Copyright © 2005 IEEE

Reprinted from:

2005 3rd IEEE International Conference on Industrial Informatics
(INDIN) Perth, Australia 10-12 August 2005

IEEE Catalog Number ISBN 05EX1057
ISBN 0-7803-9094-6

This material is posted here with permission of the IEEE. Such permission of the
IEEE does not in any way imply IEEE endorsement of any of Curtin University of
Technology's products or services. Internal or personal use of this material is
permitted. However, permission to reprint/republish this material for advertising or
promotional purposes or for creating new collective works for resale or
redistribution must be obtained from the IEEE by writing to
pubs-permissions@ieee.org.

By choosing to view this document, you agree to all provisions of the copyright
laws protecting it.

0-7803-9094-6/05/$20.00 ©2005 |IEEE

2005 3rd IEEE International Conference on Industrial Informatics (INDIN)

Information Engineering of a Software Engineering Ontology

Wongthongtham, P ! Chang, E' and Dillon, T.S.2

!'School of Information Systems, Curtin University of Technology, WA, Australia,
e-mail : (Pornpit. Wongthongtham, Elizabeth.Chang)@cbs.curtin.edu.au
? Faculty of Information Technology, University of Technology Sydney, Australia, e-mail: tharam @it.uts.edu.au@ieee.org

Abstract— In this paper, we describe the preliminary result
of the development and implementation of a Java-based system
for information gathering, knowledge extraction and mainte-
nance of software engineering ontology. The system is capable
of manipulative ontology instances from the information re-
positories and information sources. Design of Software Engi-
neering Ontology through the use of the body of software en-
gineering knowledge together with Prof Ian Sommerville’s
book, as well as project management experiences, has not been
a difficult task. However, the maintenance of the software de-
velopment ontology and security of the Ontology are issues.

Index Terms—Software Engineering Ontology, Ontology
Development.

I. INTRODUCTION

Multi-site software development is where distributed
software development teams reside across geographically
sites [1-4]. Coordination and synchronization of the soft-
ware development and willingness to answer ontological
and technical as well as questions to remote software engi-
neers should be tailored to multi-site distributed develop-
ment teams.

In recent years, the notion of the ‘ontology’ has been
gaining prominence in which according to Gruber’s and
Borst’s definition been merged and explained by Studer and
colleagues [5] ontology is a formal, explicit specification of
a shared conceptualization. A conceptualization abstract
way of understanding of some phenomenon of the world for
which we agree to accept its consensual knowledge.

Ontologies play an important role in many disciplines
e.g. in medical, pharmaceutical, law, etc. as well as they will
do in software engineering field. In this paper software en-
gineering ontology (1) provides a source of explicitly de-
fined software engineering terms that can be used in com-
munication between team members and organizations
across geographical sites and applications e.g. intelligent
agents; (2) offers a consensual shared agreement within
teams; (3) supplies information retrieval concerning the in-
stances pertaining to a certain domain of knowledge.

II. ISSUES IN SOFTWARE DEVELOPMENT

In recent times, as more companies are going global, they
are face with a multitude of problems when it comes to
managing projects that are being developed cross countries.
One of the major hurdles to overcome is the problem of

miscommunication. Miscommunication occurs when devel-
opers have differing ideas of what a single term may mean
or just have differing ideas of what other developers meant
by their email.

One of the areas where miscommunications are predomi-
nant is software engineering. This is because there are a lot
of software engineering textbooks around and most of them
offer differing view on a particular terms or concepts that
are used. This creates lots of confusion for developers when
they are faced with those terms.

II1. SYSTEM KEY FEATURES

Our ultimate goal is to (i) build software engineering on-
tology through the use of the body of software engineering
knowledge [8] together with Professor Ian Sommerville’s
software engineering book [9], (ii) implement Java-based
system for information gathering, knowledge extraction and
maintenance of software engineering ontology. We have
developed a system that embodies this ontology.

Key features of the system include:

a) Fully modular design allows for easy implementation
and maintenance. It also allows us to deploy it on
different server easily and also allows us to use dif-
ferent programming languages to design the inter-
face.

b) Users are able to search through ontology via a sim-
ple and easy to use web interface.

