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Abstract 

Hydrate-based CO2 capture (HBCC) has received increasing attention, due to such advantages as 

the mild operating pressure and temperature, the ease of regeneration and its unique separation 

mechanism. This review paper is focused on the chemical additives and the mechanical methods 

that have been investigated to improve the CO2 separation efficiency and energy consumption 

through HBCC technology. Detailed comparisons of the effects of various chemical additives 

and mechanical methods on gas consumption, operating conditions, hydrate induction time and 

CO2 recovery are critically reviewed. The limitations and challenges of HBCC, in comparison 

with the conventional methods for CO2 capture are discussed. 
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1. Introduction 

Carbon dioxide (CO2) capture is a continuous process which requires a significant amount of 

energy to operate. It contributes to around 70-90% of the total operating cost of the three-stage 

carbon capture and storage system that is commonly used for the reduction of CO2 emissions 

(Herzog and Golomb, 2004). Current CO2 capture employs adsorption, absorption and 

membrane technologies which are low in efficiency and usually require multiple stages. 

Continuous efforts have been made to search for alternative methods in the area of CO2 capture 

so that the overall operating cost of the carbon capture can be reduced.  

Generally, CO2 is captured from the effluent of power plants through either post- or pre-

combustion capture.  Post-combustion capture refers to the treatment of flue gas before being 

released into the atmosphere. The flue gas consists of approximately 15-20% CO2 and 5% O2, 

with the balance being N2, and it is emitted from a full combustion process. Pre-combustion 

capture refers to the capture of CO2 from the fuel gas, which is the partially combusted fuel 

containing approximately 40% CO2 and 60% H2. The high CO2 content in the fuel gas allows 

more efficient capture. However, it can only be employed in an integrated gasification combined 

cycle (IGCC) power plant where the fuel is pre-treated to produce CO2/H2 syngas.The CO2 is 

then separated from the syngas while the H2 is fed into the combustion process. Post-combustion 

CO2 capture is less effective than the pre-combustion method. However, it can be retrofitted to 

any plant without much modification (Spigarelli and Kawatra, 2013). Regardless, the gas 

systems that are discussed in this paper are mostly CO2, or CO2/N2, or CO2/H2.  

Hydrate-based CO2 capture (HBCC) technology is a novel process that has received enormous 

attention, both from the industry and academic researchers, during the last two decades. The 

technology operates at mild pressures and temperatures, through a unique separation mechanism 

that is easy to regenerate and capable of separating gas mixtures, which might not be achievable 

via conventional technologies (Englezos and Lee, 2005). A significant number of studies have 

reported on the potential application of gas hydrates technology in CO2 capture. These include 

some early work that was mostly focused on phase equilibrium studies of pure CO2 hydrates, and 

more recent work that has focused closely on investigations of various chemical additives and 

mechanical methods for enhancement of the efficiency of CO2 capture and separation. This paper 

will review the recent developments and research activities conducted on HBCC with a focus on 
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chemical additives and mechanical approaches that are able to improve the selectivity, efficiency 

and kinetics of this technology. An introduction to the principles and significance of gas hydrates 

technology will be followed by detailed discussion of the current progress in technological 

improvements through the application of various chemical additives and mechanical methods. 

The key effects of the chemicals and mechanical methods, as well as the major outcomes of the 

research activities, will be summarised. In addition, the paper will give an account of the costs, 

limitations and challenges that are associated with HBCC, in comparison with the conventional 

technologies.  

2. Hydrate-based CO2 capture technology 

2.1. Gas hydrates 

Gas hydrates are solid clathrates made up of gas molecules (guests), such as methane (CH4), 

CO2, N2 and H2, that are caged within a cavity of hydrogen-bonded water molecules (host). They 

form under the favourable thermodynamic conditions of low temperature and high pressure, and 

they exhibit various structures depending on the size and chemical properties of the guest 

molecules (Sloan and Koh, 2008). Most small gas molecules, such as CO2 and CH4, form 

structure I (SI). Structure II (SII) hydrates form with larger gas molecules such as N2 (Davidson et 

al., 1986) and propane. With the mixture of both small and large gas molecules, such as methane 

+ cycloheptane, the structure H (SH) may form (Sloan, 2003). This is due to the gas molecule 

repulsions which open various sizes of water cage. The crystal structures of these hydrates 

consist of different water cavities. The most common forms of water cavity include the irregular 

dodecahedron (435663) and the pentagonal dodecahedron (512), as well as the tetrakaidecahedron 

(51262), the hexakaidecahedron (51264) and the icosahedron (51268) that are often collectively 

described as 5126m, with m = 2, 4, 8 (Sloan and Koh, 2008). The term “512” is used to indicate 

that a relatively smaller cavity contains 12 pentagonal faces, whereas the term “5126m” denotes a 

larger cavity with 12 pentagonal and m hexagonal faces, while “435663” illustrates a medium 

cavity which contains 3 tetragonal, 6 pentagonal and 3 hexagonal faces. A combination of 512 

and 51262 is more commonly seen in SI, while the combination of 512 and 51264 is more 

commonly seen in SII. In SH, a combination of 512, 435663 and 51268 has been observed. 

Formation of gas (in particular methane) hydrates has been a significant problem for the 

upstream oil and gas industry because they clog pipelines, valves, wellheads and processing 
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facilities, thus reducing production and causing safety problems. Extensive research activities 

have been undertaken in order to prevent or mitigate the formation of gas hydrates (Kelland, 

2006). Research on the enhancement of gas hydrate formation began in the late 19th century after 

discovering the positive applications of gas hydrates for gas storage, separation, sequestration 

and desalination (Sloan and Koh, 2008). 

2.2. Gas hydrate-based CO2 capture  

CO2, as a small nonpolar hydrocarbon, forms SI hydrates with a formula of CO2·nH2O (n = 5.75) 

when coming into contact with water molecules below the equilibrium temperature and above 

the equilibrium pressure (Sloan and Koh, 2008). Upon dissociation, one volume of CO2 hydrates 

can release 175 volumes of CO2 gas at standard temperature and pressure conditions, which is 

potentially useful for the separation of the CO2 from flue gas. The equilibrium phase diagram of 

CO2 hydrates is presented in Fig. 1, which is constructed using an equation from experimental 

data reported by Kamath (1984). The figure also shows that other gases, such as N2, H2, O2 and 

CH4, form hydrates under slightly different equilibrium conditions. The equilibrium curve of H2 

was obtained from Dyadin et al. (1999). 

