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Variable Fractional Delay FIR Filter Design with
Bi-criteria and Coefficient Relationship

Hai Huyen Dam

Abstract—This paper investigates a trade-off between the
integral squared error and the peak deviation error for a
variable fractional delay (VFD) filter with coefficient re-
lationship. The integral squared error is minimized sub-
ject to additional constraints on the peak deviation error.
The problem is solved by utilizing the second-order cone
programming (SOCP). In addition, the performance of the
VFD filter with discrete coefficients is investigated where
the filter coefficients are expressed as the sum of power-of-
two terms to reduce the filter operations to shifts and adds.
Design examples show that the peak deviation error can be
reduced significantly from the least squares solution while
maintaining approximately the same integral squared error.
Similarly, the integral squared error can be reduced signifi-
cantly from the minimax solution while maintaining approx-
imately the same peak deviation error. Also, the trade-off
filters are less sensitive with respect to quantization than
the least squares and minimax solutions.

I. Introduction

Digital filters with tunable fractional phase-delay or frac-
tional group delay, referred to as variable fractional delay
(VFD) filters, are useful in various signal processing ap-
plications [1]-[8]. A range of applications have been con-
sidered, including timing offset recovery in digital receivers,
comb filter design, sampling rate conversion, speech coding,
time delay estimation, one-dimensional digital signal inter-
polation and image interpolation. The VFD filters belong
to a branch of variable digital filters that are applicable in
applications in which the frequency characteristics need to
be adjustable, and are generally implemented by the Far-
row structure [1], in which a parameter is used to control
the delay online without redesigning a new filter.

In [6]-[7], a symmetric/antisymmetric coefficient rela-
tionship is developed for VFD FIR filter coefficients to re-
duce the number of design coefficients to about half of the
original design. In [8], another coefficient relationship is
introduced to enable the number of design coefficients to
be further reduced by half. In all cases, the VFD filters
are designed using a least squares criterion [7]-[8] or a min-
imax criterion [9]-[10]. The least squares filter in general
has a low integral squared error and a large peak deviation
error. The minimax filter, on the other hand, has a low
peak deviation error with a large integral squared error.

Hai Huyen Dam is with Department of Mathematics and Statistics,
Curtin University of Technology, Kent Street, Bentley, Perth, WA
6102, Australia. Email H.Dam@curtin.edu.au. Phone: +618 9266
7670, Fax: +618 9266 3197.
This research was supported by ARC Discovery Project

DP120103859.
Copyright (c) 2013 IEEE. Personal use of this material is permit-

ted. However, permission to use this material for any other pur-
poses must be obtained from the IEEE by sending an email to pubs-
permissions@ieee.org

As such, it is important to find a trade-off between the
integral squared error and the peak deviation error.

In this paper, we investigate the design of VFD filters
with minimum integral squared error subject to constraints
on the peak deviation error from the desired response. The
obtained filters are compared with the least squares and
minimax solutions. We show that a trade-off curve can be
achieved between the integral squared error and the peak
deviation error by having constraints on different levels of
the peak deviation error. The least squares and the mini-
max solutions are the two extreme points in the trade-off
curve. The integral squared error can be reduced signif-
icantly from the minimax solution while maintaining ap-
proximately the same peak deviation error. Similarly, the
peak deviation error can be significantly reduced from the
least squares solution while maintaining approximately the
same integral squared error. In addition, the performance
of the VFD filter with discrete coefficients is investigated
where an efficient quantization scheme is employed to dis-
tribute the power-of-two terms to the filter coefficients. De-
sign examples show that the trade-off filters with discrete
coefficients are less sensitive with respect to quantization
than the least squares and minimax filters.

The paper is organized as follows. The problem formu-
lation is discussed in Section II while the optimization ap-
proach is developed in Section III. The investigation of the
filter with respect to quantization is discussed in Section
IV. Design examples are given in Section V and finally
concluding remarks are in Section VI.

II. Problem Formulation

Consider the design of a VFD filter with the desired fre-
quency response given by

D(ω, p) = e−jωp = cos(ωp)− j sin(ωp),
|ω| ≤ ωp, p ∈ [−0.5, 0.5].

