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ABSTRACT 9 

As a new alternative to OPC, investigation into the fire endurance of geopolymer concrete is 10 

of utmost importance in order to ensure safety. Geopolymer and OPC concrete panels of 125 11 

to 175 mm thickness containing a layer of steel mesh were exposed to fire for two hours. 12 

Test results show higher heat transfer rate and less cracking and spalling in the geopolymer 13 

concrete specimens. The residual load capacity was between 61 and 71% for the geopolymer 14 

and between 50 and 53% for the OPC concrete panels. Thus, the reinforced geopolymer 15 

concrete elements demonstrated superior fire endurance than the OPC counterparts. 16 

 17 

Keywords: Fly ash, fire endurance, reinforced geopolymer concrete, residual strength, 18 

spalling.  19 

 20 

 21 

1. Introduction 22 

The global demand of concrete is increasing with the increasing need for constructions. 23 

Ordinary Portland cement (OPC) has long been used as the traditional binder for concrete. 24 

However, alternative binders utilising industrial by-products are required in order to reduce 25 

the carbon footprint of concrete. It is known that about one tonne of carbon dioxide is 26 

emitted into atmosphere in the production of one tonne of cement. Geopolymer is an 27 

mailto:p.sarker@curtin.edu.au
mailto:simon.mcbeath@infratecheng.com


2 
 

emerging alternative binder that uses industrial by-products instead of cement. A base 28 

material such as fly ash which is rich in silicon and aluminum is reacted by an alkaline 29 

solution to produce the geopolymer binder. The base material for geopolymerisation can be a 30 

single material or combination of different materials. Materials such as fly ash [1-4], 31 

metakaolin [5] and blast furnace slag [6-7] are possible to use as the base material for 32 

geopolymer binders. Blending of fly ash with a small quantity of calcium bearing materials 33 

have also been used to enhance the early-age properties at room temperature curing 34 

conditions [2, 8, 9]. The reaction products were found to be different depending on the type 35 

of the base material and the activating alkaline liquids used for geopolymerisation [10]. 36 

Among these common base materials, low-calcium fly ash has been found as the most 37 

suitable principal binder for geopolymer concrete. Coal-fired power stations worldwide 38 

generate large amount of fly ash as a by-product. A substantial part of this fly ash remains 39 

unused after different conventional methods of uses. The unused fly ash causes 40 

environmental pollutions and the ash ponds occupy vast area of costly land that could be 41 

otherwise used for productive purposes. This accumulated volume of the unused fly ash in 42 

various countries can be properly utilized as the base material for producing low-emission 43 

geopolymer concrete. This can help significantly reduce the carbon footprint of concrete 44 

production. 45 

 46 

Results of the ongoing studies on various engineering properties [8-11] showed the potential 47 

use of fly ash based geopolymer concrete as a construction material. As a new construction 48 

material, it is necessary to study the performance of geopolymer concrete in various 49 

structural applications. The previous research on fly ash-based geopolymer concrete studied 50 

various short-term and long-term properties. Various mix design parameters influencing the 51 

strength of geopolymer concrete were investigated. It was shown that heat-cured geopolymer 52 

concrete possesses high compressive strength, undergoes low drying shrinkage and 53 

moderately low creep, and shows good resistance aggressive agents such as sulfate and acid 54 

[1]. Geopolymer concrete showed good bond strength with reinforcing steel which is 55 

necessary for its function as a composite material in reinforced concrete [10]. Steel 56 

reinforced geopolymer concrete beams and columns showed similar behavior to that of OPC 57 
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concrete members [12-14]. The existing methods of the design codes were shown to be 58 

adequate for the design of geopolymer concrete members. Therefore, fly ash geopolymer is 59 

considered as a viable alternative binder for concrete elements such as beams, columns, slabs, 60 

walls, footings and other similar structural members. 61 

 62 

Possessing adequate fire endurance is of utmost importance for a construction material in 63 

order to ensure safety of life and property. Materials with high fire endurance are especially 64 

required in areas prone to accidental fire and in structures with high level of importance such 65 

as high rise buildings, tunnels, buildings storing hazardous materials, nuclear facilities etc. 66 

