New Complexity Results for the \(k \)-Covers Problem

Costas S. Iliopoulos * Manal Mohamed † W.F. Smyth ‡

Abstract

The \(k \)-covers problem (\(k \)CP) asks us to compute a minimum cardinality set of strings of given length \(k > 1 \) that covers a given string. It was shown in a recent paper, by reduction to 3-SAT, that the \(k \)-covers problem is NP-complete. In this paper we introduce a new problem, that we call the \(k \)-Bounded Relaxed Vertex Cover Problem (RVCP\(_k\)), which we show is equivalent to \(k \)-Bounded Set Cover (SCP\(_k\)). We show further that \(k \)CP is a special case of RVCP\(_k\) restricted to certain classes \(G_{x,k} \) of graphs that represent all strings \(x \). Thus a minimum \(k \)-cover can be approximated to within a factor \(k \) in polynomial time. We discuss approximate solutions of \(k \)CP, and we state a number of conjectures and open problems related to \(k \)CP and \(G_{x,k} \).

Keywords: string, cover, regularity, complexity, NP-complete.

1 Introduction

The computation of various kinds of “regularities” in given strings \(x = x[1..n] \) has been of interest for a quarter-century, signalled by the publication in the early 1980s of several \(O(n \log n) \)-time algorithms for computing all repetitions (adjacent identical substrings) [7, 3, 16], work that has more recently been refined to \(O(n) \)-time algorithms [15, 13]. In response to applications arising in data compression and molecular biology, the computation of repetitions was generalized to computation of repeats (adjacency condition dropped), for which also \(O(n) \)-time algorithms have been found [5, 8]; then still further to computation of approximate repeats [17].

In [2] the idea of a quasiperiod or cover was introduced; that is, a proper substring \(u \) of the given string \(x \) such that every position of \(x \) is contained in an occurrence of \(u \). Several algorithms to compute covers of \(x \) were published in the 1990s, culminating in an algorithm [14] that in \(O(n) \) time computes a cover array specifying all the covers (quasiperiods) of every prefix of \(x \); this algorithm thus directly generalizes the border array ("failure function") algorithm [1] that specifies all the borders, hence all the periods, of every prefix of \(x \).

In [12] a further extension, the \(k \)-covers problem, was introduced: compute a minimum set \(U_\nu = \{u_1, u_2, \ldots, u_\nu\} \) of strings of given length \(k > 1 \) such that every position of \(x \) is contained in an occurrence of some element of \(U_\nu \). A polynomial-time algorithm was given

*Department of Computer Science, King’s College London, London WC2R 2LS, England; csi@dcs.kcl.ac.uk.
†Department of Computer Science, King’s College London, London WC2R 2LS, England; manal@dcs.kcl.ac.uk.
‡Algorithms Research Group, Department of Computing & Software, McMaster University, Hamilton, Ontario, Canada L8S 4K1; Department of Computing, Curtin University, Perth WA 6845, Australia; smyth@computing.edu.au.
for this problem, later discovered to be incorrect [18]; just recently the problem itself has been shown to be NP-complete, based on a reduction to 3-SAT [6]. In this latter paper, two $O(n \log n)$ algorithms were described that yielded an approximation to a minimum k-cover of x; it was conjectured that these algorithms would yield a k-cover of cardinality at most $\log n$ times the minimum.

In Section 2 of this paper we introduce a new NP-complete problem which we call the relaxed vertex cover problem. We show that a special case of this problem is equivalent to the k-bounded set cover problem. We call this subproblem k-bounded relaxed vertex cover (RVCP$_k$).

In Section 3 we show that the k-covers problem is a subproblem of RVCP$_k$. Thus the existence of an approximation algorithm that achieves at least a ratio of k times the minimum is assured. The new reduction of k-covers raises the possibility that in fact k-covers can also be approximated to within a lower factor.

In Section 4 we discuss conjectures and open problems derived from the complexity analysis of the k-covers problem, both here and in [6].