¢) Modifications can be done to the ontology via a sim-
ple and easy to use web interface.

d) Full permissions system allow for administrator to
control user access easily.

e) Modifications pending system allow for project
leaders to easily identify any changes that are done
to the ontology and to easily revert back or reject any
changes that are made.

f) Allow project leaders to start new project and to up-
load new ontology file related to the project via the
web interface.

IV. SYSTEM ARCHITECTURE

The architecture shown in Fig. 1 is design to be as modu-
lar as possible allowing us to easily modify and maintain the
system without any big headaches. We have split the system
into 2 parts i.e. the Ontology Query Server and the User In-
terface Server.

366

Ontology Query Server L]

- Java

- XML

l Query by user
Results in XML) User
Ry, .
w,,(,‘yb 4
2 S,

Query ing andior Modify ing n Ing, User Information
Ontology % !b"«?ﬁ;, Ontology File Index

Ontolowy File

ey SQL Database

Fig.1 System architecture

The Ontology Query Server is responsible for the func-
tions that are related to Ontology e.g. searching through the
Ontology and modifying the Ontology. This is the only por-
tion of the system that interacts with the Ontology. The On-
tology Query Server is written in Java using the JENA
classes and is deployed as a Java servlet allowing multitude
of programs to access it via the web. The result of any que-
ries is in XML format making it easy for programmers to
understand and code for it.

In the current system, we are restricting the access to On-
tology Query Server such that only users with certain privi-
lege can access the modification or delete functions of the
system but this can be easily change such that all of the
available functions can be access by any person through any
programs if necessarily.

The User Interface Server is basically a web server with
scripts written in PHP to interact with the users. This is the
interface that the users interact with and it interacts with da-
tabase to perform account administration and other impor-
tant functions that are needed for the maintenance of the
system.

V. SOFTWARE ENGINEERING ONTOLOGY

In this section we briefly describe the conceptualized
software engineering ontology.

Concepts in an ontology are normally established in tax-
onomies which capture inheritance and aggregation. For in-
stance, in the software engineering domain, concepts are:
software process, requirement, design, development, and
verification and validation. Taxonomy of design entity can
be represented by where object oriented design, real-time
software design, user interface design, and so on are all
subclass of design. The object-oriented design model is an
association of object-oriented design. Class diagram, use
case, etc are components classes of object-oriented design
model.

Relationships represent a type of relationships between
concepts of the domain. For example has model links soft-
ware engineering to model. Each relationship may have an
inverse relationship that links the concepts in the opposite
direction and/or a symmetric relationship that links the con-

cepts in the same direction and/or transitive relation that
links the concepts in the transitive direction. For example
the relationship is ool of is the inverse of has tool,

Instances describe objects or individuals in an ontology.
An example of instance of the concept class in UML is cus-
tomer or driver.

Attributes depict properties of instances and of concepts.
There are two types of attributes which are instance and
class attributes. Instance attributes represent properties of
instances of concepts and take their values in the concept
instances. For example class name is an instance attribute of
the concept class in UML. Class attributes represent in-
stances and take their values in the concept from within
which they are defined. An example is the attribute opera-
tion visibility of the concept operation in UML class dia-
gram that can be used to determine the visibility of opera-
tion of a public, private, and protected operation.

Formal axioms are typically used to specify constraints
in an ontology. They are logical expressions which are al-
ways true. For instance a relationship in a UML class dia-
gram cannot be dependency and association in the same
diagram.

Rules are usually used to infer some knowledge in the
ontology. For example object-oriented design is utilised in
project#1 design, which is implemented using Java lan-
guage.

Reasoning Mechanisms

Generic Ontology

{ Reasonerie Racer l

1

Specific Ontology
Fig. 2 Reasoning mechanism

367

e ook Nare
asserven HErarcuy: (©© 3 5 g £

T oved: Thing

| Object-orientedDesignModel

¥ {CiMultisiteSoftwarsDevelopmentEntity

(C: Abbreviation ROFSCOMMENT:

{C; People

| 3
» (C:Model
I
A 4 @ SoftwareEnginesring

» (CiDesign

{C3Developmert
| i@ReqLi‘emcnt
| 3 @Soﬂware?rocess

Asserted "\\ Inferred i‘;{

ASSERTED CONDITIONS:

| @,‘ Yerification&nd¥alidation

(C} Template

| 3
(CTool C Model
l:: rojectDesign

Fig. 3 A specific ontology (a partial view)