(1)

The transfer function of the designed variable FIR filter is
characterized by

H(ω, p) =

N∑
n=−N

hn(p)e
−jωn (2)

where the coefficients hn(p) are expressed as polynomials
in p as

hn(p) =
M∑

m=0

an,mpm. (3)
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Thus,

H(ω, p) =
N∑

n=−N

M∑
m=0

an,me−jωnpm

=

N∑
n=−N

Mc∑
m=0

an,2me−jωnp2m

+
N∑

n=−N

Ms∑
m=1

an,2m−1e
−jωnp2m−1

where {
Mc = Ms = M/2, for even M
Mc + 1 = Ms = (M + 1)/2, for odd M.

(4)

We employ symmetric properties for the coefficients an,m
as in [8], [9] to reduce the number of optimized coefficients

a−n,m =

{
an,m, for even m
−an,m, for odd m

and an,0 = δ(n). The frequency response H(ω, p) can be
reduced to

H(ω, p) = 1 +

Mc∑
m=1

(
a0,2m +

N∑
n=1

2an,2m cos(nω)

)
p2m

− j

Ms∑
m=1

(
N∑

n=1

2an,2m−1 sin(nω)

)
p2m−1.

Since
H(ω, p) ≈ e−jωp

we have the following approximations

1+

Mc∑
m=1

(
a0,2m +

N∑
n=1

2an,2m cos(nω)

)
p2m ≈ cos(ωp) (5)

and

Ms∑
m=1

(
N∑

n=1

2an,2m−1 sin(nω)

)
p2m−1 ≈ sin(ωp). (6)

Differentiating (5) with respect to ω, we obtain

Mc∑
m=1

N∑
n=1

2nan,2m sin(nω)p2m−1 ≈ sin(ωp). (7)

As such, there is a coefficient relationship for evenM ,Mc =
Ms, [8], namely

an,2m−1 = nan,2m, n = 1, . . . , N, m = 1, . . . ,Mc. (8)

Thus, we have

H(ω, p) = 1 +
Mc∑
m=1

[
a0,2mp+ 2

N∑
n=1

an,2m(
cos(nω)p− jn sin(nω)

)]
p2m−1

= 1 + cT (ω, p)a

(9)

where a = [a0,2, a1,2, . . . , aN,2Mc ]
T ,

c(ω, p) = p⊗ [p, 2 cos(ω)p− 2j sin(ω), . . . ,

2 cos(Nω)p− 2jN sin(Nω)]T

p =
[
p, p3, . . . , p2Mc−1

]T
and ⊗ denotes the Kronecker product.

III. Optimization Problem

The weighted integral squared error for the VFD filter
can be expressed as

e(a) =

∫
Ω

∫
P
W (ω, p)|H(ω, p)−D(ω, p)|2dp dω (10)

where W (ω, p) is a positive weighting function, Ω = [0, ωp]
and P = [−0.5, 0.5]. This error can be reduced to the
quadratic form

e(a) = aTGa− 2pTa+ c (11)

where

G =

∫
Ω

∫
P
W (ω, p)R

(
c(ω, p)cH(ω, p)

)
dp dω

p =

∫
Ω

∫
P
W (ω, p)R (c(ω, p)D∗(ω, p)) dp dω

c =

∫
Ω

∫
P
W (ω, p)|D(ω, p)|2dp dω.

Here “∗” and R(·) denote the conjugate and the real part
of a complex number, respectively. The weighted least
squares solution is aLS = G−1p.
The least squares solution in general has a low integral

squared error and a large peak deviation error. The mini-
max solution, on the other hand, often has low peak devia-
tion error and a large integral squared error. For the VFD
filter with coefficient symmetry, the minimax optimization
problem can be formulated as:{

min
ϵ,a

ϵ

W (ω, p)|H(ω, p)−D(ω, p)| ≤ ϵ, ∀ω ∈ Ω, p ∈ P.

