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Abstract

One of the fundamental problems related to the development of direct sequence
code division multiple access (DS CDMA) wireless data networks is design of spread-
ing sequences possessing semi-optimal characteristics. In this thesis, we introduce
three new methods to design spreading sequences, which can be optimised to achieve

the desired characteristics.

We show that the level of MAI for the DS CDMA systems utilising the example
sets of sequences designed by the use of these technigues can be relatively low, com-
pare to the case when the well known Gold-like sequences [29] are used. In addition,
we show that by using one of the methods introduced in the thesis, we can construct
sets of orthogonal sequences possessing acceptable correlation properties, even for an
asynchronous operation, while another of the introduced methods can be used if design

of sequences of an arbitrary length is required.

Our new methods to design complex polyphase sequences are orientated towards
the short length sequences, as a target application for them are high data rate wireless
networks. Those methods are based on using discretised chirp pulses, pulses consisting
of discretised multiple chirps, or linear combinations of them. In order to achieve or-
thogonality among the designed polyphase sequences, we combined the sequences
based on superimposed chirps and double chirps with the sequences derived from the

orthogonal Walsh functions.

Finally, we utilise the three most promising sequence sets designed by the use of
the introduced methods to simulate the multiuser DS CDMA systems, We compare
performance of those simulated systems with the performance of the simulated system
utilising 15-chip Gold-like sequences. The comparison results indicate that by using
our design methods, we can produce useful sequence sets for applications where short
spreading sequences are required. The presented results also demonstrate that the per-
formance of systems utilising those sequences can be significantly better in terms of
the number of simultaneously active users or bit error rate (BER) that the performance

of the system employing Gold or Gold-like sequences of the similar length.



Glossary of Terms and Abbreviations

A - constant amplifude

ACCF,, . - maximum value for the aperiodic CCFs over the whole set of sequences
ACF - autocorrelation function

AIP - Average Interference Parameter

BER - Bit Error Rate

BPSK - Binary Phase Shift Keying
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C= {a(”, ...,&(r), . 1)} - Chu sequences

CCF - crosscorrelation function

CDMA - Code Division Multiple Access

DS - Direct Sequence

DS - BPSK - Direct Sequence Binary Phase Shift Keying

DS CDMA - Direct Sequence Code Division Multiple Access
DSP - Digital Signal Processing

DS - QPSK - Direct Sequence Quaternary Phase Shift Keying
DS S8 - Direct Sequence Spread Spectrum

E, - energy of a signal corresponding to a single data bit

EOE - Equal Odd and Even (sequence set with Equal Odd and Even CCFs)

F - merit factor, or figure of merit
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F = {&(1) } - Frank-Zadoff sequences
FFT - Fast Fourier Transform

FH - Frequency Hopping



T - data bit duration

T, - chip time

T, - hop time

7 i =10,1,2, ... -shift operator

TH - Time Hopping

U, p, s(N) - set of Opperman and Vucetic sequences
W, - ijaseband bandwidth required for data
W, - spread spectrum bandwidth

Wal(m, ) - Walsh functions; m =0, 1, 2, ...
{a,} - cor.nplex sequence

{b.} - sequence of data symbols

{b,} - complex sequence

b(¢) - bipolar data signal

b, (1), b.(t) - baseband chirp pulses

€,ax - Maximum nontrivial value of aperiodic correlation for the set of sequences
c(t) - carrier signal

¢, () - positive chirp pulse

¢ (t) - negative chirp pulse

c; x(1) - discrete aperiodic correlation function
d(t) - data modulated signal

f- frequency

f.» fo - carrier frequency

fi(#) - instantaneous frequency

{g,}- spreading sequence of length N with elements 5k = 1,2,.., N
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G, - processing gain
G{(a, b) - set of binary Gold codes

H.,.-2"x2" m = 1,2, .. Hadamard matrix

2

H(a, b) - Gold-like sequences

ISI - inter-symbol interference

ISM - Industrial, Scientific, and Medical (frequency band)
K L(a; b, ¢) - large set of Kasami sequences

K(a, b) - small set of Kasami sequences

M - number of sequences in the set (size of the set)

MAI - Mu‘lti-Access Interference

MLSE - Maximum-Likelihood Sequence Estimation

N - length of a spreading sequence

N, - one-sided Gaussian noise power spectral density

PN - pseudo-noise or pseudo-random sequences

PSD - Power Spectral Density

QPSK - Quaternary Phase Shift Keying

R(t) - received signal

R (7) - discrete autocorrelation function

R, (1) - discrete crosscorrelation function

R, - average mean-square value of autocorrelation for every sequence in the set
R - average mean-square value of crosscorrelation for every sequence in the set
Rad, (¢) - Rademacher functions; m=1, 2,3, ...

SNR - Signal-to-Noise Ratio

SS - Spread Spectrum
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g(f) - physical realisation of the spreading sequence {g,, }

gcd(i, ) - greatest common divisor of i and j

h - modulation index

h{x) - linear generator polynomial

n(f) - noise

q,(t) - elementary phase pulse

ra('c). - normalised discrete autocorrelation function

r,, - maximum off-peak (out-of-phase) autocorrelation value for the set of sequences
r;(t) - autocorrelation function of the sequence {af)}

ra p(T) - ;10rmalised discrete crosscorrelation function

F.,, - maximum crosscorrelation value for the set of sequences

r; j(t) - crosscorrelation function between sequence {af:)} and sequence {aS)}
¥y - MAximum nontrivial correlational value for the set of sequences
#; (v} - odd correlation between sequence {aff}} and sequence {ag)}
s(t) - transmitted, spread spectrum signal

sgn(.) - signum function

t - time

w(i)(t) - frequency distorting function

W, - bipolar Walsh sequence; m=0, 1, 2, ...

¢, - initial phase

¢(n) - Euler’s totient function

c.’pm(t) - information carrying phase component

H, (T} -crosscorrelation parameter

v(t) - modulated BPSK signal
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p{t) - received signal

Py ; - average interference parameter

o(t) - complex envelope

T - propagation delay

() - triﬁngular wave

®, - angular frequency of the carrier signal

Hrc(tj - unit - magnitude rectangular pulse of the duration T,

& - Kronecker product

@& - modulo-2 sum, ‘exclusive OR" operator
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1. Introduction

Over the last decade, mobile telephony services have been growing at an extremely
rapid rate. On the other hand, the growth in wireless data applications has been rather
marginal. Several technological issues have contributed to such a situation. Among
those issues, an important one has been the poor performance of wireless data sys-
tems, due to low bit rates, high latencies and high error rates of existing wide-area
wireless interfaces. However, there are several technology trends that are going 1o
increase the rate of deployment and use of wireless data services. One of the major
factors, which will prompt a more widespread application of wireless data services, is

the introduction of the third-generation mobile telecommunication systems.

Current work plans at both the global and regional levels for developing third-gen-
eration systems envisage that the basic standardisation process should be completed by
the year 2000. This is considered to be the target for both International Telecommuni-
cation Union (ITU) proposed IMT-2000 (Universal Mobile Telecommunications by
the year 2000) [14], and the European UMTS (Universal Mobile Telecommunications
System) {43], [103], standards. As a result of the research interactions the scope and
aims of IMT-2000 and UMTS are harmonised, and the possible solutions for the
UMTS radio interface are now proposed as members of the IMT-2000 radio interface
‘family’ [78].