 

Fig. 1. The equilibrium phase diagrams of different hydrate formers. 

As one can see from the equilibrium diagrams, CO2 has the lowest hydrate-forming pressure in 

comparison with other components in flue gas. Separating CO2 from the other gases can be 

achieved by first forming a solid hydrate phase that is enriched with CO2. Dissociating the 

hydrates, after separating the hydrate phase from the gaseous phase, leads to the recovery of CO2 
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that is much higher in concentration than the initial feed. Studies have shown that the 

concentration of CO2 in the hydrate phase is at least four times greater than that in the gas phase 

(Duc et al., 2007). This hydrate-based CO2 capture process is illustrated in a flow diagram 

displayed in Fig. 2. In brief, the gas mixture is sent to the hydrate formation reactor, in which 

CO2 hydrates form as the pressure increases and temperature decreases. The hydrate slurry is 

separated from the CO2-lean gas in the separator and sent to a hydrates dissociation reactor, from 

which purified CO2 is collected, and the CO2-rich gas is recycled for further processing. 

 

Fig. 2. Flow diagram of a HBCC processing unit. 

2.3. Parameters describing the HBCC process 

The efficiency of hydrate-based CO2 separation is often described by such parameters as hydrate 

induction time, gas consumption, hydrate equilibrium pressure, CO2 recovery or split fraction 

(S.Fr.) and separation factor (S.F.). 

The hydrate induction time is the time taken for crystal nuclei to form that are not visible to 

macroscopic probes. In practice, the induction time is determined at the time the consumption of 

hydrate-forming gases becomes observable (Sloan and Koh, 2008). Total gas consumption is the 

maximum amount of gas enclathrated during the hydration process. It is measured in moles, 

which includes all compositions within the gas mixture. The amount of gas that has been 

consumed during hydrate formation can be calculated using Eq. (1) and Eq. (2) (Linga et al., 

2007c): 
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where ݊௚,଴ and	݊௚,௧ are the total number of moles at time t = 0 and at any time t, respectively, Z 

is the compressibility factor calculated by the equation of the state, P is the pressure of the 

hydrate formation reactor, T is the temperature of the liquid phase, R is the ideal gas constant, i 

refers to component i of the gas mixture and y is the mole fraction in the gas phase. The volume 

of gas (V) is assumed to be constant throughout the hydrate formation process. 

 

High gas consumption does not always mean high CO2 consumption because the gas consumed 

might contain mostly gases other than CO2. High separation efficiency is required for CO2 

capture, which is governed by two common factors: the CO2 recovery or split fraction (S.Fr.) and 

the separation factor (S.F.). Split fraction refers to the percentage recovery of CO2 and is 

determined using Eq. (3) (Linga et al., 2007c): 

ܵ. .ݎܨ ൌ ݊஼ைమ
ு /݊஼ைమ

௙௘௘ௗ         (3) 

where ݊஼ைమ
ு is the number of moles of CO2 in the hydrate phase, and ݊஼ைమ

௙௘௘ௗ	is the number of moles 

of CO2 in the feed gas.  

For a flue gas mixture containing CO2 and another gas (A), the value of the separation factor is 

calculated using the following equation (Linga et al., 2007c): 

 

ܵ. .ܨ ൌ
௡಴ೀమ	
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೒ೌೞ
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ಹ          (4) 

where ݊஼ைమ
ு  and ݊஺

ு denote the number of moles of CO2 and another gas (A) in the hydrate phase, 

respectively, 	݊஼ைమ
௚௔௦ is the number of moles of CO2 in the residual gas phase and ݊஺

௚௔௦ is the 

number of moles of A in the residual gas phase. 

For CO2 capture, a short induction time and high gas consumption, combined with high 

separation factor, are highly desirable. In practice, this is a challenging goal. Higher operating 
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pressure leads to fast/high gas consumption; however, it does not guarantee a high CO2 recovery 

and separation factor, since gases other than CO2 may also form hydrates at the same time. In 

addition, the required high pressure leads to an increase in compression costs due to the high 

energy consumption. Over the past two decades, research has been focused on the methods and 

processes that would lower the operating pressure, while increasing the hydrate formation rate 

and the selectivity to CO2 gas. Various chemical additives have been extensively studied to 

improve the CO2 capture/separation efficiency. Mechanical methods also have been investigated 

to improve the contact area and mass transfer between gas and water so as to enhance gas 

consumption and reduce induction time. The following sections will discuss these chemical 

additives and mechanical methods, with the focus being on their thermodynamic and kinetic 

effects on the CO2 hydrate formation process and the ultimate separation efficiency. 

2.4. Chemical additives 

Chemical additives act as hydrate promoters that may reduce the equilibrium hydrate formation 

pressure, shorten the induction time, increase the hydration rate, enhance gas uptake and improve 

the selectivity of CO2 in hydrate cages. The chemical additives are generally divided into two 

classes: kinetic promoters and thermodynamic promoters. Kinetic promoters are mostly 

surfactants that increase the rate of hydrate formation without taking part in the hydrate 

formation itself. Commonly used surfactants in hydrate forming systems include sodium dodecyl 

sulphate (SDS), Tween-80 (T-80) and dodecyl-trimethyl-ammonium chloride (DTAC). 

Thermodynamic promoters are small molecules that take part in hydrate formation by competing 

with gas molecules for hydrate cages. The most investigated thermodynamic promoters include 

tetrahydrofuran (THF), cyclopentane (CP), propane (C3H8) and tetra-n-butyl ammonium bromide 

(TBAB), among which THF, CP and C3H8 form hydrate crystals without changing the structure 

of the water cavity, while TBAB takes part in the process through the formation of a semi-

clathrate structure by breaking the water cage (Eslamimanesh et al., 2012). The chemical 

structures of these promoters are presented in Table 1. The mechanisms, kinetics and 

thermodynamic effects of these chemical additives on the efficiency of CO2 separation are 

discussed in the following sections. 



Table 1 
The chemical structures of various chemical additives and surfactants. 

