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Abstract

An efficient method of finding optimal (OBDD) of an n variable Boolean function is presented that offers a simple and
straightforward procedure for optimal OBDD generation along with storage economy. This is achieved by generating n!
fold tables and applying node reduction rales to each fold table directly instead of generating all »! OBDDs of the
function.
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1. Introduction

The pioneening work of Akers (1978) on graphical representation of Boclean functions using Binary Decision Diagrams
(BEDDs) offered an attractive and convenient technigque for simplification and manipulation of complex Boolean
functions. Modification of these BDDs was suggested by Bryant (1986) and since then different types of Decision
Diagrams (DDs) have been mntroduced by researchers (see the beok written by Sasao T. and Fujita M. 1996 for detasl).
The graphical representation of Boolean functions using BDDs have been potentially used for simplification of complex
functions (Drecher F.. Dreshler N. and Gunther W. 2000; Hong Y., et. al 2000; Schell C. et. al 2000). As a result,
BEDDs and its vanations are being extensively used in logic design. synthesis and testing of digital circuats (Jabar AL M.,
Pradhan D K., Singh A K. Rajaprabhu T. L. 2007: Minato S. 1996: Lai Y. T.. Pedram M. and Viudhula 5. B. K. 1996:
Gergov J. and Meinel C. 1994; Shen A.. Devadas 5. and Ghosh A 1995). However. minimization of number of BDD
nedes has been of focal mterest in several applications such as formal venfication. Ordered Binary Decision Diagram
(OBDD) is an important form of decision diagram generated by imposing ordering relation among function variables
such that the resulting form is canonical and it provides more compact representation of Boolean functions (Litan L. H.
and Molitor P. 2000; Wang ¥.. Abd-el-Barr M. and McCrosky C. 1997: Wegener 1. 1994: Bryant R. E. 1992; Liaw H.
T. and Lin C. 8. 1992; Friedman 5. J. and Supowit K. J. 1990; Bern I, Meinel C. and Slobodova A. 1996). OBDD
reprezentation along with the use of the data structures for caching intermediate computations provides a way for the
efficient implementation of many Boolean operations. However, one major drawback of OBDD representation i3 that
identification of optimal (minimal node) OBDD requires generating all n! OBDDs of n variable function The ordering
of the function variables corresponding to optimal OBDD iz called optimal ordering and for which many technigques are
already reported (Wegener I 1994: Bryant B E. 1992: Bern J.. Meinel C. and Slobodova A. 1996; Drechslor R, Becker
B. and Gockel N. 1996) but they are inefficient in respect of computational complexity and storage requirements.

This paper describes a new efficient method for identification of optimal OBDD of a Boolean functien without
generating all n! OBDDs. The proposed method uses a set of fold table consisting of all n! ordering for n variable
function and directly applving BDD seducticn rules to each fold table without really generating decision diagrams for
each possible ordenng. Further, a new algorithm has been developed for fast generation of fold tables and the table
consisting minimum number of nodes is used to generate optimal OBDD. Therefore it offers a simple and
computationally efficient proceduse for optimal OBDD generation along with storage economy.
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2. Ordered Binary Decision Diagram (OBDD)

A Boolean function can be represented using OBDDs by imposing certain ordermg relations ameng function variables
where the canonicity of representation allows easy detection of many useful properties such as symmetry and unatensss
of variables.

Definition_1

Binary Decision Diagrams (BDDs) represents a Boolean functions as a rooted. directed acyclic graph with a vertex set
containing two types of vertices, non-ferminal and rerminal verficas. A non-terminal vertex v has two attributes ie. (i)
an argument frdex (v) £ {x1....... Xy} and (if) two children indicated by dashed and solid lines for low (v) and high (v)
respectively. A terminal vertex v has an attribute value (v) = {0. 1} and has no outgoing edge.

