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Abstract. The goal of ambiguity resolution is to
make optimal use of the integerness of the ambigu-
ities, and it is the key to high precision GNSS posi-
tioning and navigation. However, it should only be
applied in case the probability of correct integer am-
biguity resolution, i.¢. the success rate, is very close
to one. In that case, the probability that the fixed
baseline will be closer to the true but unknown base-
line is larger than that of the float baseline. Clearly,
this condition will not be fulfilled for each measure-
ment scenario, and this means that for low success
rates a user will prefer the float solution.

However, there exists a baseline estimator that will
always be superior to its float and fixed counterparts,
albeit that this superiority is measured using a weaker
optimality condition. This baseline estimator is the
Best Integer Equivariant (BIE) estimator, which is
unbiased and of minimum variance within the class
of integer equivariant estimators.

In this contribution, the three different estimators
are compared. For that purpose, we will focus
on the geometry-free GNSS models, either single
frequency or dual frequency. The performance of
the estimators is compared based on their probability
density functions, the variances of the different
estimators, and the probabilities that the baseline
estimators are within a certain convex region sym-
metric with respect to the true baseline. This will
provide information on whether or not the BIE
estimator could be useful in positioning applications.
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1 Introduction

A GNSS model generally contains real-valued and
integer-valued parameters. The latter are the double
difference (DD) carrier phase ambiguities, a. The
first group is referred to as the baseline unknowns, b.

The *float’ estimators of the unknown parameters
and their variance-covariance (vc-) matrix are ob-
tained after a standard least-squares adjustment, ig-
noring the integer-constraint on the ambiguity un-
knowns:
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In the next step, the float ambiguities are fixed to in-
teger values, which is referred to as ambiguity reso-
lution:

a=S(a) 2)

where S : R® +~ Z" is the mapping from
the n-dimensional space of real numbers to the n-
dimensional space of integers. The optimal result in
the sense of maximizing the probability of correct in-
teger estimation (success rate) is obtained using in-
teger least-squares, ¢f (Teunissen, 1993; Teunissen,
1999). Finally, the float baseline estimator is adjusted
by virtue of its correlation with the ambiguities. The
result is the so-called ’fixed” baseline estimator:

b=b-Q;,0Q:" (@ a) 3)

Ambiguity resolution should only be applied
when there is enough confidence in its results, which
means that the success rate should be very close to
one. Only then the probability that the fixed baseline
is close to the true baseline is higher than the corre-
sponding probability for the float baseline. If this is



not the case, a user will prefer the float solution. So,
the choice between float or fixed baseline solution
depends on the success rate. However, there exists a
baseline estimator that will always be superior to its
float and fixed counterparts, albeit that this superior-
ity is measured using a weaker optimality criterion.
This baseline estimator is the Best Integer Equivari-
ant (BIE) estimator and it was introduced in (Teunis-
sen, 2003b; Teunissen, 2003a).

2 The BIE estimator

The best integer equivariant (BIE) estimator is based
on a new class of estimators. Estimators in this new
class only have to fulfill the integer remove-restore
property, which requires that S(a — z) + z = S(a).
Hence the name integer equivariant (IE) that is as-
signed to all estimators that belong to this class. The
criterion of "best’ that will be used is that the mean
squared error (MSE) should be minimal within the
IE-class. With this MSE-criterion the best integer
equivariant (BIE) estimator is defined as:

o = arg min B{(fo(y) —6)°} ®

The minimization is taken over all IE functions fg(y)
with @ = [Ta+1Tb,and I, € R, 1, € R are chosen
linear functions.