Assessment of structures after a fire starts with the observation of cracking and spalling since 67 

these aspects significantly affect the load bearing capacity of structures. Residual strength of 68 

a material after fire exposure indicates the extent of remaining strength, its suitability for 69 

further usage and the need for repair. Therefore, comparison of the cracking and spalling 70 

damages, and residual strengths of different materials are used to compare their 71 

performances in a fire.   72 

 73 

Combustibility of geopolymer fibre composites was studied by Lyon et al [15]. It was shown 74 

that the maximum temperature capability of carbon fibre reinforced geopolymer composite 75 

was more than 800 oC. This was shown to be much higher than the capabilities of some other 76 

similar materials. Compressive strength of geopolymer concrete cylinders was found to 77 

increase when tested in the exposure of fire at 800 oC [16]. Foamed porous fly ash 78 

geopolymer paste samples were shown to have increased compressive strength after 79 

exposure up to 1000 oC [17]. Kong and Sanjayan [18] studied the effects of high temperature 80 

heat on geopolymers exposed up to 800 oC. It was shown that metakaolin based geopolymers 81 

and their composites remained stable up to 600 oC, whereas OPC binders experienced a rapid 82 

deterioration in compressive strength at around 300 oC. It was also shown that geopolymer 83 

paste samples gained strength by 53%, however identical formulation of composites 84 

combined with aggregates experienced a 65% decrease in strength. The decrease in strength 85 

was attributed to the incompatibility between the thermal expansion of the aggregate and that 86 

of geopolymer paste. While aggregates expanded by 1.2 – 2.5%, the geopolymer paste 87 
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retracted by 1.6% at 800 oC. This incompatibility in the thermal expansions of aggregate and 88 

paste resulted in internal damage of concrete and thus reduced the strength. 89 

 90 

Previous studies [19, 20] on fly ash geopolymer concrete cylinders after fire exposure 91 

showed that residual strength was higher than the original strength for relatively low 92 

temperature such as up to 200 oC. Then residual strength decreased with further increase in 93 

fire temperature. However, the strength retained by geopolymer concrete cylinders was 94 

higher than that by OPC concrete specimens up to 600 oC. The strength loss of geopolymer 95 

concrete cylinders exposed to high temperature heat such as 800 to 1000 oC was similar to 96 

that of OPC concrete cylinders. 97 

 98 

These previous studies were limited to the tests on small cube or cylinder specimens 99 

subjected to high temperature heat on all sides of the specimens. No study has been 100 

conducted to investigate the damages occurred in larger geopolymer concrete specimens 101 

reinforced with steel bars and strength retained by reinforced elements after a fire exposure. 102 

It is necessary to investigate the extent of damage and residual strength of steel reinforced 103 

geopolymer concrete elements at high temperature since real structures are mostly made of 104 

reinforced concrete members. The presence of steel and the number of sides of a specimen 105 

exposed to fire can have significant influence on the damage and strength loss. For example, 106 

the distribution of temperature inside a wall exposed to fire on one side will be different from 107 

that exposed to fire on both sides. This paper presents a study on the damages and residual 108 

strength of reinforced fly ash based geopolymer concrete panels exposed to standard ISO 834 109 

[21] fire which is commonly used for testing of building materials. OPC and geopolymer 110 

concrete panels were exposed to fire on one side for two hours and then cooled down to 111 

normal temperature. Cracking and spalling damages in the two types of concrete specimens 112 

were inspected and the post-fire strengths were determined using compression tests.  The 113 

behaviours of geopolymer concrete panels are compared with those of traditional OPC 114 

concrete panels. 115 

 116 

2. Materials and methods 117 
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Experimental work was carried out in the laboratory to study the behaviour of steel 118 

reinforced panels of OPC and geopolymer concretes exposed to high temperature fire. The 119 

panels were of different thickness with the same amount of reinforcement. They were 120 

exposed to standard fire for two hours and then cooled down to room temperature by turning 121 

off the furnace. The transfer of heat through the specimens was recorded by using 122 

thermocouples. The damages in terms of cracking and spalling of the specimens were 123 

observed during fire exposure and after cooling down. The specimens were loaded to failure 124 

in concentric compression in order to study the failure behaviour and determine the strength 125 

retained by them after the fire exposure.  126 

 127 

2.1 Materials 128 

Concrete was mixed in the laboratory for casting of the test specimens. General purpose 129 