(12)
This problem can be equivalently written as{

min
ϵ,a

ϵ

W (ω, p)
√
e2R(ω, p) + e2I(ω, p) ≤ ϵ, ∀ω ∈ Ω, p ∈ P

(13)
where

eR(ω, p) = cTR(ω, p)a+ 1− cos(ωp)

eI(ω, p) = cTI (ω, p)a+ sin(ωp)

and cR(ω, p), cI(ω, p) denote, respectively, the real and
the imaginary parts of c(ω, p). The optimization (13) is
equivalent to

min
ϵ,a

ϵ(
ϵ,

[
W (ω, p)eR(ω, p)
W (ω, p)eI(ω, p)

])
∈ Qcone, ∀ω ∈ Ω, p ∈ P

(14)
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where the quadratic cone is defined as

Qcone :=
{
(ϵ,x) ∈ R×RI : ϵ ≥ ∥x∥

}
(15)

and I is the dimension of x and ∥ ·∥ is the Euclidean norm.
The problem (15) is an SOCP which can be solved effi-
ciently using SOCP software such as SeDuMi [11].
Now, we investigate the trade-off between the integral

squared error and the peak deviation error by incorporating
constraints on the peak deviation error. The optimization
problem can be formulated as{

min
a

e(a) = aTGa− 2pTa+ c

W (ω, p)|H(ω, p)−D(ω, p)| ≤ α, ∀ω ∈ Ω, p ∈ P
(16)

where α is the upper bound for the frequency response de-
viation for all ω and p. For (16) to have a feasible solution,
α is chosen such that α ≥ ϵMM , where ϵMM is the peak
deviation error for the minimax optimization problem (15).
Since the matrix G is symmetric and positive definite, we
can do a Cholesky factorization of G as the product of a
lower triangular matrix R and its transpose

G = RTR. (17)

Let p̃ = (RT )−1p, then the integral squared error e(a) in
(16) can be expressed as

e(a) = ∥Ra− p̃∥2 − pTG−1p+ c. (18)

Since the term −pTG−1p + c is a constant, minimizing
e(a) is equivalent to minimizing the norm ∥Ra − p̃∥. As
such, the problem (16) can be reformulated as:

min
γ,a

γ

∥Ra− p̃∥ ≤ γ

W (ω, p)
√
e2R(ω, p) + e2I(ω, p) ≤ α, ∀ω ∈ Ω, p ∈ P.

(19)
The problem (19) is solved by using discretization. Denote
by Nω and Np and the number of discretized points for
ω and p, respectively. Let x = [γ;a], then (19) can be
expressed in the standard SOCP formulation as

min
x

bTx

∥A0x− p̃∥ ≤ bTx
∥Ai,kx+ ci,k∥ ≤ α, ∀ 1 ≤ i ≤ Nω, 1 ≤ k ≤ Np.

(20)

where b = [1, 0, . . . , 0]T , A0 = [0 R],

Ai,k =

[
0 W (ωi, pk)c

T
R(ωi, pk)

0 W (ωi, pk)c
T
I (ωi, pk)

]
ci,k =

[
W (ωi, pk)(1− cos(ωi, pk))

W (ωi, pk) sin(ωi, pk)

]
.

Alternatively, the problem (19) can be written as
min
γ,a

γ

(γ,Ra− p̃) ∈ Qcone(
α,

[
W (ωi, pk)eR(ωi, pk)
W (ωi, pk)eI(ωi, pk)

])
∈ Qcone,

∀ 1 ≤ i ≤ Nω, 1 ≤ k ≤ Np.

(21)

The optimization problem (21) can be solved accurately
using SOCP software such as SeDuMi. The computational
complexity for solving the problem is similar to the mini-
max problem (14), [9]–[10]. In the following, we investigate
the sensitivity of (i) the least squares solution; (ii) the min-
imax solution and (iii) the trade-off solutions with the sum
of signed power-of-two (SOSPT) coefficients to reduce op-
erations associated with the filters to shifts and adds.

IV. Quantization Performance

To investigate the performance of VFD filter with dis-
crete coefficients, the VFD filter coefficient an,m are stacked
for even and odd m in a coefficient vector h as

h = [a, a1,1, · · · , aN,2Mc−1].