One of the competing techniques proposed for providing multiple access to the
common air interface in the next generatioh of wireless data networks is direct se-
quence code division multiple access (DS CDMA) [84]. The users of such systems are
distinguished by the user specific spreading sequences employed in creation of users’
signals, and errors encountered during transmission are either caused by impairments
of the channel or by interference among simultaneous users. This multi-access inter-
ference (MAI) is a major source of the transmission errors in such schemes and is due
to the non-ideal characteristics of the applied spreading sequences. It can be mitigated
either by utilising very complicated and costly multi-user detection algorithms or sim-
ply by drastically reducing the number of simultaneously active users. However, nei-
ther of these approaches seems to be economically viable. In fact, we want to maximise
the number of concurrent users sharing the same radio channel while maintaining the

desired transmission reliability. Additionally, we want to minimise the costs of the



transceivers in order to broaden the scope of possible uses. Therefore, design of se-
quences possessing semi-optimal characteristics and systems utilising these sequences
have become the fundamental problem, which needs to be addressed for low cost DS
CDMA transceivers operating in a scenario of many simultaneously active users, at

data rates attractive from the viewpoint of multimedia applications.

Moreover, it is expected that in the radio interface, there will coexist data services
characterised by different data rate. In order to accommodate such services, and pro-
vide for the optimal bandwidth utilisation, the radio signal should in ali cases occupy
the same bandwidth. Therefore, the sequence design method should be able to produce

sequences of any arbitrary length for wireless data applications.

It is also generally accepted that for the downlink (i.e. base station to mobile ter-
minal lrans;mission), the conditions of synchronous operation can be met. Hence, it
would be beneficial if the designed codes were orthogonal or almost orthogonal for
their perfect synchroriisation. This would allow for cancellation of the MAI for the

downlink, and for simpler receivers in mobile terminals.

In the thesis, we will introduce three new methods to design spreading sequences,
which can be optimised to achieve the desired characteristics. We will show that the
level of MAI for the DS CDMA systems utilising the example sets of sequences de-
signed by the use of these techniques can be relatively low, compared to the case when
the well known Gold-like sequences [29] are used. In addition, we will show that by
using one of the methods introduced in the thesis, we can construct sets of orthogonal
sequences possessing acceptable correlation properties, even for an asynchronous op-
eration, while another of the introduced methods can be used if design of sequences of

an arbitrary length is required.

The thesis is organised as follows. In Chapter 2, we discuss the basic principles of
direct sequence spread spectrum (DS SS) communications positioned in the context of
general spread spectrum signalling. We consider here two most prevailing pass-band
DS SS schemes, i.e. DS SS combined with binary phase shift keying [84], DS BPSK,
and DS SS combined with quaternary phase shift keying [58], DS QPSK. Later we in-
troduce the concept of DS CDMA together with the issues of the MAI and the inter-
symbol interference (ISI). We show the major causes of both the MAI and ISI and

briefly describe the conventional techniques for combating these problems.



Chapter 3 deals with basic characteristics and measures proposed in literature (e.g.
[29], [58], [79), [85]) to assess spreading sequences, and the whole sets of spreading
sequences, from the viewpoint of their usefulness in DS CDMA communication $ys-
tems. Firstly, we introduce the definitions of periodic and aperiodic correlation func-
tions together with some well known theoretical bounds [95], [111]. Then, based on
Pursley’s work [85], we describe the relationship between values of mutual crosscor-
relation functions and the error performance of the DS CDMA system for many simul-
taneously active users. After that, we present the measures used recently (e.g. [79]) to
characterise performance of spreading sequence sets used for asynchronous DS
CDMA systems, These measures, being the average mean square aperiodic Crosscor-
relation and the average mean square aperiodic autocorrelation, can be used to compare
sequence sets even for sequences of different lengths, and different set sizes. Chapter
3 contains also a practical example, where the introduced characteristics and measures

are evaluated for the set of Gold sequences of length 31 [29].

In Chapler 4 we present some examples of spreading sequences proposed in the
literature for DS CDMA applications. We start from looking into binary orthogonal se-
quences derived from Rademacher and Walsh functions [113]. Then, we consider the
m-sequences [84], Gold and Gold-like sequences, Kasami sequences, and Barker se-
quences [29]. In most of the cases we present the correlation functions for the example
sequence sets and the computed values of their average mean square aperiodic cross-
correlation and the average mean square aperiodic autocorrelation. Later, we investi-
gate into the complex polyphase sequences, in particular, the families having * good’
aperiodic correlation properties, making them the potential candidates for use in the
wireless DS CDMA data networks. Those considered sequences are: complex m-se-
quences [58], Frank-Zadoff-Chu sequences [17], [32], EOE sequences [29], [34], and
Opperman-Vucetic sequences [79]. Finally, we present the table summarising the pa-

rameters of all sequence sets considered in this chapter.

Our new methods to design complex polyphase spreading sequences for wireless
data applications are introduced in Chapter 5. The aim of the research reported in this
chapter was to find the design method, which could produce spreading sequences ex-
hibiting better correlation performance than the known sequences of the comparable
length, and for the comparable set size. We were particularly interested in the sequenc-

es of short lengths, as a targeted application for them were high data rate wireless net-



works. For such networks, because of the spectral requirements, the spreading ratio is
rather limited. All of the work described in this chapter is original, however, we have

published some of the findings earlier in [114], [116], [117], [118], [119].

Continuing the work started in Chapter 5, in Chapter 6, the three most promising
sequence sets, designed by the use of the introduced methods, have been utilised to
simulate the multiuser DS CDMA system. The simulation results are presented and
compared with the performance of a multiuser DS CDMA system employing Gold-
like sequences of length 15. The outcomes of this comparison show that by using the
methods introduced in Chapter 5 we can design sequence sets betier suited for use in
high rate multiuser DS CDMA wireless data networks. Again, as in Chapter 5, all work

reported here is fully original, with the results partially reported in {115] and [118).

Chapter 7 concludes the thesis, and contains some topics for future research, which

could complement investigations covered in this thesis.



2. Direct Sequence Spread Spectrum Communica-

tion Systems

2.1 Background

In general, a spread spectrum signal is generated by modulating a data signal onto a
wideband carrier, so that the resultant transmitted signal has bandwidth being much
larger than the data signal bandwidth, and which is relatively insensitive to the data

signal [91]. A block diagram of a spread spectrum transmitter is shown in Figure 1,
where d(¢#) denotes the data modulated signal, s(¢) is the transmitted, spread spec-

trum signal, and {g,} denotes the spreading sequence of length N with elements

gon =12, .. N.

Data Data
—{ Modulator

J(ogt + o)
e

Sequence R.F.
Generator

Figure 1: A spread spectrum transmitter.

Thick lines in that block diagram indicate in-phase and quadrature signals with the
in-phase channel bearing the real part of complex signal, and the quadrature channel

bearing the imaginary part. Hence, the transmitted signal s(¢) is represented by:
s(1) = (g ", (M

where g(t) is the physical realisation of the spreading sequence {g,}. usually

repeated cyclically. The actual implementation of the transmitter may be significantly

different from that indicated in Figure 1.

The spreading signal g(z), often referred to as the spread spectrum code signal
[91], determines the type of spread spectrum signalling. The most widely applied code

signals are as follows:



» Direct Sequence (DS) Signal with chip time T, :

g(t) = ZgnHTc(t—nTc) ' (2)

where|g,| = 1 foralln, and Iz () is a unit - magnitude rectangular pulse of the

duration 7, given, generally, by:

1, 0<t<T
: Tz (1) ={ ‘ 3)
‘ 0, otherwise
* Frequency Hopping (FH) Signal with hop - time T :

n

where ¢, is an element of a sequence of independent random variables, uniform

on (—%, ).
Other types of SS signals include:

» time - hopping (TH) [21],
» chirp signals (CS) [10], [91].

Hereafter, we will limit our considerations to DS signals only.

