VV(ZR 1;) _20(r—2R)+ {H%%_%(éﬂ@)(w ), (3.4.2.3)
where
vi(zef)e){“%%_%&f} (r<2R), (3.4.2.4)
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and
v, (rR)/v,(R)=2 (r>2R) (3.4.2.5)

Hence the two point probability function is:
d3r 1Y
S, (r)z v, exp(—n [————(—J D (r<2R) (3.4.2.6)

and
Sz(r):vzz. (r=2R) (3.4.2.7)
Substitution of Equations (3.4.2.6) and (3.4.2.7) into the normalised correlation

5,02 _ exp[_"ﬁ;'llfimn'”

WV, 141

function gives

2(r)= (r<2R) (3.4.2.8)

and
2(r)=0 (r>2R) (3.4.2.9)

Unfortunately, substitution of Equation (3.4.2.8) into the saturated P-wave modulus
Equation (3.3.3) results in an integral that | was not able to solve or find an analytical
solution for. Hence to use this particular correlation function in 3DCRM will require
numerical integration of Equation (3.3.3) or simplification of the correlation function
(Equation (3.4.2.8)) to allow analytical integration. In the following examples, | shall
numerically estimate the integral within Equation (3.3.3) (Section 3.3 page 110).

In the first example, I model attenuation/dispersion due to spherical inclusions of
heavy gas having total volume concentration of 0.1% within an otherwise water
saturated rock. Figure 3.4.2.2 shows (a) attenuation and (b) velocity as predicted by
DRM and 3DCRM with overlapping sphere correlation function (Equation 3.4.2.8).
Clearly, both curves are in excellent agreement. This is expected as DRM satisfies
the lower limit on velocities given by Gassmann-Wood; whilst a medium described
by correlation function (3.4.2.8) at such small volume fractions is representative of a
system of non-overlapping spheres. That is, at such low volume fractions of
inclusions there will be little overlap and hence the overlapping sphere correlation
function can be utilized to model a system of non-overlapping spheres. Thus both
DRM and 3DCRM curves should be in agreement.
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(@)

Intersection volume

Figure 3.4.2.1: Cartoon representation of overlapping sphere fluid distribution. (a) Shows a
random distribution of spherical inclusions which are permitted to overlap. This can create
very complicated bubble like shapes. (b) The intersection of the overlapping spheres is

cross-hatched, this causes reduced density relative to two non-overlapping spheres as shown

in (c).
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Figure 3.4.2.2: 3DCRM overlapping and non-overlapping correlation functions. (a) Shows

correlation functions for 10 % spherical inclusions and (b) for 30% spherical inclusions.
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Figure 3.4.2.3: Frequency-dependent attenuation and dispersion estimates obtained from
randomly distributed non-overlapping (DRM) and overlapping spheres (3DCRM) for very
small inclusion concentrations. (a) Shows attenuation and (b) velocity dispersion. There is
good agreement between the models because the inclusion concentration is very small and

hence there is minimal sphere overlap.
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In the next example, | model attenuation and dispersion due to spherical inclusions of
heavy gas having total volume concentration of 30 % within an otherwise water
saturated rock. Figure 3.4.2.3 shows (a) attenuation and (b) velocity as predicted by
DRM, 3DCRM with overlapping sphere correlation function (Eq 3.4.2.8) and
3DCRM with non-overlapping sphere correlation function. At volume concentrations
equal to 30% DRM does not converge to the Gassmann-Wood limit, hence the
velocity and attenuation estimates of this model are not reliable at this inclusion
concentration. The 3DCRM with overlapping and non-overlapping correlation
functions produce attenuation and velocity curves which differ. The high frequency
asymptotes do not correspond as the volume to surface ratio of the two models is
different.

The attenuation curve predicted from the overlapping sphere fluid distribution is
broader than the attenuation curve predicted from the non-overlapping sphere
approach. The reason for this is that the overlapping sphere distribution creates patch
sizes which are greater than the diameter of a single sphere when spheres overlap.
Hence, patches of this width (relative to the inclusion radius) require wave
frequencies to be lower in order to achieve fluid pressure equilibration. This has the
effect of broadening the attenuation curve and also increases the frequency

bandwidth of dispersion.
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Figure 3.4.2.4: Frequency-dependent attenuation and dispersion estimates obtained from
randomly distributed non-overlapping (DRM) and overlapping spheres (3DCRM) for 30%
inclusion concentrations. (a) Shows attenuation and (b) shows dispersion. The DRM (dotted
line) does not converge to Gassmann-Wood limits and 3DCRM with overlapping (circles)
and non-overlapping (solid dots) correlation functions produces slightly different

attenuation and dispersion curves, indicating the presence of overlapping inclusions.
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3.4.3 Random Checkerboard Correlation Function

Let’s suppose that two pore fluids are distributed randomly throughout the rock, but
that we do not know, or wish to assume, how they are spatially correlated. This
scenario can be modelled by partitioning the rock into symmetric cells of some size
and shape, with cells being randomly assigned as fluid 1 or fluid 2 by probabilities of

vandv, =1-v,, respectively. This is called a symmetric cell material.

One manifestation of a symmetric cell material is when 3d space is tessellated into
cubes of equal width .. This type of tessellation produces what is known as the
random checkerboard (see Figure 3.4.3.1). Lu and Torquato (1992) have derived the
two point probability function s, (r)corresponding to this type of material. It depends
on the orientation of vector r and its magnitude (Torquato 2002). However, it can be
converted to a rotationally invariant two point probability function by averaging over
spherical polar and azimuthal angles (Mecke 1998). For this case

S, (F)=Wi(rv, +v2 (3.4.3.1)
where w,(r) is a rotationally averaged weighting function, it sums to one and is
independent of the percent fluid saturation. Note that, one-point weighting functions
in general depend on the cell shape and size, hence for other types of cell shapes
(octahedrons etc) the weighting function will be different. Torquato (2002) give the

analytical and tabulated rotationally averaged w;(r) (see Table 3.4.3.1).

From Equation (3.4.3.1), the normalised and centred correlation function

corresponding to a 3D checkerboard is determined as

)= 3207 ). (3432)

ViV,

Hence the correlation function (Equation 3.4.3.2) depends only on the weighting
function and thus is independent of percent saturation of the two pore fluids, see
Figure 3.4.3.1(a).
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Figure 3.4.3.2 (b) shows attenuation and (c) velocity calculated using Equations
(3.3.3 and 3.3.1.11) for two different cube widths. By reducing the cube width the
curves are shifted to higher frequencies. These curves represent attenuation and
dispersion when spatial correlation in pore fluid distribution does not exist. In reality,
it is highly unlikely that correlation in fluid heterogeneities will be absent because of
the influence of rock permeability etc. Hence, we would not expect frequency-
dependent curves like this. Nevertheless, this example shows by tessellating space
up into cubes and randomly assigning fluids, the attenuation and dispersion estimates
are dominated by the dimensions of the cube length, and are in fact independent of

percentage saturation of the pore fluids.

Table 3.4.3.1: Weights for 3D random checkerboard

r wi(r) r wi(r) r wi(r)
00 [1.0 0.6 0.31199 | 1.2 0.00857
0.1 [0.85629 |0.7 0.23465 | 1.3 0.00229
0.2 |0.72483 [ 0.8 0.16669 | 2 0.00032
0.3 |0.60515 | 0.9 0.10765 | 1.5 0.00005
0.4 [0.49677 | 1.0 0.05704 | 1.6 0.00000
05 [0.39921 [1.1 0.02404 | 3 0.0
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Lc*

A

b)

Figure 3.4.3.1: Cartoon representation of random checkerboard materials. There are
random checkerboards having cell widths of (a) L.and (b) L.. where L.<L... The two
point probability density function of checkerboards (a) and (b) are the same when the

volume fraction of grey to white cells is equivalent.
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Figure 3.4.3.2 Correlation functions, attenuation and dispersion for random checkerboard
materials (a) Correlation function for checkerboard material normalised by cube length. (b)

Attenuation and (c) velocity for checkerboard correlation function for different cube lengths.
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3.5 Modelling Attenuation and Dispersion from Gas

Saturation Maps

A significant advantage of using 3DCRM is that it can be utilized to model
attenuation and dispersion due to any correlation function. In the above section, |
provided formulas for frequency-dependent P-wave modulus for several well known
correlation functions. In this section, I show one particular way in which 3DCRM
can be related to correlation functions extracted from processed X-ray tomographic
images (Chapter 2). The 3DCRM is the only patchy saturation modelling approach
capable of taking into account this type of realistic spatial information. For the

modelling examples below | assume the following rock and fluid properties.

Table 3.5.1: Rock properties for MGL2a modelling

K 26 Kq 74 ) 0.25
GPa GPa
i 15 Py 2650 Kg/m* | 5e-12
GPa m?
Table 3.5.2: Fluid Properties for MGL2a modelling
Ksw 2.25 K¢ 0.25 K¢ 0.1
Water GPa Heavy gas GPa Light gas GPa
Pw 990 P 400 Py 100
Kg/m® Kg/m® Kg/m®
Nw le-3 n 6e-5 n2 3e-5
Pas Pas Pas
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3.5.1 Continuous Random Media

The correlation function utilized in the 3DCRM model describes mesoscopic spatial

variation of fluid modulus s about an average valueas,, as a result of spatial
variations in fluid bulk modulusk, . In general, fluid heterogeneities may exhibit

either discrete or continuous spatial variation on the mesoscale. Discrete variation
occurs when the fluid bulk modulus varies spatially as a piecewise constant function
(see Figure 3.5.1.2 (a)). That is, regions of rock are 100% saturated by either fluid
one or fluid two. This is usually what we think of when we imagine fluid
heterogeneities, be it on the porescale or mesoscale.

On the other hand, continuous variation arises when the fluid bulk modulus varies as
a smooth spatial function about an average fluid bulk modulus (see Figure 3.5.1.1
(b)). On the pore scale, we wouldn’t normally expect the fluid bulk modulus to show
this type of spatial variation because distinct fluid-fluid interfaces exist. However, on
the mesoscale it may be possible, as more than one fluid type may share the pore-
space within a mesoscopic patch (say for instance of cm length). Hence, the fluid
bulk modulus of the mesoscopic patch will likely assume an effective value due to
the presence of multiple fluids. Moreover, if there is continuous variation in the
relative percentage of saturating fluids over mesoscale resolution, the effective fluid

bulk modulus on the mesoscale will vary continually.

In Chapter Two, when | examined gas saturation maps of MGL2a (Figure 2.2.2 (a)-
(m)), I found evidence for the second type of fluid heterogeneity (continuous
variation). For instance, in the early stages of the drainage experiment (gas
saturations less than 23%) there were distinct mesoscopic patches having gas
saturations of 10-30%, within an otherwise 100% water saturated rock. Moreover, in
the later stages of the drainage experiment (gas saturations greater than 23%) most of
the pore-space was affected by the presence of gas, this created many different

mesoscopic patches having gas saturations ranging from 10% to 90%.
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Figure 3.5.1.1 Mesoscopic fluid heterogeneities fluctuating about the average fluid bulk
modulus. (a) Shows discrete spatial variation in fluid bulk modulus and (b) shows

continuous spatial variation in fluid bulk modulus.

3.5.2 Gas Saturation Maps

The gas saturation maps (Figure 2.2.2 (a)-(m))) show for a particular rock where gas
bearing pores exist. Specifically, the CT value of a pixel indicates the percentage of
gas saturation in the pore-space covered by that pixel (via Equation 2.2.6). That is,
pixel values range from zero to one, where zero and one indicate 0% and 100% gas
saturation, respectively; though intermediate values indicate pore-space of mixed
gas-water composition. Spatial statistics like the correlation function or correlation
length can be extracted from these maps. However, this information describes spatial
characteristics of percent gas variation on mesoscale, and not spatial information on
the variation of fluid modulus A . Hence, it cannot be utilized directly in CRM

theory.
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I can however use information on percent gas saturation to construct a new map
which represents fluid bulk modulus variation on the mesoscale. This can be used to
construct a fluid modulus map from which a correlation function consistent with
CRM requirements can be extracted. In transforming the gas saturation map into an
effective fluid bulk modulus map, | assume that fluid pressures of gas and water
within the pore-space of each pixel are equal, then Wood’s fluid mixing equation
(Equation 1.2.2.1) is used to construct an effective fluid bulk modulus for each pixel.
However, in principle, it is also possible to utilize other fluid mixing equations, such
as Brie et al. (1995) or Voigt (Mavko & Mukerji 1998) averages to create an
effective fluid bulk modulus. Below | propose a procedure to model

attenuation/dispersion using 3DCRM.

