©2004 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists,
or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.



2004 IEEE 5th Workshop on Signal Processing Advances in Wireless Communications

Robust Fitting of Multilinear Models with Application to Blind
Multiuser Receivers: Iterative Weighted Median Filtering Approach

Sergiy A. Vorobyov, Yue Rong
Dept. of Comm. Systems
University of Duisburg-Essen
Bismarckstr. 81, D-47057
Duisburg, Germany
Email: svor@sent3.uni-duisburg.de

Abstract — PARAllel FACtor (PARAFAC) analysis
is an extension of low-rank matrix decomposition to
higher-way arrays. It decomposes a given array in a
sum of multilinear terms. PARAFAC analysis general-
izes and unifies common array processing models, like
joint diagonalization and ESPRIT. The prevailing fit-
ting algorithm in all these applications is based on Al-
ternating Least Squares (ALS) optimization, which is
matched to Gaussian noise. In many cases, however,
measurement errors are far from being Gaussian. An
iterative algorithm for least absolute error (robust) fit-
ting of general multilinear models based on Linear Pro-
gramming (LP) has been recently developed. However,
the computational complexity of this method remains
high. In this paper, we develop a new iterative algo-
rithm for robust fitting of multilinear models based on
iterative Weighted Median Filtering (WMF), which is
appealing from a simplicity viewpoint. Performance of
the proposed method is illustrated with application to
the blind multiuser separation-detection problem, and
compared to the performance of Trilinear Alternating
Least Squares (TALS), Trilinear Alternating Least Ab-
solute Error based on Linear Programming (TALAE-
LP), and the pertinent Cramér-Rao Bounds (CRBs) in
Laplacian, Cauchy, and (Gaussian noise environments.

I. INTRODUCTION

The PARAFAC model is a useful data analysis tool that has
recently found applications in array signal processing and com-
munications, e.g., {1], [2]. Generalizing the concept of low-rank
decomposition to higher-way arrays or tensors, PARAFAC is
instrumental in the analysis of data arrays indexed by three or
more independent variables, just like Singular Value Decomposi-
tion (SVD) is instrumental in ordinary matrix (two-way array)
analysis. Unlike SVD, PARAFAC does not impose orthogo-
nality constraints; the reason is that low-rank decomposition of
higher-order tensorial data is essentially unique, unlike low-rank
matrix decompesition.
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Because of its direct link to low-rank decomposition,
PARAFAC analysis has found applications in numerous and
diverse disciplines [1], [2]. In most applications of PARAFAC
analysis, an alternating least squares regression procedure is
used to fit the model parameters (e.g., of. (1], [3]). Least
Squares (LS) regression is optimal (in the maximum likelihood
sense) when measurement errors are additive i.i.d. Gaussian.
However, in many applications [4] the measurement errors are
far from being Gaussian random variables,

The Least Absolute Error (LAE) criterion is often used as
a robust alternative to LS. LAE regression is optimal {in the
maximum likelihood sense) when measurement errors are addi-
tive .i.d. Laplacian (e.g., see [5]). The Laplacian distribution is
more heavy-tailed than the Gaussian one: therefore, it is better
suifed to model impulsive noise and outliers. An easy way to see
this is to consider mean estimation under LS and LAE criteria.
These correspond to arithmetic mean and median operators, re-
spectively. The median operator rejects impulses regardless of
strength!; whereas the arithmetic mean is skewed by even one
outlying sample. It is therefore of interest to develop PARAFAC
regression procedures that optimize the LAE fitting criterion.

One such procedure has been recently proposed in [6] and
it is based on Linear Programming (LF). However, the com-
putational complexity of this procedure remains high. In this
paper, we develop a new and simpler iterative procedure which
makes use of Weighted Medijan Filtering (WMF) [7]. The rela-
tive merits of these two LAE model] fitting algorithms, as well
as the standard iterative LS algorithm, are investigated nu-
merically with application to the blind multiuser separation-
detection problem and compared to the pertinent Cramér-Rao
bounds, which are also provided herein.

1I. PARALLEL FACTOR ANALYSIS

We introduce the notation that will be useful in the sequel.
Consider an I x J x K three-way array X with typical element
;5% and the F-component trilinear decomposition

F

Tigk = D 00105 g0k s n

f=1
foralli=1,....I,i=1,...,Jand k =1,...,K. Here a; ¢
stands for the {4, f)-th element of / x F matrix A, and similarly
0,5 and cx 5 stand for (7, f)-th and (&, /)-th elements of J x &
and K x F matrices B and C, respectively. Matrices A, B and
C are in general complex-valued. Equation (1} expresses x; ;&

1Up to roughly K/2 impulses can be rejected, where K is the
sample size.
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as a sum of F rank-1 triple products; it is known as trilinear
decomposition, or PARAFAC analysis of z; k.