An uwn-simplified BDD is basically a Binary Decision tree which contains 2™ non-terminal nodes. Considering an

example function f7 (xq. xp, x2) = (3. 5. 6. 7), 1tz BDD 1s shown in figure 1 (b) which 1s a direct mapping of the truth
table of figure 1(a) in the tree form. In this tree the value of function is determined by tracing a path from the roct to a
terminal vertex. A BDD representation of an ‘n’ variable function will initially have 271 nodes™ 1 and the function
value in the tree of figure 1(b) is determined by tracing a path from the root to a terminal vertex. The BDD can be
further simplified using following node reduction mles (Bryant R. E. 1992; Dyechslor B, Becker B. and Gockel N,
1994).

il Deletion Rules: If cne or mere non-terminal nodes are such that their both branches corresponding to 07 & 17
lead to a non-terminal successor node o1 to a terminal node then that non-terminal node can be deleted az shown in
figure 2 (a).

(i) Merging Rules: If two or more termunal (or non-terminal) nodes of the same label have the same “0” and “17
suceessors 1.e. their left and right sons are equivalent then they can be merged in a single nede shown in figure 2 (b).

The application of above reduction mes to the BDD of the function f(xg. x3, x2) = Z(3. 3, 6. 7) gives simplified BDD
ziven in figure 1 ().

Definition_2

OBDDs are generated by imposing a total ordering < over the set of variables so that for any vertex u and either
non-terminal child v; their respective variables must be ordered var () < var (v). The OBDD generated using any
ordering arrangement can be reduced to give simplified representation of a Boolean function. The OBDD shown in
figure 1 is generated considering variable ordering xp < x; < x2, however, in principle the variable ocrdering can be
selected arbitrarily. Thus for a three variable function the total number of OBDDs can be 3! but the selection of an
appropriate ordering is critical for efficient reduction of OBDD nodes.

Definition_3

The size of the OBDD is defined as the total number of terminal and non-terminal nodes in OBDD, for example, the
size of the OBDD shown in figure 1 (c) 15 6.

3. Effect of Variable Ordering

The nodal complexity of OBDDs for a given function greatly depends on variable ordering and hence it i3 possible that
different OBDDs of same function can have different number of nodes. The identification of suitable ordering for
generating OBDD of a function that has fewer nodes is not very crucial in the case of simple and medium complexity
functions, however, for complex functions (n23) variable ordering has dramatic effect on the computational and storage
requirements which directly effects the efficiency of the Boclean function manipulation algorithms in generating fewer
node OBDD. Most applications requiring OBDD generation choose some ordering of the variables at the beginning and
construct all possible OBDDs: to identify the optimal OBDD having least number of nodes. This requires more
computation as well as storage for n! OBDDs of an “n” variable function.

The effect of variable ordering on the number of OBDD nodes is demonstrated considering a six vanable example
function = xg -x3 + x; -x: + 23 - x5 which will have 6! orderings and corresponding number of OBDDs. For simplicity.,
the OBDDs for only two out of total 6! ordenings are shown i figure 3. The significance of vanable ordering can be
appreciated by observing the difference between the number of OBDD nodes for the two ordenings of figure 3 (a) and
{b). Although the difference between the numbers of nodes in the two OBDDs is only eight in our example but it may
become extremely large for complex functions (n=35). Therefore developing an efficient method for identification of
appropriate variable ordering to generate opfimal OBDD is an interesting problem to achieve minimization of storage
reguirements and reducing computations.

4. Identification of Optimal OBDD

This zection describes a new algorithm for generating optimal OBDD of a Boolean function based on pre-calculation of
nodes for each possible vanable ordenng. Some definifions that have been used are:
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f1) Ic {0.1,2, ... n-1} then & {I) iz defined as the sef of ordering on {0.1, _.a-1}

& I)={g¢: gisanordenng on {0.1,2, .. n-1}

For example, an OBDD of a three vanable function with ordering x1 < xg < x3 will be represented here as OBDD (1, 0.
2).

2} A fold table symbelized by TABLE;is constructed corresponding to each of the n! variable orderings in which the
entries in each table are made according to the sequence of minterm values of the given Boolean function. The total
number of fold tables will be n! and generating all of them becomes a tedicus wotk for large number of variables. Fora
particular ordering " the table is denoted by T4BLE

(3) Ifve {0,1,2, .....(r-1)} and ¢1is an ordering on {1, 2, ._..., (n-1)} value, (¢ denotes the number of nodes on label
v in the OBDD ().