Chemical Additives Chemical Structure 

Thermodynamic 
Promoters 

Tetrahydrofuran (THF) 

 

Propane 
 

Cyclopentane (CP) 

 

Tetra-n-butyl ammonium bromide 
(TBAB) 

 

Kinetic Promoters 
(Surfactants) 

 
 
Tween-80 (T-80) 
 
 

 

 

Dodecyl-trimethyl-ammonium 
chloride (DTAC) 

 

Sodium dodecyl sulphate (SDS) 

 



2.4.1. Tetrahydrofuran  

Tetrahydrofuran (THF) is one of the most commonly studied chemical additives in hydrate-based 

CO2 capture technology. THF forms the SII hydrate (Hawkins and Davidson, 1966) that contains 

16 small cavities (512) and 8 large cavities (51264) per unit lattice at thermodynamic conditions of 

0.1 MPa and 277.6 K (Strobel et al., 2009). Although CO2 naturally forms the SI hydrate with 

water, the presence of THF induces the formation of SII hydrates for all gas components in flue 

gas (Park et al., 2013), in which CO2 occupies both the small cages, competing with N2 or H2, 

and the large cages, while competing with THF (Kang and Lee, 2000). 

The most significant impact of THF on hydrate-based CO2 capture includes the drastic reduction 

of both hydration pressure and induction time.  As a consequence, large amounts of hydrates 

form, which include CO2 hydrates, along with H2 or N2 hydrates depending on the composition 

of the gas mixtures. The CO2 recovery or splitting factor (S.Fr.) (Eq. (3)) may increasebut the 

separation factor (S.F.) (Eq. (4)) always reduces.  Reduced rates of hydrate growth and initial gas 

uptake also have been reported (Adeyemo et al., 2010; Daraboina et al., 2013). As THF 

molecules occupy the large 51264 cavities of SII hydrates, high THF concentration also leads to 

reduced availability of cavities for CO2 and other gases, therefore leading to reductions in both 

CO2 recovery and separation factor. One percent mole (1 mol%) of THF has been reported to be 

optimal for CO2 separation from CO2/N2 and CO2/H2 systems (Kang and Lee, 2000; Lee et al., 

2010; Linga et al., 2007a). More details of THF-enhanced CO2 separation reported by various 

research groups are summarised in Table 2.  

2.4.2. Cyclopentane  

Cyclopentane (CP) forms the SII hydrate and occupies only large water cages at temperatures 

near 280 K and atmospheric pressure (Sloan and Koh, 2008; Sun et al., 2002). The presence of 

CP also reduces the equilibrium pressure and induction time. However, unlike THF, the 

formation of CO2 hydrates in the presence of CP is independent of the concentration, which is 

likely due to the immiscibility of CP with water. Experimental results regarding CO2 separation 

in the presence of CP are summarised in Table 3. 



Table 2 
The effects of THF on gas hydrate–based CO2 capture. 

Author(s) Gas Systems*  Findings 

Adeyemo et al. (2010) CO2/N2/THF 

 

CO2/H2/THF 

 Pressure reduction: 

 

9 MPa                                   5 MPa 
 CO2 concentration  for CO2/N2 system: 

 

17 mol%                                        98.8 mol% 

 CO2 concentration  for CO2/H2 system: 
 
40 mol%                                          92 mol% 

Daraboina et al. (2013) CO2/N2/SO2/THF 

CO2 = 17 mol%, N2 = 82 mol%, SO2 = 
1 mol% 

 Gas Consumption: 
 
0.164 mol                                    0.059 mol 

 Induction time: 

 

10 min                                         6 min 

Kang and Lee (2000)  CO2/N2/THF  Pressure reduction: 
 
14 MPa                                        1.65 MPa 

 CO2 concentration:  
 
17 mol%                                     34.71 mol% 
 
 
17 mol%                                      99.67 mol% 

Kang et al. (2001)  CO2/N2/THF  Pressure reduction:  
 
8.35 MPa                                    0.48 MPa 

1 mol% THF 

One stage, 1 mol% THF 

Three stages, without THF 

1 mol% THF 

Three stages, without THF

1 mol% THF 

Three stages, without THF 

1 mol% THF 

1 mol% THF 
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 CO2 concentration:  
 

17 mol%                                     96 mol% 

Lee et al. (2010) CO2/H2/THF 

CO2 = 39.2 mol%, H2 = 60.8 mol% 

 

 Pressure reduction: 

 

11 MPa                                    2.25 MPa 
 At 1.78 MPa: 

Gas consumption: 0.6 mol 
Induction time: 3.3 min 

 At 0.89 MPa: 
Gas consumption: 0.2 mol 
Induction time: 6.6 min 

Linga et al. (2007a) CO2/N2/THF 

CO2 = 16.9 mol%, N2 = 83.1 mol% 
 Pressure reduction: 

 
7.7 MPa                                       2.5 MPa 

 CO2 concentration:  
 
17 mol%                                     36.9 mol% 
 

     17 mol%                                      94 mol% 

 Induction time decreased with increasing THF concentration 

Linga et al. (2007c)  CO2/N2/THF 

CO2 = 16.9 mol%, N2 = 83.1 mol%; 

 

CO2/H2/THF 

CO2 = 39.2 mol%, N2 = 60.8 mol% 

 The equilibrium hydrate formation conditions:  
 
CO2/N2               7.7 MPa, 273.7 K 
CO2/H2               5.1 MPa, 273.7 K 

 Pressure reduction in CO2/N2 mixture: 
 
7.7 MPa                                     0.345 MPa 

 Hydrates from CO2/H2 mixture grew faster than those from the 
CO2/N2 mixture 

 Induction time for CO2/N2 mixture: 

Two stages, without THF 

1 mol% THF

Three stages, 1 mol % THF 

One stage, 1 mol% THF 

1 mol% THF 

1 mol% THF 
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16.3 min                               < 1 min 

Park et al. (2013) CO2/H2/THF  5.6 mol% THF resulted in the maximum stabilization effect 
 Pressure reduction: 

 

8 MPa                                    0.5 MPa  

Tang et al. (2013) CO2/N2/THF 

CO2 = 59 mol%, N2 = 41 mol% 
 Optimal THF concentration: 1 mol%  
 CO2 recovery: 

 

59% CO2                                  75% CO2  
*Default composition unless specified: In CO2/N2, CO2 = 17 mol% and N2 = 83 mol%; In CO2/H2, CO2 = 40 mol% and H2 = 60 mol%. 

  

1 mol% THF 

1 mol% THF 

5.6 mol% THF 
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Table 3 
Hydrate-based CO2 separation in the presence of CP. 