Let A; = D;(A) denote the operator which takes the i-th row
of matrix A and produces a diagonal matrix by placing this row
on the main diagonal. Then by “slicing” the three-dimensional
array X in a series of “slabs” (two-dimensional arrays) we obtain

X; =BA;CT, i=1,...,1 (2

Here such a slicing is made perpendicular to the ith dimension,
i.e., X; 1= [z,...] is the J x K two-dimensional slice of X corre-
sponding to the given index 7. Two other types of slicing of X
are useful in understanding the algorithm that will be developed
in the next section. They are given by

Y, =CB;AT,  i=1,....J (3
Zr=ACBT, k=1,... K (4)

where B; = D;(B), Cr = Di{C), while the K x I matrix Y;
and I x J matrix Zy are defined as Y; = [z.;.] and Zg :=
{z....k], respectively.

I11. TRILINEAR ALTERNATING LEAST ABSOLUTE ERROR
REGRESSION BASED ON WEIGHTED MEDIAN FILTERING
(TALAE-\WMF)

In practice, the three-way array will contain measurement
noise, i.e. X = X + V, where the (i, j, k)th element of X can
be written as

Eijn = Tigk *+ Vigk (5)

where v;_;  denotes the additive complex i.i.d. zero-mean mea-
surement noise with statistically independent real and imagi-
nary parts.

The PARAFAC fitting problem is then formulated as follows.
We are given the noisy data X and wish to estimate A, B, and
C. Let us introduce the tall matrix

X, BA;

XI JIxK BAI

CcT=(AeB)CT (6)

where @ stands for the Khatri-Rao matrix product. Similarly,
we introduce the matrix of noisy data

X1 Xa Vi
i] XI VI
Then the conditional Maximum Likelihood (ML) estimation

problem for the matrix C given matrices A and B and assum-
ing i.i.d, Gaussian measurement noise is the LS fitting problem

ming | X — (A @ BYCT|%, where || - |2 denotes the Frobenius
matrix normi.
If the measurement noise is iid. Laplacian (with

i.i.d. Laplacian-distributed real and imaginary parts in the com-
plex case), then ML estimation is equivalent to LAE regression.
Some manipulations are necessary in order to express the abso-
lute error criterion in the form of a convenient vector £: norm.
Towards this end, introduce the operator JF(-)

= [ Re{S..}
o= [ Bn{S..} ] ®

where S is a complex-valued M x L matrix, and 8. ; denotes its
{th column. The following property holds:

F{DF} = (I g{D})7{F} (9}
where I is the identity matrix of commensurate dimension, I}
and F are any complex-valued matrices of commensurate di-
mensions, @ denotes the Kronecker matrix product, and G{D}
stands for the operator

G{D} = [ o

Using property (9), we find that the absolute error model
fitting criterion can be written as

-Im{D} ] (10)

Re{D}

X - (Ix ® G{A & B})el: (11)

i.e., through the £, norm of a real-valued vector. Here, % =
F(X) and ¢ = F(C).

Using the other two ways of slicing the array X, we introduce
the matrices

Y =(BoC)AT, Z=(CoABT (12)
and correspendingly
Y, Z
Y = s Z= (13)
Ys KixI Zx 1K %I

where ?;, i=1,...,J, and Ek, k = 1,..., K are the noisy
slabs of X_ along corresponding dimensions.

‘We now have all necessary notation to explain the new fitting
algorithm. Let us consider the TALAE sub-problems [6], [8)

—~
C

arg min 1% - (Ix ® G{A © Bl)e|r, © = (7' {€)(14)
b= arg n})in |tz — {1, ® g{(’i © K})b[h, B= (-7‘-7]{’5})7”(15)

a=argmin||y — (I: ® G{B © Challs, A = (F 7 {&)7(26)

and show how to solve them iteratively. Here 7~ *{-} denotes
the inverse operator to F{-} of (8). In what follows, only the
problem (14) will be considered in detail; (15) and (16) can be
treated similarly.