The main advantages of SS§ signal are [58]:

. resists intentional and non-intentional interference, an impor-

tant feature for indoor communications;

ii. has the ability to eliminate or alleviate the effect of multipath
propagation, which can be a big obstacle in urban communica-

tion;

fii, can share the same frequency band (as an “overlay’’) with other

users; because of its noise-like signal characteristics;

iv. itis permitted to operate unlicensed SS systems with RF-power

up to 1W in three ISM (Industrial, Scientific, and Medical) fre-



quency bands: 902-928MHz, 2.4-2.4835GHz, and 5.725-5.85
GHz;

v. can be used for licensed satellite communication in CDMA

mode;

vi. offers a certain degree of privacy, due to the use of pseudo-ran-
dom spreading codes, which make it difficult to intercept the

signal;

One of the most important parameters of the SS systems is the processing gain G, ,
defined as a ratio of the spread spectrum bandwidth W__ to the baseband bandwidth
required for data W, [58]:

w

G, = — 5
=W 5)

In this chapter, we will discuss the basic principles of DS SS on the basis of DS-
BPSK and DS-QPSK, and later, we consider application of DS SS technique to code

division multiple access (CDMA) systems.
2.2 General Principles of DS Spread Spectrum.

2.2.1 DS-BPSK

DS SS combined with BPSK as a data modulation, is one of the most commonly con-
sidered SS schemes. A block diagram of a DS-BPSK transmitter is presented in Fig-

ure 2.

s(2)

b{t v(f
“—‘g"‘)"b‘ BPSK Modulator {0

c(t) = Acos(@yt +dp) (1)

Figure 2: Block diagram of DS BPSK transmitter.



The bipolar data signal b(¢), corresponding to a sequence of data symbols {b,},

b, = %1, can be represented as:

=]

bty = Y bJl(t-kT), (6)

k=—co

where I1(#) is given by the equation (3), and T is the data bit duration. The carrier

signal, c(z) is a cosinusoidal waveform of a constant amplitude A:

3

c() = Acos{oyt+dy). (7

In the case of BPSK modulation, where b(t) is 2 modulating signal, the modulated

signal v(#) can be expressed as:

v(t) = Ab(t)cos(wyt+by) . (&)

since multiplication by “-1” is equivalent to the phase shift of *n *, and multiplication

by “1” is equivalent to the phase shift of “0”".
According to (1), the transmitted DS BPSK signal 1s given by.

s(8) = Ag()b(r)cos(wyr +bg) 9)

Because the final formula describing DS BPSK signal is a product of b(¢),
g(f)and the carrier waveform, we can reverse the order of operations, and perform
spreading in the base-band without changing the transmitted signal s(#). A block dia-

gram for such an alternative DS BPSK transmitter is shown in Figure 3.

BPSK Modulator

b(2)

g(t)

Acos(oyt + ¢g)

Figure 3: Base-band spreading DS BPSK transmitter.



Example signals for the transmitter of Figure 3 are plotted in Figure 4. In many ap-
plications of DS BPSK, as well as in the given example, one data bit is equal to one
period of spreading signal i.e., T = NT,, where N is the period (length) of the pseudo
noise (PN) spreading sequence. In the case of Figure 4, we have used N = 7, and the

spreading sequence {gfj)} is the so called m-sequence [29], [58] given by:

(91 = (0,0,1,1,1,0,1). (10)

|+
b(t) L

T 2T 3T
- one period -
I T
B ———+— [] ——+ - ——+— [] t
. ] || ||
Te NT, INT,
1 )

| H 1
b(tg(t) ——t — +— i : —
T ] S

T, NT, INT,

o DA AADANAA N AN AN AAN AN AR AN AND
FEVAYATARVAVAVA WATAY A Y AVALAVAVIALY
T

. NT, 2NT,

-

Figure 4: Example signals for the DS BPSK transmitter;
N="7¢, =004 =2r/T,.

At the receiver end, the DS BPSK demodulator is expected to recover the data sig-
nal &(¢), and finally, the sequence of data symbols {b,} from the received signal
p{f) . Because of the propagation delay 1, the received signal p(f) can be expressed

as:

p(r) = s(t—1) +n() , (11
= Ab(t —1)g(t - Tt)cos[wy{t— 1) + dg] + n(¥)

where n(t) is the noise from the channel and the front-end of the receiver.

The block diagram of the one of possible DS BPSK demodulator structures is pre-



sented in Figure 5. More possible structures can be found in [84]. To analyse its oper-

ation, let us assume that there is no noise, i.e.
n(t) = 0. (12)

The received signal is first despread to reduce the wide bandwidth back to narrow-
band, then it is mixed with the locally generated carrier waveform to obtain a base-

band signal, and finally it is demodulated using a conventional BPSK demodulator.

Symbol timing
recovery

Y

Carrier
Recovery

\

- - - — — - mmm 4= ——— 4
|
|
|
|
1
I
1
]
4
]
1
1
1
1
1
1
i
i
|
|
|
]
]
1
|9

1
1
s(t-7) e
X SIGN = b;
|l
1
BPSK demodulator
Spreading *-1 Local
signal sequence
synchronis. | _ gl generator

Figure 5: Block diagram of a conventional DS BPSK receiver.

To despread, the received signal is multiplied by the synchronised spreading signal

g(t—1), generated at the receiver, which yields:
w(t) = Ab(t—1)g (t— 1) cos{oyt +¢') (13)

where:

$' = g~ 0yT. (14)

10



Since we have:

8 =1 (15)
for every possible value of n, then
2
g(t-1)=1, (16)
and we obtain:
w(r) = Ab(t—t)cos(wyt+¢). (17)

This resulting signal is a bandpass signal with the bandwidth 2/T. To demodulate it,
we assume here that the receiver knows the phase ¢', the carrier frequency
fo = ©y/2m , as well as the beginning of each bit. The example plots of some of the

DS BPSK demodulator signals are plotted in Figure 6.

s(t-T)

VAAA A AN AAA AN A AAANAA AN AL JAD ]
_A|L|\/\/I/\/\/Wl/\/\I\IUVVU\JVUU\I\]\}\/V\]\/ t
|

NT, NT, NT,
et -t - |-} —-]

ty t ty
2t-1)

-1 T L - ¢

A

—

AN A AN AAAANAANNNN NN
R AR A AR AT

Figure 6: Example signals for the DS BPSK receiver; N = 7, ¢, = 0,045 = 2n/7,.

To demodulate ith data symbol, the signal w(¢) is multiplied by the locally gener-

ated carrier waveform, and the correlator computes:

11



z; = _[ w(rycos{wqt + ¢')dt , (18)

= [ Ab(t-1)cos (@t +§)dt

tl
A L+ T
- EL b(t—1)[1 - cos(2a ot +2¢')]dt

where ¢, = iT+7 is the beginning of the ith bit. Since the data signal b(t—1) is

always equal to +1 or -1 during each bit, the first term in the integration gives T or -T.
The second term is a double-frequency component which is approximately zero after

the integration due to the low-pass characteristic of the integrator. Hence, the result is:

7 = ' . (19)

Passing this through a threshold device with treshold of 0 yields a sign function,
binary output of ‘1" or *-1°. Additionally, in the presence of noise, i.e. when the condi-
tion (12) is not satisfied, the output of the integrator also has a noise component,

which can be a source of errors.

1t should be noted here, that the order of despreading and shifting the received sig-

nal to the baseband can be reversed without altering the result.

The analysis of the imperfect synchronisation, i.c. wrong carrier phase and wrong

spreading sequence phase in the receiver can be found in literature, e.g. [58].

2.2.2 DS QPSK

Even though there is no restrictions on the modulation type which can be used in DS
SS systems (e.g. [84], [96]) not many modulation schemes have been considered for
such applications. Apart from BPSK which we considered in the previous section, and
its differential form DBPSK [84], only Quadrature Phase-Shift Keying (QPSK) [84] is

a modulation scheme commonly discussed in conjunction with DS SS systems [58].