3.5.3 The Methodology

Step 1: Convert the saturation map into an effective fluid bulk moduli map using

Woods fluid mixing equation. This can be achieved by

1- GasSatMap N GasSatMap

KWoodMap™ = I X

, (3.5.3.1)

fw /2

where GasSatMap is a particular gas saturation map (Figure 2.2.2 (a)-(m)), X, is the

fluid bulk modulus of water and x , is the fluid bulk modulus of gas.

Step 2: Convert the fluid bulk moduli map (KwoodMap) to fluid moduli map A using

R Al R (35.3.2)
K KWoodMap

g

Step 3: Calculate mean u , of the fluid moduli map:

M, = mean(M):Nin:M(i), (3.5.3.3)
P i=1

where N, is the total number of pixels in the fluid moduli map. Also calculate the

mean M ,, of the fluid moduli map using

M, =mean(M)=> v(j)M(j), (3.5.3.4)
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where M is the fluid moduli map divided into ~, partitions of widthaas . That is, if
M, =min(M,) and M,=max(M,) then M,-M, =N AM. Herew(;)is the fraction of
pixels having fluid moduli (). The partitioning of the fluid moduli is acceptable

when M, =M . This partitioning step is necessary to calculate the variance.

Step 4: Calculate normalised variance of the fluid moduli map using

S MG

2 Jj=1
Oy = var(Mj0 ):

_1, (3.5.3.5)

M

J

Step 5: Calculate normalised centred autocorrelation function of fluid moduli map

Step 6: Calculate Woods limit

1 _5o) o
M, &) and H,,, =L+a’M,, (3.5.3.6)
Step 7: Calculate Hills limit
1 W)
H gy _;L-I—O(ZM(J')' (3537)

Computation of Equations (3.5.3.1-7) together with Equation 3.3.1 yields for a
particular saturation map the frequency dependent saturated P-wave modulus, from
which attenuation/dispersion is computed. Below | perform this analysis for gas

saturation maps (from MGL2a) having average gas saturations of 4.6% and 34.4%.

3.5.4 The Examples

Figure 3.5.4.1 shows (a) the gas saturation map having average gas saturation 4.6 %.
The colour bar indicates the percentage of gas within the pore-space covered by each
pixel, blue refers to 0% gas saturation, whilst red refers to 100% gas saturation. (b)
Shows the effective fluid bulk modulus map derived from the gas saturation map
having assumed Wood’s fluid mixing equation with water and light gas fluids. The
colour bar shows effective fluid bulk modulus; dark red indicates an effective fluid
bulk modulus close to water; whilst blue an effective fluid bulk modulus influenced

by gas. Note that a small percentage of gas greatly influences the fluid bulk moduli
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of an effective fluid. (c) Displays the fluid moduli map calculated using Equation
(3.5.3.2). The fluid moduli map has a variance ofs?,, =0.1663; red and blue areas
highlight fluid moduli least and most affected by gas, respectively. (d) Compares
correlation functions extracted from gas saturation and fluid moduli maps. An
important point is shown, that correlation functions extracted from gas saturation
maps (solid line) are generally not equivalent to correlation functions extracted from
fluid moduli maps (dashed line).

x 10°

%(r) Gas Percent Saturation Map
— — — x(r) Fluid Modulus Map

©) (d)

Figure 3.5.4.1: Scan 10 fluid heterogeneity maps and correlation functions. (a) Gas percent
fluid saturation map (b) Effective fluid bulk modulus map (c) Fluid modulus map (d)
Correlation functions extracted from the gas percent fluid saturation map (solid line) and

from fluid modulus map (dashed line).
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There is one instance in which the correlation functions are equivalent. That is, when
fluid contrast is small. Figure 3.5.4.2(a) shows the fluid moduli map (average gas
saturation 4.6%) assuming water and heavy gas pore-fluids. This map has a variance

of &7, =0.0038. Figure 3.5.4.2 (b) shows the correlation function extracted from the

fluid moduli map saturated by heavy gas (Figure 3.5.4.2(b)) (dashed line) and the
correlation function extracted from the gas saturation map (Figure 3.5.4.1(a)) (solid
line). The two correlation functions are in good correspondence. This indicates that
when fluid contrast is small, such as with water and heavy gas, one may extract the
correlation function directly from the gas saturation map. However, when fluid
contrast is large, such as with water and light gas (or air), one needs to extract the

correlation function from the fluid moduli map.

T T -
x(r) Gas Percent Saturation Map

— — — (r) Fluid Modulus Map

x()

-0.2
0

L L L L
20 40 60 80 100

(a) (b)

Figure 3.5.4.2: Scan 10 fluid heterogeneity maps and correlation functions when fluid
contrast is small (a) Fluid modulus map assuming heavy gas and (b) correlation function
extracted from fluid modulus map is compared against correlation function extracted from

the gas saturation map.
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I now suggest two ways in which spatial statistics extracted from a fluid moduli map
(ie like Figure 3.5.4.1 (c)) can be utilized in 3DCRM to estimate attenuation and
velocity. The first approach centres on incorporating the correlation function directly
into Equation (3.3.3). Clearly this approach requires numerical integration to
determine the saturated P-wave modulus from which attenuation/velocity can be
estimated. The second approach centres on approximating the correlation function (in
Figure 3.5.4.1(d)) by an exponential correlation function with Debye correlation
length derived from the correlation function (Figure 3.5.4.1(d)). By making this
approximation, | can use a closed form expression for the saturated P-wave modulus

(Equation 3.3.2.2) to determine attenuation and velocity.

Figure 3.5.4.3 shows frequency-dependent (a) attenuation and (b) velocity due to
fluid modulus variation for Scan 10 (Figure 3.5.4.1 (c)). The first approach to
estimating attenuation/velocity via numerical integration (dotted line with solid
points) is compared against the second closed form approach (solid line). There is
reasonable correspondence between attenuation and velocity estimated from both
approaches at low frequencies. The peak magnitude of attenuation is also similar. For

a small percentage of gas saturation (4.6%), attenuation is of the order 0" =0.1,

which is significant. Unfortunately, at high frequencies the numerical integration of
Equation (3.3.3) central to the first approach was found to break down. This caused
significant errors in the attenuation and velocity estimates at high frequencies. The
same type of error was observed in Section 3.4, where it was necessary to
numerically integrate Equation 3.3.3 for different correlation functions. In that study,
I minimized the error by interpolating the correlation function to finer spacings. The
same approach could also be adopted here to minimize the numerical integration

error observed in the first approach.

Although not shown here, | use steps 1-2 to construct a fluid moduli map for the gas
saturation map Scan 15, having average gas saturation of 34.4%. From this map |
derive the correlation function and follow the procedure (steps (3-7)) to calculate
attenuation and dispersion. Figure 3.5.4.4 shows frequency-dependent (a) attenuation
and (b) velocity calculated using spatial statistics extracted from the fluid modulus
map using the same two approaches. Relative to Figure 3.5.4.3, the peak magnitude

of attenuation and degree of velocity dispersion is reduced significantly, attenuation
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is now of the order 0" =0.001. That is, by increasing gas saturation from 4.6 % to

34.4% the frequency-dependent effects due to wave induced fluid flow are estimated

to decrease.
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Figure 3.5.4.3 Frequency-dependent attenuation and dispersion modelled using statistics

extracted from fluid heterogeneity maps. (a) Attenuation and (b) velocity due to correlation

unctions extracted from fluid modulus map of Scan 10(average gas saturation 4.6%)
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Figure 3.5.4.4 Frequency-dependent attenuation and dispersion modelled using statistics

extracted from fluid heterogeneity maps. (a) Attenuation and (b) velocity due to correlation

functions extracted from fluid modulus map of Scan 15 (average gas saturation 34.4%).
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3.6 Conclusions

Reservoir rocks are often saturated by two or more fluid phases forming complex
patterns on all length scales. In this Chapter | have shown how the 1DCRM model of
Miller and Gurevich (2004) can be utilized with a variety of different correlation
functions to model attenuation/dispersion due to complicated 1D fluid
heterogeneities. In particular, 1 showed by introducing a quasi-periodic correlation
function that small uncertainties in the repetition period of layered media has little
effect on the attenuation and dispersion signatures. Hence, quasi-periodic and
periodic layering produce almost equivalent attenuation and dispersion of P-waves.

Providing the weak scattering conditions for the DRM (Ciz et al. 2006) model are
met, | found that there is good agreement between attenuation and phase velocity
estimates for random and periodic distributions of spherical fluid inclusions. This
was somewhat surprising as 1D random and periodic structures produced very

different low frequency attenuation behaviour.

In order to model attenuation and dispersion due to complicated fluid distributions,
such as those found in X-ray tomographic images of partially saturated rock, |
developed the 3DCRM model. My patchy saturation model shows greatest versatility
in modelling attenuation and dispersion due to different types of fluid distributions.
In particular, I derived close form expressions for the frequency-dependent saturated
P-wave modulus due to fluid distributions given by exponential and Gaussian
correlation functions. | also showed that 3DCRM could be used to model fluid
distributions given by random distributions of regular shaped heterogeneities, such as
spherical inclusions. Moreover, | found that 3DCRM could be used to model
attenuation/dispersion due to higher concentrations of fluid inclusions than the DRM

model.

In my final section of this Chapter, | developed a strategy for modelling attenuation
and dispersion due to correlation functions extracted from gas saturation maps. |
illustrated this process for continuous fluid distribution maps. The 3DCRM model is
the only patchy saturation model capable of taking into account such realistic spatial

information.
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Chapter 4

Extension of the APS framework
4.0 Introduction

The key difference between the regular cell models (Chapter 1) and the random
media models (Chapter 3) rests in how fluid distribution is accounted for. The
regular cell models, such as APS (Johnson 2001) utilize periodic layering or
concentric sphere fluid distributions, whilst the random media models (1DCRM,
3DCRM) utilize a correlation function to describe fluid distribution. As was shown
in the previous chapter, the advantage of utilizing a correlation function is flexibility.
That is, one can model attenuation and dispersion due to different fluid distributions
by simply changing the correlation function. Moreover, for certain geometries like
periodic layering and randomly distributed spheres, CRM was shown to be in good
agreement with patchy saturation approaches, such as APS and DRM. Hence, CRM
can model effects due to different fluid distributions, but is the reverse true: can the
regular cell models be extended in some way to take into account effects due to more
complicated fluid distributions?

The driving impetus behind this question is the need to remove (or access)
restrictions on fluid contrast which may affect the precision of the CRM models.
That is, the CRM models are precise for low contrasting pore fluids, but are
approximate for high contrasting pore fluids. On the other hand, the regular cell
models are precise for any fluid contrast, but are formulated for specific fluid
distributions. Hence, if the restriction on fluid distribution can be removed from the
regular cell approaches, perhaps they may be utilized to model attenuation and
dispersion due to complicated fluid distributions at any fluid contrast.

In this Chapter, | show how the regular cell approach of Johnson (2001) called APS
can be extended to model attenuation and dispersion due to complicated fluid
distributions. This regular cell model was chosen for extension because of its simple

and generalized framework. My approach is to modify two special parameters
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within this framework called “shape” and “frequency scaling” parameters.
Specifically, | derive new equations for these parameters, which allow other pore
fluid distributions to be modelled. By substitution of the new shape and frequency
scaling parameters into the APS framework, | am able to model attenuation and

dispersion due to different fluid distributions.