We first (e.g., randomly) initialize A, B and C. Then, fixing
all parameters in (14) except for cpironyx (b € {1,.... K},
Ffe{1,...,2F)), we can simplify this problem as

2F
min | Xx— Y GAOBYpop-nx
SertsnK p=Lpkf
- 6{A B} serrqr-nxlh (1n
where X. & = Re{X t}7, Im{X ;}")%, and G{A @ B}.;
stands for the fth column of G{A ® B}.
Defining
2F
he =X, — Z G{A OB} pCrt(p-1x (18)
p=lp#Ef
my = Q{AG)B}.J {19)
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the problem in {17) becomes

min (20)

Cht(F—1)K

e —myperrr—nyxfh

The minimization problem in (20) can be further written as

21J
min Y [he(l) = ms(Deess-nxl

Ck+(f— DR Y

(21)

where he(l) and m,(l) are the lth elements of the vectors hy
and my, respectively. Equivalently, (21) can be expressed as

27

min Zl

Chd(r—1)K

I m (l — Ckt(f-11K (22)

provided that none of the elements my¢(I) is zero. Note that if
one of these elements is zero, then the corresponding summand
in (22} can be dropped because it becomes a constant in this
case (independent of cii(s—1)x). Note that the optimization
problem (22} is solved by WMF [7] where {hp(D)/m (D)},
{Imp(D}E], and ey, (;—13x ave the filter inputs, weights, and
output value, respectively. The WMF operation boils down te
sorting, and can thus be efficiently implemented at a complexity
cost of 21 Jog(21J).

Iterating the WMF over real and imaginary parts of all ele-
ments of the matrix C, e.g., in a circular fashion, and likewise
for the elements of the matrices A and B involved in the decom-
position, one obtains a LAE trilinear regression algorithm that
is monotonically convergent in terms of the LAE cost function.
The per-iteration complexity of the TALAE-WMF algorithm
is then estimated as O(FIJK log({JK7)), which is much lower
than the corresponding complexity of TALAE-LP (8] and is
comparable with the complexity of TALS {3]. The per-iteration
complexity of the TALAE-LP procedure can be estimated as
O3 + K + IPK?) [8], while the complexity of the TALS
as O(FIJK} [3]. However, the overall complexity of any al-
gorithm depends on the number of iterations, which may vary
depending on problem-specific parameters and the given batch
of data.

V. CRAMER-RAC BOUNDS

The PARAFAC Cramér-Rao Bound (CRB) for Gaussian
noise has been derived in [9]. Corresponding Laplacian and
a-stable CRBs are of interest as benchmarks in our present con-
text. Since the symmetric a-stable distribution does not have
an analytic expression for its density function, we will derive
the CRB for robust fitting of the trilinear PARAFAC model for
the special case of Cauchy noise. First, the Cauchy distribution
has a closed-form expression for its density function. Second,
estimators thay perform well under the Cauchy distribution are
robust in different impulsive noise environments, i.e., the per-
formance of such estimators does not change significantly when
other symmetric o-stable distributions are used [4].

One delicate point regarding the CRB for the trilinear de-
composition model is the inherent permutation and scale am-
biguity. To derive a meaningful CRB, we assume that the first
rows of A and B are normalized to {1....,1]ixr, which re-
solves the scale ambiguity [9]. Further we assume that the first
row of C is known and consists of distinct elements, which re-
solves the permutation ambiguity [9]. Then, we can write the
1% (I+J+ K —3)F row-vector of unknown complex parameters

. E] (23)

Result: The (I 4+ J+ K —3)F x (I + J+ K - 3)F Fisher
information matrix (FIM) for the estimation of unknown com-
plex parameters (23) in Gaussian, Laplacian and Cauchy noise
is given by

| Fx F2
FIM = [ F¥ F.. ] (24)
where
— Fa,a Fa,b Fac
N e B o
Faa=3[1r@((BoC) (B C))] (26)
Fub=8[li1@((CoA)Y(CoA)) (27)
Fee=8[Ixk 19 (AGB)(AGB))] (28)
Fap=8[e@BOC)| Vap [ @ (C0A)]  (29)
Fac=Ble@(BoC)" | Vac[e" @(ASB)]  (30)
Foe=gle® C®A)H]Vbc[e ®AGB) (31
;1-@ for Gaussian noise
z for Laplacian noise
— oz P
A= %ﬁ-, for complex Cauchy noise #2)
%-;, for real Cauchy noise

oy 15 the standard deviation of the Gaussian or Laplacian dis-
tribution, v > 0 is the dispersion of the Cauchy distribution,

e=[1,1,...,1]T, and
[ Van(2,2) Vab(2,J) ]
Vab= (33)
| Van(1,2) V(1. J) |
[ Vac(22) ... Vac(2.K) ]
e = : : (34)
| Va.e(l,2) Vaell,K) |
[ Vbe(2.2) Vb2, K) ]
Vie = : : (35)
i Vi.e(J,2) VoofJ, K) |