In our GNSS applications we assume that the data
are normally distributed. It can be shown that in this
case the BIE estimator éB 1E becomes

foe = 1Ta+17D (5)
with
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This shows that a is a weighted sum of all integer
vectors and could thus also be written as

a= ) zw.(a) ™
z€EL™

withw, () <1,Vz € Z"and 3, w,(d) = 1.
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Note that the formal expressions in (6) are identi-
cal to their Bayesian counterparts as given in (Betti
et al., 1993; Gundlich and Koch, 2002; Gundlich,
2002), but that the distributional properties of the
BIE estimator and its Bayesian counterpart of course
differ. Since the functional form of the nonBayesian
estimator is identical to the Bayesian solution in the

special case of normally distributed data, the theory
of BIE-estimation has provided the as yet unknown
link with the Bayesian approach of ambiguity reso-
lution.
In (Teunissen, 2003b) it was also shown that
D{b} < D{b} and E{b} = E{b} -
D{b} < D{b} and E{b} = E{b} ®)

where F{-} is the mathematical expectation operator
and D{-} the dispersion operator. Eq.(8) shows that
the BIE estimator is always "better’ than the float and
fixed counterparts in terms of the variance.

3 Comparison of the estimators

Although we know that the BIE estimator outper-
forms its float and fixed counterparts in terms of pre-
cision, it is not clear how large this difference will be
under varying measurement scenarios. It is therefore
also of interest to compare the three estimators nu-
merically. This also provides the possibility to com-
pare their distributional properties.

Fixed versus BIE ambiguity estimator

Both the fixed and the BIE ambiguity estimator are
weighted sums of all integer vectors in Z". How-
ever, in case of the fixed integer least-squares esti-
mator a weight of 1 is assigned to the integer vec-
tor with minimal distance to the float vector, and all
other weights are set to zero. In case of the BIE esti-
mator the weights depend on the distance, again mea-
sured in the metric of () 5, of the integer vectors to the
float vectors, see Eq.(6). In general the BIE ambigu-
ity estimates will therefore be real-valued.

It follows that in the limits of the precision the fol-
lowing is true:

lima=a and lima=a (C)]
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with the ve-matrix factored as Qz = o*G. This
shows that if the precision is high and thus the
success rate is close to one, the BIE estimator will be
close to the fixed estimator. On the other hand, if the
precision is low the BIE estimator will approximate
the float estimator. It is thus especially interesting
to know how the BIE estimator performs in the
intermediate cases compared to the float and fixed
estimators.
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Fig. 1 Examples of distributions of the different estimators. Top: & (selid), @ (bars), @ (dashed); Bottom: b (solid), b (solid,
multi-modal), b (dashed). Left: 2 epochs; Center: 20 epochs; Right: 200 epochs. Note the different scalings.

Comparison in the one-dimensional case

A random generator was used to generate 500,000
samples of the float range and ambiguity, using the
geometry-free single frequency GPS model for k
epochs, with ve-matrix:

(Qa Qaah) _ (fft(ljf) P )
QB»& Q&k —'kifg %(% +€)

with A the wavelength of the carrier; (;3 and a; are
the variances of the DD code and phase observations
2

respectively, and £ = 5:5‘- For all simulations, the
P

standard deviations were chosen as o, = 30 cm and
g = 3 mm. The number of epochs was varied. Note
that in the one-dimensional case the fixed ambiguity
estimator is obtained by simply rounding the float es-
timator to the nearest integer.

Figure 1 shows the parameter distributions of all
three estimators for different values of k, based on
the simulation results. It can be seen that for small
k the distribution of the BIE ambiguity and range es-
timator resembles the normal PDF of the float esti-
mators. For larger k&, and thus higher precision, the
distribution of the BIE estimators more and more re-
semble those of the fixed estimators. Note that the
multi-modality of the distribution of the BIE range
estimator is less pronounced than that of the fixed
range estimator.
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From Eq.(8) follows that the BIE baseline estima-
tor has smallest variance, but in the limits of the pre-
cision the variance will become equal to the variance
of the float and fixed estimator. This is illustrated in
Figure 2, where the variance ratio of the different es-
timators is shown as function of k. Also the success
rate is shown. Indeed, for small & the variance of the
BIE and the float estimator are equal to cach other
(ratio equals one), and smaller than the variance of
the fixed estimator. On the other hand, for large k
the variances of the BIE and fixed estimator become
equal to each other, and smaller than that of the float
estimator. Only after 30 epochs, when the success
rate is larger than 0.9, the variance of the fixed base-
line estimator becomes lower than the variance of the
float estimator.