The Chapter is organised as follows. In Section 1, I analyse the frequency-dependent
characteristics of the Johnson model. In Section 2, shape and frequency scaling
parameters are derived for layered media; whilst in Section 3 they are derived for

different types of three dimensional fluid distributions.
4.1 The Johnson APS model

4.1.1 APS Framework Specified in terms of Saturated P-wave
Moduli

The APS framework of Johnson (2001) discussed in Section 1.3.2 is formulated in
terms of bulk moduli. As | am interested in P-wave attenuation and dispersion, it is

convenient to specify the framework in terms of saturated P-wave moduli.

According to APS theory (Equation 1.3.2.10), the dynamic saturated P-wave

modulus can be written as

i, ()= Hyg (1- 300 (o), (4.1.1.)
where
bf () = . (4.1.1.2)
1-¢+ (\/1— 'g’f

Equation (4.1.1.2) defines a branching function (see Section 4.1.1.2). All of the
frequency dependence in the APS framework is contained within this function. It is
defined in terms of a fluid contrast factor (difference between Wood and Hill
bounds):

5=HBGL‘A; (4.1.1.3)

the so-called shape parameter:
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( el )3
__ Heew) 4.1.1.4
¢ 2K, . K2 TG?' ( )

BGW " “BGH

and frequency scaling parameter:

OH g 2

In Equations (4.1.1.4) and (4.1.1.5), parameters T and G define the low and high
frequency asymptotes. In particular, the low frequency asymptote of the saturated P-
wave modulus is

lim, , H(®)=Hyey — Koey Ti®, (4.1.1.6)
where the frequency coefficient T is defined by Equation (1.3.2.2). The high
frequency asymptote is

lim,_, H(®)=Hye — KoeuG(=i)™*, (4.1.1.7)

>0

where the frequency coefficient G is defined by Equation (1.3.2.9).

The low and high frequency asymptotes (Equations (4.1.1.6 - 4.1.1.7)) will be
utilized extensively in Sections 4.2 and 4.3 where new 7 and G coefficients will be
derived by equating these asymptotes with frequency asymptotes derived from other
1D and 3D models (Chapter 3). Once new T and G coefficients are determined,
shape and frequency scaling parameters can be obtained using Equations (4.1.1.4 -
4.1.1.5). These can be substituted into Equation (4.1.1.2) to model attenuation and
dispersion using Equation (4.1.1.1).

4.1.2 The Logic behind using a Branching Function

In many problems of wave phenomena in dissipative media it is often difficult or
impossible to express the complex and frequency-dependent parameter of interest in
closed form, but may be possible to obtain simple asymptotic solutions in both low
and high frequency limits. A good example is the problem of dynamic permeability
in a porous medium, where an explicit analytical solution is only known for very

restricted geometries of parallel circular or flat cylindrical channels (Biot 1956b), but
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asymptotic expressions can be derived for much more general cases (Johnson et al.
1987). In such situations it is logical to approximate the solution at intermediate
frequencies by a simple function which would obey the physical constraints, such as
energy conservation and causality conditions, and converge to the asymptotic
solutions in the low and high frequency limits. Such connecting functions are

sometimes called branching functions.

The APS theory of Johnson (2001) utilizes such a function (Equation 4.1.1.2) to
describe the frequency-dependent behaviour of the saturated bulk modulus, because
analytical solutions are hard to obtain over the entire frequency range. In other
contexts, such as dynamic permeability, a branching function approximation was
developed by Johnson et al.. (1987) who showed that for the known cases of circular
and flat channels it gives a very precise approximation of the exact solutions, see also
Pride et al. (1993); Zhou and Sheng (1989). Branching functions have also been used
to approximate the frequency-dependent moduli of porous media with mesoscopic
inhomogeneities (Pride et al. 2003; Galvin et al. (2007)).

The branching function utilized in any given dynamic problem is in general non
unique. That is, one could substitute another kind of branching function, which
serves the same purpose. For instance, Pride et al. (1993) list five different branching
functions which could replace the branching function utilized in the dynamic
permeability model of Johnson et al. (1987). However, each function postulated is
more complicated then the simple function first implemented in the original model

and produce very similar results.

The frequency dependency of the dynamic saturated P-wave modulus in the APS
framework is embedded within the branching function given by Equation (4.1.1.2).
Hence, to determine possible frequency-dependent behaviour of the saturated P-wave
modulus (Equation 4.1.1.1), it is sufficient to analyse the frequency-dependent
characteristics of this function. This can be done by analysing asymptotic behaviour

at low and high frequencies.
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4.1.3 Frequency-dependent Behaviour of the Branching Function

Here | study the frequency-dependent behaviour of APS by extracting frequency

asymptotes from the branching function (Equation 4.1.1.2).

Low Frequency: Relaxed fluid pressure

Two different frequency asymptotes are present for wave frequencies » —0. First

note that energy conservation requires that ¢ >0 (otherwise attenuation would be

negative).

1) If the shape parameter is finite and¢ >>0, in the low frequency limit we can

assume

it
<<1. 4.1.3.1
7 ( )

2

Applying the binomial theorem on Equation (4.1.1.2) gives

bf (o) :“i;)—;' (4.1.3.2)

In this case wave attenuation is proportional to wave frequency.

lim

0—0

2) The case ¢ =0 can be considered by rearranging (4.1.1.2),

bf (o) 1 (4.1.3.3)

:1—§+«/§2—ia)r

and taking the limit at o o. For sufficiently low frequencies such thatwr <<1,

Equation (4.1.3.3) becomes
lim, , bf (0)=1-+-iwr . (4.1.3.4)

In this case wave attenuation is proportional to the square root of frequency.
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3) When wave frequency is low and the shape parameter is0< ¢? << wzr <1, Equation

(4.1.3.3) becomes
1

T1-Civ-iwr

lim,_,, bf ()
applying binomial theorem gives an asymptote of

lim,_, bf (0)=1+¢ —v-iwr . (4.1.3.5)
In this case wave attenuation is proportional to the square root of frequency.

High Frequency: Unrelaxed fluid pressure

For wave frequencies v — «, two different frequency asymptotes are present.

1) The first can be derived directly from Equation (4.1.1.2), where the branching

function becomes

lim,  bf(w)= : (4.1.3.6)

o —iwr
In this case wave attenuation is inversely proportional to the square root of

frequency.

2) When the shape parameter satisfies

E<w—§<1'

the branching function becomes

lim,, ., bf (@)= % (4.1.3.7)

w—0 -
—lot

In this case wave attenuation is inversely proportional to frequency.
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4.1.4 Varying the Shape Parameter of the Branching Function

In Chapter 3 it was observed that changing the fluid distribution will alter the
frequency-dependent behaviour of attenuation and dispersion. Hence, if APS has the
capacity to estimate attenuation and dispersion when fluid distribution is random and
irregular then APS must be able to exhibit a broad range of frequency-dependent
behaviour. Here | show by changing the shape parameter within the branching
function, different types of frequency-dependent behaviour will result. Thus, APS
has the potential to be utilized to model effects due to complicated fluid distributions.

The imaginary component of the branching function is related to attenuation, whilst
the real component is related to phase velocity. Figure 4.1.4.1 shows (a) imaginary
and (b) real components of the branching function as frequency changes. In (a) and
(b) each curve has a shape parameter value ranging from 0 to 100. As the shape
parameter alters different frequency-dependent curves are observed, hence there is
different frequency-dependent velocity and attenuation. In fact, there appears to be
four different shaped frequency-dependent curves, this is most easily observed by
examining the imaginary component of the branching function. Each curve is
described by different frequency asymptotes (Equations 4.1.3.2, 4.1.3.4- 4.1.3.7).

Next I define each curve category.

E——
or| ¢=0.001

log10( Imag[bf] )
Real [bf]

L V. L L L L L
-8 -6 -4 -2 0 2 4 6 8 E = = =
log10( Frequency[Hz] x t) log10( Frequency [Hz] x 1)

(a) (b)

Figure 4.1.4.1: Frequency dependence of branching function components. (a) Real and (b)
imaginary components of the branching function for different values of the shape parameter.

There appears to be 4 different types of frequency-dependent curves.
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Category 1 (see Figure 4.1.4.2) arises when the shape parameter ¢ =o. For this type
of attenuation curve, the branching function in the low frequency limit scales with

the square root of frequency,

lim,_, bf (o) =1-v-iwr ,

whilst the high frequency asymptote is inversely proportional to the square root of

frequency

lim, , bf(w)=

@0

—iwr
This type of frequency-dependent behaviour was observed in Section 3.1.3 for

randomly distributed layers of water and gas.

0.5 ‘ — :
N 4 —— bf
N /'
\ : —-—-asyml
i \ 7 — — —asym2 ||
0 N7 O freql
o q

log10 (Imag[branching function] )

-25 I I I I I I I
-4 -3 -2 -1 0 1 2 3 4

log10( Frequency x tau )

Figure 4.1.4.2: Category 1 attenuation curve. The imaginary component of the branching

function with ¢ =o0(solid line) is defined by one low frequency (asyml) and one high

frequency asymptote (asym2). The crossover frequency (freq 1) is shown by the circle.
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Category 2 (see Figure 4.1.4.3) arises when the shape parameter ¢ — 0. For this type
of curve there are three dominant frequency regimes. The low frequency

dependence is proportional to frequency

lim,, o bf (o) =1+—

0—0

the intermediate frequency dependence o, < w < w, (@, », defined in Table 4.1.4.1) is
proportional to the square root of frequency,
lim,_, bf(0)=1+¢ —-iwr

whilst the high frequency dependence is inversely proportional the square root of

frequency.
1
—-lort
1 T . T
N 7 ——bf
0.5F _\'\ /’/ asyml |
RN v — - —-asym?2

of B NI — — —asym3 -
— . &
g . PN *  freql
2 -05} . . \\ O freq2 |4
c 7/
2 1} Z \\ i
= Y N
= ) VZ N\
é .
o -25¢ 7/ 1
=] I
o v

_3 7/’ .

_3.57 .
-4 I I I I I
-6 -4 -2 0 2 4 6

log10 (Frequency x tau)

Figure 4.1.4.3: Category 2 attenuation curve. The imaginary component of the branching
function with ¢ =0.005 (solid line) is defined by two low frequency asymptotes (asyml
(dotted) and asym2 (dashed-dotted)) and one high frequency asymptote (asym3 (dashed)).

There are two cross over frequencies shown by an asterisk (freql) and circle (freg2) .
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Category 3 (see Figure 4.1.4.4) arises when there is only one crossover frequency,

3
giving a shape parameter ofwf(a’lTT). For this type of curve there are 2 dominant

frequency regimes. The low frequency dependence is proportional to frequency

bf (a)):1+la)_r1

lim,
W 24/

whilst the high frequency dependence is inversely proportional to the square root of

frequency
im, ., bf (o) = ——
—lor
2 C :
~ — bf
| S L asym1 | |

1 > — — —asym2

~ a O freql

log10( Imag[branching function] )

-6 I I I I
-6 -4 -2 0 2 4 6

log10( Frequency x tau )

Figure 4.1.4.4: Category 3 attenuation curve. The imaginary component of the branching

function with ¢ =o0.1(solid line) is defined by one low frequency asymptote (asyml (dotted))
and one high frequency asymptote (asym2 (dashed)). The crossover frequency (freql) is

shown by a circle.
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Category 4 (see Figure 4.1.4.5) arises when the shape parameter satisfies

—<—2<l

4

For this type of curve there are three dominant frequency regimes. The low
frequency dependence is proportional to frequency
bf (a)):1+i§)—;,

whilst the intermediate frequency dependencew, <w<w,(w®,, o, defined in Table

lim

w—0

4.1.4.1) is inversely proportional to frequency
2¢

—iwr

lim,,, bf(o)=

0>,

and inversely proportional to the square root of frequency.