Let us consider a DS QPSK transmitter having a functional block diagram present-

ed in Figure 7. It consists of two branches: the in-phase and the quadrature branches.

12



The input data signal b(t) is split into two channels b,(¢) and b,(r}using a serial to
parallel converter, as it is shown in Figure 7, and spread separately using two spreading

sequences g,(¢) and g,(¢) . Hence, the DS QPSK signal is:

s(t) = 5;(t) +354(0) . (20)
= Ab()g(t)cos(wot + g) + Ab (g o(#)sin(wgt + g)
= J24 sinfoqyt+ ¢y +v(1)]
wherq:
B b (1))
v = atan]:bg(f)gg(f)] @b

"/4, if by()ge(r) =1 and by(n)g,(H) =1
In/4, i by(Dg(r) =-1 and b)g(H) =1
St/d, if by(Ngp(t) =-1 and by()g () =-1
/4, if bp(gy(t) =1 and b(H)g () =-1

Therefore, the signal s(¢) can take on four different phases ¢y +n/4, ¢, +31/4,
$y+5n/4, and ¢, + 7n/4. The example signal plots for DS QPSK transmitter are

presented in Figure 8, under the assumption that ¢, = 0.

bl(t)»% bl(t)gf(t)... BPSK Modulator
81

b(t) Acos(myt +g) —t
—P SP

S‘Q(f) *
b b .
Q(t)bé Q(t)gQ(r)b- BPSK Medulator

Figure 7: Functional block diagram of DS QPSK transmitter.
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x4 5n/4 Trnsd™ ImsadT 4524

Figure 8: Example signals for the DS QPSK transmitter;
N =4,¢, = 0,00 = 4/T,.
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At the receiver, we need to despread the in-phase and the quadrature components
of the incoming signal separately using the sequences g;(t) and g,(?}, as it is shown

in Figure 9.

Ignoring noise, and denoting the propagation delay as t, the incoming signal

s(t—t) is given by:

s(t=1) = Ab(t—1)g {1 —T)cos(0gt + §) + Aby(t—1)go(t - Dsin(@yf + ), (22)

where"d)' is given by equation (14).

B{(f—‘t)

5;(¢—1) u ()| T ‘q

% [ (ar i SIGN |
L

:_1?

.- Spreading
1 L signal | - 1 o o] gt—1)
:, synchronis. :
y S -- -:— - -
] Symbol timing
s(t—1) Carrier : recovery | |
—¢ —* =~ P Rocovery [T
3
1
'L > 8olt-1)

+ bo(t—1)

;+T ‘1
| (ydt |~ SIGN |—m=
4

Figure 9: Functional block diagram of DS QPSK receiver.
The signals before integrators are:

1) = Ab(t - t)cos (0ot + ") (23)

+Aby(t-7)g,(1- r)gQ(t— T)sin{@yt + ¢ )cos{wyt + §')

= Abl(r—'c)%[l +c08(20 ot + 2¢")]

+Aby(t-1)g - 'c)gQ(t - ’C)% sin(2wo ¢ + 24")
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up(t) = Aby(t—T)sin (o4t +¢) 24
+Ab(t—1)g, (- ‘E)gQ(t —1)sin(oyt + §')cos(wyt + ¢')
= Aby(t- 'c)%[l —cos(2m,t + 2¢")]

+Ab(t—1)g,(t- t)gQ(r - r)%sin(z%t +20")

The sum of these signals is integrated over one bit interval, which gives AT at the oul-
put of the integrator if the corresponding message bit is ‘+1” or -AT if itis *-1’. This is
due to the fact that all terms with the doubled frequency are averaged to zero. After
passing this through devices performing a sign operation, we obtain binary outputs of
‘1’ or *-1” for both channels, and finally, one can multiplex the in-phase and quadra-

ture channels back.

The two spreading signals g/(#) and g,(¢) donot need to be orthogonal [84], be-
cause of the orthogonality of the carrier waveforms used in the in-phase and quadrature
channels. Therefore, they can be chosen independently, or they may be obtained from
one single spreading signal g(¢). For example, g,{f) = g(#), and g,(¢) may be a de-
layed replica of g(#).

The bandwidth of modulated signals s,(t) and s,(¢) are the same, and therefore
equal to the bandwidth of the aggregate signal s{r). Because, the data rates of /(1)
and b,(¢) are equal to half the rate of b(¢), the bandwidth occupied by a DS QPSK
signal equals to the half of the bandwidth occupied by an equivalent DS BPSK signal.
Alternatively, a DS QPSK system can transmit twice as much data as a DS BPSK sys-
temn that uses the same bandwidth and has the same processing gain [58], [84] and sig-

nal to noise ratio [84].

A disadvantage of a DS QPSK system lays in a higher complexity than that ofa
DS BPSK system. In addition, if the two carriers used for demodulation at the receiver
are not truly orthogonal, then there will be a cross talk between the in-phase and quad-

rature channels, which can significantly impair the system performance.

16



2.3 Direct Sequence Code Division Multiple Access

2.3.1 General Principles

A block diagram of a conventional DS CDMA system [58], [84] is shown in Figure
10. The first block represents the data modulation of a cartier ¢(f) . Usually, this is of

the form c(¢) = Acos(w,t) and the modulation is either BPSK or QPSK, however,

there is no restriction placed neither on the waveform nor the modulation type {96].

1

‘Carrier QZ(I)CM(E)E;M’(I)/
Modulator -&P Z |
Receiver antenna
T 8:(0)
- Data R(I)
wy (1) + n(f)
& -

To conventional
demodulator

g t-1))

Figure 10: Block diagram of a conventional DS-CDMA system.

In the case of an angular modulation, the modulated signal, C,(#) , is expressed as:

G, () = Acos[wgt+ ¢ (£) + ¢l (25)

where: A is the amplitude of modulated signal, o, = 2n/T, denotes angular carrier
frequency, T, is a period of the carrier, ¢, (¢} represents the information carrying
phase function, ¢, is an initial value of the phase.

Next, the signal ¢ (¢} is multiplied by the spreading signal g,(#) belonging to
user 1, and the resulting signal g,(¢);(#) is transmitied over the radio channel. Si-

multaneously, all other users 2 through M multiply their signals by their own spreading

signatures. The signal R(¢) intercepted in the receiver antenna, neglecting the differ-

17



ent path losses and channel noise, is given by:

R(1) = gl(t—tl)Cl(r-tl)+g2(r—-12)C2(t—t2)+... , (26)
+ gt =T (= Typ)

where t;;1 =1, 2, ... , M denotes delay corresponding to different transmission paths
associated with the user i.

Assuming the receiver configured to receive messages from user 1, the despread

signal ‘'w(¢) is given by:

wi () = g 2 (t—1)C(t—t) + .. + 8 (=T e - T)ly (=T  2T)

where the ,term glz(b— 10§, (t—1;) is the desired signal and the other terms
g, (t—t)gr—1)C(t—1); (i=1) are the interfering signals responsible for the
multiaccess interference (MAID). Because the signal is finally demodulated using the
correlation detector, with stronger crosscorrelation between the user spreading signal
g,(t— ;) and spreading signals of the other users g,(t—t;); i = 2,..., M the MAI
becomes more severe. For example, in the case of BPSK, to obtain the received data

bit b the received signal R(#) is correlated with g,(t—1,):

1, | R(t)g (t-1)dr>0
by = d . (28)
1, [ R@g (r—1)dr <0
T

2.3.2 Multipath Propagation

One of the features of mobile or indoor microwave systems is multipath propagation
[50], [87] where the receiver antenna, even with only a single transmitter, intercepts

signals coming through different paths and thus exhibiting different delays. Therefore

the received signal R(¢) is in such a case equal to:

R(t) = Ayg(t—1C(t—1y) +A,8,(t-1)0 (-1} + ... 29
oA g (t -0 (1)
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where the coefficients A;>A,>...>A; represent amplitudes of signals having

different propagation paths. Usually receiver is synchronized with the strongest signal
component A,g(#-1,)C;{¢-1;) corresponding, in most of the cases, to the direct

line of sight path, if such a one exists. Hence, the other terms, are sources of the inter-

symbol interference [87] (ISI), since their delays t;; (i = 1), are notequal to t,.

