A lower crust origin for some flood basalts of the Emeishan large igneous province, SW China

J. GREGORY SHELLNUTT¹*, TADASHI USUKI², ALLEN K. KENNEDY³ & HAN-YI CHIU¹

¹National Taiwan Normal University, Department of Earth Sciences, 88 Tingzhou Road Academia Road Section 4, Taipei 11677, Taiwan

²Academia Sinica, Institute of Earth Sciences, 128 Academia Road Section 2, Taipei 11529, Taiwan

³Curtin University, Department of Applied Physics, Kent Street, Bentley, Western Australia 6102, Australia

*Corresponding author (e-mail: jgshelln@ntnu.edu.tw)

Abstract: High seismic velocity layers within the lower crust (i.e. ~40 km) of the Yangtze Block are interpreted as mafic underplated rocks derived from the Emeishan mantle plume. However the region experienced a previous magmatic event during the Neoproterozoic (~800 Ma) which produced the Kangdian basalts and associated mafic intrusions. The identification of inherited Neoproterozoic (i.e. ~750 to ~850 Ma) zircons within Emeishan magmatic rocks indicates they either assimilated older material during emplacement or that they were derived from Neoproterozoic basement rocks of the Yangtze Block. Equilibrium partial melt modeling of Neoproterozoic Kangdian basalts can produce compositions similar to Emeishan basalt at a pressure of 1.2 GPa (i.e. ~40 km depth). The models indicate that is possible some magmatic rocks, including the flood basalts, of the ELIP are the product of partial melting of Neoproterozoic mafic rocks that underplated the lower crust of the Yangtze Block. Thus it is possible that some Emeishan basalts are the product of mafic lower crust recycling.

Supplementary material: The results of MELTS modeling are available at www.geolsoc.org.uk/SUPXXX
The Late Permian Emeishan flood basalts of SW China are the most voluminous rock-type of the Emeishan large igneous province (ELIP) which is one of at least five major eruptions of mafic continental volcanic rocks that occurred during the Late Palaeozoic (i.e. Tarim LIP, Siberian Traps, Panjal Traps, Skagerrak-Centred LIP). Like many continental flood basalts they are compositionally divided into ‘high-Ti’ and ‘low-Ti’ groups which are interpreted to reflect different petrological origins. The ‘high-Ti’ (i.e. TiO$_2$ > 2.5 wt%) basalts are interpreted to be derived by low degrees (< 8%) of partial melting of a mantle plume source whereas the formation of the ‘low-Ti’ basalts (i.e. TiO$_2$ < 2.5 wt%) is more complex and are suggested to be derived from the sub-continental lithospheric mantle (SCLM), or picritic magmas that assimilated upper crust, or the same source as the high-Ti basalts but merely represent higher degrees (i.e. 10-15%) of partial melting (Xu et al. 2001; Song et al. 2001, 2004, 2008a, b; Hanski et al. 2004; Xiao et al. 2004; Hou et al. 2006; Wang et al. 2007; Fan et al. 2008; Zhou et al. 2008; Shellnutt & Jahn 2011; Wang et al. 2011).

The ELIP is considered to be one of the best examples of a mantle plume derived large igneous province because there is evidence for pre-volcanic uplift, presence of ultramafic volcanic rocks (i.e. picrites), and short eruption duration of voluminous flood basalts (He et al. 2003; Hanski et al. 2004; Ali et al. 2005; Campbell 2005, 2007; Shellnutt et al. 2012; Shellnutt 2014). One of the most intriguing interpretations of the ELIP mantle plume model is related to the identification of high seismic velocity layers within the lower crust of the Yangtze Block beneath the region considered to be the epicenter of magmatism. The same region is interpreted to have thicker average crust than other regions of the western Yangtze Block (Xu et al. 2004; Xu and He 2007; Chen et al. 2010). Xu et al. (2004) interpreted the deep (i.e. > 100 km) high seismic velocity layers to be the fossilized Emeishan mantle plume head whereas the lower crust (i.e. 40 km to 60 km) high velocity layers are interpreted to be the underplated mafic and ultramafic rocks which fed the surface flows and shallow crustal intrusions. The seismic data interpretations coupled with the crustal thickness is a compelling explanation for and is
consistent with the expectation of a mantle plume-derived large igneous province. However there is another equally valid interpretation of the high seismic velocity layers if they represent underplated mafic rocks.

The western margin of the Yangtze Block was the site of either long-lived subduction-related magmatism or mantle plume-related magmatism during the Neoproterozoic (Li et al. 1999; Zhou et al. 2002a, b; Zhao & Zhou 2007). The Neoproterozoic (~800 Ma) Kangdian basalts are located at the western boundary of the Yangtze Block within the Kangdian rift and are found within the same geographic area as the Emeishan basalts. The basalts and associated mafic dykes and plutonic rocks are described by Li et al. (2002) as being compositionally similar to continental flood basalts from Ethiopia and/or alkali basalts of Hawaii. In the case of the Kangdian basalts, they are interpreted to be derived from an OIB-like mantle plume source associated with the break-up of Rodina whereas similarly aged granitic rocks and younger (i.e. ~750 Ma) gabbros in the same region are interpreted to be related to an active continental margin setting (Li et al. 2002, 2005, 2006; Zhou et al. 2002a, b; Zhou et al. 2004; Lin et al. 2007; Zhao & Zhou 2007; Zhao et al. 2008; Wang et al. 2009; Wang et al. 2010). Regardless of how the Kangdian or other Neoproterozoic rocks formed (i.e. subduction zone setting vs. mantle plume), it is possible that magmas accumulated in the lower crust of the Yangtze Block and thus the crustal seismic layers may not be completely attributed to the ELIP. In fact, the seismic layers could represent a mixture of mafic and ultramafic material from both the Kangdian event and the Emeishan event.

