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SUMMARY
We compare time-lapse sonic and neutron porosity logs of the Nagaoka CO2 sequestration experiment
against the uniform and patchy saturation models, which represent two end-members of the P-wave
velocity and CO2 saturation relationship. Most of the data points fall between the two limits, suggesting
that the relationship is somewhere between uniform and patchy saturation.

The behaviour between these limits can be explained by the mechanism of wave-induced-fluid on
mesoscopic fluid heterogeneities (porescale << mesoscale << P-wavelength), which causes wave
attenuation and velocity dispersion. We model these fluid effects using the 1D and 3D continuous random
media model (CRM). The log data approximately follow the predictions of the CRM models for fluid
patch sizes of 1 to 5 mm. This heterogeneity scale is much larger than the porescale features of a reservoir
thin section, indicating that the mechanism of wave-induced fluid flow on the mesoscale can occur in
sonic log data and therefore controls the velocity-saturation relation.



Introduction

Seismic monitoring of CO2 sequestration requires robust methodologies to understand the changes in
seismic signals caused by saturation and pressure effects as well as by geochemical interactions between
the host rock and in-situ fluids. In the presence of two or more fluids, the P-wave velocity does not only
depend on the amount of CO2 saturation but also on the spatial distribution and heterogeneity scale of
fluid patches compared to the characteristic length of the fluid pressure diffusion process that is induced
by the seismic wave. Traditionally, Gassmann’s equation has been used with Wood’s mixing rule and
Hill’s theorem for fluid substitution modelling, representing the two end-members of uniform and patchy
saturation. In between these two limits, wave propagation effects such as attenuation and dispersion can
occur due to the mechanism of wave-induced fluid flow. Such dynamic effects have been observed in
ultrasound measurements, e.g. Lei and Xue (2009). But it is still an open question whether they play a
role in well logging data collected at several kHz or surface seismic data at 10-100 Hz.

Time-lapse sonic and Neutron logs of the Nagaoka CO2 sequestration experiment (Konishi et al., 2009)
provide a unique opportunity to study the saturation-velocity relation in-situ at several kHz. The logs
have been analyzed in previous studies, which present different conclusions about the saturation state
(Xue et al., 2006; Konishi et al., 2009). The aim of this paper is to refine the modeling and interpretation
of the velocity-saturation relation of the time-lapse logs from the Nagaoka test site. In order to do so
we utilize the 1D and 3D continuous random media models (CRM) from Müller and Gurevich (2004)
and Toms et al. (2007), which predict wave attenuation and dispersion due to the mechanism of wave-
induced fluid flow.

Data Processing

At the Nagaoka test site 10 400 t of CO2 (in supercritical state at reservoir conditions) were injected in
a 12 m thin permeable zone of porous sandstone. 24 time-lapse sonic and Neutron porosity logs were
recorded during 18 month of CO2 injection and 12 logs after the injection stopped.
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Figure 1 Monitoring logs: run 17 - 26 (left); Baseline logs: The black line is the average of run 1 -
13 (gray lines), which show strong fluctuations and the dashed blue lines illustrate the corresponding
standard variation (right). The gray boxes indicate the chosen depth intervals

Studying the velocity-saturation relation directly from the data (Fig. 1) is problematic. The baseline P-
wave velocity and Neutron porosity vary significantly with depth indicating that the reservoir properties
are quite heterogeneous. Therefore an analysis of the whole interval (1112 -1118 m) can be influenced
by depth variations and mask the true relationship between P-wave velocity and CO2 saturation. Here
we investigate only two intervals of 0.5 m in the reservoir. Further the baseline logs exhibit strong
fluctuations between subsequent runs. Such non-repeatability produces random variations in P-wave
velocity and CO2 saturation with time (Fig. 2).

The data processing is done in two steps. First the CO2 saturation is estimated from differences in
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time-lapse Neutron logs Φ following the approach of Konishi et al. (2009):

SCO2 =
Φb −Φm

Φb
Φb,Φm : baseline and monitoring data

Second, to overcome the problem of random fluctuations in the P-wave velocity and CO2 saturation,
the data points are approximated by exponential functions of time for each individual depth . Note that
this approach assumes a constant rate of CO2 injection, which is known to be violated in the Nagaoka
experiment.

SCO2 = Smax(1− e−αt) VP =VPmax −∆VP(1− e−β t) α,β : fitting parameters
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Figure 2 Data fitting. Blue curves are the fitted trends of the raw data (run 13 and 17-27) for both depth
intervals each with five points per run(red circles).

Rock physics modelling

The effect of partial saturation is usually modelled by calculating effective properties of the fluid mixture
(e.g. brine and CO2) and substituting them into Gassmann’s equation. Then the P-wave modulus H of
the uniformly saturated rock (fine scale mixing of fluids) is given by

HWood = L+α2M(K f (Wood)), K−1
f (Wood) =

Sw

Kw
+

SCO2

KCO2

where M = [(α −Φ)/Ks +Φ/K f ]
−1 is the fluid storage modulus with α = 1−Kdry/Ks, L is the dry

P-wave modulus and Kdry, Ks, K f , Kw and KCO2 are the dry, grain, fluid, brine and CO2 bulk moduli,
respectively. In the case of patchy saturation, Gassmann’s theory can be applied to each patch and the
overall saturated P-wave modulus is defined by Hill’s formula

HHill =

[
SCO2

Ksat(CO2)+
4
3 µ

+
Sw

Ksat(w)+
4
3 µ

]−1

where µ , Ksat(w) and Ksat(CO2) are the shear modulus and the saturated bulk moduli for each patch.