Author(s) Gas Systems* Findings 

Li et al. ( 2012a) CO2/H2/CP  CO2 concentration: 
 
40 mol%                                   84 mol% 

 Gas uptake : 0.022 mol 
 Induction time: 15 s 

Zhang and Lee (2008a) CO2/CP  CO2 hydrates growth: independent of CP volume; dependent on 
initial water volume and pressure 

 Best growth rate: at 5 vol% CP and 3.06 MPa 
 Induction time: < 0.2 h 
 Complete hydrate growth time: < 2 h 

Zhang and Lee (2008b) CO2/CP 

 

H2/CP 

 CO2/CP hydrate showed slightly higher dissociation temperature 
and lower pressure than both CO2/THF and CO2/TBAB at 0.89 - 
3.51 MPa 

Zhang et al. (2009) CO2/H2/CP  Pressure reduction: 

 

5.3 MPa                                1.3 MPa 
 CO2 concentration: 

 
40 mol%                                   98 mol% 

*Default composition unless specified: In CO2/N2, CO2 = 17 mol% and N2 = 83 mol%; In CO2/H2, CO2 = 40 mol% and H2 = 60 mol%. 

5 vo l% CP 

1.5 vol% CP  

Two stages, 1.5 vol% CP  



2.4.3. Propane  

Like CP, propane (C3H8) also promotes hydrate formation at reduced equilibrium pressure (Babu 

et al., 2013b; Kumar et al., 2006). Propane alone forms SII hydrates at 275 K and between 0.36 

MPa and 0.48 MPa (Giavarini et al., 2003; Hendriks et al., 1996). It induces the formation of SII 

hydrates when it competes with CO2 for occupancy of large cages (Adisasmito and Sloan, 1992; 

Kumar et al., 2009a). A study has shown that 57% of large cages are occupied by CO2 when 2.5 

mol% C3H8 was added to the system (Kumar et al., 2009a). In most studies, the SII hydrate form 

of CO2 hydrates was observed. The formation of SI hydrates also was observed when a gas 

mixture of 80.0% CO2, 18.8 mol% H2 and 1.2% C3H8 was used, reportedly due to the low 

propane concentration (Babu et al., 2013b). A pressure reduction of 49% was obtained when 2.5 

mol% C3H8 was added to the hydrate system (Kumar et al., 2009a). This is less effective than 

THF. Reductions in induction time and hydrate formation rate also were reported by the same 

group. The lower growth rate caused less CO2 gas to be enclathrated within a given period. 

Therefore, gas consumption was reduced from 0.101 to 0.078 moles within 2 hours. As for the 

CO2 recovery and separation factor, the presence of C3H8 produced little effect on the former and 

a slight decreasing effect on the latter (Kumar et al., 2009a; Linga et al., 2007b). 

2.4.4. Tetra-n-butyl ammonium bromide 	

Tetra-n-butyl ammonium bromide (TBAB) is a widely proposed gas hydrate promoter, which 

consists mainly of environmentally friendly TBA+ ionic liquid. TBAB forms semi-clathrate (SC) 

hydrates, which is different from the action of other promoters (Davidson and Franks, 1973; 

Fowler et al., 1940). In the SC hydrate structure, bromide anions are bonded to water molecules 

and form water + bromide hosts, with the cages being occupied by cations as guests (Jeffrey and 

McMullan, 1967). Due to this feature, SC hydrates allow greater gas capacity in water cages and 

better stability at atmospheric pressure (Wataru et al., 2003). The phase boundaries of CO2 

hydrates in the presence of TBAB form at temperatures from 273.15 K to 291.15 K and 

pressures from 0.25 MPa to 4.09 MPa, which are much lower pressure values than for pure CO2 

hydrate formation, specifically at lower temperatures (1.15 MPa to 4.33 MPa) (Fig. 4). 
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Fig. 4. CO2/TBAB phase equilibrium data (Arjmandi et al., 2007): ●, TBAB, w = 0.10 and ▲, 
TBAB, w = 0.427; , TBAB, w = 0.05 ○, TBAB, w = 0.10 and , TBAB, w = 0.40; *, TBAB, w 
= 0.65; solid line, CO2 hydrate phase boundary predicted by an in-house (HWHYD) model. 

 

Studies on TBAB SC hydrates have demonstrated that there are two types, namely Type A and 

Type B, which grow simultaneously when in aqueous solution (Oyama et al., 2005). Type A has 

a cylindrical shape and a hydration number of 26.  Type B has an irregular shape composed of 

thin crystals and shows a hydration number of 38. For the pure TBAB hydrate systems, when 

TBAB concentration is 0.014 mol%, type B is more stable than type A.  Above 0.014 mol%, 

type A becomes more stable (Oyama et al., 2005; Wataru et al., 2003). The change of TBAB 

structure between these two different types in different TBAB concentrations makes the phase 

behaviour of SC hydrates difficult to study and complicated to analyse. Nevertheless, due to the 

high stability of TBAB’s SC structure at low pressure, TBAB has the potential to reduce the 

formation pressure of CO2 hydrate by up to over 90% at a concentration as low as 0.29 mol% (Li 

et al., 2010b). Increasing TBAB concentration not only reduces the equilibrium hydrate 

formation pressure but also increases the equilibrium hydrate forming temperature, which 

advances other clathrate hydrate promoters such as THF and CP (Meysel et al., 2011; 

Mohammadi et al., 2012). TBAB also has been found to reduce the induction time and increase 

the hydrate formation rate for the CO2/N2 mixture (Fan et al., 2009; Li et al., 2012b). 
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Other types of TBA+ salts, which are able to form SC hydrates, also have been reported. Some 

examples of these additives are tetra n-butyl ammonium fluoride (TBAF), tetra n-

butylphosphonium bromide (TBPB), and tetra n-butyl ammonium nitrate (TBANO3).
 TBANO3 

was found to be approximately 1.5 times more effective than TBAB in reducing the pressure of 

the CO2/N2 hydrate system (Li et al., 2012b). It also was found to instigate much higher gas 

uptake compared to TBAB at pressures between 2.5 and 4 MPa. Among the three TBA+ salts 

investigated, it yielded the highest CO2 recovery rate, 67%, and a separation factor of 15.54. The 

authors claimed that TBANO3 and TBPB have high potential for replacing TBAB in the near 

future. The experimental studies of CO2 capture by hydrates in the presence of TBAB are 

summarized in Table 4. 