There are a few inference engines available for reasoning
e.g. FaCT, RACER, TRIPLE, etc. but for reasoning with
OWL there are not many inference engines available. We
have adopted RACER for reasoning in our software engi-
neering ontology. Reasoner will permit performing creation
of the automatic classified specific ontology from a generic
ontology based on agreement in that particular project as
shown in Fig. 2. Fig. 3 shows a specific ontology obtained
from reasoning with a generic ontology for that particular
project which utilizes object-oriented design for the project
design. As the OWL ontology allows for multiple inheri-
tances, object-oriented design can be subclass of model and
project design in the specific ontology shown in Fig. 3.
Monotonic reasoning is assumed in OWL. Having said that,
facts obtained by inference engines can only be extended
never reduced and that new information cannot controvert
previous information. In a specific ontology sense, more
recent information concerning a particular project will be
added on the generic ontology.

To be more precise with multi-site software development
environments, every remote team infers a shared generic
ontology. Output of reasoning with a shared generic ontol-
ogy is a specific ontology which will be used by particular
project team members to help clarify information within
their teams etc.

VI. SOFTWARE ENGINEERING ONTOLOGY MAINTENANCE

A scenario where using our system is applicative is when
users are requesting for modifications to the ontology in-
stances. Project leaders need to approve each and every
modification done to the ontology instances, even those that
are considered minute. This places a lot of work on the pro-
ject leaders as they need to identify and go through each of
the modifications before the changes can be committed or
rejected. By using the system, the amount of workload on
the project leaders can be dramatically reduced. This is
done by using system as a safeguard. It is especially useful
as we can leave minor changes (changes that don’t affect
the project in a huge way) approval by system and also use
system to suggest changes that might be helpful to the pro-
ject. The system can also identify whether the changes can
be made and immediately notify the users if a particular

change is considered to be violating certain aspects of the
project and thus reduces waiting time.

By using the system, we can significantly reduce the
amount of workload on the project leaders but we will still
need human intervention for certain changes that are too big
and might have serious repercussions on the projects’ de-
velopment if the changes are made.

Ontology Self-maintenance

The ontology itself will evolve over time as more and
more projects are added into it and corrections are made.
With this in mind, the maintenance of the ontology presents
a challenge to the project leader and team leader.

With a modifications pending system in place, we can
make sure that no changes are made without approval from
the project leader or team leader. By using the pending sys-
tem, we reduce the chances of committing changes that
might be harmful to the project development. Although this
is not a very efficient system, it helps to reduce the amount
of errors that might have otherwise occurred if users have
free reign to modify the ontology instances.

VII. THE PROTOTYPE

Jena [10] provides utilities to allow communication with
the Ontology. The Jena program is the application which
retrieves relevant information for users with the use of a
web GUI, parsing the input data to the Jena program. The
project provides users with 2 kinds of search, a generic
search which displays semantics of software engineering
concepts and a specific search for searching and doing
maintenance functions like add, modify and delete for spe-
cific ontology.

10.1 Generic Ontology Implementation (General Search
Program)

Generic Search is mainly used for displaying search re-
sults only. The main function is to allow users to access re-
trieve and view the knowledge base and acquire the infor-
mation that they are seeking. First the program gets the user
input from the web interface and then finds the class in the
Ontology. If it is not found, an error message will be given
back to the user, which can be customizable using the JSP.
If it is found, the program will display all the properties of

368

that particular class. Another feature of this program is the
ability for it to display the parent class and all the subclasses
of that particular class in a tree format. All the results are
stored in a vector which can be easily accessible for JSP to
manipulate the formatting in web pages. Fig. 4 shows ge-
neric search of computer-aid software engineering concept.