1
Ilm[z)—)m bf (a)): -
—lot
1 \
N — bf
N asyml
of o —-—-asym2 ||
~ REN — — —asym3
N . ' O freql
) * freq2

log10( Imag [branching function] )

-5 I L L
-2 0 2 4 6 8

log10 ( Frequency x tau)

Figure 4.1.4.5 Category 4 attenuation curve. The imaginary component of the branching
function with ¢ =100 (solid line) is defined by one low frequency asymptote (asym1 (dotted))
and two high frequency asymptotes (asym2 (dashed dotted) and asyml (dashed)). There are

two crossover frequencies freql (circle) and freg2 (asterisk).
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Figures 4.1.4.1-4.1.4.5 show for different values of the shape parameter, the APS

framework will exhibit different frequency-dependent behaviour. In particular, | have

identified four possible categories of frequency-dependent behaviour; refer to Table

4.1.4.1 for a summary. The next step is to determine how the shape parameter relates

to spatial characteristics which describe different fluid distributions, i.e. like

correlation functions. By establishing this type of relationship we can modify the

shape parameter appropriately for different fluid distributions and substitute into the

APS framework to calculate attenuation and dispersion.

Table 4.1.4.1: Different categories of frequency-dependent attenuation curves

Number of Number of
Category | asymptotes crossover @ @, ¢
frequencies (Hz) (Hz)
1 2 1 1 ~ 0
T
2 3 2 2g* 1 o
T T 2w,
3 2 1 (e} - (e
T 2
4 3 2 24 8¢? w?
T T 3207
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4.2 1-Dimensional Media: Layering

The intrinsic attenuation of compressional waves due to wave induced fluid flow
between layers of porous rock containing different pore fluids is well studied for the
extremes of periodic layering (White 1979; Norris 1993; Johnson 2001) and random
layering (Gurevich & Lopatnikov 1995; Gelinsky & Shapiro 1997; Gelinsky et al.
1998; Muiller & Gurevich 2004). Here | show that the APS framework can be utilized
to model both periodic and random layering by simply changing the shape and

frequency scaling parameters appropriately.

The technique (Toms et al. 2006; Toms et al. 2007) used is to derive low and high
frequency asymptotes from different types of layered media modelled using 1IDCRM
(such as periodic, quasi-periodic, and random). From these asymptotes, | can extract
the T and G coefficients to form new shape and frequency scaling parameters, which
are substituted into the APS framework to model attenuation and dispersion. | start
with periodic layering, in order to access the accuracy of my approach and then

proceed to more complicated layering systems.

4.2.1 Layering with Periodic Repetition

Although periodic functions are not random, they can be considered as a realisation
of a random function with periodic autocorrelation function. Thus attenuation and
dispersion of waves in a system of periodic layers can be modelled by substituting a
periodic correlation function into 1DCRM model. Then we can use low and high
frequency asymptotes of the solution for the saturated P-wave modulus to derive T

and G, as well as shape ¢ and frequency scaling - parameters (using Equations

(4.1.1.4) and (4.1.1.5)). Using these parameters | can construct the branching
function solution. A comparison of such a solution (or its parameters) to either an
exact solution (Norris, 1993) or the APS solution for periodic flat slab geometry can
be a good test of the applicability of the branching function solutions based on

asymptotes derived from CRM.
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In the limit of low frequencies, the saturated P-wave modulus (Equation 3.1.1.3 and

Equation 3.1.1.4) now expressed in terms of layer saturationss, , S, is

H 2
s
0

lim 0—0

comparison with Equation (4.1.1.6) gives

_ SHeeuS,Sh* (4.2.1.1)
12K 5y Dy

where sis a non dimensional coefficient given by Equation 3.1.4. In the limit of high
frequencies, the saturated P-wave modulus (Equation 3.1.1.3 and Equation 3.1.1.4)

now expressed in terms of layer saturationss,, S, is

54D,
fim s H (w) = Hggy {1_—0.] )
S,S,hv—-iw

comparison with Equation (4.1.1.7) gives

SHogu /Dy (4.2.1.2)

" 5,5 Kaguh
Substitution of Equations (4.2.1.1-2) into Equation (4.1.4.2) and Equation (4.1.4.3)

gives shape and frequency scaling parameters:

¢ =6SS,, (4.2.1.3)
and
S,°S,°h?
=122 4214
) (42.1.4)

An important feature of the shape and frequency scaling parameters is saturation
dependence. In Figure 4.2.1.1 the shape parameter (Eq. (4.2.1.3)) is compared
against the shape parameter computed using Johnson’s T coefficient (applicable for
periodic layering having any fluid contrast (Equation 1.3.2.1)). There is 100%
correspondence between the two shape parameters when fluid contrast is low.

Figure 4.2.1.2 shows frequency-dependent (a) attenuation and (b) velocity calculated
using three approaches: APS with T coefficient for periodic layering (Equation
1.3.2.5) (solid black line with filled circles), APS with shape and frequency scaling
parameters derived above (Equation 4.2.1.3 and Equation 4.2.1.4) (solid grey line
with unfilled circles) and 1DCRM with periodic correlation function (solid black line

with crosses). Attenuation and velocity are calculated for periodic layering of water
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(Kf =2.25GPa) with another fluid having slightly greater compressibility Kf = 2GPa,

water saturation is 70 %. There is good correspondence between all three frequency-
dependent attenuation and velocity estimates over the entire frequency range, which
indicates that the branching function approximation central to APS theory is

reasonably accurate at intermediate frequencies.

Johnson periodic layers
— * — CRM periodic layers
—©— CRM quasi-periodic layers
0.2 . n N .
0 0.2 0.4 0.6 0.8 1

Water saturation

Figure 4.2.1.1: Shape parameter versus water saturation for low fluid contrast periodic and

quasi-periodic layering

-35 . . . . : : . 3460.7 T . : ———
Johnson-TEq41) |~ =~ R S SR
_al >— Johnson —Periodic y(r) 7
3460.6F —<— 1D CRM —Periodic x(r)
— — — Wood

-45 —-— - Hill
(3 3460.5
2 -5¢ w
c K4
S £
= E
£ 55 2 346041

S
2 o
g [
>

S -6F
=S 3460.3
o

-6.5

L Johnson -T Eq (41) 1 346021 s ss® _ _ _ _
-7 =— Johnson —Periodic x(r)
—— 1D CRM -Periodic y(r)
75 . . n n N . . 3460.1 . . .
-2 -1 0 4 5 6 -2 -1 0 4 5 6

1 2 3 1 2 3
log10( Frequency [Hz] ) log10( Frequency [Hz] )

Figure 4.2.1.2: Frequency-dependent attenuation and dispersion due to low fluid contrast
periodic layers. (a) Attenuation and (b) velocity for periodic layering of water with another

fluid having slightly greater compressibility, water saturation is 70 percent.
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Figure 4.2.1.3 shows shape parameter versus water saturation calculated using
Johnson’s T coefficient (Equation 1.3.2.5) for layering of water with more

compressible fluids (bulk moduli ranging from Kf = 2GPa to Kf =0.1MPa). The shape

parameter is no longer symmetric about 50 % water saturation. Moreover, the shape
parameter dependence on percent water saturation changes significantly as the
difference in fluid bulk moduli between the layers increases. That is, for low fluid

contrast Kf =2GPa, the shape parameter curve is symmetric about percent water
saturation where as for large fluid contrast Kf =0.1MPathe shape parameter shows

very different dependence on percent water saturation. Hence, the shape parameter
for periodic layers exhibits dependency upon both fluid contrast and percent water

saturation.

Figure 4.2.1.4 shows frequency-dependent (a) attenuation and (b) velocity calculated
using three approaches: APS with T coefficient for periodic layering (Equation

1.3.2.5) (solid black line with filled circles), APS with shape ¢ and frequency

scalingr parameters derived above (Equation 4.2.1.3 and Equation 4.2.1.4) (solid
grey line with unfilled circles) and 1IDCRM with periodic correlation function (solid
black line with crosses). Attenuation and velocity are calculated for periodic

layering of water (Kf=225GPa) with another fluid of greater
compressibility Kf =100MPa, water saturation is 70 %. The magnitude of attenuation

predicted using all three approaches is similar. However, the peak frequency of
attenuation predicted using the Johnson model (APS with T coefficient given by
Equation 1.3.25) is somewhat shifted, also the shape of the attenuation and
dispersion curves are slightly different than the attenuation and dispersion curves
predicted using 1LDCRM and APS with Equation 4.2.1.3.

The discrepancy between attenuation/dispersion (Figure 4.2.1.4 a,b) arises because
the shape parameter predicted using Johnson’s T coefficient (Equation 1.3.2.5)
accounts for fluid contrast, whilst the shape parameter given by Equation 4.2.1.3 is
independent of fluid contrast. As the shape parameter (Equation. 4.2.1.3) was derived
from 1DCRM theory which is precise at low fluid contrast, substitution of the new
shape parameter into the APS framework will affect the accuracy of the APS

approach. That is, APS becomes precise (approximate) for low (high) fluid contrast.

4-164



Extension of the APS framework
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Figure 4.2.1.3: Shape parameter versus water saturation for periodically layered media

having a range of fluid contrasts
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Figure 4.2.1.4: Frequency-dependent attenuation and dispersion due to high fluid contrast
periodic layers. (a) Attenuation and (b) velocity for periodic layering of water with another

fluid having greater compressibility Kf =100MPa, water saturation is 70%.

4.2.2 Layering with Quasi-Periodic Repetition

Shape and frequency scaling parameters can also be derived for quasi-periodic
layering of fluid heterogeneities by using 1DCRM results obtained in Section 3.1.2.

At low frequencies the saturated P-wave modulus is

siw S,S,h?
lim 0—0 H ((0) = HBGW (l—a%\] ,

comparison with Equation (4.1.1.6) gives
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T SH gy S,5,h° .

4221
6|‘(BGW DO ( )
At high frequencies the saturated P-wave modulus is
lim o 1 (0)) = Hggy [1_5—\/50.] )
S,S,hv—iw
comparison with Equation (4.1.1.7) gives
60D (4.2.2.2)

8182 KBGH h

Substitution of Equations (4.2.2.1) and (4.2.2.2) into Equations (4.1.1.4) and

(4.1.1.5) gives shape and frequency scaling parameters of

é’ :33182! (4223)
and
S,’s,’h?
= o (4.2.2.4)

In Figure 4.2.1.1, the shape parameter for quasi periodic layering (solid line with
grey circles) is compared against the shape parameter for periodic layering. The
shape parameter for quasi periodic layering never exceeds the value of 1, hence
certain frequency-dependent attenuation and velocity will not occur for this type of
layered system (at least at low contrast).

Figure 4.2.2.1 shows (a) attenuation and (b) velocity for quasi periodic layering of
low fluid contrast, as predicted using Johnson’s framework with shape and frequency
scaling parameters derived above. This is compared against 1IDCRM with quasi
periodic correlation function (Equation 3.1.2.12 and Equation 3.1.1.3) and Johnson’s
framework with periodic shape and frequency scaling parameters. The attenuation
curve is broader for quasi-periodic layering than for periodic layering. At
intermediate frequencies, there are discrepancies between the estimates of the
1DCRM and Johnson’s framework (with Equations 4.2.2.3-4). This again is a small

error which can be attributed to the branching function approximation.
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Figure 4.2.2.1: Frequency-dependent attenuation and dispersion due to low fluid contrast
quasi-periodic layers. (a) Attenuation and (b) velocity, there are small differences between

the branching function solution and the 1DCRM estimate at intermediate frequencies.
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4.2.3 Random Layering

When rock/fluid heterogeneities are randomly layered, it is well known that the low
frequency asymptote of the saturated P-wave modulus is proportional to the square
root of frequency. In order for the Johnson framework to exhibit the same type of
low frequency behaviour, the shape parameter must be set to zero (as per Section
4.1.1).

In this section, | show that the Johnson framework (with shape parameter equal to
zero) can be utilized to model the effects of random layering as described by an
exponential correlation function. My approach is to equate the high frequency
asymptote of the 1IDCRM model with the high frequency asymptote of the Johnson
framework, so as to derive a G coefficient. | then show that if the G coefficient is set
according to the CRM model, the low frequency asymptotes of both models

coincide.

