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ABSTRACT 

Most amplitude versus offset (AVO) analysis and inversion techniques are based on the 

Zoeppritz equations for plane-wave reflection coefficients or their approximations. Real 

seismic surveys use localized sources that produce spherical waves, rather than plane waves. 

In the far field, the AVO response for a spherical wave reflected from a plane interface can be 

well approximated by a plane-wave response. However this approximation breaks down in 

the vicinity of the critical angle. Conventional AVO analysis ignores this problem and always 

utilises the plane-wave response. This approach is sufficiently accurate as long as the angles 

of incidence are much smaller than the critical angle. Such moderate angles are more than 

sufficient for the standard estimation of AVO intercept and gradient. However, when 

independent estimation of the density is required, it may be important to use large incidence 

angles close to the critical angle, where spherical wave effects become important. For the 

amplitude of a spherical wave reflected from a plane fluid-fluid interface, an analytical 

approximation is known, which provides a correction to the plane-wave reflection 

coefficients for all angles. For the amplitude of a spherical wave reflected from a solid/solid 

interface, we propose a formula which combines this analytical approximation with the 

linearised plane-wave AVO equation. The proposed approximation shows reasonable 

agreement with numerical simulations for a range of frequencies. Using this solution, we 

constructed a two-layer three-parameter least-squares inversion algorithm. Application of this 

algorithm to synthetic data for a single interface shows an improvement compared to the use 

of plane-wave reflection coefficients. 
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INTRODUCTION 

 

Most AVO analysis and inversion techniques are based on the Zoeppritz equations for plane-

wave reflection coefficients or their approximations. Real seismic surveys use localized 

sources that produce spherical waves, rather than plane waves. AVO response for a spherical 

wave reflected from a plane interface differs from that for a plane wave, especially for angles 

close to or beyond the critical angle (Červený 1961; Červený and Ravindra 1971; Krail and 

Brysk 1983; Winterstein and Hanten 1985; Alhussain et al. 2008; Skopintseva et al., 2009). 

 

There are some important differences between plane and spherical waves. First, amplitude of 

a spherical wave varies with the distance from the source, whereas the amplitude of a plane 

wave in a homogeneous medium is constant. The amplitude decay for spherical waves is 

called geometrical spreading and its effect can be accounted for. Second, a spherical wave 

can be seen as an integral over a range of plane-waves with different ray parameters and 

directions. Third, the response of a spherical wave depends on the frequency content of the 

seismic wave (Ursenbach et. al. 2007). 

 

Figure 1 shows real part of reflection coefficients versus angle of incidence (AVA curves) 

computed using the Zoeppritz equations, Thomsen approximation and the exact numerical 

solution for Model A shown in Table 1. The amplitudes extracted from the numerical 

solution were corrected for geometrical spreading. The critical angle for this model is 56.44˚. 

At least three observations can be made from this figure. First, AVO curves of the plane-

wave exact solution and its approximation coincide with those of a full elastic wave at angles 

well below the critical angle. Second, AVO responses of the plane wave and its 



 

 

 

approximation deviate significantly from the response of the full elastic wave at the vicinity 

of the critical angle. Finally, the full elastic responses are frequency dependent.   

 

It was shown by Alhussain et al. (2008) that the AVO inversion for two parameters (P-wave 

and S-waves impedance) using the Zoeppritz equations over short offset is robust. However, 

inversion for three parameters (density ρ, P-wave velocity PV  and S-wave velocity SV ) is 

unstable and the results depend on the frequency at wide angles.  Downton and Ursenbach 

(2006) showed that use of the critical angle improves accuracy of the computed densities for 

inversions using the Zoeppritz equations.  