The ion of
ided Joftware

The attributes and ralacionships:

The subclasses:
Tool 4

] £i
i1{CaseTachnolosy

111 |Workbanches

11111 Progranning
11111)Cenural-purpossWorkbanches
111111 Lanugage-speci ficWorkbenches
1111 1AnalysisAndDesign 1
[111115ingle-nethodWorkbenches
FLELT [Bulti-nechodWorkbenches

L1 L Testing 1

CASE technology provides software process support by sutomating some process activiti

Parent Class

Fig. 6 shows output example A, B, C, and D. Example A
shows a failed attempt at updating the student instance be-
cause the value of object class name is invalid. The pro-
gram recognizes a different value and terminates the process
and then gives the user an error message and advises the
user of correct methods of adding. Example B is the same

(CASE) is the name given to software used to support softuare process activities such as

about &

and by ai

SE Ontolegy Definition

11 {Bnvironuencs
11111 IntegracedEnvir onmencs

Subclasses display to be
transferred te web server,

(RARN
1111Tools
LU L IFilaConparators

v

formatted and represented in HIML
format

11111 Bdizors
IlitiCompilers 1
{1FuncrionalClassitication0tTools
[11FCPrototypingTools

} LIFCPlanningToals

11 17ChocunencationTools
111¥CContiguraciondanagenencTools
111 FCProgranknalysisTools

111 FChebuggingTosls

111 FCReengineeringTools
111FCHechod~-supporsTools

I11FCLanguage-processingTools
I IECEBditingTools

Next slide will show editing touls)

I11PCTescingTools
11 IFCChangeNanagenentTools

Fig. 4 Raw output of generic ontology from Java console of computer-aided software engineering

In the following example shown in Fig. 5 FCEditing-
Tools does not have any definitions defined therefore the
field is empty. The purpose of this example is to show the
program’s ability to display the instances (examples) of the
particular searched class.

theans IDE 3.6 - Project Default
File Edit View Project Build Debug Yersioning Tools Window Help

BB PD XBLTDC 88 B b

Output
Text_Driver - IO | Compiler -

The definition of FCEditingTools:

Text Editors

Diagram Editors 4—(Examples of editing tnolsj

Word Processors

The subclasses:
FunctionalClassificationOfTools
JFCEditingTools

Fig. 5 Instance ontology output from Java console.

10.2 Specific Ontology Implementation (Add, modify, De-
lete)

Specific Ontology program allows software engineers in-
volved in a certain project to access that project with the
ability to search within the project. With authorized access,
the engineers will be able to add, modify or delete in-
stances/individuals and property values of them. All the
standards like unique individual names, class names are
taken into account and the program will detect such errors
and prompt the users with relevant error messages.

as A except in this case the value of object class name is
validated and therefore the updating process can be com-
pleted successfully. Example C shows an invalid input with
new value, which is the student age. It is not a valid attrib-
ute instance in the ontology, therefore the validation fails
and the program gives error messages. Example D contains
valid new value, DOB.Customer which is an attribute in-
stance in the ontology. Therefore the updating process is
completed successfully.

Fig. 7 shows examples of add, modify and delete of on-
tology instances and properties. With a given scenario to
each example, it helps to give meanings to why the instance
or property is needed to be updated or deleted. Example A
shows the insurance registered driver is not needed in the
ontology and therefore a delete instance operation is carried
out. Example B proposes that a new operation is needed to
record customers who have been with them for more than 5
years so in the near future they can carry out loyalty rewards
for these customers. In order to do these, a new operation
instance has to be added called ViewVIP.Customer which
displays a list of loyalty customers who have been with
them for more than Syears. After creating a new instance,
there is no property added yet, therefore new properties
need to be added. Example C shows the addition of the op-
eration name. After reviewing, the manager decides to re-
move “ViewCustomer.Customer” operation property from
Customer instance because there is another operation which
serves the same purpose as shown in Example D. These are
a few examples of the operations that are available.