Here Vau(i, ), Va.c(i, k) and Vi, o (4, k) are the matrices which
contain only zeros and ones. In V, (%, ), anes are located on
the intersection of the rows with numbers (j — 1)K + 1,(j —
l)K +2,...,(j— YK + K and columns with numbers ¢, +

L (K =1)1+14; in Vi (4, k) — on the intersection of the rows
w1th numbers k,k+ (F — DK,...,k+ (J — 1)K and columns
with numbers (i — 1)J+1,{i - 1)J+ 2., (i—-1)J + J; and
in Vi c(j, k) — on the intersection of rows with numbers (k —
DI+1,{-1)1+2,...,(k—1)I+ I and columns with numbers
3G (= DI +4.

The CRB matrix that corresponds to the unknown elements
of C is given by

CRBcc = (Foo — FE F;'F2) 7! {36)
Proof: See [8].

V. APPLICATION TO BLIND MULTIUSER
SEPARATION-DETECTION AND SIMULATION RESULTS

In this section, we apply the proposed WMF technique to the
problem of blind PARAFAC multiuser separation-detection in
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a Direct-Sequence Code-Division Multiple Access (DS-CDMA)
communication system [1]. The performance of the proposed
TALAE-WMF algorithm is numerically compared with that of
the TALAE-LP [6], conventional TALS method [3], and against
the pertinent CRB. An example similar to that of [1] is simu-
lated. For the application considered, the elements of the ma-
trices A, B and C have the following meanings

a;,5 fading/gain between user f and antenna element i;
bi.r  j-th chip of the spreading code of user f;
¢k  A-th symbol transmitted by user f.

Correspondingly, A is the channel matrix, B is the spreading
code matrix, and C is the user symbol matrix, all unknown to
the receiver. Here also

F number of users;
I total number of antenna elements in the array:

J  number of Intersymbol Interference {ISI)-free chips
per symbol (ISI-free equivalent spreading gain);

K length of the transimitted sequence of symbols {num-
ber of snapshots).

The reader js refereed to [1] for a list of the necessary assump-
tions which make the PARAFAC model valid in this context.

The data X are contaminated by channel noise. Three mod-
els of the channel noise are used. One is Gaussian noise, while
the other two are Laplacian and Cauchy noise.

Scale and permutation ambiguities are inherent to this blind
separation problem [1]; the scale ambiguity manifests itself as
a complex constant that multiplies each individual row of C.
For constant-modulus transmissions, this ambiguity can be re-
moved via Automatic Gain Control {(AGC) and differential en-
coding/decoding. We assume differentially-encoded user signals
throughout the simulations. For the purpose of performance
evaluation only, the permutation ambiguity is resolved using a
greedy LS (C, C) column-matching algorithm,

We present Monte Carlo simulations that are designed to
assess the Root Mean Square Error (RMSE) performance of
the aforementioned algorithms. The parameters used in the
simulations are as follows: N = number of Monte Carlo trials
=100; I =8 J=8 K=20; F =2 and a = 1. Here, a is
the characteristic exponent which determines the heaviness of
the tail of the symmetric a-stable distribution used in our third
example (a = 1 yields the Cauchy distribution). The associated
symmetric a-stable characteristic function is given by

$(w) = exp{—7lw|*} (37)
where 7 is a positive constant related to the scale of the dis-
tribution {also known as dispersion in the case of the Cauchy
distribution)., The geometric Signal-to-Noise Ratio (SNR) in
this case is defined according to [10, p. 68]

174 ?
R = ()

where Cp = €% ~ 1.78 is the exponential of the Euler constant
Ce = 0.5772..., A is the magnitude of the noise-free signal,
and 5y is the geometric power of symmetric a-stable noise [10,
p. 38]:

(38)

Sy = (Cg')')]'la

2 (39)

Both Gaussian and Cauchy distributions belong to the clasg
of symmetric a-stable distributions. The geometric power of
complex Gaussian noise is given by [10]

Oy
VG

Substituting (40) into (38) we find that for the Gaussian case
the geometric SNR is equivalent to the standard SNR. In the
complex Cauchy case, the noise power and corresponding geo-
metric SNR can be respectively written as

(40)

SO.Gaussian =

A?

SNRCaLlC]ly = W
B

SO.CP.uchy = 27: (41)
In the Laplacian case, we use the standard SNR since Laplacian
distribution does not belong to the class of symmetric a-stable
distributions.