[t can be shown that in the one-dimensional case @
will always lie in-between & and d, so that |¢ — a| >
|@ — @], which means that the BIE and the fixed es-
timator are pulled in the same direction in the one-
dimensional case. This is shown in Figure 3 for dif-
ferent precisions (i.e. for different k). The ambiguity
residuals are definedas é = G—dand € = G—a. This
Figure shows that indeed the relations in (9) hold.

Figure 4 shows the probability that the baseline
estimators will be within a certain interval 2¢e that
is centered at the true baseline b, again for differ-
ent precisions. It can be seen that for high success
rates indeed the relation P[b € Ey] > P[b € E]
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Fig. 2 Variance ratios of: BIE and float estimator; BIE and
fixed estimator; fixed and float estimator. Success rate as
function of the number of epochs is also shown.
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Fig. 3 Absolute values of ambiguity residuals for fixed
(dashed) and BIE (solid) estimators for different number
of epochs.
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Fig. 4 Probabilities P{|b —b| < €] (dashed), P[5 —b| < ¢
(solid), P[|b — b] < €] (+-signs) for different number of
epochs.

k P(é = a} P] Pg P3

1 0.2490 0.5571 0.6049 0.4429
2 0.3465 0.5828 0.5871 04172

5 0.5221 0.6349 0.6419 0.3652
10 0.6846  0.7071 0.7163 0.2961
20 0.8436 0.8196 0.8257 0.2395
30 0.9180 0.8847 0.8867 0.3006
60 09860  0.9368 0.9368 0.4575
75 0.9940  0.9393 09393 0.4804
110 0.9991 0.9332 0.9332 0.4965
200 1.0000 0.9129 0.9129 0.5040

Table 1 Probabilities Py = P(|b —b| < |b—b]), P, =
P([6—b| < |b—b|), and Ps = P(|b— b] < |b— b))

is true, with F} a convex region centered at b, which
means that the probability that the fixed baseline will
be closer to the true but unknown baseline is larger
than that of the float baseline, cf. (Teunissen, 2003b).
However, for lower success rates some probability
mass for b can be located far from b because of
the multi-modal distribution. Ideally, the probabil-
ity should be high for small € and reach its maximum
as soon as possible. For lower success rates, the float
and fixed estimators will only fulfill one of these con-
ditions. The probability for the BIE estimator always
falls more or less in-between those of the float and
fixed estimators, or is equal to one of these probabil-
ities.

The probabilities shown in Figure 4 are deter-
mined by counting the number of solutions that fall
within a certain interval, but it is also interesting to
compare the estimators on a sample by sample basis.
In order to do so, one could determine for each sam-
ple which of the three estimators is closest to the true
b, and then count for each estimator how often it was
better than the other estimators. )

In Table 1 the probabilities P(|b — b| < |b — b|),
P(|b—b| < |b—b|),and P(|b—b| < |b—b]) are given
for different number of epochs. Note that if the ambi-
guities are fixed correctly, that does not automatically
imply that b is better than b because of the probability
distribution of b. It follows that the probability that b
1s better than the corresponding bis larger or equal to
the probability that b is better than b. That is because
the ambiguity residuals that are used to compute the
fixed and BIE baseline estimator, see egs.(3) and (6),
have the same sign, and |6 — @| < |& — a| as was
shown in Figure 3. [fthe bis already close to the true
solution, it is possible that b is closer to b, but that
b is pulled ’over’ the true solution so that it has the
opposite sign as b and the distance to b is larger. Note
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Fig. 5 For different float ambiguity vectors the correspond-
ing BIE and fixed estimator are determined. The arrows
point from & to corresponding @. o, = 0.8m, g4 = 8mm.

that this does not necessarily hold true for the higher
dimensional case (n > 1). For k > 1 it turns out that
if b is better than b, then also b will better than b,

Comparison in the two-dimensional case

A similar approach was followed to generate samples
for the geometry-free dual-frequency GPS model for
one satellite-pair. The double difference standard de-
viations were chosen such that success rates between
0.3 and 0.99 were obtained, see Table 2.