In this paper we show the results of in situ zircon U/Pb dating and Hf isotopes of inherited Neoproterozoic zircons from Late Permian granitic rocks of the ELIP. We discuss the origins of the older zircons and evaluate the possibility that some ELIP-related magmatic rocks, including the flood basalts, may be derived by partial melting of rocks similar in composition to the Neoproterozoic Kangdian basalts.
Geological Background

The Late Permian Emeishan large igneous province (ELIP) is located in southwestern China on the western edge of the Yangtze Block near the boundary with the Early Triassic Songpan-Ganze terrane (Fig. 1a). The distribution of ELIP rocks was affected by faulting associated with the accretion of the Songpan-Ganze terrane and later during the Paleogene collision of India and Eurasian and covers an area of at least 0.3×10^6 km2 including the Song Da zone of northern Vietnam which was translated ~600 km along the Ailao Shan-Red River shear zone during the Oligocene (Chung & Jahn 1995; Chung et al. 1997). The ELIP is subdivided into three structural zones (i.e. inner, intermediate and outer) based on crustal thickness estimates using seismic profiling (Figs. 1a, b). The inner zone of the ELIP is interpreted to have the thickest crust which thins radial to the outer zone (Xu et al. 2004). The volcanic succession ranges from a maximum thickness of ~5 km in the inner zone to < 1km at the margin of the outer zone. The volcanic rocks consist mostly of flood basalts but there is a higher proportion of picrites found in the lower flows of the inner zone whereas basaltic andesites and silicic volcanic rocks are common within the upper flows throughout the ELIP. The inner zone, chiefly the Panxi region, contains many giant orthomagmatic Fe-Ti-V oxide deposits whereas Ni-Cu-(PGE) and PGE deposits are found within the inner zone and outer zone but none have been found within the intermediate yet (Shellnutt 2014). The Yangtze Block was located at equatorial latitudes of eastern Pangaea and the volcanic rocks of the ELIP erupted on top of middle Permian limestones or directly on to Precambrian cratonic rocks.

The granitic plutons of this study are from the Song Da zone of northern Vietnam and the Panxi region in Sichuan. Northern Vietnam is part of the South China block, which is separated from the Indochina block by the Song Ma suture zone to the southwest (Fig. 1). The SW side of the ASRR shear zone consists of the Phan Si Pan uplift and Tu Le basin, which are further surrounded by Song Da belt in the west (Fig. 2). The Song Da zone rocks are from the Phan Si Pan uplift and Tu Le basin and are
correlative with the inner zone of the ELIP. The area is crosscut by the left-lateral ASRR shear zone for over 1000 km from SE Tibet to the South China Sea (Tapponnier et al. 1990; Leloup et al. 1995; Chung et al. 1997). The Phan Si Pan uplift consists mainly of alkaline and sub-alkaline granitoids whereas the Song Da belt consists of picrite, flood basalt and rhyolitic rocks (Hanski et al. 2004; Wang et al. 2007; Anh et al. 2011). The volcanic rocks of the Song Da belt rest on early Permian limestone and are unconformably overlain by Triassic limestone and coal-bearing shale (Anh et al. 2011).

Two granitic plutons from the Panxi region of the ELIP were selected for this study (Fig. 3). The peraluminous Yingpanliangzi pluton is located within the city of Panzhihua just south of the Jinsha River and intrudes Proterozoic granitic gneisses (Shellnutt et al. 2011a). The pluton is exposed along a dirt road revealing fresh, albeit sporadic outcrops that contain ellipsoidal microgranular enclaves that are more mafic than the host rock. The pluton is known to be younger than ~600 Ma because dykes emanating from the main exposure are observed cutting the Denying (~600 Ma) marble. The sample (GS03-065) dated for this study is located at 26°33′36″ N, 101°42′53″ E. The peralkaline Panzhihua granite is located (i.e. 26°34′29″ N, 101°37′38″ E) to the west of the Yingpanliangzi pluton and intruded Emeishan flood basalt. The Panzhihua granite is interpreted to be petrogenetically related to the Panzhihua layered gabbroic intrusions which hosts a world-class Fe-Ti-V oxide deposit (Shellnutt & Jahn 2010).

Methods

Zircon U/Pb SHRIMP II ages

Zircon grains were separated using conventional heavy liquid and magnetic techniques, mounted in epoxy, polished, coated with gold, and photographed in transmitted and reflected light to identify grains for analysis. U/Pb isotopic ratios of zircons from sample GS03-065 (i.e. peraluminous granite) were measured using the SHRIMP II at Curtin University of Technology in Perth, Western Australia.
The measured isotopic ratios were reduced off-line using standard techniques (Claoué-Long et al. 1995) and the U/Pb ages were normalized to a value of 564 Ma determined by conventional U-Pb analysis of zircon standard CZ3. Common Pb was corrected using the methods of Compston et al. (1984). The $^{206}\text{Pb}/^{238}\text{U}$ and $^{207}\text{Pb}/^{235}\text{U}$ data were corrected for uncertainties associated with the measurements of the CZ3 standard. The $^{207}\text{Pb}/^{206}\text{Pb}$ ages given in table 1 are independent of the standard analyses.

Zircon analyses for sample GS03-010 (i.e. peralkaline granite) were measured using the SHRIMP II at Chinese Academy of Geological Sciences, Beijing, China. The measured isotopic ratios were reduced off-line using standard techniques and calibrated to the TEMORA 1 standard which was repeatedly analyzed after every three zircon analyses (Claoué-Long et al. 1995; Black et al. 2003a, b). Common Pb was corrected using the methods of Compston et al. (1984). The $^{206}\text{Pb}/^{238}\text{U}$ and $^{207}\text{Pb}/^{235}\text{U}$ data were corrected for uncertainties associated with the measurements of the TEMORA 1 standard. The $^{206}\text{Pb}/^{238}\text{U}$ and $^{207}\text{Pb}/^{235}\text{U}$ data are found within table 1.

Zircon Hf LA-ICP-MS values

Hf isotopes were analyzed using a Nu Plasma multi-collector ICP-MS attached to a New Wave UP213 laser-ablation microprobe housed at the Institute of Earth Science, Academia Sinica, Taipei, documented in Lan et al. (2009). The analytical procedure follows that described in Griffin et al. (2000, 2004). The Hf isotopes were measured on the dated spots of individual zircons to minimize zoning effect but the laser ablation size is 55 µm, slightly larger than that of preexisting spots by the U-Pb dating. Data were normalized to $^{179}\text{Hf}/^{177}\text{Hf} = 0.7325$, using an exponential correction for mass bias. $^{176}\text{Hf}/^{177}\text{Hf}$ results of Mud Tank and Harvard zircon standards during analysis of this study are 0.282530 ± 0.000050 (2σ, n = 63) and 0.282314 ± 0.000088 (2σ, n = 22), respectively. $\varepsilon\text{Hf}_{(T)}$ values and model ages used in the figures were calculated using the decay constant (1.867×10^{-11} per year)
proposed by Söderlund et al. (2004). The single stage deplete-mantle model ages (T_{DM1}) and the two-stage model ages (T_{DM2}) are calculated. We assumed that 176Lu/177Hf of average continental crust is 0.015 (Griffin et al. 2004) for calculation of T_{DM2}. The results are found within table 2.