Throughout the simulations, we assume that the noise power
is normalized to be equal to 1. User signals are redrawn from
an ii.d. Bernoulli distribution and differentially encoded for
each Monte Carlo trial. BPSK modulation is used for all user
signals. The gains of the channel matrix A and the elements of
the spreading code matrix B are generated as i.i.d. Gaussian
unit variance random variables and are fixed in each Monte
Carlo trial, and re-drawn from one trial to another.

Even though dimensions and ranks are such that algebraic
(ESPRIT-like) initialization is possible for all three algorithms
in our simulation setup, we initialize all three competing algo-
rithms randomly for each batch of data. The reason is that we
wish to assess the global convergence characteristics of the three
iterations.

The RMSE for each simulated point and for each method
tested is calculated according to the following expression

N
— L s YellL
RMSE = N(Kﬁl)leucm) Cjz (42)
n—
while the (averaged) CRB is calculated as
Tr{CRBcc(n)}
CRB = Z NR —1)F (43)

where Tr{-} stands for the trace operator.

Note that using the RMSE (respectively CRB) as perfor-
mance measure (respectively benchmark) we ignore the finite
alphabet (FA) constraint on the transmitted symbols. This
is reasonable because the RMSE is a good indicator of post-
detection bit error rate, and all three fitting algorithms do not
make use of the FA constraint. Hence the CRB is indeed a
pertinent bound on their performance.

Figures 1, 2 and 3 plot the performance of the aforemen-
tioned algorithms in terms of RMSE versus the SNR for the
case of Gaussian, Laplacian and Cauchy noise, respectively, and
compare the performance with the corresponding CRBs.

Figures 1 and 2 demonstrate that in the case of Gaussian
noise, the TALS method performs slightly better than the
TALAE-LP and TALAE-WMF algorithms, while in the case
of Laplacian noise, the latter robust algorithms have slightly
better performance as ¢compared to the TALS method. In the
case of Cauchy noise (Fig. 3), the TALS method breaks down,
while the performance of the TALAE-LP and TALAE-WMF
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Figure 1: RMSEs versus SNR. Gaussian channel noise.

algorithms is not affected and is close to the CRB (despite the
fact that our techniques are designed for Laplacian noise}. The
degradation in performance relative to TALS in the Gaussian
case can be considered as a moderate price for greatly improved
robustness against heavy-tailed Cauchy noise.

Comparing the two robust regressions (TALAE-LP wver-
sus TALAE-WAIF), we see that they behave very similarly
performance-wise in all cases considered in our simulations.
This was not necessarily expected, because TALAE-LP jointly
updates many parameters, and is therefore capable of making
“superdiagonal” optimization steps which are not possible with
TALAE-WMF. The latter updates one parameter at a time,
and thus it may be more easily trapped in ridges which do not
allow fit improvements by means of updating only a single pa-
rameter. Nevertheless, this possibility does not appear to affect
the performance of TALAE-WMF in our simulations.

We have seen that each complete update cycle of TALAE-
WMF (in which all parameters are visited for update once,
n any order) is computationally much simpler than the cor-
responding cycle of TALAE-LP. To get a real sense of compu-
tational complexity, the number of iterations reguired for con-
vergence of both methods is also needed. This number varied
between 10 and 20 depending on simulated noise model and
initialization of matrices A and B. Throughout the simuta-
tions, it was observed that TALAE-WMF requires 2-5 more
iterations than TALAE-LP for Gaussian or Laplacian noise,
and about the same number of iterations for Cauchy noise.
This is indeed a very promising result taking into account that
TALAE-WNMF can be implemented with simple sorting hard-
ware, whereas TALAE-LP and TALS require a sophisticated
computing capability.

VI. CONCLUSIONS

A new iterative algorithm for robust fitting of trilinear
PARAFAC models has been proposed and applied to the prob-
fem of blind multiuser separation-detection. The algorithm re-
lies on alternating optimizaiion using WAF. The proposed al-
gorithm outperforms the workhorse alternating LS PARAFAC
fitting procedure and performs as good as TALAE-LP method
under heavy-tailed noise. Even though it is matched to the
Laplacian distribution, it still performs well under Cauchy noise,
Furthermore, its performance degrades only moderately under
Gaussian noise and it has mwuch lower complexity than the
TALAE-LP procedure. We therefore expect that the new algo-
rithm will prove useful in a variety of applications of PARAFAC
analysis.

15

10
SNA (DB)

Figure 2: RMSEs versus SNR. Laplacian channel noise.

10
SNR (DB)

Figure 3: RMSEs versus SNR. Cauchy channel noise.
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