In order to minimise the ISI, the codes g,(7), ..., g,(#) are optimized to have low
autocorrelation for delays greater than a single chip. An example of such optimized
codes 1s a set of Gold codes [29], [84]. For the short length codes, however, even Gold
codes exhibit quite significant auto-correlation which for some values of the delay can

reach very substantial magnitudes of 0.71 [84].

The best known method of resolving problems associated with the multipath prop-
agation is, however, use of the RAKE receiver [58], [87]. To analyse its operation for

the user 1, let us suppose that the multipath delay spread [87] is T,, seconds. Thus,

m

there are:

Tm
L=-+1 (30)

[

resolvable multipath fading signals at the receiver. Each of these L resolvable paths

has an independent attenuation a., ;, and introduces a random phase shift A¢,;, where

i = 1,2,..., L. If the values of these parameters change slowly enough, they can be
estimated by using the information from the previous bit intervals, and the optimum

receiver is the tapped delay line receiver shown in Figure 11.

The amplitudes of the locally generated carriers Ay, A ,, ..., Ay are inversely
proportional to the attenuations of the resolvable paths oy, &5, ..., 9, respectively,

while their initial phases ¢, ¢, -.., ¢;; are calculated using the formula:

$; = Gg + Ay i=1,2,...,L (31)
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Figure 11: RAKE matched filter receiver with BPSK demodulation.

where ¢, is the initial phase of the emitted signal, and the values for Ay, are esti-

mated at the receiver. Such a receiver coherently collects the signal energy from all
the resolvable multipath signals that carry the same data and fall within the span of the
delay time. Because it acts like a garden rake and correlation functions are matched to
multipath signals, the tapped delay line receiver of Figure 11 is referred to as the
RAKE matched filter receiver.

Analysis of the RAKE receiver performance in the case of Rician fading channel
[87] is very complicated, and even for a simpler case of Rayleigh channe! {50], [87],
the derivation of the closed formula for the probability of error is not a simple task. A
closed formula for the probability of error in the worst-case Rayleigh fading in a sys-

tem using' DS BPSK and the RAKE receiver is given by [58}:

,_ [SNR Lo . [(SNR
1 +SNMR L-1+k 14+ SNR
P, ppsk = 7 Z( k )*‘"———“‘2 (32)
k=0

~(am) ()
T\ASN L
1 :
where the signal-to-noise ratio (SNR), SNR = E(Eb/NO)’ is assumed here to be
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equal for all L path, E, is the energy of a signal corresponding to a single data bit,

N,/2 is the two-sided noise power spectral density of a zero-mean additive Gaus-

sian noise. The approximation given by equation (32} is good for large values of SNVR.

A numerical example given in [58] shows that for a diversity of order L = 4, the
RAKE-BPSK receiver reduces the required E,/N, by 14 dB at P, = 107 Higher
order diversity yields a better diversity gain, and diversity combining is more effective

in Rayleigh fading channel than in Rician fading channel.

The full performance analysis of the RAKE receivers is quite complicated and sig-
nificantly exceeds the framework of this thesis. Interested readers can, however, find

more details in several references, e.g. [3],[16], [37], [104].

2.3.3 Multiuser Detection

In Section 2.3.1, we considered a conventional DS CDMA system treating each user
separately. Hence, we regarded signals corresponding to other users as interference,
i.e. MAL The detection of the desired signal in the presence of MAI is possible
because of the inherent interference suppression capability of DS SS scheme meas-
ured by the processing gain. That capability is, however, limited, and as the number of
interfering users increases, the level of MAI increases as well, resulting in a serious
degradation of performance, i.e. increasing bit error rate or frame error rate. This is
particularly severe, if the ratio of spreading sequence length to the number of simulta-

neously active users is less than about 2 [2].

Even if the number of users is not too large, some users may be received at such
high levels that a lower power users may be swamped out [26]. This is the near/far ef-
fect, where users near the receiver are received at higher powers than those far away,
which affects the transmission performance for the users further away from the receiv-
er. The near/far effect is not limited to the near/far scenario, but can also take place in

the case of some users experiencing deep fades during transmission.
According to [26], there are two major limits to present DS CDMA systems:

« All users interfere with all other users, and these interferences add to cause per-
formance degradation.

* The near/far problem is serious and tight power control is needed to combat it.
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Theoretically, system performance and capacity can be improved by considering
all users jointly [108]. Such a joint detection, where each user is detected with some
additional information about other users’ transmissions is usually referred to as multi-
user detection [2], [26], [108]. A canonical structure of of a multiuser CDMA receiver

is given in Figure 12 {2].

by
MF - -~ sup |—»=
5
Q
3 b
MF - A » suD —
5
[72]
=
=
=
by
ME — ~ SUD —%

Figure 12: Canonical structure of a multiuser CDMA receiver; MF - matched filter, SUD - single
user decoder.

In a multiuser detector, instead of users being considered as interferers for each
other, they are being used for their mutual benefit by joint detection. The optimal de-
tector for the synchronous system performs an exhaustive search among all possible
combinations of transmitted symbols of the users for each time interval [108]. The op-
timal detector selects the hypothesis about the input sequence, which maximises the
conditional probability or likelihood of the given output sequence {26]. This strategy
is of course the maximum-likelihood sequence estimation (MLSE) [84]. The problem
with such a detector is that the complexity grows exponentially with the number of us-
ers. For K users system, the detector must search through a tree with 2571 nodes and

2% branches for each symbol interval [2], [108].

For asynchronous CDMA, the MLSE detector can be implemented using the Vi-
terbi algorithm [107]. However, the resulting Viterbi algorithm has 25! states and

requires K storage updates per transmission.
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Although the optimal detection provides an excellent performance, it is too com-
plicated for practical implementation. Therefore, suboptimal approaches are being
sought. There is a wide range of possible performance/complexity combinations pos-

sible, e.g.:
i.  the decorrelating detector [62], [63],
ii. multistage detectors [35], [105], [106],
iti. decision-feedback detectors [23], [24], [25],
iv. successive interference cancellers [46], [81],

to mention only some major categories of them. The analysis of the multiuser detec-
tors exceeds significantly the scope of this thesis. However, an interesting reader can

find a comprehensive tutorial and a good bibliography in [26].

Albeit the suboptimum multivser detectors can significantly improve the system
performance compared to the case where conventional single-user detectors are used,
they are still too complex to be, at present time, successfully implemented at high data

rates as required for the wireless data networks.
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3. Sequence Comparison Criteria

In order to compare different sets of spreading sequences, we need a standard, or
quantitative measure for the judgment. We will introduce here some useful criteria
which can be used for such a purpose. They are based on the correlation functions of
the set of sequences, since both the level of multiaccess interference and synchronisa-
tion amiability depend on the crosscorrelations between the sequences and the auto-
correlation functions of the sequences, respectively. There are, however, several
specific correlation functions which can be used to characterise a given set of the
spreading sequences [29], [79], [85]. In this chapter, we will briefly introduce some of

the most commonly used criteria, and consider an example of their use.