Results

In situ zircon U/Pb ages

GS03-065 contains zircons with a variety of textures and morphologies. The CL images, Figure 4 show the highly complex internal structure of these zircons. Many zircons exhibit varying degrees of recrystallization. Some have only a thin overgrowth of intermediate U zircon on the rim of crystals, while others have embayments of both high U and low U zircon intergrown within a single crystal (Fig. 4a). The low U region in this grain has a 206Pb/238U age of 555 Ma. In figure 4b, the zircon shows three distinct growth zones. An inner low U region is surrounded by oscillatory moderate U zircon and the very centre of the crystal shows a small, higher U region. The oscillatory zoned region has a 206Pb/238U age of 671 Ma, while the core age is 701 Ma. There is a progression of recrystallization effects in larger zircons through the two stages shown figure 4. Small, high-U zircons no longer show any oscillatory zoning and have had their ages reset to varying degrees. The lowest 206Pb/238U age, 485 Ma, was found in a small, 25 um, high-U (897 ppm) grain. The oldest 206Pb/238U age in this population, 787 Ma, was found in a moderate-U (298 ppm) grain which was unzoned. Not all grains have been completely recrystallized or had their ages reset, but there is a strong inverse relationship between U content. Figure 5a gives an overview of the SHRIMP results for GS03-065 plotted on a concordia diagram. Most of analyses plot along a chord with calculated intersections at 264 ± 82 Ma and 806 ± 36 Ma. The upper intersect is the best estimate of the original protolith crystallization age. The lower intercept is identical to that of the mafic-ultramafic and syenite intrusions in the ELIP, which have ages of ~260 Ma and suggests this is the age of the thermal event affecting the recrystallization of
the zircons (Shellnutt et al., 2012). The data for this sample is consistent with partial metamorphic/igneous resetting of zircon ages, with the high-U zircons ages being more susceptible to disturbance.

Four inherited zircons were analyzed from sample GS03-010. The crystals are typically between 30 µm to 50 µm and show oscillatory zonation and have variable morphologies. The internal structure is less complicated than those from GS03-065 and they are of igneous origin (i.e. Th/U ≤ 1).

Figure 5b show the SHRIMP results for GS03-010 plotted on a concordia diagram. Two of the analyses plot along the concordia whereas the other two have suffered U loss. The concordant 206Pb/238U ages are 860 ± 7 Ma and 854 ± 8 Ma but the intercept age of all analyses is 848 ± 45 Ma.

In situ zircon Hf isotopes

Hf isotope compositions were analyzed for 18 inherited zircons from the Phan Si Pan granites (table 2). The Neoproterozoic zircons yield Hf isotope compositions in the range of 0.282173 to 0.282299. The zircons have mostly negative εHf(T) values with a few moderately positive values and range between -5.4 and +1.7 which correspond to TDM1 model ages between 1.14 Ga to 1.51 Ga. The relatively enriched Hf isotope values indicate that they are either derived from a crustal source or an enriched mantle source.

Discussion

Inherited zircons within plutonic rocks of the Emeishan large igneous province

Shellnutt & Zhou (2007) and Shellnutt et al. (2011a) showed that the alumina saturation index (i.e. ASI = Al/Ca+Na+K) offers a simple and relatively robust petrogenetic classification scheme for the Emeishan granitoids. The peralkaline granitoids are interpreted to be derived by fractional crystallization of Emeishan mafic magmas, the metaluminous are interpreted to be derived from mixing
of mafic magmas and crustal material (i.e. hybrid) or by partial melting of underplated mafic rocks (i.e. mantle-derived) and the peraluminous rocks are interpreted to be derived by crustal melting. Therefore the peraluminous Yingpanliangzi, peralkaline Panzhihua and metaluminous Phan Si Pan granitic plutons offer an opportunity to compare the results of inherited zircons from three types of Emeishan silicic rocks that have different petrogenetic histories.

The peraluminous Yingpanliangzi pluton is interpreted to be derived by partial melting of Neoproterozoic granitic rocks (Shellnutt et al. 2011a). The upper and lower intercepts ages of the discordia appear to verify that interpretation (Fig. 6a). The pluton has enriched whole rock Sr-Nd (i.e. 143Sr/87Sr = 0.70107 to 0.7151; εNd$_{(T)}$ = -3.9 to -4.4), low Nb/U (<6.5) values and high Th/Nb$_{PM}$ (i.e. 9.7 to 16.6) values (Shellnutt et al. 2011a). The injection of high temperature magmas into the Yangtze Block is considered to be the primary reason for crustal melting as there are mafic dykes in the same region as well as the Panzhihua layered gabbroic intrusion. The fact that the zircons from the Yingpanliangzi pluton do not form a coherent concordant age coupled with the enriched Sr-Nd isotopes suggests the Neoproterozoic Yangtze crust melted during the emplacement of the ELIP.

Thermodynamic and geochemical modeling indicate that the Panzhihua peralkaline pluton was derived by fractional crystallization of an Emeishan high-Ti basalt and directly related to the neighbouring layered oxide ore-bearing Panzhihua gabbroic intrusion (Shellnutt & Zhou, 2007; Shellnutt & Jahn, 2010; Shellnutt et al. 2011b). The in situ zircon U/Pb ages show there are Neoproterozoic zircons that have ages of 860 ± 7 Ma and 854 ± 8 Ma with an intercept age of 848 ± 45 Ma. In contrast to the Yingpanliangzi pluton, the Nd isotopes of the Panzhihua pluton are more depleted (i.e. εNd$_{(T)}$ = +2.2 to +2.9) and trace element ratios indicative of mantle-derived rocks (i.e. Th/Nb$_{PM}$ = 1.0 to 1.6; Nb/U = 24.4 to 34.0) rather than crust-derived rocks (Shellnutt & Zhou 2007). The geological relationships (i.e. intruded Emeishan basalt) and mineralogy (i.e. perthitic feldspar) of the Panzhihua pluton suggest that it formed at shallow depth thus the Neoproterozoic zircons are
unlikely to originate from the country rock (i.e. basalt). The implication is that the Neoproterozoic zircons were inherited at greater depth before the formation of Panzhihua granitic magma when the parental magma was still basaltic.