 

Recently, Ursenbach et al. (2007) developed an approach that accounts for the spherical wave 

AVO effects. Unlike the Zoeppritz equations for plane waves, the reflected amplitude for 

spherical waves is represented by a double integral over frequency and wavenumber. For 

scalar potential of the PP reflected wave,  the wavenumber integral has the form (Aki and 

Richards 1980) 
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In equation (1), A is a scaling factor, ω is the frequency, t is the time, p is the horizontal 

slowness, ζ is the vertical P-wave slowness in the upper layer, R is the plane-wave PP 

reflection coefficient, 0J  is the zero-order Bessel function, x is the horizontal receiver 

coordinate (source-receiver offset), h and z are the vertical coordinates of the source and 

receiver, respectively (the interface is assumed to be a z=0 plane). In order to obtain the 

displacement from this equation, a gradient with respect to the receiver position is computed 



 

 

 

and weighted by the wavelet. Finally, an inverse Fourier transform is performed. These steps 

yield the displacement time trace observed at the receiver, from which we can extract AVO 

information (Haase 2004; Ursenbach et. al. 2005). 

 

Spherical wave AVO inversion requires these computations to be repeated multiple times in 

an iterative fashion, making the procedure computationally expensive. Ursenbach et al. 

(2007) simplified these computations by using an analytical form of the source wavelet, 

which allows integration over the frequency to be done analytically and numerical integration 

over the wavenumber to be optimised.  

 

An alternative approach is to use analytical approximation for the reflection coefficient for 

spherical waves. Such an approximation can be obtained from a high-frequency asymptotic 

expansion of the integral in equation (1). The leading (zero-order) term in this asymptotic 

approximation for the amplitude of a reflected spherical wave can be written as   /R r  

where R is the plane-wave reflection coefficient for an incidence angle   and r is the length 

of the ray path from the source to the receiver. The next (first-order) approximation can be 

written as     21/ /R r B kr  , where k is the characteristic wavenumber and B is a 

dimensionless quantity of order 1 (Červený and Ravindra 1971; Brekhovskikh and Godin 1999). 

For typical situations in petroleum seismology, P-wave velocity VP > 3 km/s, central 

frequency f>30 Hz and r>2 km, so that 
P2 / 120kr fr V  . Thus, the term   2/B kr  is 

less than 0.01 of the zero-order term 1/ r . This means that the zero-order approximation 

  /R r  is very accurate and the first-order corrections are only important for near-surface 

applications. 

 



 

 

 

However, numerical simulations and theoretical analysis show that the ray theory 

approximations described above break down in the vicinity of the critical angle. Furthermore, 

in the vicinity of the critical angle, the spherical wave correction is of the order (kr)-1/4, and 

therefore is important for much larger values of kr than the first-order correction B(kr)-1 

(Červený and Ravindra 1971; Brekhovskikh and Godin 1999). The behavior of the spherical-

wave reflection coefficients in the vicinity of the critical angle was analysed by Červený 

(1961), who proposed an analytical approximation to account for these effects. In this 

approximation,  the reflection coefficients below and above the critical angle are described by 

two different expressions. A more compact form of this approximation for a fluid/fluid 

interface was proposed in Brekhovskikh and Godin (1999). In this paper we propose a 

heuristic extension of the latter approximation to solid/solid interfaces and explore its 

applicability to long-offset AVO analysis. 

 

First, we describe an analytical approximation for a spherical-wave reflection coefficient for 

a plane fluid/fluid interface. Then, for a solid/solid interface, we combine this approximation 

with a weak-contrast approximation for plane-wave reflection coefficients. The combined 

approximation for the solid case is then computed for a number of models and compared with 

the numerical solution. Finally, using this solution, we construct a two-layer, three-parameter, 

least-squares inversion algorithm and demonstrate its performance using a simple synthetic 

example. 

 

Our analysis is limited to reflection from a plane interface between two homogeneous and 

isotropic solids. Another factor that may complicate AVO analysis is the curvature of the 

interface itself (Ayzenberg et al., 2009; Skopintseva et al.; 2010). Analysis of this effect is 

beyond the scope of the present paper.  