369

‘flle‘ Edit View Pr?)e(t sloi:dm Tools ’Wndow Help
Bo®&e Lo dde 08 B b Hs = EhdledshaBE

b Text_Driver = ;

@ main . S B ee L e & e B &
ystem.out .printin{ Trying ©o modiiy: \tindividual: Student\tinstance Actribace: ObjectlliassName\tild Value: asditiew Value: Accesz™)7
soo.properties Rdd Mod(“Student", "Objectil il e b <+ Example A

System.out.printlni{“Failed attempt because the Individual:Student doe=s not have a attribute:DbjectClassName with asd as its value.");
System.out.println(*inTrying to modify:\itIndividual: StudentitInstance Atvribuce: ObjecrClassHameicOld Value: StudentitNew Valus: Access
soo.properties_Rdd Mod("Student", "ObjectClassName’, "Scudent”, "Studenchriver”)

System.out.println{“Succassful attempt becauss the atcribute:UObjectClassName does contain an existing value Student.”);
System.out. . printla(“inTrying to modify:\tIndiwid StudencitIinstance Attribute: haslAtrributeitOld Value: malli'cNew Value: Zcudentige”)
soo.properties_Rdd Mod(”3tudent', “hasittribuce® " » Age®): < Exanmple C

System.out .println(“Failed attempt as the empry field depices adding a new relatiomship, but Studsntligs 15 not a walid Individual that e
System.out .println("InTrying to modify:itindividual: StudencitInstance Attribute: hasltrribuce)tOld Value: mulllcNew Walue: DOE.Customer
soo.properties_Rdd Mod(’Student®, “hasAtcribute” “* "DOEB.Cust LS TR Example D

System.out_printini puccessful acteupt as the empty field depicts adding a new relationship, and DOB.Customer is a valid Individual that

s iiws

: Output

| Compiler | Text_Driver - 11O |

Trying to modify: Individual: Student Instance Attribute: ObjectClassName 0ld Value: asd New Value: Access .
No such property walue, therefore cannot carry out modify operation!
Failed attempt because the Individual:Student does not have a attribute:ObjectClassName with asd as its valua. Example A

Trying to modify: Individual: Student Instance Attribute: ObjectClassName 0ld Value: Student Hew Value: Accass
ObjectClassName

Original: Student NewValue: StudentDriver

ful attempe tha attribute:ObjectCl does tain an existing value .
Trying to modify: Individual: Student Instance Attribute: hasAttribute Old Value: null New Value: Studentige

Relationship cannot bae added as such individual does not exist in the Ontology!
To solve this problsm, add such an individual into the Ontology before adding the relationship.
Failed attempt as the empty field depicts adding & new relationship, but Scudentige is not & valid Individual that exist in Attribute Class.

Trying to modify: Individual: Stcudent Instance Actribute: hasAttribute 0ld Value: null New Value: DOB.Customer

hasAttribute Example D

New walue added: DDB.Customer
Successful attempt as the empty field depicts adding a new relationship, and DOB.Customer is a valid Individual that exist in Attribute Class.

Fig. 6 Backend ontology maintenance, validations of new property of software engineering ontology instance.

s IDE 3.6 - Project Default
Edit View Project Build Debug Versioning Tools Window Help

RO@B®Pe XaBAFIEC ALY B P BHhawsPodas B

[@ Text Driver x:

Specific_Ortology_Object x> &

% aM ew L .

@ main

s00.delete Individual ("InsuranceRegisteredDriver”); +% (Exanple A: Delete lnstance)
System.out.println("I aw proposing we add a new operation which will display all the customers who have more then Syears of rental histox
System.out.println(“In this way we ca&n Carry out campaigns like gift wouchers, loyalty rewards, etc.in”);

soo.individual Rdd Mod("Operation”,“ViewVIP.Customezr”); € {Example B: Add Instance)

soo.properties Rdd Mod("ViewVIP.Customexr", "OperationName” , "", "WiewVIP").; 4 { Example C: fidd Property)

sooc.properties RAdd Mod (“VieawVIP.Cuscomer", “GerParameter®, “*, “Enter number of years before a customer becomes a VIP:"):
soo.properties_Rdd_Mod("Customer®, “HasOparation®,””,“ViewVIP.Customer");

System.out println{“inilsc I've proposed to delete View. Customer as view the operation View. Cust ss.x , Search.Customer
soo.delete_Property("Customer"”, "ViewCustomer.Customer®); 4 (Example D: Delete Property)

soo.delete_Imdividual {“ViewCustomer. Customer);
soo.writeToFile ("cutput.owl"”}) ;

< s e

47:3 INS,

: Output

{ Compiler | Text_Driver - 11O |
I think the system will be simplsr for paople to understand if we delaste the insurance registered driver.
InsuranceRegisteredDriver delsted. { Example A

I am proposing we add a new operation which will display all the customers who have more then Syears of rental history with us
In this way we can carry out campaigns like gift s, loyalty , ete.