2.4.5. Surfactants and mixed chemical additives 

Surfactants are a type of kinetic promoter that enhances the hydration kinetics by promoting gas 

solubility in water without modifying the thermodynamic equilibrium of the system. These 

compounds are composed of molecules that contain both a hydrophilic end and a hydrophobic 

end. Gas molecules form surfactant-gas associates with surfactants through strong hydrophobic 

interactions. Migration of the formed surfactant-gas associates to water molecules and/or 

structured water molecules is much easier than for pure gas molecules, due to the stronger 

affinity between water molecules and the hydrophilic end of the surfactant molecules. This 

ensures a faster formation of gas hydrates and, therefore, reduced induction time (Zhang et al., 

2007). Fig. 5 is an illustration of the gas hydration process in the presence of sodium dodecyl 

sulphate (SDS). Surfactants have no effect on hydrate formation pressure. They can effectively 

improve the hydration kinetics by reducing the water surface tension.  

Many surfactants have been investigated for hydrate-based CO2 separation. Tween-80 (T-80), 

dodecyl-trimethyl-ammonium chloride (DTAC) and SDS are the most widely used. Among these 

three surfactants, SDS shows the greatest effect on hydrate promotion. This is mainly because 

SDS is an anionic surfactant, which is superior to both non-ionic and cationic surfactants for the 

same purpose (Okutani et al., 2008; Yoslim et al., 2010). Since surfactants do not partake in the 

enclathration process, unlike thermodynamic promoters, they do not sacrifice CO2 recovery, 

separation factor or gas consumption for their enhancement of hydrate formation kinetics. Higher 



19 
 

CO2 recovery, reportedly, has been associated with higher SDS concentrations. However, when 

the  



Table 4 
The effects of TBAB on hydrate-based CO2 capture (weight percentage is presented as %). 

Author(s) Gas Systems* Findings 

Babu et al. (2014a) CO2/H2/TBAB 

TBAB = 0.3, 1.0, 1.5, 2.0, 3.0 mol% 
 At TBAB = 0.3 mol%: highest gas consumption and longer 

induction time 
 At TBAB = 0.1 mol%: highest hydrate growth rate 

Belandria et al. (2012a) CO2/N2/TBAB 

CO2 = 15.1, 39.9, 74.9 mol%, N2 = 
84.9, 60.1, 25.1 mol%, TBAB = 5, 
30% 

 Equilibrium hydrate formation: 
 
 275.2 K, 10.1 MPa                             285.7 K, 1.57 MPa  

 Increasing TBAB concentration: the dissociation pressure 
decreased and temperature increased 

 Increasing the N2 concentration resulted in increasing hydrate 
formation pressure 

Belandria et al. (2012b) CO2/N2/TBAB 

CO2 = 15.1, 39.9, 74.9 mol%, N2 = 
84.9, 60.1, 25.1 mol%, TBAB = 5, 
30% 

 Equilibrium pressure decreased with increasing TBAB 
concentration 

Duc et al. (2007)  CO2/TBAB 

 

N2/TBAB 

 

CO2 /N2 /TBAB 

 Pressure reduction at 284 K: 

 

CO2: 14.36 MPa                                 0.84 MPa 
 

      N2:  50 MPa                                        29 MPa 

 Equilibrium pressure: 
 

      CO2  = 23.4 mol% , N2 = 76.6 mol%                             0.5 MPa 

 

      CO2 = 48.2 mol%, N2 = 51.8 mol%                               9 MPa  

Gholinezhad et al. 
(2011) 

CO2/H2/TBAB 

CO2 = 40.2 mol%, H2 = 59.8 mol% 
 Gas consumption: 0.0502 mol at 5% TBAB; 0.086 mol at 10% 

TBAB 

0.29 mol% TBAB 

30% TBAB

0.29 mol% TBAB 

0.29 mol% TBAB 

0.29 mol% TBAB 
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 CO2 recovery: 42% at 0% TBAB; 41% at 5% TBAB; 47% at 
10% TBAB 

 Separation factor: 15.7 at 5% TBAB; 28 at 10% TBAB 
 CO2 concentration at 10% TBAB: 

 

40 mol%                            96 mol% 

Kim et al. (2011) CO2/H2/TBAB  Optimal TBAB concentration: 1 mol%  
 Gas consumption: 0.031 mol 
 CO2 recovery: 24% 
 Separation factor: 26 
  Induction time: 10.2 min 

Li et al. (2009) CO2/N2/TBAB 

CO2 = 19.9 mol%, N2 = 80.1 mol%, 
TBAB = 5% 

 Induction time: 5 min 
 CO2 recovery: 45% 
 Separation factor at 4.3 MPa: 7.3 

Li et al. (2010b) CO2/H2/TBAB 

CO2 = 39.2 mol%, H2 = 60.8 mol%, 
TBAB = 0.14 to 2.67 mol% 

 

 

 Pressure reduction 

 

9.84 MPa                                   0.4 MPa 
 Higher TBAB concentration resulted in further pressure 

reduction 

Li et al. (2010c) CO2/H2/TBAB 

 

 

 Optimal conditions: 2.5 MPa and 0.29 mol% TBAB  
 Gas Consumption: 

at 2.5 MPa                                  0.12 mol 
at 4.5 MPa                                  0.16 mol 

 CO2 in residual gas:  
at 2.5 MPa                                  18.5 mol% 
at 4.5 MPa                                  22 mol% 

Li et al. (2010d) CO2/N2/TBAB/DTAC  CO2 concentration at 1.66 MPa: 
 
 
17 mol%                                                                  99.2 mol% 

0.29 mol% TBAB 

Two stages, 0.29 mol% TBAB and 0.028 mol% DTAC 

Two stages 
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 CO2 recovery: 54% 
 Induction time: 1 min 
 Optimal concentration of DTAC: 0.028 mol% 

Li et al. (2011b) CO2/H2/TBAB 

CO2 = 39.2 mol%, H2 = 60.8 mol% 
 Optimal TBAB conditions: 0.29 mol% concentration and 2.5 

MPa 
 CO2 concentration: 

 
39.2 mol%                              97 mol% 

 CO2 recovery: 67.16% 
 Separation factor: 136.08 

Li et al. (2012b) CO2/N2/TBAB  

 

CO2/N2/TBANO3 

 TBANO3 = 1 mol%: 
 Highest gas uptake 
 Gas consumption: 0.088 mol 
 CO2 recovery and separation factor at 3.26 MPa: 67%, 

15.5 
 Induction time: 4.2 min 
 CO2 concentration: 

 
              17%                             7%  

 TBAB = 0.65 mol%: 
 Gas consumption: 0.056 mol 
 CO2 recovery and separation factor at 3.26 MPa: 46%, 