Usuki et al. (2014) reported the first age dates of silicic rocks from the Phan Si Pan uplift of Northern Vietnam. The rocks range in age from ~252 to ~260 Ma and are geologically correlated with inner zone of the ELIP. The metaluminous to peraluminous Phan Si Pan pluton is ~256 ± 6 Ma and is the only silicic intrusion from northern Vietnam that was found to contain Neoproterozoic zircons. The inherited zircons range in age from 632 Ma to 825 Ma. The Tu Le rhyolite yielded in situ zircon U/Pb dates between 252 ± 5 Ma and 262 ± 4 Ma but contained inherited zircons with ages between 708 Ma and 818 Ma. The petrogenetic history of the Phan Si Pan granite and Tu Le rhyolite has not been investigated thoroughly but Tran et al. (in preparation) suggest that they are derived from basaltic parental magmas. The Permian zircon εHf(T) values of the granite and rhyolite range between +3.1 and +11.4 which is similar to Emeishan metaluminous granitic rocks that are interpreted to be derived by partial melting of underplated basaltic rocks (Xu et al. 2008; Shellnutt et al. 2009, 2011a; Usuki et al. 2014).

Granitic rocks are not the only rocks that are known to have ancient inherited zircons. Single zircons with ages of 2952 ± 42 Ma, 1927 ± 31 Ma, 1577 ± 26, 1569 ± 29 and 742 ± 13 Ma were found within the Kelang gabbroic intrusion that yielded a mean age of 256 ± 3 Ma (Shellnutt & Wang 2014). The Nd isotopes of the Kelang gabbro are similar to many plutonic rocks in the area and have εNd(T) values of +2.5. The Archean to Neoproterozoic zircon ages correspond to major crust building episodes of the Yangtze Block and indicate that the parental magma interacted with rocks of that age (Qui et al. 2000; Zhang et al. 2006; Liu et al. 2008). The parental magma likely interacted with the lower most part of the crust because basement rocks of Archean age (i.e. Kongling migmatite) are thought to underlie the Proterozoic metasedimentary rocks of the Yangtze Block (Gao et al. 1999; Qiu et al. 2000;
Zhang et al. 2006; Liu et al. 2008). In other words, it is unlikely that the Archean zircon was inherited during final stages of emplacement because the surrounding country rocks in the area are Neoproterozoic to Paleozoic.

The Neoproterozoic zircon U/Pb ages indicate that the parental magmas of some Permian silicic and mafic rocks directly interacted with the lower crust of the Yangtze Block however the nature of the magma/country rock interaction remains uncertain. Zircon inheritance is often interpreted to be the result of late stage magma emplacement rather than source origin but the geological relationships of some of the rocks investigated indicates shallow level assimilation is unlikely. The likelihood of an inherited zircon surviving within a melt is related to its original radius, the intensity and duration of the melting event, the degree of Zr undersaturation in the melt, and volume of the local melt reservoir (Watson 1996). Zircons which are likely to survive temperatures >850°C must be > 120 µm whereas zircons < 50 µm will likely be consumed at temperatures of ~700°C therefore it is possible for original source zircons to survive melting providing they are of sufficient size (Watson 1996). Given the presence of inherited zircons in at least one known mafic intrusion, it is possible that the Neoproterozoic zircons found within some Emeishan magmatic rocks may not only be a consequence of magma/crust interaction but that, in some cases, they indicate the original source was Neoproterozoic in age.

Thermodynamic modeling

Equilibrium partial melt modeling was calculated using the program MELTS on three different Kangdian basaltic rocks as starting compositions in order to determine if they can produce liquid compositions similar to the Emeishan basalts and estimate what the most likely conditions (i.e. temperature, relative oxidation state, initial water content) would have to be in order for melting to occur (Ghiorso & Sack 1995; Smith & Asimow 2005). The initial pressure used for the partial melt modeling is 1.2 GPa (i.e. 12 kbar) which corresponds to the depth (i.e. ~40 km) of the lower crust high
seismic velocity layer identified by Xu et al. (2004). The initial starting compositions are shown in table 3. The relative oxidation state and initial water content of each model were constrained by trial and error.

The results of the three models are shown figure 6 and can be found within the online supplementary table S1. The best models have an initial water content of 1 wt% and relative oxidation state of FMQ +2. In all cases, the melting curves pass through the total range of Emeishan basalt whole rock data where models EMS1 and EMS2 reproduce the high-Ti basalt compositions and model EMS3 reproduces the low-Ti basalt (Fig. 6). The temperature at which the models predict the composition of the Emeishan basalts is first reached is at 1255°C for models EMS1 and EMS2 and 1275°C for model EM3. The amount of melting required to generate the first liquid composition equal to Emeishan basalt is ~75% for model EMS1, ~70% for model EMS2 and ~50% for model EMS3. Models EMS1 and EMS2 have distinct SiO₂ gaps which form at temperatures of 1215°C (EMS1) and 1190°C (EMS2) which are due to spinel melting and reflects the higher TiO₂ concentration in those models (i.e. TiO₂ > 2.4 wt%) in comparison with EMS3 (i.e. TiO₂ < 1.5 wt%). Therefore, given the modeling parameters used, it is possible that the Kangdian basaltic rocks could produce whole rock compositions similar to the Emeishan basalts.

Plausibility of a Neoproterozoic source for the Emeishan magmatic rocks

The identification of Neoproterozoic zircons within Permian mafic and silicic plutonic rocks and the results of the partial melt modeling indicate that rocks similar in composition to the Kangdian basalts could produce the Emeishan basalts if melted. In order to evaluate the validity of this hypothesis we examine and compare the likely maximum thermal conditions of the ELIP and the isotope compositions of the Neoproterozoic rocks found within the Kangdian/Panxi rift area.