Firstly, consider the saturated P-wave modulus for exponentially correlated layering
as given by the 1D CRM

()= Hogy| 1+ ——|. (4.2.3.1)

It has a high frequency asymptote of

lim, ,, H(®)~ H, [1+

oD, 1 J (4.2.3.2)
dL —lw
Comparison of asymptote (Equation 4.2.3.2) with the high frequency asymptote of

Johnson’s framework (lim, ,, H(w)=H,, — Koo G(—iw) ™) gives

G :*{EA. (4.2.3.3)

At low frequencies the asymptote of the 1DCRM (Eq. 4.2.3.1) is

lim,_,, H(w)= HBGW[l—ikzdLl_lkzd

> }zHBGW[l—ikzds(l—ikzd)]zHBGV{Hs\/dD;0 —iw}. (4.2.3.4)
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When the shape parameter in Johnson’s framework is set to zero, the saturated P-
wave modulus (Equation (4.2.0.1)) becomes

5

H, (@) = Hecn [PWJ .
It has a low frequency asymptote of

lim, o H, (@) = Hogy 1- 61l —iw7).

(4.2.3.5)

Substitution of the G coefficient into r (Equation 4.1.1.5) reduces the low frequency

asymptote of Johnson’s framework to

~ — OH d —
HJ(a)):HBGH_(HBGH_HBGW)V_ICU et :HBGW[1+S - _le'

Iim(u~>0
I<BGHC5

(4.2.3.6)

Hence, Equations (4.2.3.4) and (4.2.3.6) show that the low frequency asymptotes of
both models coincide when the G coefficient of Johnson’s framework is interpreted
in terms of Equation (4.2.3.3). Moreover, with a little bit of algebra it can be shown

that both models coincide over the entire frequency range.

That is, the 1DCRM saturated P-wave modulus (Equation 4.2.3.1) can be rearranged

to:

(4.2.3.7)

where Hyg, = Hgq, —SHqe, 1S Utilized. Equation (4.2.3.7) simplifies to

lim

~ — H — d
wooHy (@)= Hyg —(Hogy —Hpow N—i@ KBGBHGE = HBGW[l—s«/—lw \/DLOJ . (4.2.3.8)

Hence, when G is given by Equation (4.2.3.3) and ¢ =0, the Johnson framework is

directly equivalent to CRM with exponential correlation function. In Figure 4.2.3.1,
(a) attenuation and (b) velocity are compared using both approaches, as expected
from the above analysis, there is exact correspondence between the results. Thus the

branching function approximation is shown to be accurate for random layering.
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log10( Attenuation [1/Q])

—©— Johnson-exponential x(r)
—— 1D CRM-exponential x(r)

_55 1 1 1
-6 -4 -2 0 2 4 6
log10( Frequency [Hz])
(@)
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34381
— 3436
(]
E
2 3434}
(8]
o
S
3432}
—©— Johnson-exponential x(r)
3430 —— 1D CRM-exponential x(r)| -
— — — Wood
3428 — -~ Hil ]
3426 ‘ . ‘ L L
- -4 -2 0 2 4 6

log10 (Frequency [Hz])

(b)

Figure 4.2.3.1: Frequency-dependent attenuation and dispersion due to low fluid contrast
randomly distributed layers of moderate fluid contrast. (a) Attenuation and (b) dispersion

curves for the Johnson model with ¢ =0 (grey line with circles) versus the 1IDCRM with

exponential correlation function.
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4.2.4 Generalised Correlation Function

Generalised shape and frequency scaling parameters can be determined for layered
media having an unspecified correlation function of »(r). At low frequencies,

Equation (3.1.1) reduces to

lim, ,H~Hg, {1— siszom;((rX1+ ikzr)dr} =Hyuey [1— sikzj:;((r)dr — s(ik, )Zj.:r;((r)dr}

(4.2.4.1)

where exp(ik,r) is replaced by its Taylor’s series expansion. Substitution of the wave

number k, _\/:3E into Equation (4.2.4.1) gives

lim, ,H=H,., ll—s—ﬁ)jowz(r)dr +s:3—a:f:r;((r)dr} . (424.2)

This equation reveals that the saturated P-wave modulus has two dependencies at
low frequency. The first scales with the square root of frequency, which arises when
fluid stratification is random (as shown in Section 4.2.3), whilst the second is
proportional to frequency, which is associated with periodic stratification of pore
fluids (Section 4.2.1).

If J'}(r)drzo, which arises when pore fluid stratification is periodic, one can
0

determine theT coefficient of Johnson’s framework by comparing Equations (4.2.4.2)
and (4.1.1.6). This gives

S Heew 7
T :FO—KB:N J; r}[(r)jr . (4243)

For high frequencies, it is only important to consider the correlation function at small

offsets. Hence 4(r)can be expanded in a Taylor series
;((I’) =X tnrt O(rz) J

where = z(0)=1and z = _d?égo) ,
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The saturated P-wave modulus is

. o7 . SY, 57(1\[ D,

I HzHBGW 1- kz 1 1 kz d :HBGW 1 -t :HBGH 1- - )

im, ., [ si .[0( + z.r)explik,r) r} { +$ ij [ o }
(4.2.4.4)

where s =w. Comparison with Equation (4.1.1.7) yields a G coefficient of

BGH

G :%_ (4.2.4.5)

BGH

Substitution of the T and G coefficients into Equation (4.1.1.4) gives a shape

parameter of
1

Z(d;égo)jz J:r 2(r)dr

whilst substitution of Equation (4.2.4.5) into (4.1.1.5) gives a frequency scaling

; (4.2.4.6)

¢ =

parameter of

. :m. (4.2.4.7)

dr

It must be stressed that the shape parameter formula (Eq. (4.2.4.6)) is only valid

iff;((r)drzo. When J‘m;((l’)dl‘io which is the case for most correlation functions
0

0

(such as exponential or Gaussian etc), the second term in Equation (4.2.4.2)
dominates, that is

V-iw ¢~ o~

ﬁ J:) 2(r)dr >> SFOIO ry(r)dr.

When the second term in Equation (4.2.4.2) dominates, the saturated P-wave
modulus at low frequencies is proportional to the square root of frequency. To enable
the APS framework to be utilized to model this type of frequency behaviour, the
shape parameter must be set to zero.
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4.3 Three-dimensional Media

One motivation behind the development of the 3D patchy saturation models (given in
Chapter 3) was to investigate whether 3D random and periodic poroelastic structures
exhibit similar difference in the low frequency asymptotic behaviour as observed in
1D random and periodic structures. In Chapter 1 and 3, | showed that the frequency-
dependent asymptotic behaviour is in general similar between periodic and most 3D
random structures. In Sections 4.3.1-4.3.3, shape and frequency scaling parameters
are derived for different 3D random structures. One question addressed will be
whether 3D random and periodic structures are identifiable in terms of different
shape and frequency scaling parameters, even though the low and high frequency

asymptotic behaviour has similar frequency dependencies.

4.3.1 3D Discrete Random Media

Shape and frequency scaling parameters for a random distribution of non-
overlapping spherical inclusions (of a different pore fluid) can be determined by
deriving low and high frequency attenuation asymptotes from the discrete random
media model (Section 3.2). The attenuation described by DRM (Equation (3.2.2.5))

can be rewritten as

Qt =33 d , (4.3.1.1)
N jO(Zl)Zl _N. b L)z
") 7 nG,)

(CZHZL _Cle)
2 12

where p* = and z =kRrand z,=k,R.

Derivation of low and high frequency asymptotes from Equation 4.3.1.1 requires
analysing the low and high frequency behaviour of the Bessel functions (i.e.

z,, »0andz, »«). For low frequencies z, -0, the Bessel functions of the first kind

reduce to
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and the ratio becomes %z%[l—Z—GZJ[l+Z—Jz%[3—2—2+0(z4)J. The Bessel functions of

the second kind reduce to

o — —iexp(iz) h - —exp(iz{ 2+ ij
z

z

. O . . .
and the ratio becomes%ﬁ:%zz(uiz). Substitution of these results into Equation

(4.3.1.1) gives

" 2 2
lim, , Q" = 3,3 —— P - ~ 33— [1+i+N2iJ ,
N 10(21)21 -N ho (Zz )Zz:| 3N1 15 3N1
1

i@ 7 hz,)

which simplifies to

lim, Q" :V’F:Nﬂ(%%j (4.3.1.2)

Equation (4.3.1.2) shows that the low frequency asymptote of attenuation is directly
proportional to frequency. This means that the T coefficient of Johnson’s framework
can be determined for a random distribution of spherical inclusions. By taking the
real and imaginary components of the low frequency asymptote of the saturated P-

wave modulus lim,_,H ()= Hye, + KeenTio , attenuation is derived as

w—0
lim, Q=1 , KeouT (4.3.1.3)
RH Hegow

Comparison of Equation (4.3.1.2) and Equation (4.3.1.3) gives a T coefficient of

T ViHeew PR (1 1) (4.3.1.4)
KBGW Kle 15 3

At high frequencies, the ratios of the Bessel functions are

sinz

lim io(2) _ I _sinz __expliz)—exp(-iz) _ i and

% j(z) sinz_cosz cosz i(exp(iz)+exp(-iz))

4 z

ohY iz ( ij _
lim b =——=——~i|l-—|~i.

750 1) "

hY oozeiog 1 z

Substitution of these results into (4.3.1.1) gives
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lim, ,, Q'=353 (4.3.1.5)

S,P’ 3 s,Pp
2
SN, 2B )N, [T N, [N, [P R
K 2N,x 2Nk 2N,x

Equation (4.3.1.5) shows that the high frequency asymptote of attenuation is
inversely proportional to the square root of frequency. Thus, the G coefficient of
Johnson’s framework can be determined. By taking the real and imaginary
components of the high frequency asymptote of the saturated P-wave

modulustim, _, H ()= Hge, + KeeG(— i)™, attenuation is derived as

_ KeenG
im0t S e KeG (4.3.1.6)
" H} Heen + KBZGH G V20H g,
w

Comparison of Equation (4.3.1.5) and Equation (4.3.1.6) gives

3Hugn S,P” (4.3.1.7)

R

Substitution of the T (Equation 4.3.1.4) and ¢ (Equation 4.3.1.7) coefficients into

Equation (4.1.1.4) gives a shape parameter of

¢ = S (HBGH _HBGW)3 , (4318)
18H g, H éGH [N](fé + %Jsl (N1771 + 24 N;Nomimp, + Nznz)

and a frequency scaling parameter of

5°R? ( )2
98 5 2 W N7+ 4/NL7, (4.3.1.9)

These expressions for the shape and frequency scaling parameters are only valid for
fluid contrasts and fluid percentages which don’t violate DRM limitations. For
instance, Equation (4.3.1.1) is valid for high contrasting pore fluids, but only for
small inclusion concentrations of the more compressible fluid (see Section 3.2).
Hence, in order to model shape and frequency scaling parameters at larger inclusion

concentrations, a low contrast approximation is made. That is, | assume that the bulk
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modulus of the included fluid is comparable to the bulk modulus of the host fluid.

When this is done, the shape parameter (Equation 4.3.1.8) reduces to

o8l e (4.3.1.10)
6 (771+5772)
with frequency scaling parameter of
S,°R7H,
- 2(fn +m | (4.3.1.11)

In Figures 4.3.1.1-3 the shape parameter computed using Johnson’s T coefficient for
concentric spheres (Equation 1.3.2.7) (dashed black line) is compared against shape
parameters computed using Equations (4.3.1.8) (solid black line) and (4.3.1.10)
(dotted black line). Shown are shape parameters when one fluid is water and the

other fluid has (a) low contrast (K, =2GPa) (b) moderate contrast K, =1GPa and (c)

large contrast K, =0.01GPa in fluid bulk moduli, respectively.