2 The Relaxed Vertex Cover Problem

In this section, we introduce a new problem which we call the relaxed vertex cover problem. Given a directed graph $G = (V, E)$, where $V_o \subseteq V$ is the set of all vertices in V with out-degree > 0, find the smallest subset $V' \subseteq V_o$ such that if $(u, v) \in E$, then one of the following conditions holds:

(C1) $u \in V'$;
(C2) $v \in V'$;
(C3) there exist $w_u, w_v \in V'$ such that $(w_u, u) \in E$ and $(w_v, v) \in E$.

We say that V' is a vertex semi-cover of G.

The decision form of the relaxed vertex cover problem asks for given G and ν, whether there exists a vertex semi-cover $V' \subseteq V_o$ of G such that $|V'| = \nu$. We call this problem RVCP. If the in-degree of all vertices in $V - V_o$ is no more than k we call this problem the k-bounded relaxed vertex cover problem (RVCP$_k$) and we show that it is equivalent to the k-bounded set cover problem (SCP$_k$).

SCP$_k$ is a special case of the set cover problem and is defined as follows: given a collection U of subsets of a finite set S where the number of occurrences in U of any element is bounded by a constant k, find a minimum size subset $U' \subseteq U$ such that every element in S belongs to at least one member in U'. This problem is well-known to be NP-complete [9]. Bar-Yehuda and Even [4], and Hochbaum [11] presented polynomial time k-approximation algorithms for this problem. Halperin [10] described the most effective such algorithm which yields a subset whose cardinality is $k - \frac{(k-1) \ln \ln n}{\ln n}$ times the minimum.

Theorem 1 Problem RVCP$_k$ is equivalent to SCP$_k$.

Proof: First, we show that RVCP$_k$ can be reduced to SCP$_k$ in polynomial time. Suppose we are given a directed graph $G = (V, E)$ together with a subset V' of V_o, where $V_o \subseteq V$ is the set of all vertices with out-degree > 0, an instance of RVCP$_k$. We construct a set S from E and a collection U of subsets of S, an instance of SCP$_k$. Then we show how V' can
be used to calculate a set cover \(U' \) such that \(U' \) is a cover of \(S \) if and only if \(V' \) is a vertex semi-cover of \(G \).

Suppose the vertices of \(V \) are labelled 1, 2, ..., \(n \) and the arcs (\(u, v \)) are labelled \(uv \). Let \(S \) be the set of labels of arcs of \(E \). The set \(U \) (initially empty) is constructed as follows: for each vertex \(v \in V_o \),

1. Determine \(N(v) = \{i| (v, i) \in E\} \), the set of vertices adjacent to vertex \(v \) (out-neighbors of \(v \)).

2. Form \(O_v = \{vu| (v, u) \in E\} \), the set of the outgoing arcs.

3. Form \(I_v = \{uw| (u, v) \in E\} \), the set of incoming arcs.

4. Form \(C_v = \{uw| (u, v) \in E; u, w \in N(v)\} \). the set of arcs between the out-neighbors of \(v \).

5. Form \(U_v = I_v \cup O_v \cup C_v \).

6. Update \(U \leftarrow U \cup \{U_v\} \).

Note that each set \(U_v \) corresponds to the set of arcs that could be semi-covered by vertex \(v \). The sets \(C_v \) are the sets of arcs that satisfy condition (C3). It is not difficult to see that each arc \((v_1, v_2) \), where \(v_1, v_2 \in V_o \), appears exactly twice in \(U \), while the rest of the arcs cannot appear more than \(k \) times. This is because the in-degree of each vertex in \(V - V_o \) is no more than \(k \).

By construction, we see that \(V' = \{i_1, i_2, ..., i_{|V'|}\} \) is a semi-cover of \(G \) if and only if the corresponding set \(U' = \{U_{i_1}, U_{i_2}, ..., U_{i_{|V'|}}\} \) is a cover of \(S \).