 

 

 

 



 

 

 

ANALYTICAL EXPRESSION FOR A FLUID/FLUID INTERFACE 

 

Brekhovskikh and Godin (1999) showed that the reflection coefficient for a spherical wave 

reflected from an interface between two fluids with sound velocities P1V  and P2V  and 

densities 1  and 2  can be approximated as a sum  

   

  1 2fR V p   ,     (2) 

 

where the regular part  1V  of the reflection coefficient is given by  
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with 12 m , P2P1 VVn   and sinq . In turn, the ‘singular’ part 2p  (the part with a 

singularity at the critical angle in the high-frequency limit) is 
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where   is the angle of incidence,   is the critical angle, k is the wavenumber in the upper 

layer, 1R  is the distance between the image source in the lower layer and the receiver, and 



 

 

 

2

1D  and 
2

3D  are parabolic cylinder functions (Abramowitz and Stegun 1965; Olver et al. 

2010; Daley 2001). Quantities u and A are given by  
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and 
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Figure 2 shows the real part of reflection coefficient versus the incidence angle curves 

obtained from synthetic seismograms for an acoustic wave reflected from a single interface 

between two fluids with sound velocities 1500P1 V  m/s and 2000P2 V  m/s, and densities 

11   g/cm3 and 22   g/cm3. The point source and receiver were 500 m above the 

reflector and the source wavelet was the Ricker wavelet with central frequency of 50 Hz. The 

seismograms were computed using Kennett’s reflectivity method (Kennett 1979) and then 

corrected for normal moveout (NMO) using known overburden velocity P1V  and for 

geometrical spreading. Then, the amplitude on the zero offset trace was picked at the time T0 

of the maximum of the wavelet. On all other traces the amplitude (total displacement) was 

picked at the same time T0 (since after NMO correction the reflected waves are supposed to 

have the same arrival times on all traces). It is shown in Appendix A that the amplitudes so 

picked correspond to the real part of the complex reflection coefficient. Also shown are the 

real parts of the plane wave reflection coefficient and of the spherical wave approximation 



 

 

 

computed with equations (2)-(6). We see that the spherical correction greatly improves the 

match with the synthetic amplitude versus angle (AVA) curve around the critical angle. 

 

 

ANALYTICAL APPROXIMATION FOR A SOLID/SOLID INTERFACE 

 

Analytical expressions 2-6 are for a fluid/fluid interface, and thus are not particularly useful 

for practical AVO analysis in geologic media. Similar expressions for a solid/solid interface 

are known, but the expressions are very complicated (Červený 1961). Alternatively, we can 

try to adopt a curvature correction to a linearised approximation widely used for plane-wave 

AVO. 

 

In case of small contrasts between properties of two solid media, the PP plane-wave 

reflection coefficient for an interface between these media can be written as (Aki and 

Richards, 1980; Thomsen, 1990)  
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where Z denotes acoustic impedance, 2

SVG   is the shear modulus,   the is average of the 

incidence angle and the refraction angle, and 
x

x
 denotes relative contrast in the property x 

between the media 1 and 2. Equation (7) can be rewritten in the form    
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where  fR   is the linearized approximation for the plane-wave reflection coefficient from 

an interface between two fluids with the same P-wave velocities and densities as in the two 

solid layers (see e.g., Chapman 2010). To account for the wavefront curvature, we propose to 

replace the plane wave coefficient for a fluid/fluid interface,  fR  , with the spherical wave 

reflection coefficient given by equation (2),  

   

2

2S

1 2
P

1 2
sin

2

V G
R V p

V G
 

  
    

 
   (9) 

with 1V  and 2p  given by equations (3) and (4), respectively. 