The uniform and patchy saturation models represent two bounds of velocity-saturation relationships.
The behaviour between these bounds can be explained by the mechanism of wave-induced fluid flow on
mesoscopic fluid heterogeneities, which are large compared to a typical pore size of the rock but small
compared to the wavelength of the elastic wave. This mechanism occurs when a passing wave induces
pressure gradients between patches of different fluids. In the low frequency limit there is enough time
for pressure gradients to equilibrate throughout the pore space, and the saturation can be considered as
uniform. In the high frequency limit (patchy saturation) there is no pressure communication between
the different fluid patches and so fluid effects can be ignored. At all intermediate frequencies wave
attenuation and velocity dispersion occur due to wave induced fluid flow, which can be modeled by the
1D and 3D continuous random media model.
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The CRM models are based on Biot’s equations of poroelasticity with poroelastic coefficients that are
random functions of position. For partial fluid saturation we only need to consider spatial variation of
the fluid bulk modulus. The 1D model represents a system of alternating CO2 and brine saturated layers
of random thickness while the 3D model represents a system of randomly distributed fluid patches in
space. These random spatial variations are described by a normalized autocorrelation function of the
fluid bulk moduli. For an exponential correlation function the P-wave modulus for the 1D model yields

H1D(ω) = HWood

[
1+

s
1+ 2i

kd

]
, k =

√
iω
κ

√
ηwNwSw +

√
ηCO2NCO2SCO2

NwSw +NCO2SCO2

, N = ML/H

where κ is the permeability, η the viscosity and ω the angular frequency. The degree of inhomogeneity
s is defined as s = HHill/HWood −1 and the correlation length d describes a characteristic patch size of
the medium. The P-wave modulus for the 3D model can be written as

H3D(ω) = HWood

[
1+ HHill−HWood

Hh−Hl

He f f −Hl
HWood

]
, He f f = H0

(
1−∆2 − ∆1k2d2

(ikd−1)2

)2

Hl = H0(∆2 −1)2, Hh = H0(1−∆2 +∆1)
2, k =

√
iωη
κN , ∆1 =

L∆2
H , ∆2 =

α2Mσ2
MM

2H

where He f f is the effective complex P-wave modulus and σ 2
MM the normalized variance of the fluid

modulus. The average background P-wave modulus H0 is calculated from Gassmann’s equation using
an average fluid modulus. H3D(ω) denotes the rescaled P-wave modulus, which is consistent with the
theoretical low and high frequency limits (Toms et al., 2007).

Modelling results
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Figure 3 Uniform and patchy saturation bounds. Red and blue circles are the raw and fitted data. The
black line marks the uniform and the gray line the patchy saturation model. The dashed lines describe
the deviations of the bounds, considering the standard variation of the baseline logs (Fig. 1).

First we compare the log data of the two chosen depth intervals against the uniform and patchy saturation
models ( Fig. 3). Most of the raw data is inside these two bounds even if realistic errors in the estimated
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elastic moduli are taken into account. The fitted data exhibit less scatter and show a clear trend. Then
we apply the 1D and 3D CRM models to explain the behavior of the fitted data (Fig. 2). For a correlation
length of 0.1 mm the CRM models converge to the lower bound of the uniform saturation model, whereas
increasing correlation length results in curves close to the upper bound of patchy saturation, displayed in
Fig. 4. It can be observed that the data points approximately follow the predictions of the CRM models
for correlation lengths of 1 to 5 mm. This is a good indication that the mechanism of wave-induced flow
governs the velocity-saturation relation, and that the patch size is in the range of 1 to 5 mm.
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Figure 4 CRM modelling results. Left/middle: Red and blue curves are the CRM models for correlation
length between 0.1 mm and 3 cm. Right: Calculated correlation length from data points (blue circles).
Crosses denote the first depth interval and squares the second.

Conclusions

Most of the raw data points of the velocity-saturation re-
lation fall between the Wood and Hill bounds. This sug-
gests that the saturation is somewhere between uniform
and patchy. The estimated characteristic size of fluid
patches from the CRM models is on the order of a few
millimeters. Comparing these estimates with the pore-
scale features of a thin section of the reservoir (Fig. 5)
shows that the patch sizes are indeed much larger than
a typical pore size. This indicates that wave-induced
fluid flow between mesoscopic inhomogeneities can oc-
cur at sonic frequencies and therefore strongly controls
the velocity-saturation behavior. However, it is clear that
patch sizes in the millimeter range results in a uniform
saturation behavior for seismic waves with Gassmann-
Wood limit safely applicable.

Figure 5 Thin section of the reservoir sand-
stone: Pore spaces indicated by blue resin
(Xue et al. 2006)
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