3.1 Periodic Correlation Functions and Their Properties

Let us consider two complex sequences {a,}, and {b,}, both having a period N.
Their discrete crosscorrelation function R, ,(t) is defined as [29]:

N-1

Rop(® = Y ab .., (33)
n=0

where b: denotes the complex conjugate of &, . The discrete autocorrelation function
R (1) of the sequence {a,} is defined as [29]:

N-1

R = 3 aua,,.. (34)
n=0

Very often, instead of the above unnormalised correlation functions, their normal-

ised equivalents are used:

N-1 N-1
1 * ]_ *
Fa (D = § 2 Gnbpre (D = 2 Alnse (35)
n=70 n=>0

The defined above discrete periodic correlation functions have got several useful
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properties. Below is the short summary of some of the most useful of them:

v, The autocorrelation is an even function of ©

R (1) = R (D). (36)

vi. The peak autocorrelation occurs at zero delay:

R, (0) =R, (1), 1£0. (37)

vii. The crosscorrelation functions have the following symmetry:

R, p(1) = R, (-T). (38)

~viii. Crosscorrelation functions are not, in general, even functions,
and their peak values can be at different delays for different

pairs of the sequences.

The more comprehensive list of the properties of discrete periodic correlation func-

tions can be found in [29].

For the set {afj)},i =0,1,...,M-1,n=0,1,...,N-1 of M periodic spread-

ing sequences of the period N, we can define:

i.  Autocorrelation function r,(t) of the sequence {af:)}:

N-1
1 i)e (i) s
1) = 5 3 ay [4, ] (39)
n=0

ii. Crosscorrelation function r; j(r) between sequence {as)} and

sequence {ag)} :

N-1
1 O ()
r 0 = 5 2 dy L6740 (40)
n=0
iii. Maximum nontrivial correlational value [29] r, ..

rmax = max{rﬂ"l’ rCHI} ’ (41)
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where 7, is the maximum off-peak (out-of-phase) autocorrelation

value, and r_, is the maximum crosscorrelation value, i..

Fam = max {|ri(1)| } (42)
0<i<M
1<t<N

Fem = max {lri,j(T)l } (43)
O0<i,j<M,i#j
0<t<N

Depending on the application, the requirements for the set of spreading sequences are

different. For those sequences which are used for DS CDMA the maximum nontrivial

correlational value 7, should be kept as low as possible in order to facilate syn-

chronisation and to minimise multiaccess interference.

The lower bounds on the minimum possible value of the parameter 7, are given
by Sidelnikov bound [29], Sarwate bound [89] and Welch bound [111}. Sarwate has

proven that:

2 N-1 2

Tem T N(M _ l)ram 21, (44)

from which we can derive the Welch [111] bound:

Ve = MAX {r

an’ rcm} 2 NM— 1 ) (45)
The Welch bound can be used to complex-valued sequences in general. For those
sequences, whose symbols are complex gth roots of unity, we can apply the Sideln-
ikov bound which is, in most cases, tighter than the bound obtained by restricting the

Welch bound to sequences of symbols being complex roots of unity.

When M = N*, N»u and u > 1 is an integer, the Sidelnikov bounds can be well

approximated by [29]:
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1 1 .

) N[2u+1_1-3-5-...-(Zu-l)}’ for binary sequences

Vimax = . | . (46)
}—][u +1- 133 & } for nonbinary sequences

If M~=N,then u~ 1 and:

' J% , for binary sequences
rmax 2 j ) (47)

1 .
J: , for nonbinary sequences
| NN

The periodic correlation functions albeit useful in estimating performance of a set
of spreading sequences for some applications, are not helpful in evaluating perform-
ance of such a set in the case of asynchronous DS CDMA system. This is due to the
fact that consecutive bits of data transmitted in the interfering channels can be of dif-

ferent signs [38].

3.2 Discrete Aperiodic Correlation Functions and Their Properties

.One of the first detailed investigations of the asynchronous DS CDMA system per-
formance which dealt with aperiodic cross-correlation effects was published in 1969
by Anderson and Wintz [5]. They obtained a bound on the signal-to-noise ratio at the
output of the correlation receiver for a CDMA system with a hard-limiter in the chan-
nel. They also clearly demonstrated in their paper the need for considering the aperi-
odic crosscorrelation properties of the spreading sequences. Since that time, many
additional results have been obtained (e.g. [67] and [85]) which helped to clarify the

role of aperiodic correlation in asynchronous DS CDMA systems.

For general complex-valued sequences {a.f:)} and {aff)} of length N, the discrete

aperiodic correlation function is defined as [29]:

27



1N—1-—-‘t
(i)p (k) q*
5 a,'fa;,. ], 0<t<N-1
n=0
Cf,k('f) =9 N-1l41 . (48)
%f a (a1, 1-N<t<0
L Os |T|2N

The sequences {as)} and {aﬁf’)} in (48} are of the finite length N and are not neces-

sarily single periodic sequences of period N. When {as)} = {aflk}}, Eqn. (48)

defines the discrete aperiodic autocorrelation function. In similar way, as with the

periodic correlation functions, we can define the maximum nontrivial value of aperi-

odic correlation ¢, :

Corax = max {c

(49)

am: CHI} 4

where ¢, is the maximum out-of phase autocorrelation value, and c.,, is the maxi-

mum crosscorelation value, defined analogically as for the periodic correlation values
(see Egs. (42), and (43)).

Another important parameter used to assess the synchronisation amiability of
spreading sequences is a merit factor, or a figure of merit [10], [38], which specifies
the ratio of the energy of autocorrelation function mainlobes to the energy of the auto-
correlation function sidelobes in the form:

c;(0)

F= ——M——. (50}
N-1

23 |ei®)|

=1

In CDMA systems we want to have the maximum nontrivial value of aperiodic corre-
lation as small as possible, and the merit factor as great as possible for all of the

Sequences.

Some of the important properties of aperiodic auto- and crosscorrelation functions

are as follows:
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L

ii.

iil.

v,

In-phase value:

¢; x(0) = r; (0) and ¢, (0) = r(0) . 51
Symmeiry:
i (1) = [ (D] and ¢, (-1) = [c(D]" . (52)

Correlation bound; Sarwate has proven [88], [89] that for the

maximum out-of-phase autocorrelation value ¢ and the

am

maximum crosscorrelation value c_,, the following relation-
ship holds:

2AN-1) 2

2
CN= 1+ S Cam2 1 (53)

which leads to the following result due to Welch [3]:

2 2 2 M-1
Cotax — max{camv ccm} = m . (54)

where N is the length of the sequences and M is the size of the

sequence set.

Even correlation r; ,(t) (i.e. periodic correlation) and odd cor-

relation 7, ,(t) which are defined as follows:

T 1) = ¢, T+ ¢, KL1-N) . (55)
and 1, ((N-1) = [ri,k(T)]*

?i,k('c) =C W(T)—¢; W(T-N) , (56)
and 7 (N-7) = [, (O

r{1) = c(t)+c(r-N) and r(N-1)= [r(e]" .  (57)

F(x) = ¢i(1)-c(t-N) and F(N-7) = -[7(017 ., (58)
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In asynchronous CDMA systems, since the even and odd corre-
lation functions appear with equal probability, both functions

are of equal importance.

Knowledge of the maximum nontrivial value of aperiodic correlation or maximum
values of odd and even correlation values is useful in the analysis of the worst case
interference scenario in asynchronous CDMA systems. It is, however, inadequale in
estimating the most meaningful performance parameter of the CDMA system, the

average bit error rate (BER).