12.8 
 Induction time: 0.1 min 

 TBPB = 1 mol%: 
 CO2 recovery and separation factor at 3.26 MPa: 61% and 14 
 Induction time: 2.7 min 

Li et al. (2012a) CO2/H2/TBAB/CP  CO2, H2, TBAB = 0.29 mol%: 
 Gas consumption: 0.126 mol  
 Induction time: 2.7 min 

 CO2, H2, TBAB = 0.29 mol%, CP = 5 vol%: 
 Gas consumption: 0.214 mol 

0.29 mol% TBAB 

1 mol% TBANO3
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 Induction time: 0.32 min 

Meysel et al. (2011) CO2/H2/TBAB 

CO2 = 20, 50, 75 mol%, H2 = 80, 50, 
25 mol%, TBAB = 5, 10, 2% 

 Increasing TBAB concentration resulted in decreasing pressure 
 SC formed at a higher temperature than gas hydrates 

Mohammadi et al. 
(2012) 

CO2/N2/TBAB 

CO2 = 15.1, 39.9 mol%, N2=84.9, 60.1 
mol% 

 Equilibrium hydrate formation condition for CO2 = 39.9 mol%, 
N2 = 60.1 mol%: 

 5% TBAB: 285.6 K, 5.93 MPa  
 15% TBAB: 286.6 K, 2.89 MPa 
 30% TBAB: 286.4 K, 1.71 MPa 

Mohammadi et al. 
(2013) 

CO2/H2/TBAB 

CO2 = 14.81, 39.52, 75.01 mol%, H2 = 
85.19, 60.48, 24.99 mol% 

 Equilibrium hydrate formation condition for CO2 = 39.52 mol%, 
H2 = 60.48 mol%: 
 

278.4 K, 10.5 MPa                          288.6 K, 12.17 MPa 

 

278.4 K, 10.5 MPa                          288.6 K, 4.07 MPa 
*Default composition unless specified: In CO2/N2, CO2 = 17 mol% and N2 = 83 mol%; In CO2/H2, CO2 = 40 mol% and H2 = 60 mol%. 

5% TBAB

30% TBAB 



SDS concentration is too high, SDS micelles may form, resulting in reduced gas and liquid 

contact surfaces and, therefore, lower CO2 recovery (Tang et al., 2013). 

 

 

Fig. 5. Illustration of the migration of surfactants-gas associates to water molecules and/or cages. 

Surfactants have been used together with THF or TBAB in order to achieve better separation of 

CO2. For example, the SDS/THF additive mixture has been proven to double the gas uptake, 

compared with the case of using THF alone (Table 5). Addition of surfactants or light mineral 

oils into the hydration systems containing CP also has been found to increase the hydrate 

formation rate. This is due to the formation of a CP/water emulsion and the consequent increase 

in the CP/water interfacial area in the presence of surfactants. The presence of surfactants 

improves the gas diffusion through the gas/water and gas/hydrates interfaces, leading to 

enhanced inward and outward growth of hydrates (Fig. 6), therefore improving the hydrate 

formation rate. Other reported mixed chemical additives include CP/TBAB and DTAC/TBAB. 

The purpose of using mixed chemical additives is to reach higher CO2 separation efficiency 

through the synergistic effects of the two chemical promoters.  Table 5 summarises the findings 

by different research groups on the synergistic effects of chemical additives. 

 

Fig. 6. Illustration of hydrate formation in an emulsion (Rework of Karanjkar et al., 2012). 



Table 5 
Synergistic effects of chemical additives (weight percentage is presented as %). 

Author(s) System* Findings 

Herslund et al. (2014) CO2/THF/SDS 

SDS = 0.054 mol% 
 Addition of 5 mol% THF decreased hydrate equilibrium 

pressure by up to 20% 

Li et al. (2010) CO2/N2/CP 

CO2 = 16.6 mol%, N2 = 83.4 mol%; 

 

CO2/N2/CP/H2O emulsion 

CO2 = 16.6 mol%, N2 = 83.4 mol% 

 Higher hydrate formation rate in presence of CP/H2O emulsion 
  CO2 concentration in the presence of: 

 CP at 2.9 MPa                 44 mol% 
 CP/H2O emulsion at 3.29 MPa                 35.29 mol% 

Li et al. (2010d) CO2/N2/TBAB/DTAC  Higher pressure and induction time reduction, with addition of 
DTAC 

 CO2 concentration: 
 

       17 mol%                                                 67 mol% 

 
 17 mol%                                                              99.4 mol% 

Li et al. (2011c) CO2/H2/TBAB/CP 

CO2 = 38.6 mol%, H2 = 61.4 mol% 
 Optimal CP and TBAB concentrations: 5 vol% and 0.29 mol%  
 The addition of CP: sped up the nucleation rate and CO2 

separation 
 CO2 separation: 

 
40 mol%                                            93 mol% 

 Gas consumption: 0.22 mol 
 CO2 recovery: 58% 
 Separation factor: 31 
 Decreasing induction time with increasing CP/TBAB ratio 

5 vol% ratio CP/0.29 mol% TBAB 

0.028 mol% DTAC, 0.29 mol% TBAB

Two stages, 0.028 mol% DTAC, 0.29 mol% TBAB 
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Li et al. (2012a) CO2/H2/TBAB/CP 

CO2 = 38.6 mol%, H2 = 61.4 mol% 
 CO2 concentration: 

 
 
38.6 mol%                                          91.3 mol% 

 Gas uptake : 0.214 mol 
 Both SII and SC hydrate observed at 4 MPa and 274.65 K 
 The formation of SII hydrate by CP reduced the SC hydrate 

induction time from over 150 s to 19 s 

Lirio et al. (2013) CO2/THF/SDS  High reduction in reduction time in the presence of THF 
 Under 3 MPa, 500 ppm SDS/5 mol% THF: 

 91.9% yield 
 25 min induction time 

Liu et al. (2014) CO2/H2/CP/TBAB  

CO2 = 46.8, 15.6 mol%, H2 = 53.2, 
84.8 mol%, CP = 30, 50 vol% 

 The optimal TBAB concentration: 0.29 mol% 
 Separation factor increased from 37 to 99 at 0.29 mol% TBAB 
 TBAB is an anti-agglomerant which can improve the flow 

behaviour of hydrate slurry 

Torré et al. (2011) CO2/ THF/SDS  Optimal concentrations: 