Therefore the task of identifying the optimal OBDD can be simplified if an ordering “ ¢ is determined using simplified

procedure such that it minimizes Zmius.,({:} .
w0

4.1 Fold Table Generation

If fixg x1, oooeeey Xpe1) 15 80 707 variable Boolean function, where x; 2 {0, 1} and 7= {0, 1. ...._. . (m-13} then it shall
have 2" ordered n-tuples. The function f assnmes a particular value for each of n-tuples which may be considered as
defining n-bit unsigned binary integer having decimal value (d) in the range 0 to 2"-1. The relation between the
uasigned binary integer and its cotresponding decimal value can be expressed as:

(¥nL X2 ooooeeee 2 X1, Xq) = Ezrr; = (1)
If the value of the function ¥ correspending to decimal value d of an n-tuple is expressed as yythen flag, x, ..o , X1}
= yqz and the function values (yg ¥y y2 ... ¥,, ;) define a finite sequence. The fold table generation involves

interchanging input variables that changes decimal value of n-tuples recrdering of function value and therefore it can be
viewed as cccurrence of fimte sequences. Considenng that x; and x; are fwo function variables that are to interchanged

to generate new decimal value d ofan n-tuple then

el
d= Zx.. a2 a2 (2)
fmll
dwi
Ecquation (2) can be rewritten as:
n=l
d= Zx..z" 4,2 42 a2 a2 2 W (3)
il

bni
Fearranging equation (3) and putting the value of 4 from equation (1) we get

d =d+x,2 +x2 -x2' -5, 2 (4)
Therefore equations (1) and (4) can be used to determine all 2" sequences of entries for all n! tables of the fold table for
an n-variable fonction by changing the positions of tweo variables at a tume.
4.2 Node Reduction using Fold Tabls

This subsection discusses the method of finding a particular variable ordering for generating optimal OBDD of a given
Boolean function by direct application of reduction miles to the fold table instead of generating OBDDs. The proposed
method exploits the property that the value of the variables on the first I labels depends only on their ordering and not
on the ordering of the remaining (n-k) variables™ for rec ording entries in the fold table by considering each k labels (k<
n). The “07 and *17 values of the function are stored as wy and wy respectively and for each such pair (wy, wy) it 13
determined whether or not a new node 1s required. This 15 achieved uwsing following two criterions that are directly
related to the deletion and merging rles:

{i} If wyp=wy then do not create a new node since its both branches (0 & 1) point to the same vertex (deletion rule).

{ii) If there are m nodes having wy # wy then at the same label and if their left sons and right sons are equivalent then
don’t create new node since 1t would be equivalent to m (merging rule).

Otherwize create new node if both the above criterions are viclated.
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4.3 Algorithm for Optimal OBDD Generation
Optimal OBDD generation algorithm requeres following input parameters:

{1} Fold Table (TABLEy; which is actually a mapping from (0. 1)"‘"*, where k= |I| v & I'and also satisfying ¢ [K] =v
to those nodes of OBDD () that are either internal nodes labeled with the member of I or terminal nodes (707 or “17).

m=l

(2) meue[_d-) . which is total number of nodes for each ordering. where ¢ = ¢ (I).
=

The generation of fold table “TABLE;" is achieved using equations (3) and (4) for each ¢ where ¢ = & () and
computation of total number of nodes for each ordering. This 1s aclueved by considering T4BLE; for a particular
ordering and storing each k label of TABLE; with pawred function value (wy, w;). The number of such pawrs is given by
2100 for k < 1 and applying node generation criterion on the paired values (wp, w;) to compute total number of nodes.
This process is iterated until all orderings have been considered and the specific ordering “¢ that gives the minimum

-l
value of Zmi’ue(.;‘}) 1s identified as the opfimal ordering corresponding to optimal OBDD of the function. Therefore
vl

the algorithm for identification of optimal variable ordering can be given as in figure 4.