When fluid contrast is (a) small, the shape parameters calculated using Equations
(4.3.1.8) and (4.3.1.10) are identical. The shape parameter for the periodic
distribution of spheres differs from the shape parameter for a random distribution.
All shape parameters are dependent on percentage saturation and approach the

limiting value of ¢ :% at small inclusion saturations.

When fluid contrast is (b) moderate, the shape parameters for periodic and random
distributions of spheres (Equation 4.3.1.8) are no longer symmetric in saturation.
That is, the shape parameter value for a rock which is 20 percent saturated by gas and
80 percent saturated by water is not the same as the shape parameter for a rock which
is 80 percent saturated by gas and 20 percent saturated by water. There are also
discrepancies between the shape parameter values calculated using Equations
(4.3.1.8) and (4.1.3.10). This is expected as the first equation takes into account fluid
contrast, whilst the second equation doesn’t. In Chapter 5, these Equations (4.3.1.8)
and (4.1.3.10) will be studied to identify which is representative at what fluid

contrast and inclusion saturation.
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When fluid contrast is (c) large, the shape parameters for periodic and random
distributions of spheres (Equations 4.3.1.8) depend heavily on percent fluid
saturation. A rock which is less then 10 percent saturated by gas will have a shape
parameter (for both periodic and random distributions of spheres) that suggests
entirely different frequency-dependent attenuation behaviour, than a rock which is

saturated by more then 10 percent gas.

1.6

T
DRM

14} DRM (Low contrast approx)

— — — Periodic spheres o~

P == -7 N
1.2¢ e ~o - N .
7
/ \\
/
ir , \\
! \
w08} Y

0 0.2 0.4 0.6 0.8 1
Water saturation

Figure 4.3.1.1: Shape parameters for low fluid contrast spherical inclusions as a function of
water saturation. Shape parameters for periodic spheres (dashed line) are different from
shape parameters of randomly distributed spheres (DRM Equation (4.3.1.8) solid line) and
randomly distributed spheres of low contrast (DRM Equation (4.3.1.10)). Fluid contrast was

small, so there is good correspondence between the DRM shape parameters.
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1.6
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DRM (Low contrast approx)
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Figure 4.3.1.2: Shape parameters for moderate fluid contrast spherical inclusions as a

function of water saturation.

Shape parameters for periodic spheres (dashed line) are

different from shape parameters of randomly distributed spheres (DRM Equation (4.3.1.8)

solid line) and randomly distributed spheres of low contrast (DRM Equation (4.3.1.10)).

Fluid contrast was moderate; hence the DRM shape parameters are differing

12

10

T
DRM

DRM (Low contrast approx)
— — — Periodic spheres

I \
0.4 0.6
Water saturation

Figure 4.3.1.3: Shape parameters for high fluid contrast spherical inclusions as a function of
water saturation. Shape parameters for periodic spheres (dashed line) differ from shape
parameters for randomly distributed spheres (DRM Equation (4.3.1.8) solid line) and
randomly distributed spheres of low contrast (DRM Equation (4.3.1.10)).
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4.3.2 3D Continuous Random Media

If some particular normalised autocorrelation function 4(r) describes the spatial
distribution of pore fluids in three spatial dimensions; shape and frequency scaling
parameters may be derived from the 3DCRM model (Section 3.3), providing that the
low and high frequency dependence of the saturated P-wave modulus is proportional
to » and 1/Vo, respectively. This is not always the case for certain types of

correlation functions, such as Gaussian, fractal etc., see Discussion 4.3.2.3.

First, | simplify the 3DCRM framework to

30)- Wi [1-o 2 [ oDl |, @321)

DO

where

HBGH — HBGW

5= (4.3.2.2)

H BGW

In the limit of low frequencies the saturated P-wave modulus (Equation 4.3.2.1)

reduces to

©

lim, , H(w)=H ., (1— igs .[0 r;((r)er : (4.3.2.3)

0

Comparing Equation (4.3.2.3) with Equation (4.1.1.6) yields a1 coefficient of

T =Moo [ (r)ar (4.3.2.4)

KBGW 00
At high frequencies only behaviour at small offsets is important. Assume that the

normalised autocorrelation function can be expanded in a power series
Z(r)zlo +;{1I’+O(I’2),

where z, = #(0)=1and y, =a;g_£0).
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Then, the integral in Equation (4.3.2.1) is reduced to

Iowrg(r)exp(ikzr)dr ~ Iowr(l+ 2.1 )explik,r)dr = {(ikl )2:|+ (lzkl} , (4.3.2.5)

Substitution of Equation (4.3.2.5) into Equation (4.3.2.1) gives a high frequency

saturated P-wave modulus of

—lw

lim, .. H(0)= HW[1+ s +MJ, (4.3.2.6)

comparison with Equation (4.1.1.7) gives a G coefficient of

G =2HBG&M. (4.3.2.7)

By substituting the T and & coefficients derived above into Equations (4.1.1.4) and
(4.1.1.5), the shape parameter corresponding to a generalised correlation function is

obtained

lzg[dﬂc_(o)]z [ eler (4.3.2.8)

with a frequency scaling parameter of

;:mo(dﬂé@f. (43.2.9)

Below | use Equations (4.3.2.8) and (4.3.2.9) to derive shape and frequency scaling
parameters for different three dimensional fluid distributions described by specific
correlation functions. However, it must be stressed that Equations (4.3.2.8) and
(4.3.2.9) and hence, the results derived below are only precise for low contrast in

fluid properties due to approximations made within the 3DCRM approach.
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4.3.2.1 Relationship to Statistics from Gas Saturation Maps

Further analysis of Equations (4.3.2.8) and (4.3.2.9) reveal that the shape and
frequency scaling parameters can be directly related to statistical measures (aside

from the correlation function 4(r)) extracted from tomographic images. By
recognizing that the derivative of the correlation function 4(r) is related to the surface

to volume ratio of fluid heterogeneities by
o20)__ s

or 4

the shape parameter can be written as

lzl(ij 2, (4.3.2.1.1)
¢ 2\v
and the frequency scaling parameter as
1:&(3] , (4.3.2.1.2)
T 4\V

where 3 is the surface to volume ratio of the fluid patches anda, is the mean

correlation length defined by Equation (2.3.1.5.2) as

eu=([enene]

Equations (4.3.2.1.1) and (4.3.2.1.2) show how to determine the shape and frequency
scaling parameters directly from characteristics of the tomographic images.

4.3.2.2 Debye Random Media

For a Debye random distribution of fluids which can be modelled using an

exponential correlation function given by z(r):exp(%rj, the shape parameter derived

using Equation (4.3.2.8) is¢, =1/8. It is a constant value independent of correlation
length, percent fluid saturation and fluid contrast. This means that the shape of the

attenuation and velocity curves will not change as the correlation length, percent

fluid saturation and fluid contrast is altered. The corresponding frequency scaling
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parameter isz. =a?/(4D,), which is proportional to the square of the correlation

length. Thus changing the correlation length will shift the curve in frequency.

Figure 4.3.2.2.1 shows (a) attenuation and (b) velocity obtained from Johnson’s

model with shape and frequency scaling parameters . and r, (obtained above). This

is compared against the CRM model having an exponential correlation function. The
contrast between pore-fluid bulk moduli is kept small, with an included fluid of bulk

moduli K, =2cGPa within a rock 90% saturated by water (K,,=2.25GPa). For this

scenario, the CRM model is precise. Thus the shape of attenuation and velocity
curves predicted via CRM are accurate over the entire frequency range. Only small
differences are observed between the Johnson model and CRM at intermediate
frequencies. This means that the branching function is reasonably accurate at
intermediate frequencies and thus the dynamic behaviour is well approximated using

Johnson’s model with shape and frequency scaling parameters of »_ and -_.

-4 T T T T 3470.45

3470.4

347035

— — — Johnson-exponential
CRM-exponential
— = Wood limit

Hill limit

347031

log10( Attenuation [1/Q] )
]
)
Phase velocity [m/s]

3470.251

751 ]
— — — Johnson-exponential Z
CRM-exponental | | T T T T T T T T T
. n N . . . . .

3470.2
4 -2 0 2 4 6 -4 -2 0 2 4 6
log10( Frequency [Hz]) log10( Frequency [Hz])

€) (b)

Figure 4.3.2.2.1: Frequency-dependent attenuation and dispersion due to 3D exponential
fluid distribution. (a) Attenuation and (b) velocity estimates using Johnson’s model (dashed
line) with shape and frequency scaling parameters appropriate for an exponential
correlation function and for CRM with exponential correlation function (solid line). The

theoretical bounds on velocity are given by Wood (dashed—dotted line) and Hill (dotted line).
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When the distribution of fluids can be modelled using a double Debye correlation

function

r r
X2 (I’) = Xsmant T Xiage = by exp(_ a_J +b, exp(— a_) )

which may be appropriate for modelling the fluid distribution towards the end of a
drainage experiment (see Section 2.3.1.5), the shape parameter and frequency

scaling parameters are

For instance, the shape parameter of the average correlation function of MGL2a
(during the latter stages of the drainage experiment) is ¢ =0.0243. In general, if the
distribution of fluids can be modelled using many different Debye correlation

functions
N r
-N'b. -,
£0)-3e] - |

then the shape parameter and frequency scaling parameters are

o]

¢

4.3.2.3 Overlapping Sphere Models

When the fluid distribution is described by an overlapping sphere model having

autocorrelation function:

v1v2
the shape parameter needs to be determined via numerical integration as an analytical
solution to the integral (in Equation (4.3.2.8)) was not found. In Figure 4.3.2.2

(dotted line) the shape parameter is shown for the overlapping sphere distribution; it
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depends on the relative percentage of two pore fluids but is independent of the sphere

radius. The frequency scaling parameter is

o 9D, (logv, )’
4R%VZ

which depends on both relative percentage of pore fluids and the square of the

inclusion radius. Figure 4.3.2.3.1 shows that the shape parameters for random

distributions of spherical inclusions (both non-overlapping-DRM and overlapping)

differ from periodic distributions of spherical inclusions.

However, one can make a linear approximation to the non-overlapping sphere
correlation function; this serves to preserve some of the spatial characteristics of the

original function, whilst allowing (Equation 4.3.2.1) to be solved analytically. The

approximation used is g(r):l—éfor r<2Rand y(r)=0forr > 2R. The corresponding

2
shape parameter is a constant ¢ =% and the frequency scaling parameter isz = ';—.

0

1.8

T
— - — - CRM Overlapping

DRM

DRM (Low contrast approx)
1.4| — — — Periodic spheres

16

121 - ~.7 RN

0.8 L

0 0.2 0.4 0.6 0.8 1
Water saturation

Figure 4.3.2.3.1: Shape parameters for different 3D distributions of spherical inclusions of
low fluid contrast. Periodic (dashed line), random (DRM Equations (4.3.1.8) and (4.3.1.10))
and overlapping sphere distributions (numerically calculated using Eq. (4.3.2.1)) shape

parameters all depend differently on water saturation.
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4.3.2.3 Discussion
For the Gaussian correlation function z(r):exp[;—: Jutilized in Section 3.3.2 for

which attenuation doesn’t have the required frequency dependence, the shape
parameter is infinite. This can be seen by taking the derivative of the frequency

_r2
a?

scaling parameter d’é@: —azzr exp( J which is equal to zero at the origin (r=0).

Thus, theG coefficient is zero and the shape parameter and frequency scaling

parameter are infinite.

This can be taken one step further by considering a fractal distribution of pore fluids.
Miller and Toms (2007) have shown that the high frequency asymptote of

attenuation for a fractal distribution of pore fluid is Q* « ™, where v is the Hurst
exponent. For »=1/2, the fractal medium is exponential and thus the shape and

frequency scaling parameters are given as above. However, when the Hurst exponent

v<l2,the sV -« as the ratio of the surface area of the patches increases, which

means the G coefficient approaches zero and the shape and frequency scaling

parameters are infinite.

This shows that shape and frequency scaling parameters (for the Johnson framework)
do not have finite values for all correlation functions. The only model having the
flexibility to estimate attenuation and dispersion due to any 3D fluid distribution is
the 3DCRM modelling approach. However, it is precise for low fluid contrast and

only approximate at large fluid contrast.