Second, we show that \(\text{SCP}_k \) can also be reduced to \(\text{RVC}_k \) in polynomial time. Let \(S = \{e_1, e_2, ..., e_{|S|}\} \) and \(U = \{U_1, U_2, ..., U_{|U|}\} \) be a given instance of \(\text{SCP}_k \). We construct a graph \(G = (V, E) \) such that \(|V| = |S| + |U| \), where \(|S| \) vertices are associated with the elements in \(S \) (element-vertices) and \(|U| \) vertices are associated with the distinct subsets in \(U \) (subset-vertices). The set of arcs \(E \) is constructed by adding an arc \((u, v) \) from each subset-vertex \(u \) to each element-vertex \(v \) that belongs to the subset represented by \(u \). Additional arcs are added between the subset-vertices if the two subsets share one or more elements. More formally \(E \) is constructed according to the following steps, each performed for every element \(U_i \in U \):

1. Let \(u \) be the subset-vertex associated with \(U_i = \{e_i, e_{i_2}, ..., e_{i_{|U_i|}}\} \).

2. Determine \(E(u) \), the set of element-vertices associated with \(e_{i_j}, j \in 1..|U_i| \).

3. Form \(E \leftarrow E \cup \{(u, v)| v \in E(u)\} \).

4. Determine \(I(u) \), the set of subset-vertices associated with the subset elements in \(U \) that intersect with \(U_i \).

5. Form \(E \leftarrow E \cup \{(u, w)| w \in I(u), w \neq u\} \).

Note that the only vertices in \(V \) that have out-degree \(> 0 \) are the subset-vertices. Additionally, the in-degree of each position-vertex is no more than \(k \). Clearly, any set \(U' \in U \) is a set cover of \(S \) if and only if the set \(V' \) is a semi-cover of \(G \), where \(V' \) is the set of subset-vertices associated with the subsets in \(U' \). □
Corollary 1 For the k-bounded relaxed vertex cover problem ($RVCP_k$) there is a polynomial time algorithm with an approximation ratio $k - \frac{(k-1)\ln\ln n}{\ln n}$, where $n = |E|$.

This follows directly from Theorem 1 and the results obtained in [10].

3 RVCP$_k$ and the k-Covers Problem

Here we consider the decision form of the k-covers problem: given a string x and integers $k > 1$ and ν, decide whether there exists a k-cover of x of cardinality ν. We call this problem kCP and we show that it is a special case of RVCP$_k$.

Theorem 2 Every instance of kCP can be reduced to an instance of RVCP$_k$ in polynomial time.

Proof: Suppose now that a string $x = x[1..n]$ and an integer k are given. Let n be the length of the string x and n' be the number of distinct k-substrings (substrings of length k) in x. We initialize a directed graph $G_{x,k} = (V,E)$, where $|V| = n' + n$ and $E = \emptyset$. We called the first n' vertices in V the k-substring-vertices and the remaining n vertices the position-vertices. For every distinct k-substring u_i where $i = 1, ..., n'$, compute

1. The set $P(u_i)$ of position-vertices that correspond to the positions in x that can be covered by u_i, where a position i can be covered by u_i if and only if u_i occurs at some position $j \in i - k + 1..i$.

2. The set $O(u_i)$ of k-substring-vertices that correspond to all k-substrings of x that overlap with u_i, where two strings overlap if and only if there is a non empty prefix of one of them which equals a suffix of the other.

3. If u is the k-substring-vertex related to u_i then E is updated as follows:

$$ E \leftarrow E \cup \{(u,v)|v \in P(u_i)\} \cup \{(u,w)|w \in Q(u_i), w \neq u\}. $$

Clearly, the k-substring-vertices are the only vertices with out-degree > 0. Accordingly, any vertex semi-cover of $G_{x,k}$ is a set of k-substring-vertices. Note that each position in x cannot be covered with more than k distinct k-substrings. Thus, the in-degree of all position-vertices is no more than k.