The number of coefficients in h is Mc(1 + 2N) = 2NMc +
Mc. Denote by hq the quantized coefficient vector for h.
For all 1 ≤ k ≤ 2NMc + Mc, denote by ck the number
of power-of-two terms in the coefficient hq(k). Then, the
coefficient hq(k) can be expressed as SOSPT terms hq(k) =
ck∑
k=1

ηk2
−νk where ηk is a binary value, ηk ∈ {−1, 1} and νk

is an integer, Bℓ ≤ νk ≤ Bu. Here, the values Bℓ and Bu

denote the maximum and minimum value for the power-of-
two. The total number of power-of-two terms for the VFD
is restricted to a positive number L according to

2NMc+Mc∑
k=1

ck ≤ L. (22)

Since each filter coefficient is not restricted to a fixed
number of power-of-two terms, there is a degree of freedom
in distributing the power-of-two terms to the appropriate
VFD coefficients. We employ the quantization approach
[12] to the VFD filter coefficients with the infinite precision
solution h. The quantization procedure is summarized as
follows.
Procedure IV.1: Quantization procedure for h given an

upper bound L on the total number of power-of-two terms.
• Step 1: Initialize hq as a zero vector and set k = 1.
• Step 2: Search for an index ℓ, 1 ≤ ℓ ≤ 2NMc + Mc,
corresponding to the coefficient in h with the maximum
absolute value, |h(n)| = max

1≤ℓ≤2NMc+Mc

|h(ℓ)|. We have the

following two cases: If |h(n)| < 2−Bu−1, then stop the
procedure. Otherwise, search for a power-of-two term that
is closest to h(n),

|h(n)− ζ1| = min
ζ∈B

|h(n)− ζ| (23)

where B = {−2−Bu , . . . ,−2−Bl , 2−Bl , . . . , 2−Bu}. Locate
the kth power-of-two term to the nth position of hq. Up-
date the quantized vector hq by adding ζ1 to the coefficient
hq(n) and update h by subtracting ζ1 from h(n). If k < L,
then set k := k + 1 and return to the beginning of Step 2.
Otherwise, stop the procedure. The vector hq is the quan-
tized solution with a restriction of L on the total number
of power-of-two terms. 2



4

V. Design Examples

Consider the design of variable fractional delay FIR filter
with ωp = 0.9π. The range for p is [−0.5, 0.5]. The number
of discretization points for ω is Lω = 512, whereas the
number of discretization points for p is Lp = 128. As in
[7]–[10], the weighting function W (ω, p) is chosen as one
for all ω and p.

Fig. 1 shows the trade-off curve between the peak de-
viation error and the integral squared error for the case
N = 20,M = 6 and N = 25,M = 6. The least squares
and the minimax solutions are at the two extreme points
of the curves. As can be seen from the figure, it is possible
to reduce the peak deviation error by 6.4 dB from the least
squares solution with just a 0.6 dB increase in the integral
squared error. Similarly, it is possible to reduce the inte-
gral squared error by 3 dB from the minimax solution with
just an increase of 0.3 dB in the peak deviation error.
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Fig. 1. Trade-off between the peak deviation error and the integral
squared error for N = 20,M = 6 and N = 25,M = 6.

Table I shows (i) the integral squared error e2; (ii) the
minimax error emax; (iii) the maximum magnitude re-
sponse error em,mag; and (iv) the maximum group delay
error em,gd for the least squares and minimax solutions.
The table also shows the performance of two VFD filters
in the trade-off curve. As can be seen from the table, the
magnitude response error and group delay error for the
trade-off solution 1 are significantly lower than for the least
squares solution while the errors for the trade-off solution 2
are approximately the same as the minimax solution. The
trade-off solution 2, on the other hand, is approximately
3 dB lower in the integral squared error than the minimax
solution.

Figs. 2 and 3 show the trade-off between the integral
squared error and the peak deviation error when N in-
creases from 30 to 35. As with the previous case, the
peak error deviation can be reduced significantly from the
least squares solution with a small increase in the integral
squared error. In addition, the integral squared error can

TABLE I

Magnitude and group delay errors with N = 25 and M = 6.