4.4 Chapter Summary

The main results of this Chapter are given in the Tables. They showT and
G coefficients along with shape and frequency scaling parameters for different types
of fluid distributions. Note that, outside the validity of the original models (please
refer to the discussions in Chapter 3), the shape and frequency scaling parameters
should only be taken as a rough guide.

Table: 4.4.1: T and G coefficients for 1D fluid stratifications.

4-185



Extension of the APS framework

Layered media | Correlation T coefficient G coefficient
function
Periodic see Section 3.1.1 $S,S,H g h? SH aen /D,
12K 56w Do 5,5,K g h
Quasi-periodic see Section 3.1.2 58,5, H g SH aen /Do
6K gw Do 5,5,K yeuh
R I 5\] DO H BGH
Exponentia exa] = 2r| d, Koen
d,
Generalised )((I’) S How Iwr)((l’)jl’ x4/ Dy Hign
Dy Kgow o Kecn

Table: 4.4.2: Shape and frequency scaling parameters for 1D fluid stratifications.

Layered media

Shape parameter ¢

Frequency scaling

parameter
S,’s,’h?
Periodic 65,5, D,
S,°S,°h?
Quasi-periodic 35,3, D,
Exponential 0 d.’/D,
Generalised *
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Table: 4.4.3: T and & coefficients for 3D fluid distributions.

Media Correlation T coefficient G coefficient
function
Exponential exp( -r ] a*Hen s —2yDoHeeud
a Keew Do Keen@
Linear _ ) l—L 2Ri2HBGWS ' DoHgen 0
apprOXImatIOn 2Ri 3KBGW Do Keen Ri
3H BGH P*Sl
Non- RIP" (n, . 1,

. [ IR s S S N N
Overlapping | DRM AN (15+ 3 ]HBGWSl RiKBGH( /—[; * /—D2 }
Spheres approach ! 2
Generalised Z(r) BGW wr;((r)dr 2H e 7515\1 D,

KBGWDO 0 KBGH

Table: 4.4.4: Shape and frequency scaling parameters for 3D fluid distributions.

approximation

Media Shape ¢ parameter Frequency
scaling - parameter
Exponential 1/8 a*/(4D,)
Linear 34 R?/D,

Non-Overlapping
Spheres

L YN

9KM,

Generalised

[40{%_@)71
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4.5 Chapter Conclusions

In this Chapter | have shown that shape and frequency scaling parameters depend
upon fluid distribution. The substitution of shape and frequency scaling parameters
(given in the tables) into Johnson’s framework provides a simple means to model
attenuation and dispersion due to many different types of pore fluid distributions.
That is, both fluid layering and 3D spatial distributions can be easily modelled.
However, there are still limitations on the use of the tabulated shape and frequency
scaling parameters, as the accuracy of the models used to derive the parameters are

limited to certain scenarios, such as low fluid contrast.

The comparison of Johnson’s framework with modified shape and frequency scaling
parameters against modelling approaches which are explicit over the entire frequency
range (DRM, 1DCRM, 3DCRM, etc) provides a method of testing the accuracy of
the branching function at intermediate frequencies. Throughout the Chapter it has
been shown that the branching function (via comparison) is reasonably accurate at

intermediate frequencies for many different fluid distributions.

An issue which has not really been addressed in this Chapter, is, how the shape and
frequency scaling parameters vary with fluid contrast. For a periodic and random
distribution of spherical inclusions, initial modelling suggests that fluid contrast will
have a large effect upon shape and frequency scaling parameters at small inclusion

concentrations. In the next Chapter, | will investigate this issue further.
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Chapter 5

Numerical Analysis of APS Shape Parameter

5.0 Introduction

All attenuation/dispersion models discussed in Chapters 1 and 3 of this thesis have
advantages and disadvantages. The regular cell models (Chapter 1) are analytically
limited to simplistic fluid distribution geometries (such as concentric spheres) but
capable of modelling any fluid contrast. The random media models of Chapter 3 are
mostly limited to low contrast pore fluids, but are capable of modelling complex and
irregular distributions of fluids. In order to model compressional wave attenuation
and dispersion when porous rock is saturated by “realistic fluids” in a “realistic
way”, both fluid contrast and fluid distribution effects need to be understood and

addressed in unison.

My motivation behind creating a synergy between the Chapter 1 and Chapter 3
modelling approaches is aimed at addressing this need, through combining the
strengths of each type of approach. In Chapter 4, I have demonstrated that the APS
framework (Johnson 2001) can be exploited to consider effects due to complicated
fluid distributions. Prior to this, usage of the APS framework was restricted to simple
fluid distributions, such as periodic layering, concentric circles (Krzikalla et al. 2006)

and concentric spheres

Specifically, I show how two special parameters within the APS framework (called
shape and frequency scaling parameters) can be suitably modified to account for
effects due to: random layering, randomly distributed spheres and random fluid
distributions given by a variety of correlation functions. However, the usage of the
new shape and frequency scaling parameters, maybe constrained to certain fluid

contrasts and fluid saturations.
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The possible restrictions on the use of the new shape and frequency scaling
parameters are a consequence of models which underpin their derivation, such as
IDCRM, DRM and 3DCRM. These models are precise for only certain fluid
contrasts and fluid saturations. Hence, it is necessary to demarcate the range of
volume concentrations and fluid contrasts for which my derived parameters (see
Table 4.4.2 & Table 4.4.4) can be accurately utilized. In this Chapter, I investigate
this issue when the fluid distribution is given by a 3D random distribution of

spherical inclusions.

There are two possible ways one could investigate the applicability of the shape and
frequency scaling parameters. Both approaches are based on numerical computation
and require generating the appropriate synthetic models of interest (such as a 3D
random distribution of spheres). The first approach is to use finite-difference
approximations to forward model either the equations of poroelasticity (Dai et al.
1995; Ozdenvar & McMechan 1997; Helle et al. 2003) or the elastic wave equation
with a Navier-Stokes equation for viscous fluid flow (Saenger et al. 2007). Once the
synthetic wave field has passed through the synthetic model, wave attenuation and
dispersion can be estimated. This allows shape and frequency scaling parameters to
be determined using Equations (4.1.1.4) and (4.1.1.5). When simulations are run over
models of different fluid contrast and volume concentrations, changes in shape and
frequency scaling parameters can be related to changes in fluid contrast and volume

concentration.

However, there are several drawbacks to using this approach. Firstly, it is
computationally expensive to perform the necessary calculations for 3D distributions
of fluids. Secondly, there are numerical issues with approximating wave equations,
such as numerical stability and numerical dispersion (Trefethen 1982) which need to
be handled with care, when the equations to be approximated are highly attenuative
and dispersive, although, as illustrated by Saengar et al. (2007) numerical accuracy
issues can be resolved and minimized by judicious choice of parameters. Thirdly, in
the frequency range where attenuation is a maximum and P-wave velocity changes
most rapidly, it may not be possible to estimate from the synthetic wave field the

shape and frequency scaling parameters accurately.
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The second approach to calculating shape and frequency scaling parameters for
complicated fluid distributions having any fluid contrast, involves determining the
shape parameter from direct numerical computation of the T coefficient (see
Equation 4.1.1.6). The T coefficient governs the low frequency approach of the
frequency-dependent saturated bulk modulus to the static limit given by Gassmann-
Wood equations. Although, the Gassmann-Wood limit depends only on fluid volume
fraction and fluid bulk moduli, the T coefficient also depends on fluid distribution via
an auxiliary function @ (and partial differential equation) defined within the APS

framework.

The APS auxiliary function @ is a solution of a potential equation that is related to
the final stages of fluid pressure equilibration. It can be likened to a steady state
diffusion equation for fluid pressure equilibration. In practice, the potential equation
can only be solved analytically for very simple fluid geometries, such as periodic
layering, concentric spheres etc. Hence determination of shape and frequency
scaling parameters using the APS auxiliary function ® has until now been restricted
to simple regular geometries. However, in principle, the APS auxiliary function @
can be solved for numerically (using finite-differences or finite elements) in cases
where the fluid distribution is complicated, such as with randomly distributed

spheres.

There are several advantages of numerically approximating the potential equation,
over numerically approximating the analogous system of wave equations (the
previous approach) in order to study shape and frequency scaling parameters. Firstly,
it is computationally less expensive, especially in three spatial dimensions (as only
one computation is required to obtain the solution for all frequencies). Secondly, the
mathematical behaviour of the potential equation is far simpler, and hence the
approach is easier to implement accurately. Thirdly, the approach is direct, enabling
computation of the shape parameter (via theT coefficient defined in terns of the

auxiliary function ® ) without having to process synthetic seismograms, etc.
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In this Chapter, the latter approach is trialled. I compute the shape parameter¢ for a
random distribution of spherical inclusions, in particular studying how ¢ varies

when spherical inclusion concentration and contrast is altered. The numerical
estimates of the shape parameter are then compared against the analogous analytical
shape parameters derived in Chapter 4 (Equations (4.3.1.8) and Equations
(4.3.1.10)). This type of analysis could also be performed for other types of fluid
distributions and their analytical shape parameters (Table 4.4.2 and Table 4.4.4).
Hence, enabling demarcation of volume concentrations and fluid contrasts, for
which, the analytical shape parameters could be used to extend the analytical

capacity of APS to realistic fluid distributions.

The Chapter is organised as follows. In Section 1 the potential equations are defined.
In Section 2, finite-difference theory is introduced and finite-difference
approximations are made for the derivatives in the potential equations. Section 3
covers testing aspects of the algorithm. Section 4, includes a discussion on the
synthetic media and presents the results of comparing numerical shape parameters

versus theoretical shape parameters at different fluid contrasts.

5.1 The Physics

5.1.1 The APS Potential Equation

The potential equation for the auxiliary function® plays an important role in
determining the shape parameter, as it affects the T coefficient governing the low
frequency approach of the dynamic saturated bulk modulus to the static limit given
by Gassmann-Wood equations. In this section, I explain the technique and physical
considerations employed by Johnson (2001), when he derives the T coefficient and

potential equation central to APS theory.

Johnson (2001) states that the macroscopic expression for energy dissipation per
wave cycle expressed in terms of the dynamic saturated bulk modulus K(w)of an

elementary volumeV must be equivalent to the same quantity expressed as a volume

integral of the appropriate combination of microscopically varying field variables. In
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other words, Johnson’s technique centres on equating: 1) the power per wave cycle
(i.e. energy loss) caused by an oscillatory external stress applied to the surface of a
partially saturated volumeV with 2) the power per wave cycle of relative fluid-solid
displacement averaged over the volume of the sample. Relative fluid-solid

displacements occur because of fluid pressure equilibration. See Figure (5.1.1.1)

The same technique has subsequently been utilized by Tserkovynak and Johnson
(2002) to study the effect capillary forces have on compressional wave attenuation.
More recently, Miiller and Rothert (2006) have applied a similar recipe to explain
why there is a difference in frequency-dependent attenuation when heterogeneities

are randomly and periodically layered.
The Johnson Approach:

(1) The power per wave cycle on the mesoscale is

_ ‘ P.|’
Pues =%Rea1j%~r.ﬁd$z—%Real[iwv|~e—|} (5.1.1.1)

K(@)

where V is the composite volume, P, is the effective pressure and K(w) is the

frequency-dependent saturated bulk modulus (at the low frequency limit) given by

lim,, |, K()= Kgey (1 - iT). (5.1.1.2)

Here K, 1s the Gassmann-Wood static limit. Substitution of Equation (5.1.1.2) into
Equation (5.1.1.1) gives

_ 1 oVTR|
P = | | . (5.1.1.3)
2Kgew 1+0°T

Hence, mesoscale power per wave cycle is expressed in terms of the parameter of

interest, the low frequency T coefficient.