 

Equation (9) is our new heuristic approximation. By construction, it coincides with the 

Brekhovskikh-Godin approximation for a fluid/fluid case, and with the plane-wave lineraised 

AVO approximation in the far-field limit. In other cases it requires numerical testing to 

determine its accuracy, To this end, AVO curves were extracted from synthetic seismograms 

(computed by the reflectivity method) for various models shown in Table 1 using the Ricker 

wavelet with frequencies of 30Hz, 50 Hz and 80Hz, at a depth of 500 m. Corresponding 

AVO curves were also computed using the plane-wave Zoeppritz equations and the Thomsen 

(1990) approximation, equation (7) and our proposed spherical wave approximation, equation 

(9). Figure 3 a-g shows the real part of the reflection coefficient along with the real part of the 

amplitude obtained from synthetic seismograms. Provided the contrasts in elastic parameters 

between upper and lower layers are small, our approximation is in a good agreement with 

synthetic data. When the contrast between the two media is large, the quality of the 

approximation deteriorates. To be more specific, our approximation provides very good 

results even if the contrast in VP is large. When the contrast in VS is large, however, Zoeppritz 

equations provide better results in near offset. This is expected as our approximation is based 

on the Thomsen approximation, which is only valid for small contrast. Hence, the inversion 



 

 

 

results using the proposed method are expected to be the same or better than those based on 

the linearised Zoeppritz equations. Importantly, the inversion will not be limited to the data 

below the critical angle. 

 

One can also observe from Figures 3 (a-i) that our approximation produces slight oscillations 

of the reflection coefficient with angle in the post-critical domain. This phenomenon has been 

nicely examined by Červený (1961), who showed these oscillations are the result of the 

interference of the post-critical reflected wave (in the narrow sense of the word) with the 

refracted wave (see also Ayzenberg et al. 2009). Our numerical data, however, do not appear to 

show any oscillations. As noted by Skopintseva et al. (2010), this may be the result of the fact 

that the numerical modelling was done for a pulse containing a range of frequencies, rather 

than a single frequency. Since seismic exploration is performed using narrow-band signals 

(no more than one decade in frequency), our single-frequency approximation is still adequate 

and constitutes an improvement over the use of plane-wave reflection coefficients, which 

correspond to the infinite frequency limit of the spherical-wave reflection coefficient. 

However our approximation is only valid as long as the two events form an interference 

pattern (Červený 1961). 

 

INVERSION EXAMPLE FOR A SINGLE PLANE INTERFACE 

 

It is clear from many earlier studies (Červený and Ravindra 1971; Ursenbach et al. 2007; 

Alhussain et al. 2008; Ayzenberg et al. 2009) as well as from our examples that the spherical 

wavefront curvature effects are only important at long offsets, close to or beyond the critical 

angle. These large angles are unnecessary for standard two-parameter AVO analyses, but 

may be important for three-parameter inversions, when independent recovery of P- and S-



 

 

 

wave velocities and density is desired (Lines 1999; Li 2005; Downton and Chaveste 2004). 

To test how our approximation performs for this purpose, we have developed a simple least-

squares three-parameter non-linear inversion procedure for a single plane interface. The 

algorithm (similar to the one described by Alhussain et al. 2008) assumes that the properties 

of the upper layer (medium 1) are known, and attempts to find the properties of the bottom 

layer (medium 2). The algorithm attempts to estimate P- and S-wave velocities and density of 

medium 2 by fitting the AVA curve extracted from our 50 Hz synthetic data for Model A 

(Table 1) using the exact Zoeppritz equations, Thomsen’s approximation and the spherical 

wave approximation, equation (9).  

 

The inversion is based on an unconstrained nonlinear optimisation that starts from an initial 

model and then tries to find the minimum of a scalar function of several variables. This 

optimisation utilises the Nelder-Mead simplex algorithm developed by Lagarias et al (1998) 

and implemented in Matlab. We use this algorithm to find elastic parameters of the lower 

layer such that the difference between the synthetic AVO curve and the AVO curve 

computed by our approximation is the minimum. The errors in estimated parameters were 

computed using the equation 

 

_ _
(%) *100

_

Actual Value Inverted Value
Error

Actual Value


 .    (10)  

 

The percent error in estimating P2V , S2V  and 2  as a function of the offset range is shown in 