Figure 5 shows an example of the BIE and fixed
ambiguity estimates that correspond to certain float
ambiguity vectors. The hexagons are the pull-in re-
gions; all float solutions that fall in a specific pull-
in region are fixed to the corresponding integer grid
point in the center of this region in case of integer
least-squares. It can be seen that the BIE estimator
is also pulled in approximately the same direction,
but the ambiguity residuals are always much smaller
for this example. If the float solution falls close to
an integer grid point, the BIE estimator is pulled in
that direction. On the other hand, if the float solu-
tion falls close to the boundary of a pull-in region,
which means that the distance to at least two integer
grid points is approximately the same, the ambiguity
residual is small and the BIE estimator is pulled in
another direction.

Figure 6 shows a scatter plot of simulated a4 and
corresponding a. For higher precisions, the 'star’-
shape of the distribution of @ becomes even stronger;
for lower precisions the distribution becomes more
ellipse-shaped like that of &.

The distribution of the three baseline estimators
is shown for different precisions. The probabilities
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Fig. 6 Scatter plot of float ambiguities (black) and BIE am-
biguity estimates (grey). op = 0.6m, oy = 6mm.
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Fig. 7 P[|b — b| < €] (dashed), P[[b — b < €] (solid),
Pllb — b] < €] (+-signs). a) op = 1.4m, 0y = 14mm; b)
op = 0.8m, o5 = 8mm; ¢) o, = 0.6m, ¢4 = 6mm.

that the baseline estimators will be within a certain
interval 2e that is centered at the true baseline b is
shown in Figure 7.

Table 2 shows the probabilities P(|b—b| < [b—b]),
P(|b— b < |b—b)), and P(|b— b| < |b— b]). This
Table only shows the probabilities that the estimators
will perform better than the other estimators. How-
ever, this does not say how much better, or how much
worse in the instances that they do not perform bet-
ter. Therefore, one should also consider the proba-
bilities as shown in Figure 7. From the Table it fol-
lows namely that P(|b — b| < |!3 — b|) is larger than
P(|b—b| < |b— b]). On the other hand, Figure 7
shows that if b is not close to b, it will immediately
be far from the true solution (because of the step-
wise function), whereas for the BIE estimator that is
not necessarily the case.
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Fig. 8 Examples of distributions of the different baseline
cstimators: b (solid), b (solid, multi-modal), & (dashed).
Top: op = 1l.dm, oy = 14mm; Center: o, = 0.8m,
oy = 8mm; Bottom: ¢ = 0.6m, oy = 6mm.

a Ps Pl Pg P3
1.4 03119 0.5256 0.5209 0.4744
0.8 0.6749 0.7237 0.7076 0.2827
0.6 0.8591 0.8745 0.8593 0.2050
0.4 09853 0.9834 0.9812 0.4336

Table 2 Probabilities Py = P(@ = a), P, = P(lb—1b| <
|b— bg), Py = P([b—b| < |b—b]),and Py = P([b—
b} < |b — b|). Double difference code and phase standard
deviations respectively: ¢, = om and o = gem.

4 Concluding remarks

The key to high-precision GNSS positioning is to
make use of the constraint that the unknown double
difference ambiguities are integer-valued. In prac-
tice therefore the ambiguities are fixed using an ap-
propriate ambiguity resolution method. Only if the
probability of correct integer estimation, referred to
as the success rate, is very high the fixed ambiguities
are then used to find the corresponding fixed base-
line solution. If, on the other hand, the success rate
is not considered high enough, one has to stick with
the float solution and collect more data before a fixed
solution can be obtained.

In this paper it has been shown, that the BIE esti-
mator might be useful to circumvent this problem.
This estimator is always ‘best’ in the sense that it
minimizes the mean squared errors and at the same
it will give almost the same results as the fixed esti-
mor when the precision is very high, and it will give
almost the same results as the float solution when the
precision is very low.

The next steps are to implement BIE estimation
such that it can be used for real GPS applications and
to see how it performs then.
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