SDS > 1500 ppm  

1% < THF < 4% 

Torré et al. (2012) CO2/ THF/SDS  Optimal concentrations: 

0.3% SDS  

4% THF  

 The combination of THF and SDS showed significant gas 
uptake 

 THF increased the hydrate temperature and decreased the 
hydrate pressure 

 SDS had no influence on equilibrium conditions 

Yang et al. (2013b) CO2/THF/SDS  Shortest induction time in presence of 1 000 mg/L SDS and 3 
mol% THF 

5 vol% CP, 29 mol% TBAB 
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 Hydrate equilibrium temperature decreased with increasing SDS 
concentration 

Zhang et al. (2014) THF/SDS/CO2/N2  Increasing THF concentration resulted in lower reduction in 
equilibrium pressure 

 Optimal THF concentration: 3 mol%  
*Default composition unless specified: In CO2/N2, CO2 = 17 mol% and N2 = 83 mol%; In CO2/H2, CO2 = 40 mol% and H2 = 60 mol%.



2.5. Mechanical methods 

In addition to the chemical additives, investigations of various reactors and/or reaction 

conditions also have been carried out in order to improve the CO2 formation efficiencies and to 

reduce energy consumption. In this paper, the term ‘mechanical methods’ is used because of its 

convenience. It should be noted that the discussions in previous sections were mostly of research 

activities that were based on laboratory experiments using a stirred tank reactor. In stirred tank 

reactors, the agglomeration of hydrate crystals becomes an obstacle to reducing the gas/water 

interface area and, consequently, the rate of hydrate formation and conversion of water. The 

fixed bed crystalliser with porous silica gel has been widely studied in an effort to overcome this 

problem. The porous nature of the silica used in the fixed bed can significantly enhance the 

contact area between gas and water, allowing more gas to be enclathrated in a shorter time, 

therefore, improving the total gas uptake and induction. A study reported by Seo and Kang 

(2010) showed that over 93% of small cages and 100% of large cages were occupied by CO2 

when porous silica gels were used. Improved CO2 selectivity and hydrate formation rate also 

have been achieved using the silica bed (Kang et al., 2013). In fact, the dispersed water in silica 

pores reacts readily with gas mixtures, which in turn eliminates the need for energy intensive 

mechanical agitation and excess water. This remains a strong economic advantage that keeps the 

need for research going (Adeyemo et al., 2010; Seo et al., 2005). 

The silica bed can be further classified into silica gel bed and silica sand bed. Silica is very cheap 

and more economically desirable for large scale CO2 separation. Babu et al. (2013a) claimed that 

water conversion reached up to 36% in the silica sand bed but only 13% in the silica gel bed. 

They also reported that the silica sand bed gave better performance for hydrate-based CO2 

capture due to higher gas uptake. A study by the same group also demonstrated that the silica 

sand bed provided a higher rate of hydrate formation and total gas uptake, when compared with a 

stirred crystalliser (Linga et al., 2012). Changing the physical properties, such as the particle and 

pore sizes of the porous silica gel, can further improve the kinetics of hydrate formation. Kang et 

al. (2008) found that pores which are too small lead to inhibition of their effect on hydrate 

formation due to the decreased water activity in the pores. Hydrate blockage of the pores may 

reduce the contact of gas and liquid, leading to incomplete migration of the solution through the 

hydrates (Yang et al., 2013a). Increasing pore size can overcome this problem. Larger pores and 
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particle sizes tend to improve gas consumption, CO2 recovery, separation factor and water 

conversion to hydrate, thus reducing the operating pressure (Adeyemo et al., 2010; Park et al., 

2013). This is due to the lower flow resistance across a larger pore than a smaller pore. In other 

words, the larger exposed surface area of the silica gel significantly reduces induction time due 

to the better contact between gas and water within the gel (Kumar et al., 2013). A summary of 

the above-mentioned studies is given in Table 6.  

The bubble method also has been attempted for gas hydrate-based CO2 separation. Bubbles any 

larger or smaller do not have any effect on the separation process. The findings indicate that the 

hydrate shell formation around the bubble may hinder the further formation of hydrate within the 

bubble, due to isolation of the liquid from the gas (Luo et al., 2007). However, this can be 

improved by using a smaller bubble size. It was reported that an ideal size of gas bubbles for 

CO2 separation is 50 μm (Xu et al., 2012b). Unlike stirring and the packed bed crystalliser, the 

bubble method requires a large bubbling column, which is not easily built and run on an 

experimental scale. This makes the method limited for further investigation.  

More recent studies have shown that temperature fluctuation (via vibration) can be used to 

improve CO2 hydrate formation (Li et al., 2011a; Liu et al., 2011; Xu et al., 2012a). This method 

is based on the fact that, when the temperature decreases, the solubility of CO2 decreases in the 

hydrate-forming region while increasing in the non-hydrate-forming region (Kojima R et al., 

2002). The authors reported that, in the experiments using temperature fluctuation, the pressure 

drop was increased by 30%. A 30-35% increase in total gas consumption also was observed. The 

positive effect of the temperature fluctuation was mostly observed during the early period of 

hydrate growth. The method was demonstrated to be effective when the reaction scale was 

increased by 100-fold (Xu et al., 2012a).  



Table 6 
CO2 capture in fixed bed crystallisers. 

Author(s) Gas Systems* Findings 

Adeyemo et al. (2010) CO2/N2  

 

CO2/H2 

 The rate of hydrate formation and hydrate yield were higher 
than in a stirred crystalliser 

 Total gas consumption, CO2 recovery and water-to-hydrate 
conversion increased with larger pores and particle sizes 

Babu et al. (2013a) CO2/H2  Sand bed: 
 Water conversion: 36%  
 Induction time: 18 min 

 Gel bed: 
 Water conversion: 13%  
 Induction time: 14 min 

 The performance of the sand bed was sensitive to the pressure 
driving force, while the gel bed was not 

 The sand bed is claimed to be a better porous medium 

Babu et al. (2014b) CO2/H2/TBAB/THF 

TBAB = 0.3, 1, 3 mol%, THF = 1, 
5.53 mol% 

 In the presence of THF, higher gas consumption and shorter 
induction time in the silica sand bed crystalliser 

 By increasing THF concentration, higher gas consumption was 
achieved but induction time did not change significantly 

 Increasing TBAB concentration resulted in lower gas 
consumption and significant change in induction time 

Kang et al. (2008) CO2 

 

 