The modeled temperatures required to melt the Kangdian mafic source in order to produce the Emeishan basalts is calculated to be between 1250°C and 1280°C. Estimates of the eruption and mantle
potential temperatures (T_p) of the Emeishan ultramafic volcanic rocks were calculated using different techniques by Xu et al. (2001), Zhang et al. (2006), He et al. (2010) and Ali et al. (2010). Xu et al. (2001) used REE inversion and estimated the mantle potential temperatures to be $> 1550^\circ$C whereas Zhang et al. (2006) calculated mantle potential temperatures between 1630$^\circ$C and 1690$^\circ$C. He et al. (2010) and Ali et al. (2010) calculated eruption temperatures of $\sim 1440^\circ$C and mantle potential temperatures between $\sim 1540^\circ$C and $\sim 1610^\circ$C using PRIMELT2 assuming initial MgO values of the picrites to be $\geq 20\%$. The wide range of mantle potential temperature may be related to differences in the thermodynamic assumptions for each calculation method but all results reveal temperatures $>1540^\circ$C which are $\sim 150^\circ$C above the T_p estimates of primitive MORB values and are supportive of a high temperature regime (Campbell 2005; Ali et al. 2010). Additionally, the eruption temperature estimates of the picrites (i.e. $\sim 1440^\circ$C) are greater than the temperatures required to induce melting of the underplated mafic rocks and thus the thermal requirements of the MELTS models is plausible.

The Emeishan basalts have $\varepsilon\text{Nd}(T)$ values ranging from -14.2 to +6.4 with a mean value of +0.1 $\pm 0.5 \, \sigma$ (Fig, 6). The Sr, Os and Pb isotopes also show a wide range in composition (i.e. $I_{Sr} = 0.7040$ to 0.7132; $\gamma_{Os} = -5$ to +11 and $^{206}\text{Pb} / ^{204}\text{Pb}_{Pb1} = 17.9$ to 19.7). In comparison, albeit a smaller database, the ultramafic volcanic rock have a higher average $\varepsilon\text{Nd}(T)$ value (i.e. $\varepsilon\text{Nd}(T) = +3.0 \pm 1.4 \, \sigma$), including the single highest reported value of +7.8, but there is also a wide (i.e. $\varepsilon\text{Nd}(T) = -7.8$ to +7.8) range (Kamenetsky et al. 2012). The range in composition of the Emeishan basalts makes it difficult to distinguish between a specific source (i.e. SCLM or sublithospheric source or both) or process (i.e. crustal assimilation or mixing between an enriched component and mantle source) to explain the isotope variability (Shellnutt 2014).

The Nd-Hf isotopes of the Kangdian basalts and mafic dykes are moderately depleted (i.e. $\varepsilon\text{Nd}(T) = +5.0$ to +6.0, $\varepsilon\text{Hf}(T) = +7.9$ to +17.4) although some differentiated basalts and trachyandesite have more enriched values (i.e. $\varepsilon\text{Nd}(T) = +1.4$ to +2.4, $\varepsilon\text{Hf}(T) = +4.3$ to +8.0) which are attributed to
crustal contamination (Li et al. 2002, 2005; Lin et al. 2007). Zhao et al. (2008) describe Neoproterozoic A- and I-type granites with ε^{144}Nd(T) values of +1 and zircon ε^{176}Hf(T) values of +5 to +9 whereas Zhao & Zhou (2007) describe a group of slightly younger (i.e. ~750 Ma) mafic intrusions in southern Sichuan (near Panzhihua) that are interpreted to be derived by partial melting of a garnet-bearing metasomatised upper mantle. The gabbros have I_{Sr} (i.e. I_{Sr} = 0.7040 to 0.7070) and ε^{144}Nd(T) (i.e. ε^{144}Nd(T) = -0.6 to -1.7) values that are indicative of a more enriched mantle source. The isotopic range of the Emeishan basalts, in particular Nd isotopes, overlaps with the Neoproterozoic rocks. Furthermore the Hf isotopes from the inherited zircons from NW Vietnam have ε^{176}Hf(T) values are between -5.4 and +1.7 which would equal ε^{144}Nd(T) values of -6.3 to -1.1 (e.g. ε^{176}Hf = 1.36ε^{144}Nd + 3.19) and fall within the range of Emeishan basalt and similar to the 750 Ma mafic intrusions. Therefore it is possible that the Neoproterozoic mafic rocks, if melted, could produce the isotopic range observed within the Emeishan mafic and some silicic rocks.

An alternative model for the genesis of the Emeishan basalts

Many models for the petrogenesis of the ELIP invoke a mantle plume model to explain the presence of ultramafic rocks and voluminous flood basalts (Xu et al. 2001, 2004; Xiao et al. 2004; Song et al. 2004; Ali et al. 2005, 2010; Fan et al. 2008; Shellnutt 2014). Isotope enrichment and variability in some trace element ratios (e.g. Th/NbPM, Nb/U) of the Emeishan basalts is interpreted to be related to crustal contamination with either a heterogeneous mantle source or a two mantle source (i.e. SCLM plus sub-lithospheric mantle). However we suggest that it is possible that some mafic and silicic ELIP-related magmatic rocks can be derived from Neoproterozoic lower crust rocks. The temperature estimates of the ultramafic volcanic rocks is high enough to induce melting of mafic underplated Neoproterozoic rocks and produce some ‘second’ generation magmas with a large range of isotopic compositions without necessarily showing evidence of sialic crustal assimilation. Furthermore it is
possible that some of the underplated Neoproterozoic rocks chemically equilibrated with older Yangtze Block rocks and therefore could have more enriched isotopic compositions if melted. For example, there are some Emeishan basalts that have enriched Nd isotope signatures (i.e. εNd$_{(T)} > -2$) but do not show strong evidence of crustal assimilation (i.e. Th/Nb$_{PM} < 2.5$, Nb/U > 25) (Fig. 7).

The high seismic velocity layers in the lower crust of the Yangtze Block could represent pure Emeishan material, pure Neoproterozoic material or a mixture of both but none of these interpretations can be dismissed outright because there are no age constraints on the seismic layers. The MELTS models, thermal estimates of the Emeishan ultramafic volcanic rocks and Nd-Hf isotope range of the Kangdian rocks indicate that it is possible to generate derivative liquid compositions that resemble Emeishan basalts and thus it is plausible that mafic Neoproterozoic rocks could be the source of some Emeishan mafic or silicic rocks and that they are a consequence of lower crustal recycling indirectly related to a Neoproterozoic mantle plume rather than a direct lineage to the Permian mantle plume (Fig. 8). Although the Permian mantle plume model is a preferred interpretation for the genesis of the Emeishan ultramafic volcanic rocks and probably most basalts but the possibility that partial melting of mafic Neoproterozoic lower crustal rocks could produce some of the mafic and silicic ELIP magmatic rocks cannot be easily disproved. The results of this study imply that, in some cases, mantle-plume derived large igneous provinces contribute to crustal recycling as well as juvenile crust formation.