3.3 Error Performance of CDMA System Due to Multiaccess Inter-

ference

The BER in a multiple access environment depends on the modulation technique
used, demodulation algorithm, and the signal-to-noise ratio (SNR) available at the
receiver. Pursley [85] showed that in the case of a BPSK, asynchronous, DS-CDMA
system, it is possible to express the average SNR at the receiver output of a correlator
receiver of the ith user as a function of the average interference parameter (AIP) for
the other K users of the system and the power of white Gaussian noise present in the

channel. The SNR for the ith user, denoted as SNR;, can be expressed in the form:

N, 1 &
SNR; = |z +—5 2. Pei| o (59)

where E, is the bitenergy, N, is the one-sided Gaussian noise power spectral density,

and p; ; is the AIP, defined for a pair of sequences as [7]:
Py i = 2p, (0) +Re{y, {1)}- (60)

The crosscorrelation parameters ., ;(t) are defined by:
N-1

He (1) = N? Z Ck, i(n)c; {(n+1). (61)
n=1-N
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However, following the derivation in [52], p, ; for complex valued sequences may be

well approximated as:

N-1

Pg,i™ 2N > e, i("’)lz' (62)
n=1-N

The formula (59), has been derived by Pursley in [85] under the assumption that
relativ‘e phase shifts 9, , between carrier waves of the ith user and the interfering users
are random, and uniformly distributed in the interval (0, 2n], and that the relative time
delays 1; , between the ith user and the interfering users are random, and uniformly

distributed in the interval [0, T), where T is the duration of a single data bit.

3.4 Performance Comparison of Different Sets of Spreading

Sequences

Recently, the definition of “good” signatures for CDMA systems has been moving
away from the measure of the maximum nontrivial value of correlation (either aperi-
odic or periodic) to the mean-square value of the aperiodic crosscorrelation [52]. This
measure, is far more reasonable in the context of CDMA systems, because the average
BER for such systems is dependent on the SNR described by the formulae (59)-(62)
rather than the worst case error associated with the peak crosscorrelation values

between individual users.

In order to evaluate the performance of a set of M sequences as a whole, the aver-
age mean-square value of crosscorrelation for every sequence in the set, denoted by
R, was introduced by Oppermann and Vucetic [79], [80] as a measure of the set

crosscorrelation performance:

M M N-1
___.-—1 2
Rec = Mai-1) 2 Y2 el 63)
i=1 k=1,(kzi) t=1-N

A similar measure, denoted by R 4, was introduced in [79] for comparing the au-

tocorrelation performance:
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M N-1

1
Ric=5> X la@ . (64)

i=1 1=1-N,(x=0)

This value allows for comparison of the autocorrelation properties of the set on the
same basis as the crosscorrelation properties. These two measures have been used in
[79] as the basis for comparing the sequence sets. They can also be used as the optimi-

sation criteria in design of the new sequence sets, as it is later used in this thesis.

[t

3.5 Numerical Example

To illustrate significance of the concepts presented in the chapter, let us consider the
set of bipolar Gold sequences of period N = 31. The bipolar Gold sequences of a

given peribd N can be obtained from the set of binary Gold codes G{(a, b) which ele-

ments are described [29] by the formula:

(87,j=1,... N+2) (65)
(a,b,a®Thb,a®T°h,...a®T" 'ba®T"b)

G(a, b)

where a and b are two preferred m-sequences [29] of the period N, and T is a shift
operator. For a given sequence a = {a,} = (a,, a,, a3, ..., ay_1, ay) the shift oper-

ator 7T shifts a cyclically to the right by one place, that is:
a=(ay, a, as, ...,ay_y, ay)

Ta = (aN, al, az, sy aN_z, aN_l)

Tza:(aN_l,aN,al, Oy _3 Gy _p) (66)
a=a
The bipolar sequences are then obtained from the set G(a, b), using the following

formula:

G, (a,b) = {(—1)3",1': l,.. N+2,n=1, N} (67)
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which translates ‘ones’ of the original Gold code into ‘negative ones’ and ‘zeros’ of
the original Gold code into “positive ones’. The full list of the bipolar Gold spreading

sequences of length 31 obtained from the pair of m-sequences:
a = (0000100101100111110001101110101),

b = (00010101101000011001000111110111),

is given in Table 1.
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Figure 13 Periodic autocorrelation for the Gold sequence:
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Table 1: Bipolar Gold spreading sequences of length 31.

l Spreading Sequence

1 t+++t ottt - == +4+ 4t ==ttt -
2 +++ -ttt -ttt +t -ttt -ttt - -=-=— + ==
3 -+ttt +t =t -t -ttt -+t - -+
4 R T T o +-+4++-++++-+++
5 B T A I I +—++t-—++ -+ =
6" A i T S e + — 4+ =+
7 _—t =ttt - —Ft =t =ttt —F -ttt ==t -+
3 -——t -+ -ttt +-=-+++-t-+++t+tt+t-+-++-+
9 ——_——tt et -t F—Ft+tt+t -ttt -+t
10 | mmm = === 4 —mmtt—tt =ttt =mm—t - —++
11 ——— ettt —— =t —=t =ttt —F——-F+F -+ ++ -
12 +mem—Ft—F++—t—-+F+++ -t —F—-t -+t -F++t+---
13 +4t et —e ettt t -ttt m—m—Ftt+=F— =+ —-—-++
14 _—tt—F—mFFt+t—t -ttt -ttt mm— -+ + -
15 FomtttFe ottt m = — - e mt = — - - ++ - -
16 S e T 2k e I e i e ol e o
17 _ctt——t+—F—-Ftt=—Ft =t ——t -+ -+ ~++
18 _——ttt+Ftt -ttt -ttt +t -t -ttt -t -+
19 et ——ttm——Ft+F+ -ttt -+t F++—-——+ -
20 et -ttt =t =+ttt t A+t —=-=F+++++ -
21 +++-+++++—-F-—-++-F++t-F++t-F+t+tt+t -t -
22 +++ 4+t -t — - - T T I S i o
23 -ttt ettt -ttt — -~ = + 4 -+++ -~
24 ettt —t-—Ft+-t+t++++++t+tt -ttt -+
25 —t -t -ttt m—t -+t F+ -t -ttt -+ ++F
26 O i T i ot o S I
27 -t F+ -ttt -t — == -+ -+ +++
28 et et et et -t —— b —=t - =+t -+ - — -
29 t—t -ttt - == t - - +++++++-++
30 _—t -ttt ++ -+ -t -+ -—F=--F++t-—=-Ft+-—-*-
31 -t —m—-————- ++++-——F+t+t+-++ -+t -+ -+t
32 ++—-+++—F+t -ttt -ttt -ttt +=-FF -t
33 t+t=-m—tt——Ftt+tt -ttt -t-+-+t++t+ -+
To calculate the periodic corrclations we use the formulae (39) and (40), and the
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example plots are given in Figure 13 and Figure 14 for the periodic correlation values,
and in Figure 15 and Figure 16 for the aperiodic correlations. It is visible from the plot

in Figurc 14 that, even for the perfect synchronisation, the sequences are not orthogo-
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The maximum nontrivial periodic correlations and the maximum nontrivial aperi-
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odic correlations are equal to 0.2903 and 0.4194, respectively.

As far as the correlation measures given by formulae (63) and (64) are concerned,
we have calculated their values, and the results are listed in Table 2 for the whole set
of 33 spreading sequences, and for some smaller subsets of sequences. It is interesting
to notice here that the values of R have very small variations among the different

subsets of sequences, while the values of R, depend strongly on the number of se-

quences in the set.

Table 2: Calculated values of the parameters R, and R for the selected
subsets of bipolar Gold spreading sequences.