Portland cement was used for OPC concrete specimens and commercially available class F 130 

(ASTM 618) [22] fly ash was used to manufacture the geopolymer concrete specimens. 131 

Percentage of the fly ash passing through a 45 μ sieve was 75% and its loss on ignition was 132 

0.6%. The chemical compositions of cement and fly ash used in making the specimens are 133 

given in Table 1. The alkaline liquids for geopolymer concrete were sodium hydroxide and 134 

sodium silicate solutions. Commercial sodium hydroxide pellets were dissolved in normal 135 

tap water to make 14M solution.  The readily available commercial sodium silicate solution 136 

had a chemical composition of 14.7% Na2O, 29.4% SiO2, and 55.9% water by mass. Both 137 

the liquids were mixed together before adding to the fly ash and aggregates. The coarse 138 

aggregates were 7, 10 and 20 mm nominal size crushed granite. The fine aggregate was river 139 

sand. The aggregates were prepared to SSD condition before mixing of the concrete. Tap 140 

water was used in mixing of the concretes. The mixture proportions of OPC and geopolymer 141 

concrete are given in Table 2. The mixtures were designed to obtain similar compressive 142 

strengths. The steel reinforcement of the test panels was a single layer of 500 MPa normal 143 

ductility deformed bars in both directions.  144 

 145 
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Table 1 Chemical compositions of cement and fly ash (mass %)  146 

Compounds SiO2 Al2O3 Fe2O3 CaO Na2O K2O TiO2 MgO P2O5 SO3 

Cement 21.1 4.7 2.7 63.6 0.5 - - 2.6 - 2.5 

Fly Ash 50.8 26.9 13.5 2.05 0.33 0.57 1.57 1.33 1.46 0.31 

 147 

Table 2 Mixture proportions of concrete (kg / m3) 148 

Mix Cement Fly 

ash 

Water Sodium Sodium Sand Coarse aggregate 

hydroxide silicate 7mm 10mm 20

mm 

OPC 385 - 205 - - 616 412 240 492 

GPC - 408 55 41 103 554 462 277 554 

 149 

   150 

Figure 1(a). Slump of OPC concrete   Figure 1(b). Slump of geopolymer concrete  151 

 152 

2.2 Casting of test specimens 153 

Concrete was mixed in the laboratory in a pan type mixer. Workability of fresh concrete was 154 

determined by using standard slump test immediately after mixing the concrete. Slump tests 155 

of OPC and geopolymer concrete are shown in Figures 1(a) and 1(b) respectively. The slump 156 

of OPC concrete varied between 90 and 120 mm and that of geopolymer concrete varied 157 

between 200 and 250 mm. Both concretes had reasonable workability and the specimens 158 
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were cast with sufficient ease. Though geopolymer concrete had a much higher slump than 159 

the OPC concrete, they both needed the same level of vibration to compact the concrete. This 160 

is because of the relatively higher viscosity of the activator solution used in geopolymer 161 

concrete. The geopolymer concrete specimens were cured by using steam and the OPC 162 

concrete specimens were cured by spraying water. 163 

 164 

The test panel specimens were 500 mm × 500 mm in size. Three OPC concrete panels and 165 

three geopolymer concrete panels were cast. Thicknesses of the panels were 125, 150 and 166 

175 mm. The reinforcement consisted of three bars of 12 mm diameter in each direction, 167 

distributed in the mid-depth of the section. The panels were compacted by using an 168 

electrically operated concrete vibrator.  Casting of typical geopolymer concrete test panels 169 

are shown in Figure 2. A thermocouple was inserted in the centre of the panel to a depth of 170 