Figure 4 for noise-free data. Figure 5 shows the same result but for the case where random 

noise was added to the seismograms before extracting the amplitudes (the signal-to-noise 

ratio was 2). We see that for the noise-free data all the algorithms provide accurate 



 

 

 

estimations of all elastic parameters, and moderate angles (below 45 degrees) give best 

results. The use of a broader offset range increases the error in the inversion based on 

Zoeppritz equations and their linearised approximation due to the distorting effect of 

wavefront curvature. However, in the presence of noise, use of a limited offset range results 

in large random errors and the use of long offsets becomes important. For those large offsets 

and angles, the use of plane wave reflection coefficients results in systematic errors due to 

wavefront curvature effects. In these cases our spherical curvature approximation provides a 

more accurate and robust inversion result. 
 

 

 

CONCLUSIONS 

 

For three-parameter AVO inversion it may be beneficial to use angles close to the critical 

angle, where spherical wave effects become important. These effects can be taken into 

account using a known asymptotic approximation based on parabolic cylinder functions. This 

approximation has a relatively simple form for a plane fluid-fluid interface. For a plane solid-

solid interface, we have proposed a heuristic formula that combines this known acoustic 

approximation with the low-contrast (linearised) plane-wave AVO equation. Predictions of 

this heuristic approximation show a reasonable agreement with numerical simulations when 

the S-wave velocity contrast between the two media is not too large. Use of this solution in an 

iterative two-layer, 3-parameter inversion for a single plane interface gives more robust 

estimates than the standard plane-wave AVO inversion algorithm. 
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Appendix A. 

Let ( )f t  be a real and symmetric incident wavelet, and ( )F   its Fourier transform (FT). If 

( )f t  is symmetric about time 0t   (zero-phase) then ( )F   is real and symmetric. Let 

( ) ( ) ( )R A iB     be the complex and frequency-dependent reflection coefficient at a 

given angle of incidence. Note that since the reflected signal is the convolution of the incident 

wavelet with the inverse Fourier transform (FT-1) of the reflection coefficient,  1 ( )FT R   

must be real. It follows that ( )A   must be symmetric and ( )B   antisymmetric functions of 

 . Then, the Fourier transform of the reflected wave is  

( ) ( ) ( ) ( ) ( ) ( ) ( )G R F A F iB F         .     (A1) 

Then the reflected wave in the time domain ( )g t  is the inverse Fourier transform of ( )G  , 

   1 1( ) ( ) ( ) ( ) ( ) ( )g t FT G FT R F a t b t           (A2) 

where  1( ) ( ) ( )a t FT A F   and  1( ) ( ) ( )b t FT iB F  . 

 

Note that since ( )A   is real, its inverse Fourier transform ( )a t  is symmetric (even function). 

At the same time, ( )iB   is pure imaginary, and thus ( )b t  is antisymmetric (odd function) 

about time 0t  . Therefore, (0) 0b   and  

 1

0

1
(0) (0) ( ) ( ) ( ) ( )

2t
g a FT A F A F d    
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Thus, the amplitude of the reflected wave at 0t   is defined by ( )A  , the real part of ( )R  . 

Furthermore, if ( )A   does not vary very much within the frequency range of the wavelet, 

then within this range we can approximate it by its value at the central frequency of the 

wavelet 
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Thus the amplitude of the reflected wave at 0t   equals the amplitude of the incident wave 

times the real part of the reflection coefficient at the central frequency of the wavelet. 

 

Note that this analysis rests on three assumptions: 1) the wavelet is zero-phase, 2) the event is 

picked at zero time (i.e, the time of the maximum at zero offset after NMO), and 3) the real 

part of the reflection coefficient does not vary very much within the frequency range of the 

wavelet. 

 

To obtain the absolute value of the reflection coefficient from seismograms, we must pick the 

maximum of the envelope. Comparison of this maximum against the absolute values of the 

plane-wave and spherical-wave approximations is shown in Figure 6 (for Model A). One can 

again see a reasonable agreement between the numerical results and our heuristic 

approximation, equation (9). 
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Table 1: Properties of two solid media in the synthetic models. 