(2) Power per wave cycle from microscale consideration is
= 1 ou” ou’
Puc =——Real | g ———|-Vp, dV, 5.1.1.4
MIC > ca I¢( o o j Py ( )
where u,U are solid and fluid displacements, respectively and * refers to complex

conjugation.
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The spatial gradient in fluid pressureVp,can be related to relative fluid-solid

displacement through Darcy’s law given by

vp, :ia)%(u ~u).

Here it is assumed that the displacements(u,U) have time variations of the

form: exp(iot). Substitution of Darcy’s law into Equation (5.1.1.4) gives

P =~ Real ¢[%—%J.(i”j” (u -u)]dv -2 (U)o v . (5.1LS)

(3) The mesoscale power P, (Eq. (5.1.1.3)) is equated with the microscale power

Puc (Eq. (5.1.1.5)) and rearranged so as to obtain the T coefficient:

¢2KBGW 0 0
T [ava(o ) -] (5.1.1.6)

Here Johnson defines an auxiliary function @ by

vo_ 10 (O)F(f)‘ u®l(r)) (5.1.1.7)

e

(4) Upon taking the divergence of both sides of Equation (5.1.1.7) the potential

equation central to APS theory is formed:

=g(r). (5.1.1.8)

Here the auxiliary function @ is related to difference in solid and fluid static strains

and

)
sl Je )

g(r)
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Numerical determination of the T coefficient and shape parameter

In this Chapter, I shall approximate Equation (5.1.8) by finite-differences. Once @

has been approximated, it can be integrated with weight g(r) to yield the low

frequency coefficient of the saturated bulk modulus. That is

A G (5.1.1.9)

To determine the shape parameter¢, I substitute the numerically determined T

coefficient into

_ (Hee)
R Tt (5.1.1.10)

where

HBGH
By determining the surface to volume ratio of the fluid patches and substituting it

into

KK 5oy J|Apf|2d3

G= s
771\/D_1+772\/D_2 |Pe|2V

the G coefficient can be obtained.

For the case of randomly distributed spheres, the surface to volume ratio is known
exactly. However, when fluid distributions are more complicated it can be
numerically extracted from the synthetic model of interest using Monte Carlo
methods, or obtained from the derivative of the correlation function describing the

fluid distribution.
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(1) Mesoscale

K(w)=-V(Pe/5V)

Pe exp(iot)

Pe exp(iot)

Fluid flow

High fluid pressure Low fluid pressure

) Microscale

Figure 5.1.1.1: Schematic of the Johnson (2001) approach. Energy loss on the macroscale is

equated with the volume average of losses due to fluid flow relative to the rock frame.
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5.1.2 APS Potential Equations in 1, 2 and 3 Spatial Dimensions

The potential equation embedded in the APS framework (Equation 5.1.1.8) can be

expanded to reveal spatial derivatives in viscosity and potential. For 1-dimensional

fluid distributions:
1 |d*® 1 [dnpdd

- = ) 5.1.2.1
n(x){ dx? }r n(x) { dx dx } 9(x) ( )

For 2-dimensional fluid distributions:

1 |0’ oD 1 on od 0n od

_ = 5122
ol o e ey, 122

and 3-dimensional fluid distributions:

2 2 2
e {a?ﬁ?ﬁ?} 12{8778%877@%5’75@}:g(x,y,z).(5.1.2.3)
nixy.z) o' oyt ot | plxyzflox ox oy dy oz oz

As fluid viscosity can vary between the saturating fluids (often by several orders of
magnitude), the spatial derivatives of viscosity specified in Equations (5.1.2.1-
5.1.2.3) may not exist, because in general the viscosity variation is not a smooth
function across the interface of two pore fluids. Hence, some sort of smoothing of the
fluid viscosity is required along the fluid-fluid interface to make viscosity a smoothly
varying function. However, when viscosity contrast is small, a simplified system of

Equations detailed in the Section 5.1.3 can be useful.

5.1.3 APS Potential Equations with Small Fluid Viscosity Contrast

When contrast in fluid viscosity is small and thus can be considered negligible,
spatial derivatives in viscosity are zero or small; thus 5(x,y,z)=»" where »"is an average
viscosity. In these circumstances, Equations (5.1.2.1-5.1.2.3) reduce to Poisson’s
equations of the general form

Vi =-n"g(r) (5.1.3.1)

where r = r(x),r(x, y),r(X, y,Z)-
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For 1-dimensional fluid distributions having only variations in fluid bulk moduli

R .
v }—n 9(x). (5.13.2)
For 2-dimensional fluid distributions
R GR ) .
o o }—77 g(x.y), (5.1.3.3)

and 3-dimensional fluid distributions

=—n"g(x.y,2). (5.1.3.4)

o’d o’d o'
+ +
ox*  oy* o1t

5.1.4 Boundary Conditions

The boundary conditions existing on Equations (5.1.2.1)-(5.1.2.3) are:

(1) Continuity of the potential across the interface between two media in contact.
That is,
O, =0,, (5.1.4.1)

where 1 and 2 designate the potential within the porous rock saturated by fluid 1 and
fluid 2, respectively.
(2) Continuity of relative flux of the potential across the boundary. That is,

100, 100, (5.1.4.2)
mon g o

where n refers to the normal to the surface, whilst 7,,,, refer to viscosities of fluid 1
and fluid 2.

(3) As the medium is enclosed, there is a zero flux across the outer boundary

Zi):omgs. (5.1.4.3)

n

The potential problem (Equations 5.1.2.1-5.1.2.3 with Equations 5.1.4.1-5.1.4.3)
stands in direct analogy to a well known electrostatics problem of determining the
electric field vector E in a material having varying dielectric constant « and varying
electric charge density p. The electric field E is expressible in terms of the
electrostatic potential®as E =-VO where the electrostatic potential satisfies the

elliptical P.D.E given by V-(-&V®)=47p (Sneddon 1957; Johnson 2001).
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In practice analytical solutions to the system of Equations (5.1.2.1-5.1.2.3 and
5.1.4.1-5.1.4.3) are obtainable for only the most simple geometries, such as periodic
layering in 1D, concentric circles in 2D and concentric spheres in 3D (see Chapter 1,
Section 1.4). I shall use the derived solutions to these simple idealised geometries to
check the accuracy of my finite-difference solutions (refer to Section 5.3). Once the
potential ® is approximated, the T coefficient is determined by integration (Equation

5.1.1.9).

5.2 Basic Finite-difference Theory

In this section, I briefly introduce the theory utilized to develop the finite-difference
solution of the APS potential equation. If further theoretical explanations are
required, a good source of information can be found in Thomas (1990), Morten and

Mayers (1988) and Ames (1977)

5.2.1 Finite-difference Approximations

To approximate the spatial derivatives in Equation (5.1.1.8), second order accurate
centred finite-difference approximations are employed. The centred-difference

approximation for the first spatial derivative of ® with respect to the x direction is

SOD = a(ID(XO, yo’zo) _ cD(Xo +AX, yo’zo)_q)(xo —AX, yO’ZO)+O(AX2), (5.2.1.1)
0X, 2AX

and the second derivative is

2
502xoq) _ 0 (D();)Xazymzo) _ (I)(XO +AX, ymzo)_zq)(xi’ 32/0720)"'@()(0 - AX, yoazo)_,’_o(AXz), (5212)
0 X

where x,,Y,,z,are grid point locations and Ax is the grid size in the x direction. Here

O(sz) refers to the order of accuracy of the difference approximation, which is

second order accurate. Similar approximations are employed for spatial derivatives in

the y and z directions.
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In effect, the application of finite-difference approximations to Equation (5.1.1.8)
can be understood as taking a continuous spatial equation and converting it to a
discrete spatial equation. Furthermore, it should be noted that approximations are
made for each equation. Hence, finite-differences operate by approximating how the
rate of change of the potential in one particular direction will vary with respect to the
rate of change of the potential in another direction. This is in contrast with other
numerical techniques, such as finite elements which seek to approximate the solution

@ directly.

5.2.2 Forming Difference Equations

In this section, I give the difference equations for 1D and 2D potential problems.
They are formed by replacing the continuous spatial derivatives in Equations
(5.1.2.1) and (5.1.2.3) with their discrete analogues given by Equations (5.2.1.1) and
(5.2.1.2). The difference equation for the 3D potential problem will not be listed

here, as it is very cumbersome to express.

When there are 1D heterogeneities in fluid bulk moduli and viscosity, the difference

equation is:

R 0 G e e

(5.2.2.1)
The first bracketed term represents the second spatial derivative in potential, whilst
the second bracketed term represents the first spatial derivative in viscosity, and the
last bracketed term represents the first spatial derivative in potential. Hence, the
second and third bracketed terms only contribute to the difference equation when
neighbouring nodal points have different viscosities. Equation (5.2.2.1) can be

rearranged to give

D{s,)= L @0, + 1)+ s, - 0) 877EX0)(,7(XO + %)= (%, — A%, + AX) - Dx, - AX»*M ,

(5.2.2.2)
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Equation (5.2.2.2) shows that in the absence of viscosity gradients, the potential at
some point x, depends only upon the average of the potentials at neighbouring points
X, —Ax and x, + Ax and on the fluid properties of that pointx,. A quick inspection of
this equation also shows that the boundary condition that the potential must be
continuous across the interface separating the two different types of fluid can be

satisfied when Ax approaches zero.

When there are two-dimensional heterogeneities in fluid bulk modulus and fluid

viscosity, the difference equation is:

+
AX? Ay?

-1 [CD(X0 +AX, Y, )= 20(X,, ¥ )+ DX, = AX, ¥, ) D(Xy, Yo + AY) = 2D(X,, Yo )+ P(X,» Yo — Ay)J

1 (U(XO +AX, Y, ) 1(x, = AX, yo)j(QJ(xo +AX, Y, )— D(x, - AX, yo)j

772(X0,y0) 2AX 2AX
L (%Yo + AY) =%, Yo = AY) | @00, Yo +Ay) = D%y, ¥, ~AY) | _ 5223
+772(X03y0)( 28y 2ny = (%, )- (5.2.2.3)

Refer to Figure 5.2.2.1 for the geometrical layout of spatial derivatives of potential
and viscosity. If the nodal points in the finite-difference grid are separated, such

that Ax = Ay = Al ; Equation (5.2.2.3) can be rearranged to form:

4

—_

(I)(X(): yo) = ((D(XO +ALY, )+ (D(Xo —Al, YO)+ q)(xoayo + AI)+ ‘I‘(Xoa Yo _AI))

1
- Al — —Al ) Al _® ZAl
i 16T7(X0, yO)(U(XO +ak yo) U(XO > yo) (Xo +Al, yu) (Xo , yo))

L - - _ i 70 o) (% Yo AL 5994
+16;7(x0,y0)(77(x°’y°+A|) 1%, Yo = ADYD(xy, Yo + Al = D(x,, Y, — Al)) , (5.2.2.4)
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Figure 5.2.2.1: Showing the spatial location of the bracketed terms involved in the 2D
difference equation (Equation 5.2.2.3). The first bracketed terms is the second spatial
derivative in potential, we see that 5 potential values are utilized. The second bracket term
represents the first spatial derivation in potential and viscosity in the x-direction. The third
bracketed term shows the first spatial derivation in potential and viscosity in the vy -

direction. The bottom grid shows where the location of the g coefficient is for this

calculation.
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5.2.3 Implementing Boundary Conditions

The difference equations equivalent to no net-fluid flow boundary conditions

(Equation 5.1.4.3) have the form:

o(x,, y,,2,) _ @(x, +Al,y1,zl)—<1)(x1—Al,yl,zl)zo (5.2.3.1)
ox 24l ’ o

oD(x,,Y,,2,) _ D(x,,y, +Al,z,)-®(x,,y, —Al,z,)

5 - ~0, (5.2.3.2)

where points (x,,y,,z,) and (x,,y,,z,) lie on boundaries parallel to the x and y axes,

respectively. A similar difference equation can be formed for points lying on the

boundary parallel to the z axes for 3-dimensional problems.

The easiest way of incorporating Equations (5.2.3.1 and 5.2.3.2) into the finite-
difference schema is to align the boundary of the computational 