25 mm from the top surface to measure the transfer of heat through the specimen when the 171 

opposite face would be exposed to fire. The geopolymer concrete panels were steam cured 172 

immediately after casting at 60 oC for 24 hours and then left in ambient condition until 173 

testing. The OPC concrete panels were cured by covering with hessians and spraying water 174 

for 14 days after casting. Accompanying standard 100 mm × 200 mm cylinders were cast 175 

together with the test panels in order to determine compressive strength of concrete. The 176 

cylinders were cured in the same condition as the test panels. 177 

 178 

2.3 Method of testing  179 

The specimens were exposed to fire at 28 days after casting. Figure 3 shows a test panel set 180 

in the furnace for fire exposure. The furnace was turned on and the flame was increased by 181 

controlling the flow of gas. The face of the panel inside the furnace was exposed to fire and 182 

the opposite face was exposed to room temperature. This condition of heating is considered 183 

as the most critical for damage of the concrete by differential temperature between the heated 184 

face and the unheated face. The gaps between the test panel and the furnace were closed so 185 

that heat of the fire could not reach the unheated face of the panel. The geopolymer and OPC 186 

concrete specimens were exposed to fire in the same way. The fire in the furnace was 187 

controlled to achieve the heating rate recommended in the standards for fire test of building 188 
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materials [21, 23]. The heating rate recommended in the ISO 834 [21] standard is given by 189 

Equation 1.  190 

 191 

𝑇𝑡 =  𝑇0 +  345 𝑙𝑙𝑙10 (8𝑡 + 1)                                         (1) 192 

Where Tt is furnace temperature (oC) at time t (minutes) and T0 is the initial furnace 193 

temperature (OC).   194 

The temperature of the air inside the furnace was measured by an in-built thermocouple in 195 

the furnace and that at 25 mm depth from the unheated face of the test panel was measured 196 

by the thermocouple inserted in the specimen during casting. The furnace was turned off 197 

after heating the specimens for two hours and the specimens were then left to cool down 198 

normally to room temperature leaving the door of the furnace open. After cooling down to 199 

room temperature, the specimens were tested under concentric compression using a universal 200 

testing machine. The compression test of a panel is shown in Figure 4. The panels were 201 

loaded to failure and the test failure loads were recorded.  202 

 203 

 204 

Figure 2. Casting of the geopolymer concrete test panels 205 
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 206 

Figure 3. A concrete test panel set for fire exposure 207 

 208 

Figure 4. Post-fire compression test of a concrete panel  209 

 210 

Concrete panel 
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 211 

Figure 5. Temperature at 100 mm depth in the 125 mm thick panels 212 

 213 

 214 

Figure 6. Temperature at 125 mm depth in the 150 mm thick panels 215 

 216 
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 217 

Figure 7. Temperature at 150 mm depth in the 175 mm thick panels 218 

 219 

3. Test results and discussion 220 

3.1 Transfer of heat inside concrete panels under fire exposure 221 

The temperature-time curves of the fire inside the furnace during the 2 hours of fire exposure 222 

of the 125, 150 and 175 mm panels are shown in Figures 5, 6 and 7 respectively. The 223 

increase of temperature with time at 25 mm depth from the unheated face of the panels is 224 

also plotted in these figures. As shown in Figure 5, the temperatures measured at the end of 225 

the heating period in the 125 mm geopolymer and OPC concrete panels were 302 and 129 226 
oC, respectively, when the furnace temperature was 960 oC. The highest temperatures in the 227 

150 mm panels were 253 and 115 oC in the geopolymer and OPC concrete specimens, 228 

respectively, as shown in Fig 6. Similarly, the maximum temperatures in the 175 mm panels 229 

were 228 and 101 oC for the geopolymer and OPC concrete panels, respectively (Figure 7). 230 

As expected, temperature near the unheated face decreased with the increase of the panel 231 

thickness in both types of concrete.  232 

 233 



12 
 

Comparing the temperature-time curves of the OPC and geopolymer concrete panels in each 234 

figure, it can be seen that the temperature at a given time was higher in the geopolymer 235 

concrete panel than in the OPC concrete panel of the same thickness. Therefore, the 236 

geopolymer concrete panels showed a higher thermal conductivity than the OPC concrete 237 

panels at high temperature. Similar behaviour was also observed previously in the tests of 238 

cylinder specimens exposed to fire from all directions [20]. Subaer and van Riessen [24] 239 

measured a higher thermal conductivity value of hardened geopolymer paste than OPC paste 240 

samples. This higher thermal conductivity resulted in a a fastre travel of heat and smaller 241 

thermal gradient in the geopolymer concrete panels than in the OPC concrete panels. Thus, it 242 

can be said that the heat transfer rate of fly ash geopolymer concrete is generally higher than 243 