The application of the algerithm given in fizure 4 can be illustrated considering an example function f(xg, x1. x2, x3) =
apay Sxpays  for ordering TABLE 5 3 j g Now computation of the “value”™ of each label for the selected ordermg can be
achieved by assigning k=0, 1. 2 or 3 for generating paired output for each assignment of k as given in the fold table 1.
Recalling that total aumber of (wy, w;) pairs would be 2':':"“"}‘2}_. the number of (W w;) pairs would be 8. 4. 2 and 1 for
k=0, 1. 2 and 3 respectively. Analyzing table 1 (a) it is found that owt of total 8 (wg wi) pawrs: the first, second, fifth and
sixth pairs have wy = w; and thus creation of OBDD nodes is not required for these pairs [criteria 4.2 (7)]. The remaining
pairs are equivalent and hence they all can be represented vsing only one nede in OBDD [eriteria 4.2 (i)]. Simularly out
of total four pairs in table 1 (b) the first, second and fourth pairs don’t need any node in OBDD representation, however,
one node would be necessary for third pair. Finally, there is no scope of node reduction in tables 1 (c) and 1 {d) because
their pairs are not covered by erther of the node reduction criterions. Therefore they require as many numbers of nodes
as the number of pairs and thus the OBDD for ordering ¢ (3, 2, 1. 0) will have total “five” nodes as shown in figure 3.

Now if the labels in OBDD are considered such that the first label starts from bottom corresponding to v = 0 and the
subsequent higher labels are obtained by moving up to root node then it is clear that for the first label of the OBDD “4™
nodes are deleted and “37 nodes are merged 1nto one node. Further, 37 nodes are deleted at the second label (for v=1)
while no node reduction is possible for third and fourth labels. Similarly the total number of OBDD nodes
cotresponding to remaining orderings of the function variables can be pre-caleulated without really generating the
OBDDs. The variable ordering that gives minimum number of OBDD nodes is selected to generate optimal OBDD of
the function.

The illustrated method of optimal OBDD generation 15 equally applicable to all Boelean functions without necessitating
actual generation of the OBDDs of a function. Therefore the proposed method offers both computational simplicity and
storage ecomomy in generating optimal OBDD which makes it more attractive for optimal OBDD generation of
complex functions.

5. Concluszion

This paper described a new computationally efficient method for generating optimal OBDD of complex Boolean
functiens without generating all #! OBDDs of an ‘»’ variable function. Our proposed method uses fast generation of
fold tabls which 15 used to compute the fotal number of OBDD nodes for each possible ordenngs of function varnables.
Subsequently, the particular ordering corresponding to minimum number of nodes in OBDD is selected to generate
optimal OBDD. The suggested algorithm eliminates the necessity of really generating all OBDDs of the function.
Therefore it 15 computationally efficient as well as economical in storage requirements which make it suitable for
manipulation of complex Boolean functions.
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Figure 3. Effect of Variable Ordering on OBDD Nodes for = (xp -x3 +2x1 -xs+x2 -x3)
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Forany ¢: ¢ < ¢ (D)

[Compute 3 value(y) ]

BEGIN
Stoge first label (i) with paired output values starting from 0
Ifwy=w;
Then count < count {do not create new node)
Else Begin
If wy = w; and their left and right sons are equivalent
Then count < count (do not create new node)

Except Both case count +1 +— count (create new node)

Store this count value as 3 value (@)

Store pext label with inerement k by 1 till k = n-1 and repeat above procedure

n=1
Store Zvafue ()

il

Similarly foreach ¢: e ¢ (I)

[Compute T4BLE, and Ew‘ahm(;ﬁ}]

vl

Store Emlim{qﬂl] for all ¢ and selected that ¢ which provides munimuwm value of

)

w=l
:
=l

z[:vahae(p‘a} that particular ¢ will be optimal.

Figmed.  Alsorithm forertification of Optime] Vizble Orclering

Figwe 5. OBDD (3.2, 1.0} el a0 08 = s +xp1)55