New invidual added: ViewVUIP. Customer to Class: Operation { Example B ’
OperationName
New walue added: ViewVIP fExampIe c

GetParameter

New walue added: Enter number of years before a customer becomes a WIP:
hasOperation

New walue added: ViewVIP.Customer

Also I've proposed to delete View.Customer as view the operation View.Cu as r Search.Cust similair operation.

Deletion of Customer:ViewCustomer.Cust ful! : Example D ’

ViewCustomer.Customer deleced.

Fig. 7 Backend ontology maintenance (add, delete, modify) of software engineering ontology instance.

;;fz:a:;:w:ﬁmui;::? e which will then return a list of results with definitions for
the user.

Fig. 9 shows the specific software engineering search in-
terface which allows the user to search through particular
project ontology and to have more control over their search
in respect of the particular class or type that they want to
search for. Additionally, it allows the user to add a new on-
. : . tology instance and also a property. Users are also able to
Fig. 8 shows the generic search screen that user will see modify and delete any properties that they think are not use-

when they first visit the website. A user can key in the) for the project. All of the actions are subject to the rule
search terms they want to search for in the search field

Beneric Search sumens s

Errvour searchen |

Fig. 8 Generic software engineering ontology search interface

370

that the user has the permission to modify or delete the on-
tology in the particular project. With the use of web inter-
face, we hope that we can reduce the learning curve and
also be able to implement this system on a wider scale.

Software Engineering ontology Search
Start Search | Help | Contact Us [Login |

Specific Search sutc o genwis sewch

Select the ontology o use |

You are now fetching fron: ObjectClassDingram.owl

Copy and paste your full text in here

Highlighted Text

Select a word from the fop and select a type:
n3a_reiationshin

tas_afdute

hag_aperatien

Fig. 9 Specific software engineering ontology search interface

VIII. CONCLUSION

This project was developed to reduce the miscommunica-
tions problem that might occur and to also allow a way for
project leaders to have a better understanding of the project
and to allow project members to be able to communicate
much more efficiently with one another even if they are not
situated in the same location. This is done through using an

371

ontology and a web interface with which, the project mem-
bers can query, retrieve and modify information from the
ontology instances.

IX. REFERENCES
[1]1 Chang, E., et al. Ontology based solution proposal for multi-site
distributed software development. in Proceedings of the 16th Inter-
national Conference on Software and Systems Engineering and
their Applications. 2003. Paris, France.
Wongthongtham, P., E. Chang, and T.S. Dillon. Intelligent commu-
nication through software agent and ontology for multi-site soft-
ware engineering. in Proceedings of the 3rd International Work-
shop on Software Engineering for Large-Scale Multi-Agent Sys-
tems. 2004. Edinburgh, UK.
Wongthongtham, P., E. Chang, and T.S. Dillon. Methodology for
multi-site software engineering using ontology. in Proceedings of
the International Conference on Software Engineering Research
and Practice. 2004. Las Vegas, USA.
Wongthongtham, P., et al. Software Engineering Ontologies and
their Implementation. in The IASTED International Conference on
SOFTWARE ENGINEERING, February 15-17.2005. Innsbruck,
Austria.
Studer, R., B. VR, and D. Fensel. Knowledge Engineering: Princi-
ples and Methods. in IEEE Transactions on Data and Knowledge
Engineering. 1998.
Costello, R.L. and D.B. Jacobs, 'OWL Web Ontology Language’,
2003, The MITRE Corporation.
Lacourba, V., ‘Archive of W3C News in 2004, 2004.
Arban, A., Moore, J., Bourque, P., Dupuis, R.L., Tripp, L. Guild to
the Software Engineering Body of Knowledge - SWEBOK. in IEEE-
Computer Society Press, May 2001, URL:http://www.swebok.org.
Sommerville, L. "Software Engineering’, 2004: Addison Wesley.

[3]

41

(51

[6]

(71
[8]

[9]
[10] Carroll, J.J., et al., Jena: Implementing the Semantic Web Recom-
mendations. 2004, Digital Media Systems Laboratory, HP Laborato-

ries Bristol.