OPC concrete when exposed to the high temperature heat of fire.  244 

 245 

3.2 Damage of test specimens by cracking and spalling 246 

The typical cracks developed on the fire exposed face of the OPC concrete panels after 2 247 

hours of fire exposure are shown in Figures 8 (a) and 8 (b).  The typical cracks developed in 248 

a geopolymer concrete specimen are shown in Figure 9. It can be seen from these figures that 249 

there were cracks in the specimens of both types of concrete.  However, relatively wider 250 

cracks were observed in the OPC concrete panels as shown in Figure 8 (b). The widths of the 251 

cracks in geopolymer concrete panels were relatively small as shown in Figure 9. As shown 252 

in Figure 8 (a), the 125-mm OPC concrete panel also suffered by spalling of concrete from a 253 

corner. No such spalling was observed in any of the geopolymer concrete panels. Similar 254 

spalling was also observed in some OPC concrete cylinders with no spalling of the 255 

geopolymer concrete cylinders of the previous tests [20]. The relatively less damage in the  256 

geopolymer concrete panels than in the OPC concrete panels is attributed to the smaller 257 

temperature differential in geopolymer concrete panels, as shown in Figures 5 to 7. The 258 

colour of the geopolymer concrete changed to red after the exposure to fire. This is attributed 259 

to the presence of high iron content of the fly ash used to make the geopolymer concrete. As 260 

the distance increased from the fire exposed face inside the specimen, the redness gradually 261 

decreased with the decrease of temperature. 262 
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 263 

Figure 8(a). Corner spalling of the 125 mm thick OPC concrete panel 264 

 265 

Figure 8(b). Typical cracks in the OPC concrete panels 266 

 267 

 268 
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 269 

Figure 9. Typical cracks and colour change in the geopolymer concrete panels after fire 270 

exposure 271 

                272 

Figure 10(a). Failure of the 125 mm OPC concrete panel  Figure 10(b). Failure of the 125 273 

mm GPC panel  274 
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       275 

Figure 11(a). Failure of the150 mm OPC concrete panel   Figure 11(b). Failure of the 150 276 

mm GPC panel  277 

           278 

Figure 12(a). Failure of the 175 mm OPC concrete panel   Figure 12(b). Failure of the 175 279 

mm GPC panel  280 

 281 
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3.3 Failure and residual strength of the panels in compression 282 

Numerous cracks were observed on the fire-exposed faces of both types of concrete panels 283 

after cooling. This was expected because of the differential temperature in the panels across 284 

the depth and because of thermal shocks in the heating and cooling stages. Typical failures of 285 

the OPC and geopolymer concrete panels are shown in Figures 10 to 12. As shown in 286 

Figures 10 (a) and (b), both  125 mm thick OPC and geopolymer concrete panels failed by 287 

complete crushing of the concrete in the fire exposed side and bucking of the reinforcing 288 

steel bars in the direction of fire exposure. Failure of the 150 mm thick geopolymer concrete 289 

panel occurred mainly by splitting of concrete along a plane parallel to the direction of 290 

loading, as shown in Figure 11(a). The OPC concrete panel of the same thickness occurred 291 

by a combination of splitting and crushing of concrete in the fire-exposed side (Figure 292 

11(b)). As shown in Figures 12 (a) and (b), the 175 mm thick geopolymer concrete panel 293 

only damaged locally at the corner whereas the OPC concrete panel of the same thickness 294 

failed by complete splitting of the concrete. The post-fire load capacities of the panels 295 

obtained from the tests are given in Table 3.  296 

The original load capacity of each panel before exposure to fire is calculated by using 297 