Solutions e2 ϵmax em,mag ϵm,gd

[dB] [dB] [dB] [dB]
Least squares −86.95 −66.53 −66.97 −32.40
Trade-off sol. 1 −86.55 −72.48 −72.69 −33.22

Minimax −79.69 −79.27 −79.42 −40.85
Trade-off sol. 2 −82.40 −78.85 −79.00 −39.10

be reduced significantly from the minimax solution with a
small increase in the peak deviation error.
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Fig. 2. Trade-off between the peak deviation error and the integral
squared error for N = 30,M = 6 and N = 35,M = 6.

Table II shows the quantization performance of the least
squared, the minimax solutions and two VFD filters in the
trade-off curve for N = 20 and M = 6. As the max-
imum coefficient for the infinite precision solution is ap-
proximately 1 and the peak deviation error for the minimax
solution is −65 dB, Bℓ and Bu are chosen as Bℓ = 0 and
Bu = 13. The total number of power-of-two for the VFD
filters increases from 2.5MN to 3.5MN . For L = 3.5MN ,
the quantized least squares solution is 0.3 dB lower in inte-
gral squared error than the trade-off solution 1 with 6.6 dB
higher in the peak deviation error. Also, the quantized
minimax solution is 0.75 dB lower in the peak deviation er-
ror than the trade-off solution 2 and 2.2 dB higher in the
integral squared error. For lower values of L, the trade-off
filters are less sensitive with respect to quantization than
the least squares and minimax filters. This is due to the
fact that the trade-off solutions have low integral squared
error together with low peak deviation error.
Table III shows the quantization performance of the

least squares, the minimax and the trade-off solutions for
N = 25 and M = 6. The table also shows the effect of
quantization when bu increases from 13 to 15. Similar to
the previous case, the trade-off solutions are less sensitive
with respect to the quantization than the least squares and
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Fig. 3. Trade-off between the peak deviation error and the integral
squared error with N increases from 31 to 34.

TABLE II

Effect of quantization with N = 20, M = 6 and bu = 13.

Solutions e2 [dB] em [dB]
Inf. precision −72.50 −53.30

Least L = 2.5MN −65.72 −52.62
squares L = 3MN −70.04 −52.68

L = 3.5MN −71.37 −53.02
Inf. precision −71.92 −59.70

Trade-off L = 2.5MN −67.10 −56.95
solution L = 3MN −70.75 −58.71

1 L = 3.5MN −71.07 −59.62
Inf. precision −66.10 −65.29

Minimax L = 2.5MN −61.26 −54.08
L = 3MN −65.10 −59.80
L = 3.5MN −66.10 −62.77
Inf. precision −69.12 −64.90

Trade-off L = 2.5MN −66.54 −59.89
solution L = 3MN −68.01 −61.75

2 L = 3.5MN −68.30 −62.02

the minimax solutions.

VI. Conclusions

This paper investigates a trade-off between the integral
squared error and the peak deviation error for the VFD
filter with coefficient relationship. The integral squared er-
ror is minimized subject to additional constraints on peak
deviation error. Design examples show that the peak de-
viation error can be reduced significantly from the least
squares solution while maintaining approximately the same
integral squared error. Also, the integral squared error can
be reduced significantly from the minimax solution while
maintaining approximately the same peak deviation error.
In addition, the trade-off filters are less sensitive with re-
spect to quantization than the least squares and minimax
filters.

TABLE III

Effect of quantization with N = 25 and M = 6.

Solutions e2 [dB] em [dB]
Inf. precision −86.95 −66.53

Least L = 2.5MN , bu = 13 −69.59 −61.81
squares L = 3MN , bu = 13 −78.85 −65.84

L = 3MN , bu = 15 −84.78 −66.86
Inf. precision −86.55 −72.48

Trade-off L = 2.5MN , bu = 13 −74.30 −64.16
solution L = 3MN , bu = 13 −78.10 −70.55

1 L = 3MN , bu = 15 −85.00 −70.55
Inf. precision −79.69 −79.27

Minimax L = 2.5MN , bu = 13 −65.86 −58.75
L = 3MN , bu = 13 −74.46 −66.94
L = 3MN , bu = 15 −78.71 −74.11

Inf. precision −82.40 −78.85
Trade-off L = 2.5MN , bu = 13 −69.20 −60.64
solution L = 3MN , bu = 13 −76.27 −68.13

2 L = 3MN , bu = 15 −80.72 −73.73
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