Conclusions

Late Permian mafic and silicic plutonic rocks associated with the Emeishan large igneous province have inherited zircons which yield Neoproterozoic U/Pb ages. The Neoproterozoic zircons indicate that at least some of the ELIP magmatic rocks have evidence for direct interaction with the lower crustal rocks of the Yangtze Block. The precise nature of the magma/crust interaction is uncertain as the zircons may have been assimilated during emplacement or they could represent inheritance from the
original source rocks. Thermodynamic modeling indicates that compositions similar to the Emeishan flood basalts can be produced by partial melting of the Neoproterozoic Kangdian basalt at conditions equal to a pressure of 1.2 GPa, water content of ~1 wt% and \(fO_2 \) of FMQ +2. The identification of high velocity seismic layers in the lower crust of the Yangtze Block, interpreted as being related to the Emeishan mantle plume, may, in fact, represent underplated mafic to ultramafic rocks from the Neoproterozoic magmatic event or a mixture of Neoproterozoic and Permian magmatic rocks. The presence of Late Permian ultramafic volcanic rock with estimated eruption temperatures >1400°C would be sufficient to induce partial melting (i.e. 1250°C to 1280°C) of the underplated mafic rocks to the extent indicated by the partial melt models. Therefore, it is possible, that some Emeishan flood basalts and other magmatic rocks were formed by juvenile crustal recycling induced by a high temperature regime attributed to the Emeishan mantle plume.

J.G.S. would like to acknowledge the support of the National Science Council of Taiwan through grant NSC 102-2628-M-003-001-MY4.

References

21

USUKI, T., LAN, C.-Y., HOA, T.T., DUNG, P.T., WANG, K.-L., SHELLNUTT, J.G. & CHUNG, S.-L. 2014. Zircon U-Pb ages and Hf isotopic compositions of alkaline silicic magmatic rocks in the Phan Si Pan-

Figure Captions

Fig. 1. (a) Distribution of the Emeishan large igneous province showing the concentric zones (dashed red lines) and locations of the Panxi intrusions and Song Da intrusion. (b) Seismic P-wave velocity (km/s) structure of the lower crust and upper mantle beneath the western Yangtze Block from Lijiang (A) to Zhehai (B) (modified from Xu et al. 2004).

Fig. 2. Simplified geological map of NW Vietnam (modified from Usuki et al., 2014).

Fig. 3. Sample geological map of the Panzhihua region showing the locations of samples GS03-065 (Yingpanliangzi granite) and GS03-010 (Panzhihua granite). Modified from Ma et al. (1999).

Fig. 4. Cathodoluminescence images of (a) one zircon showing highly complex internal structure. Zone 1 is a low U region whereas zone 2 is a high U region. (b) Multiple growth zones with a low U core.

Fig. 5. Concordia diagrams of the (a) Yingpanliangzi pluton and the (b) Panzhihua peralkaline granite.

Fig. 6. Results of equilibrium partial melt modeling of the Kangdian mafic rocks. All models rocks were calculated at a relative oxidation state of FMQ +2, pressure of 1.2 GPa and water content of 1 wt%. Source rock compositions can be found in table 3. All modeled results and Emeishan basalt data normalized to 100%. Emeishan basalt data compiled in Shellnutt & Jahn (2011).

Fig. 7. (a) εNd(T) vs. Nb/U ratio of the high-Ti and low-Ti Emeishan flood basalts, Emeishan ultramafic volcanic rocks and Neoproterozoic mafic rocks. (b) εNd(T) vs. Th/NbPM ratio of the high-Ti and low-Ti Emeishan flood basalts, Emeishan ultramafic volcanic rocks and Neoproterozoic mafic rocks. The Th/Nb ratio is normalized to primitive mantle of Sun & McDonough (1989). The values of average

Fig. 8. Conceptual model of the lower crust origin of some Emeishan magmatic rocks.
Phu Sa Phin Granite
Emeishan Basalt
Po Sen granite
Metamorphic
Sediment rocks
Phan Si Pan Granite
Muong Hum Granite
Tu Le Rhyolite and Trachyte
Sedimentary rocks
Ye Yen Sun Granite
LTH21A, LTH26A
YB-27, YB-29
YB-24
Khau Co pass

Palaeozoic

Mesozoic

Precambrian

Fault
Sample location
Intercept at 848 ± 45 (2σ)
MSWD = 0.25 (n = 4)

Intercepts at 264 ± 82 and 806 ± 32 (2σ)
MSWD = 1.6 (n = 11)