 

 

 

Table 1: Properties of two solid media in the synthetic models. 

 

 Depth (m)  Vp (m/s) Vs(m/s) Density (g/cm3) 

Model A 

500 Upper Layer 2500 1200 2.00 

Lower Layer 3000 1300 2.20 

Model B 

500 Upper Layer 2000 1200 2.00 

Lower Layer 3000 1300 2.20 

Model C 

500 Upper Layer 1500 1200 2.00 

Lower Layer 3000 1300 2.20 

Model D 

500 Upper Layer 2500 1200 2.00 

Lower Layer 3000 1700 2.20 

Model E 

500 Upper Layer 2500 1200 2.00 

Lower Layer 3000 2000 2.20 

Model F 

500 Upper Layer 2500 900 2.00 

Lower Layer 3000 1300 2.20 

Model G 

500 Upper Layer 2500 1500  2.00 

Lower Layer 3000 1300 2.20 

Model H 1000 Upper Layer 2500 1200 2.00 

Lower Layer 3000 1300 2.20 

Model I 1500 Upper Layer 2500 1200 2.00 

Lower Layer 3000 1300 2.20 

 



 

 

 

 

FIGURE CAPTIONS 

Figure 1. Real Components of reflection coefficientscomputed using the Zoeppritz equations, 

Thomsen approximation and full elastic Model A with parameters shown in Table 1. Note the 

discrepancy in AVO response in the vicinity of critical angle. Also, note the frequency 

dependence of spherical wave responses. 

 

Figure 2. Comparison of real components of reflection coefficients computed from synthetic 

data (blue), Zoeppritz equations (black) and the spherical wave analytical solution at the 

fluid-fluid interface (red). 

 

Figure 3. Comparison of real components of reflection coefficients computed from synthetic 

data, and given by the Zoeppritz equations, Thomsen’s linearised approximation, and the 

proposed spherical wave approximation at an interface between two media with parameters 

corresponding to Models A-I (Table 1). 

 

Figure 4. Error in estimating P2V (a), S2V  (b), and 
2 (c) in 3-parameter inversion of synthetic 

angle dependent reflectivity (d). 

 

Figure 5. Error in estimating P2V (a), S2V  (b), and 
2 (c) in 3-parameter inversion of synthetic 

angle dependent reflectivity with 50% added white noise (d).  



 

 

 

Figure 6. Same as Figure 3a but for absolute values of the reflection coefficients. ‘Synthetic’ 

refers to amplitude of the envelope of the reflected wavelet. 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

Figure 1. Real components of reflection coefficients computed using the Zoeppritz equations, 

Thomsen approximation and full elastic Model A with parameters shown in Table 1. Note the 

discrepancy in AVO response in the vicinity of critical angle. Also, note the frequency 

dependence of spherical wave responses. 

 

 

 

Figure 2. Comparison of real components of reflection coefficients computed from synthetic 

data (blue), Zoeppritz equations (black) and the spherical wave analytical solution at the 

fluid-fluid interface (red). 
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Figure 3. Comparison of real components of reflection coefficients computed from synthetic 

data, and given by the Zoeppritz equations, Thomsen’s linearised approximation, and the 

proposed spherical wave approximation at an interface between two media with parameters 

corresponding to Models A-I (Table 1). 
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Figure 4. Error in estimating P2V (a), S2V  (b), and 
2 (c) in 3-parameter inversion of synthetic 

angle dependent reflectivity (d). 



 

 

 

 

 

 

Figure 5. Error in estimating P2V (a), S2V  (b), and 
2 (c) in 3-parameter inversion of synthetic 

angle dependent reflectivity with 50% added white noise (d).  



 

 

 

 

 

Figure 6. Same as Figure 3a but for absolute values of the reflection coefficients. ‘Synthetic’ 

refers to amplitude of the envelope of the reflected wavelet. 

 