 Hydrate growth was inhibited in small pores 
 SI hydrate was formed in silica gel pores, similar to that in bulk 

water 

Kang et al. (2013) CO2/H2  With 100 nm silica gel, 98.7% CO2 in hydrate phase was 
achieved under 9.2 MPa 

 Hydrate dissociation pressure decreased with increasing CO2 
concentration in the feed 

Kumar et al. (2013) CO2  Larger surface area enhanced water-to-hydrate conversion and 
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shortened induction time 

Linga et al. (2012) CO2 

 

CO2/H2/C3H8 

CO2 = 38.1 mol%, H2 = 59.4 mol%, 
C3H8 = 2.5 mol% 

 Silica sand bed crystalliser showed higher rate of hydrate 
formation and higher gas uptake than in a stirred vessel 

Park et al. (2013) CO2/H2  100 nm gel:  
 Showed lowest equilibrium pressure 
 Increased gas uptake significantly 

Seo and Kang (2010) CO2/H2 

CO2 = 41 mol%, H2 = 59 mol% 
 CO2 occupied 93% of small cages and 100% of large cages of SI 

hydrate formed in silica gel pores 
 98.7 mol% CO2 in hydrate phase was achieved with 100 nm 

silica gel 
*Default composition unless specified: In CO2/N2, CO2 = 17 mol% and N2 = 83 mol%; In CO2/H2, CO2 = 40 mol% and H2 = 60 mol%.



3. Advantages and limitations of current HBCC technology 

The cost of HBCC technology in an integrated gasification combined cycle (IGCC) plant was 

reported in 1999 by the US Department of Energy to be US$ 8.75 per ton of CO2 captured, 

which is comparable to the cost of US$ 59 per ton of CO2 captured using conventional 

amine-based absorption and US$ 64 per ton of CO2 for adsorption by zeolite (Ho et al., 2008; 

Reiner et al., 1994; Tam et al., 2001). It is this remarkable value that has drawn significant 

attention from CO2 capture-related industries and has resulted in the increasing number of 

research projects involving HBCC technology over the past decade. Other advantages of 

HBCC technology include: 1) its moderate operational temperature range (273-283 K), 2) its 

relatively low energy consumption in hydrate dissociation/regeneration and the ease of 

recycling of aqueous solution containing additives, and 3) its capability for continuous 

operation, which allows large scale treatment (with the potential to achieve 8 000 ton/day 

CO2) (Kang and Lee, 2000). 

However, the practical application of HBCC technology is limited due to its high pressure 

operating condition and large footprint. A case study using HBCC technology was completed 

by Tajima et al., based on a 100 MW thermal power plant where the energy penalty for CO2 

capture was found to be 15.8% and the required reactor volume was 7 000 m3 (Tajima et al., 

2004). This shows that HBCC is still incomparable with conventional technologies, such as 

amine absorption, which has a much lower energy penalty (7-10%) (Tajima et al., 2004). A 

comparison of different CO2 separation technologies is summarised in Table 7.  



Table 7 
A comparison of different CO2 separation technologies. 

Methods Energy 
consumption 
(MJ/kg CO2) 

Cost  
(USD/ton CO2) 

Advantages Drawbacks 

Absorption 4 - 6  
(Favre, 2007) 

30 - 60  
(Yang et al., 
2011) 

- Well established process 
- Up to 95% CO2 recovery (Olajire, 

2010) 
- Easily incorporated into existing plant

- Energy intensive regeneration (Aaron and 
Tsouris, 2005)  

- Degradation of solvent 
- Sensitive to SOx and NOx 
- Corrosion issue 

Adsorption 2 - 3  
(Mondal et 
al., 2012) 

40 - 63  
(Yang et al., 
2011) 

- Simultaneous dehydration (Olajire, 
2010)          

- Lower regeneration energy 
- Adsorbents are commercially 

available 

- Low selectivity 
- Low capacity  
- Slow adsorption rate 
- Only suitable for CO2 concentration 

between 0.04% and 1.5% (Audus, 1997) 
Membrane 0.5 - 1 

(Bounaceur et 
al., 2006) 

50 - 78  
(Yang et al., 
2011) 

- No regeneration required 
- Simple system 
- No waste streams 
- Membranes are commercially 

available 

- Only suitable for CO2 > 20% (Bounaceur et 
al., 2006; Favre, 2007) 

- Sensitive to high temperature (Spigarelli and 
Kawatra, 2013) 

- Plugged by impurities (Olajire, 2010) 
- Low removal efficiency, multiple stages 

required 
- Sensitive to sulphur compounds 
- Membrane ageing (Brunetti et al., 2010) 

Hydrate-
Based  

3  
(Tajima et al., 
2004) 

8.75  
(Tam et al., 
2001) 

- Moderate operational temperature 
range (273-283 K) 

- Relatively low energy consumption 
- Easy recycling of aqueous solution  
- Continuous operation allows large 

scale treatment (Kang and Lee, 2000) 

- Immature technology 
- High pressure operating condition and large 

footprint (Tajima et al., 2004) 
- Large energy penalty (Tajima et al., 2004) 



4. Conclusions 

In summary, we have reviewed the available methods of improving the hydrate-based CO2 separation 

technology in  CO2 separation efficiency, gas consumption and rate of hydrate formation, which 

includes chemical and mechanical approaches. The paper has focused on scholarly published 

research activities between 2000 and 2014. The studies performed to date show a more diverse field 

of research in chemical approaches, which include thermodynamic promoters (THF, TBAB, C3H8, 

CP) and kinetic promoters (surfactants). The research into mechanical methods is, however, 

receiving less attention. This is probably because people are comfortable with the default stirred 

reactor that is easier to build and run on a laboratory scale. The risk of building a different reactor for 

experimental purposes is not willingly undertaken, probably due to the large investment and 

unknown performance. However, the outcome from the review suggests that both chemical and 

mechanical approaches should be used, in parallel, to achieve the ultimate performance of hydrate-

based technology. Also, a method should be established to ensure direct comparison of experimental 

results cross-batch and/or cross-laboratory. Moreover, the hydrate-based CO2 separation method is 

known to be a novel technology with high potential. In order to outshine the conventional 

technologies, the economic aspect is a significant factor compared to performance. However, a 

detailed economic study on hydrate-based CO2 separation is still unavailable in open literature. 

More studies on the feasibility and economic cost must be performed in order to convince the 

industry with a quantitative argument and to draw more investment into hydrate-based CO2 

separation technology in the near future. 
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