Intercepts at 264 ± 82 and 806 ± 32 (2σ)
MSWD = 1.6 (n = 11)
Crustal basalts

Picrite

Low-Ti basalt

High-Ti basalt

Mantle Plume

HVLC

Crust

Moho

Asthenospheric Mantle

Lithospheric Mantle

Limestone

Mantle Plume

Crustal basalts

Low-Ti basalt

High-Ti basalt

Picrite

high Vp
<table>
<thead>
<tr>
<th>Sample</th>
<th>U (ppm)</th>
<th>Th (ppm)</th>
<th>Th/U</th>
<th>207Pb/206Pb ± 1σ</th>
<th>207Pb/235U ± 1σ</th>
<th>206Pb/238U ± 1σ</th>
<th>error corr.</th>
<th>206Pb/238U (Ma ± 1σ)</th>
<th>207Pb/206Pb (Ma ± 1σ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Panzhihua</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GS03-010-2</td>
<td>489</td>
<td>266</td>
<td>0.56</td>
<td>0.0675</td>
<td>0.0011</td>
<td>1.3280</td>
<td>0.0252</td>
<td>0.1426</td>
<td>0.0012</td>
</tr>
<tr>
<td>GS03-010-3</td>
<td>262</td>
<td>267</td>
<td>1.05</td>
<td>0.0657</td>
<td>0.0018</td>
<td>1.4060</td>
<td>0.0408</td>
<td>0.1553</td>
<td>0.0017</td>
</tr>
<tr>
<td>GS03-010-4</td>
<td>515</td>
<td>26</td>
<td>0.05</td>
<td>0.0666</td>
<td>0.0015</td>
<td>1.5690</td>
<td>0.0392</td>
<td>0.1710</td>
<td>0.0021</td>
</tr>
<tr>
<td>GS03-010-6</td>
<td>435</td>
<td>175</td>
<td>0.42</td>
<td>0.0672</td>
<td>0.0013</td>
<td>1.3110</td>
<td>0.0288</td>
<td>0.1416</td>
<td>0.0014</td>
</tr>
<tr>
<td>Yingpanliangzi</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GS03-065-1</td>
<td>176</td>
<td>114</td>
<td>0.67</td>
<td>0.0631</td>
<td>0.0016</td>
<td>0.7800</td>
<td>0.0211</td>
<td>0.0897</td>
<td>0.0011</td>
</tr>
<tr>
<td>GS03-065-4</td>
<td>233</td>
<td>271</td>
<td>1.20</td>
<td>0.0620</td>
<td>0.0011</td>
<td>0.9380</td>
<td>0.0197</td>
<td>0.1098</td>
<td>0.0012</td>
</tr>
<tr>
<td>GS03-065-5</td>
<td>300</td>
<td>253</td>
<td>0.87</td>
<td>0.0658</td>
<td>0.0005</td>
<td>1.1790</td>
<td>0.0153</td>
<td>0.1298</td>
<td>0.0014</td>
</tr>
<tr>
<td>GS03-065-6</td>
<td>236</td>
<td>133</td>
<td>0.58</td>
<td>0.0645</td>
<td>0.0012</td>
<td>0.9040</td>
<td>0.0190</td>
<td>0.1018</td>
<td>0.0011</td>
</tr>
<tr>
<td>GS03-065-7</td>
<td>391</td>
<td>226</td>
<td>0.60</td>
<td>0.0637</td>
<td>0.0009</td>
<td>0.7790</td>
<td>0.0140</td>
<td>0.0888</td>
<td>0.0010</td>
</tr>
<tr>
<td>GS03-065-8</td>
<td>903</td>
<td>949</td>
<td>1.09</td>
<td>0.0613</td>
<td>0.0009</td>
<td>0.6600</td>
<td>0.0119</td>
<td>0.0782</td>
<td>0.0008</td>
</tr>
<tr>
<td>GS03-065-9</td>
<td>36</td>
<td>23</td>
<td>0.66</td>
<td>0.0703</td>
<td>0.0022</td>
<td>1.1960</td>
<td>0.0419</td>
<td>0.1234</td>
<td>0.0021</td>
</tr>
<tr>
<td>GS03-065-10</td>
<td>62</td>
<td>46</td>
<td>0.77</td>
<td>0.0678</td>
<td>0.0017</td>
<td>1.2030</td>
<td>0.0349</td>
<td>0.1286</td>
<td>0.0018</td>
</tr>
<tr>
<td>GS03-065-11</td>
<td>195</td>
<td>140</td>
<td>0.74</td>
<td>0.0647</td>
<td>0.0008</td>
<td>1.0560</td>
<td>0.0180</td>
<td>0.1184</td>
<td>0.0014</td>
</tr>
<tr>
<td>GS03-065-13</td>
<td>291</td>
<td>297</td>
<td>1.05</td>
<td>0.0625</td>
<td>0.0016</td>
<td>0.8080</td>
<td>0.0226</td>
<td>0.0938</td>
<td>0.0010</td>
</tr>
<tr>
<td>GS03-065-17</td>
<td>297</td>
<td>252</td>
<td>0.88</td>
<td>0.0630</td>
<td>0.0016</td>
<td>0.8780</td>
<td>0.0246</td>
<td>0.1012</td>
<td>0.0012</td>
</tr>
</tbody>
</table>
Table 2. Hf isotope analyses of Neoproterozoic zircons from the Phan Si Pan granite and Tu Le rhyolite