Consider a vertex semi-cover V' of $G_{x,k}$. Let vertex s be one of the vertices in V' and let u_s be the k-substring corresponding to s. Then in addition to the outgoing and incoming arcs of s, all the arcs pointed to each position-vertex $v \in P(u_s)$ will be semi-covered according to condition (C3). This is because the sources of these arcs are k-substring-vertices $\in O(u_s)$.

If the alphabet of x is ordered, an algorithm to compute $G_{x,k}$ from x can be implemented in $O(n \log n)$ time using a straightforward approach, somewhat faster using a suffix tree to sort the k-strings.

For example, if $x = aabbab$ and $k = 2$, then the only four distinct k-substrings are aa, ab, ba, and bb. Let s_1, s_2, s_3, s_4 be the k-substring-vertices associated with them. The corresponding graph $G_{aabbab,2}$ is:
where each position-vertex \(p_i \) represents position \(i \) in \(x \). The sets \(V'_1 = \{s_1, s_2, s_3\} \) and \(V'_2 = \{s_1, s_2, s_4\} \) are semi-covers of \(G_{aabbab,2} \). The semi-cover \(V'_1 \) corresponds to the minimum \(k \)-cover \(U_1 = \{aa, ab, ba\} \) while \(V'_2 \) corresponds to \(U_2 = \{aa, ab, bb\} \).

Theorem 2 and Corollary 1 show that there is an approximation algorithm that calculates a minimum \(k \)-cover of a given string \(x \) whose cardinality is at most \(k - \frac{(k-1)\ln \ln 2kn}{\ln 2kn} \) times the minimum. This is because the number of arcs in graph \(G_{x,k} \) formed from \(x = x[1..n] \) is at most \(2kn \).

4 Open Problems

We have shown that for \(k \geq 2 \), the \(k \)-covers problem \(kCP \) is equivalent to \(RVCP_k \), hence that efficient algorithms can be used to approximate a minimum \(k \)-cover as specified in Section 3. Interesting questions remain:

(Q1) The set \(G \) of graphs \(G_{x,k} \) in some sense describes the structure of all strings. To our knowledge these graphs have not previously been reported in the literature. Can the graphs of \(G \) be characterized in another way? What are their defining properties?

(Q2) The NP-completeness proof given in [6] is based upon strings whose length \(n \) is a function of three parameters: \(k \) (the length of the covering substrings), \(r \) (the number of variables in the corresponding 3-SAT problem), and \(s \) (the number of clauses in the corresponding 3-SAT problem). A short calculation shows that in fact

\[
\begin{align*}
n &= (18k+7)r + (42k-3)s + (2k-1),
\end{align*}
\]

while at the same time the minimum cover size

\[
\nu = 9r + 6r' + 8s + 1, \quad r' \leq r.
\]

Let us call the ratio \(\gamma_k = \frac{n}{\nu k} \) the \textit{k-coverability} of the string \(x[1..n] \); observe that \(\gamma_k \) has as an upper bound the average number of occurrences in \(x \) of the strings in the minimum \(k \)-cover. Since \(\nu \leq 15r + 8s + 1 \), we see then that for the class of strings constructed in [6], \(\gamma_k > 6/5 \); in other words, the strings in the \(k \)-cover occur on average somewhat frequently in \(x \). What happens when \(\gamma_k \leq 6/5 \)? Can we find a polynomial-time algorithm to compute a minimum \(k \)-cover given that \(\gamma_k \) falls below
a certain threshold? For “most” strings and some sufficiently large k, we expect that $\nu = \lceil n/k \rceil$, so that $\gamma_k \approx 1$; thus such an algorithm would in fact handle most of the cases that arise.

Acknowledgements

Costas S. Iliopoulos was supported in part by a Marie Curie fellowship, Wellcome & Royal Society grants. Manal Mohamed was supported by an EPSRC studentship. W.F. Smyth was supported in part by a grant from the Natural Sciences & Engineering Research Council of Canada.

References