Equation 2, considering the panel as a stocky reinforced concrete member under concentric 298 

compression.  299 

 300 

𝑃 =  𝑓𝑐𝑐�𝐴𝑔 − 𝐴𝑠� +  𝐴𝑠𝑓𝑦           (2) 301 

 302 

where P is the load capacity, fcm is the mean concrete compressive strength obtained from 303 

cylinders; Ag is the gross cross-sectional area of the panel, As is the area of reinforcing steel 304 

and fy is the yield strength of steel.  305 

 306 

 307 

 308 

 309 

 310 

 311 



17 
 

Table 3 Load capacity of the test panels 312 

Concrete Panel 

thickness 

(mm) 

Cylinder 

Compressive 

strength, fcm 

(MPa) 

Original 

panel 

strength 

(Eq. 2), 

kN 

Post-fire 

panel 

strength 

Ptest (kN) 

% strength 

retained,           

Ptest / 

Poriginal 

Mean % 

strength 

retained 

OPC 125 50 3278 1645 50 51.6 

150 45 3529 1873 53 

175 46 4179 2185 52 

GPC 125 46 3029 2146 71 65.6 

150 50 3903 2368 61 

175 42 3830 2500 65 

 313 

The mean cylinder compressive strength corresponding to each panel is given in the Table 3. 314 

For each test panel, area of the reinforcing steel was 339 mm2 and yield strength of steel was 315 

500 MPa. The load capacities of the unheated panels calculated by Equation 2 are given in 316 

Table 3. The percentage of strength retained after exposure to fire is calculated for the panels 317 

by dividing the post-fire load capacity by the calculated original load capacity. The residual 318 

strengths of the two types of concrete panels of the same thickness are also compared in the 319 

plot of Figure 13. It can be seen from Table 3 and Figure 13 that the percentage of original 320 

strength retained by the geopolymer concrete panel is higher than that by the OPC concrete 321 

panel of the same thickness. The failure loads of the geopolymer concrete panels varied from 322 

61% to 71% of the calculated original values and those of the OPC concrete panels were 323 

between 50% and 53% of the original strengths. The reason for higher percentage of strength 324 

retained by the geopolymer concrete panels is attributed to the smaller temperature 325 

differential between the heated and unheated faces than that of the OPC concrete panels. The 326 

smaller temperature differential has caused relatively less internal damage in the geopolymer 327 

concrete panels. It was shown in the previous study [20] that the residual strengths of 328 

cylinder specimens exposed to ISO 834 fire for 2 hours was 17%  and 12% for geopolymer 329 

concrete and OPC concrete respectively. The results obtained for the reinforced concrete 330 
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panels show similar trend to those for the cylinder specimens. However, the percentage 331 

residual strengths of the reinforced concrete panels are much higher than those of the 332 

cylinder specimens. This is because of the presence of steel reinforcement in the panels, their 333 

larger size as compared to the cylinders and the difference in the exposure to fire.  334 

 335 

 336 

Figure 13. Residual strengths of the OPC concrete and GPC test panels 337 

 338 

4. Conclusions 339 

Six 500-mm square reinforced OPC and geopolymer concrete panels of 125, 150 and 175 340 

mm thickness were exposed to fire of up to 960 0C temperature for two hours. The panels 341 

were then cooled down and tested under compressive load. The heat transfer at high 342 

temperature was generally faster in geopolymer concrete panel than in the OPC concrete 343 

panel of same thickness. This resulted in smaller temperature differential in the geopolymer 344 

concrete panels. The damages by cracking and spalling were less in the geopolymer concrete 345 

panels than in the OPC concrete panels. Compression tests of the panels after cooling down 346 

to room temperature showed that the geopolymer concrete panels retained higher percentage 347 

of strength than the OPC concrete panels. The mean value of the percentage strength retained 348 

by the geopolymer and OPC concrete panels was 66% and 52% respectively. The higher 349 

residual strength of the reinforced geopolymer concrete specimens is attributed to the less 350 
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internal damage because of the less temperature differential than in the OPC concrete 351 

specimens. This shows the superior fire endurance of steel reinforced fly ash geopolymer 352 

concrete elements than that of OPC concrete elements.  353 

 354 
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