<table>
<thead>
<tr>
<th>Sample</th>
<th>Rock type</th>
<th>Age (Ma)</th>
<th>(^{176}\text{Hf} / {^{177}\text{Hf}})</th>
<th>(\pm 1\sigma)</th>
<th>(^{176}\text{Lu} / {^{177}\text{Hf}})</th>
<th>(^{176}\text{Yb} / {^{177}\text{Hf}})</th>
<th>(T_{\text{DM1}}) (Ga)</th>
<th>(T_{\text{DM2}}) (Ga)</th>
<th>Hf</th>
<th>(\varepsilon\text{Hf}(\text{T}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>YB24-05</td>
<td>Granite</td>
<td>789 ± 15</td>
<td>0.282294</td>
<td>0.000011</td>
<td>0.000800</td>
<td>0.024535</td>
<td>1.35</td>
<td>1.70</td>
<td>0.282282</td>
<td>+0.1</td>
</tr>
<tr>
<td>YB27-01</td>
<td>Granite</td>
<td>744 ± 13</td>
<td>0.282225</td>
<td>0.000016</td>
<td>0.001163</td>
<td>0.038888</td>
<td>1.46</td>
<td>1.89</td>
<td>0.282209</td>
<td>-3.5</td>
</tr>
<tr>
<td>YB27-11</td>
<td>Granite</td>
<td>715 ± 13</td>
<td>0.282193</td>
<td>0.000007</td>
<td>0.001483</td>
<td>0.039588</td>
<td>1.51</td>
<td>1.99</td>
<td>0.282173</td>
<td>-5.4</td>
</tr>
<tr>
<td>YB27-13</td>
<td>Granite</td>
<td>708 ± 13</td>
<td>0.282272</td>
<td>0.000021</td>
<td>0.000848</td>
<td>0.022848</td>
<td>1.38</td>
<td>1.80</td>
<td>0.282261</td>
<td>-2.5</td>
</tr>
<tr>
<td>YB29-11</td>
<td>Granite</td>
<td>816 ± 16</td>
<td>0.282273</td>
<td>0.000017</td>
<td>0.000660</td>
<td>0.026871</td>
<td>1.37</td>
<td>1.72</td>
<td>0.282263</td>
<td>0.0</td>
</tr>
<tr>
<td>LTH26A-08</td>
<td>Granite</td>
<td>632 ± 14</td>
<td>0.282433</td>
<td>0.000015</td>
<td>0.000541</td>
<td>0.017499</td>
<td>1.14</td>
<td>1.47</td>
<td>0.282427</td>
<td>+1.7</td>
</tr>
<tr>
<td>LTH26A-09</td>
<td>Granite</td>
<td>825 ± 17</td>
<td>0.282225</td>
<td>0.000015</td>
<td>0.000645</td>
<td>0.020782</td>
<td>1.44</td>
<td>1.83</td>
<td>0.282215</td>
<td>-1.5</td>
</tr>
<tr>
<td>YB12-01</td>
<td>Rhyolite</td>
<td>724 ± 14</td>
<td>0.282315</td>
<td>0.000010</td>
<td>0.001148</td>
<td>0.038304</td>
<td>1.33</td>
<td>1.70</td>
<td>0.282299</td>
<td>-0.8</td>
</tr>
<tr>
<td>YB12-04</td>
<td>Rhyolite</td>
<td>818 ± 16</td>
<td>0.282315</td>
<td>0.000010</td>
<td>0.001327</td>
<td>0.043816</td>
<td>1.38</td>
<td>1.73</td>
<td>0.282261</td>
<td>0.0</td>
</tr>
<tr>
<td>YB12-06</td>
<td>Rhyolite</td>
<td>793 ± 15</td>
<td>0.282281</td>
<td>0.000009</td>
<td>0.001142</td>
<td>0.038210</td>
<td>1.38</td>
<td>1.74</td>
<td>0.282264</td>
<td>-0.5</td>
</tr>
<tr>
<td>YB12-10</td>
<td>Rhyolite</td>
<td>708 ± 14</td>
<td>0.282227</td>
<td>0.000014</td>
<td>0.000648</td>
<td>0.021917</td>
<td>1.43</td>
<td>1.89</td>
<td>0.282218</td>
<td>-4.0</td>
</tr>
<tr>
<td>YB12-18</td>
<td>Rhyolite</td>
<td>720 ± 14</td>
<td>0.282261</td>
<td>0.000008</td>
<td>0.000926</td>
<td>0.030538</td>
<td>1.40</td>
<td>1.82</td>
<td>0.282248</td>
<td>-2.6</td>
</tr>
<tr>
<td>YB19A-01</td>
<td>Rhyolite</td>
<td>769 ± 15</td>
<td>0.282246</td>
<td>0.000012</td>
<td>0.000779</td>
<td>0.026009</td>
<td>1.41</td>
<td>1.82</td>
<td>0.282235</td>
<td>-2.0</td>
</tr>
<tr>
<td>YB19A-03</td>
<td>Rhyolite</td>
<td>795 ± 16</td>
<td>0.282246</td>
<td>0.000017</td>
<td>0.000877</td>
<td>0.029793</td>
<td>1.42</td>
<td>1.80</td>
<td>0.282233</td>
<td>-1.5</td>
</tr>
<tr>
<td>YB19A-05</td>
<td>Rhyolite</td>
<td>780 ± 16</td>
<td>0.282329</td>
<td>0.000013</td>
<td>0.002321</td>
<td>0.076132</td>
<td>1.35</td>
<td>1.67</td>
<td>0.282295</td>
<td>+0.3</td>
</tr>
<tr>
<td>YB19A-06</td>
<td>Rhyolite</td>
<td>788 ± 16</td>
<td>0.282299</td>
<td>0.000009</td>
<td>0.000894</td>
<td>0.029255</td>
<td>1.34</td>
<td>1.69</td>
<td>0.282286</td>
<td>+0.2</td>
</tr>
<tr>
<td>YB19A-07</td>
<td>Rhyolite</td>
<td>763 ± 15</td>
<td>0.282246</td>
<td>0.000010</td>
<td>0.001061</td>
<td>0.033368</td>
<td>1.42</td>
<td>1.83</td>
<td>0.282231</td>
<td>-2.3</td>
</tr>
</tbody>
</table>

The full dataset of the zircon ages are reported in Usuki et al. (2014).
Table 3. Kangdian basalt starting compositions and modeling conditions

<table>
<thead>
<tr>
<th>Sample</th>
<th>04KD16-3 (model EMS1)</th>
<th>04KD16-3 (model EMS1)</th>
<th>99KD22-8 (model EMS2)</th>
<th>99KD22-82 (model EMS2)</th>
<th>04KD4-24 (model EMS3)</th>
<th>04KD4-24 (model EMS3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂ (wt%)</td>
<td>46.05</td>
<td>45.60</td>
<td>48.35</td>
<td>47.95</td>
<td>48.50</td>
<td>48.18</td>
</tr>
<tr>
<td>TiO₂</td>
<td>2.44</td>
<td>2.42</td>
<td>2.78</td>
<td>2.76</td>
<td>1.47</td>
<td>1.46</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>13.76</td>
<td>13.63</td>
<td>14.17</td>
<td>14.05</td>
<td>11.61</td>
<td>11.53</td>
</tr>
<tr>
<td>Fe₂O₃t</td>
<td>17.79</td>
<td>17.62</td>
<td>13.08</td>
<td>12.97</td>
<td>12.66</td>
<td>12.58</td>
</tr>
<tr>
<td>MnO</td>
<td>0.30</td>
<td>0.30</td>
<td>0.17</td>
<td>0.17</td>
<td>0.18</td>
<td>0.18</td>
</tr>
<tr>
<td>MgO</td>
<td>6.98</td>
<td>6.91</td>
<td>7.24</td>
<td>7.18</td>
<td>13.48</td>
<td>13.39</td>
</tr>
<tr>
<td>CaO</td>
<td>8.34</td>
<td>8.26</td>
<td>10.47</td>
<td>10.38</td>
<td>9.87</td>
<td>9.81</td>
</tr>
<tr>
<td>Na₂O</td>
<td>2.74</td>
<td>2.71</td>
<td>1.85</td>
<td>1.83</td>
<td>1.13</td>
<td>1.12</td>
</tr>
<tr>
<td>K₂O</td>
<td>1.36</td>
<td>1.35</td>
<td>1.40</td>
<td>1.39</td>
<td>0.62</td>
<td>0.62</td>
</tr>
<tr>
<td>P₂O₅</td>
<td>0.22</td>
<td>0.22</td>
<td>0.31</td>
<td>0.31</td>
<td>0.13</td>
<td>0.13</td>
</tr>
<tr>
<td>H₂O</td>
<td>1 wt%</td>
<td>1 wt%</td>
<td>1 wt%</td>
<td>1 wt%</td>
<td>1 wt%</td>
<td>1 wt%</td>
</tr>
<tr>
<td>fO₂</td>
<td>FMQ +2</td>
<td>FMQ +2</td>
<td>FMQ +2</td>
<td>FMQ +2</td>
<td>FMQ +2</td>
<td>FMQ +2</td>
</tr>
<tr>
<td>Pressure (GPa)</td>
<td>1.2</td>
<td>1.2</td>
<td></td>
<td></td>
<td>1.2</td>
<td></td>
</tr>
</tbody>
</table>

Major element data for models normalized to 100% including water. * Data from Lin et al. (2007) and + data from Li et al. (2002).