M Sequences Ree R;c

33 all ‘ 0.9707 1.0064
26 1-13, 14-16,19, 22, 25, 27-33 0.9693 0.7802
26 1-26 0.9714 0.7735
13 1-13 0.9725 0.3469
13 5-13,29-32 0.9640 0.3724
13 3-8, 12-17 0.9686 0.3738
10 1-10 0.9794 0.2593
10 3-8,21-24 0.9959 0.3178
10 10-14, 28-33 (0.9478 0.3680
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4. Spreading Sequences

In DS SS systems, a spreading waveform is a time function of a spreading sequence.
Ideally, all spreading sequences used in a DS CDMA system should be pseudo-noise
(PN) or pseudo-random sequences. The PN sequences, however, are deterministically
generated in order (o ensure the possibility of despreading at the receiver. In this chap-
ter, we will briefly introduce some typical sets of spreading sequences proposed for
use in DS CDMA systems. First, we will consider binary sequences. looking into the
possible sets of orthogonal sequences. and then discuss some typical families of
binary PN sequences. Later, we will consider nonbinary spreading sequences, concen-

trating on complex polyphase sequences with good aperiodic correlation properties.

4.1 Binary Sequences

In order to consider how far a binary sequence {a,} of period N resembles a PN

sequence, Fan and Darnell {29] have defined the following randomness criteria:

i.  The out-of-phase periodic ACF should be a small constant ¢,

that is:
N-1
R(x) = 3 8,8, = { N, =0 (68)
n=0 c, 1£ 0
where
a, = (-1)" e {+1,-1}, a, € {1,0}. (69)

ii. In every period, the number of 1s is nearly equal to the number

of 0s. The disparity is preferred not to exceed 1: thus

<1. (70)

N-1
2.
n=0

ifi. Defining a run as a string of consecutive identical symbols, in

every period, half the runs have length one, one-quarter have
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length two, one-eight length three, etc.. as long as the number of
runs of a given length exceeds 1. In addition. for each of these

lengths, there are equally many runs of 1s and of Os.

Binary sequences having the above three randomness characteristics are referred
to as optimal binary sequences, pseudo-random sequences or PN sequences. The three
randomness properties are so strict that only a few classes of sequences (e.g. m-se-
quences discussed in Section 4.1.2) can satisfy all of them. Therefore, in the following
sections we present also some other classes of sequences which can be considered in

DS CDMA wireless data systems.

4.1.1 Orthogonal Binary Sequences

Orthogonal binary sequences are usually defined on the base of known sets of orthog-

onal two-valued functions. The two functions y,(t) and yj(t) are said to be orthogo-

nal in the interval [t t,) . if [84]:

0, if v/ i".(_,‘(F) _

[vgomndr =4
h K, it y(6)= Yj(t)

)

If the constant K is equal to 1. for every function in the set. the set is referred to as a

set of orthonormal functions.
a) Rademacher function

One of the simplest sets of orthonormal two-valued functions is a set of odd

Rademacher functions, defined on the interval [—%, %) as [113]:

1 m=10

Rad,, (1) = ’ N .
sgnfsin(2 n)]. m=1.2,3, ...

(72)

The plots of the first five Rademacher functions are given in Figure 17. and in Table 3,
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the list of the corresponding binary sequences is presented.

It is easy to notice that the Rademacher sequences have very poor autocorrelation

properties. and that the number of sequences of a given length N is very low.

& Radg(t)
.,,t
0.5 0.5
Rad1(t)
! 0.5
-t
0.5
A Rad,(t)
_— |
| : - !
05 05
Rada(t)
1 I 1 1
——t— —t— >
-0.5 l ] 1 L | L 0.5
& Rad,(t)
| | | | ™ 1 i i |
—+—+——————————t—t+—— !
-0.5 —_t e T b ) ] e 1&5

Figure 17: Odd Rademacher functions of orders 0 to 4.

Table 3: Rademacher sequences of length 16.

No. Sequence

0 {0000000000000000)

1 (1111111100000000)

2 (0000111100001111)

3 (0011001100110011)

4 (0101010101010101)

Note: Bipolar sequences are
obtained using equation (69).
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b) Walsh functions

A larger set of orthogonal sequences of length N = 271 m

n

=0,1,2,....canbe

constructed on the basis of Walsh functions. There are couple of formal definitions of

Walsh functions introduced in the literature [9]. [44]. Here. we will use their definition

on the interval [0, 1) {100]:

Wal(0, 1) = xg(f) = 1;  0<t<1 (73)
Wal(l,t) - xl(r) = { 1, ) 0<t<0.5
-1, 05<t<1
Wal(2 r_) — x;(t) - { 1, 0<t<0.25 and 075St<1
-1, 0.25<1<0.75
Wal(, 0 = 20 ={ 1. 0<<025 and 0.5<1<0.75
2 1.  025<f<05 and 0.75<¢<1
and recursiw.;ely form=1,2,.. andk = 1,...,2" " we have:
Wal(2” k- 1,6) = £ (1), (74)
where
k
- 20). <t<05
Holgy =4 w0 DEr<ds 75)
L O e-1), 05<r<t

X2,

-1 @e-1), 05<t<1

0<t<05

k
Xt + 1(!)

The first eight Walsh functions are plotted in Figure 18. In the same way, as with
Rademacher sequences, we can derive Walsh sequences from the Walsh functions.

The list of all 16 such sequences of length 16 is given in Table 4.

A simple method to generate bipolar Walsh sequences is by use of Hadamard ma-
wix [82]. [93]. A Hadamard matrix is an orthogonal 2" x 2™; m = 1,2, ... matrix

-

whose elements are the real numbers +1 and -1. An orthogonal matrix iS a matrix

40



whose rows are orthogonal n-tuples (over the field of real numbers in this case).

Wal{ot)
>
0 1
I
Wal(1.t) 4 :
| -1
0 ] 1
: wal2 )k
: ] )
I | w1
oL e .1
Wal(3 ) A
" —
} | : >
o [ I | —_ 1
wal(4 )
| -
: } : 1 -1
0 e 1 _ 1
wal(5,)
| e — ra | pa—
} ——t— : > !
o1 L 1 L 1 1
wal(6, )
L ] | ] | i
i ] } ] | } -
0 1 L } 1 1 L 1
wal(7 ) A
] ¥ [} T I I )
1 1 1 | 1 i ! R ¢
T ) I { ) 11 1 Lol
8] 1 ] L J L - L 1

Figure 18; First eight Walsh functions.

There is a theorem associated with Hadamard matrices, which states:

IfH, isa 2"« 2™ m = 1,2,... Hadamard matrix, then the matrix:

H m H m
Hm+l = H2®Hm= 2 2
2 2 H _H
2rrr 2rrr
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a 2"+ 1 2™* ! Hadamard matrix.

Table 4: List of Walsh sequences of length 16.

No. Sequence
0 (0000000000000000)
1 (1111111100000000)
: 2 (1111000000001111)
| 3 (0000111100001111)
4 (0011110000111100)
5 (0011110011000011)
6 (0011001111001100)
7 (0011001100110011)
8 (0110011001100110)
9 (0110011010011001)
10 | (0110100110010110)
11 (0110100101101001)
12 | (0101101001011010)
13 | (0101101010100101)
14 | (0101010110101010)
15 | (0101010101010101)

Note: Bipolar sequences are
obtained using equation (69).

It is clear that the matrix:

H, = B 11 (77)

is a Hadamard matrix, and that its rows correspond to bipolar Walsh sequences of
length N = 21 = 2. It can also be shown [58] that, in general. rows of the Hadamard

matrix of an order 2" m = 1,2, 3, ..., obtained from the matrix H, given by (77).
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are bipolar Walsh sequences of length N = 2" m = 1,2,3, ...

Example: 1t easy to notice that starting from H, given by (77) we obtain:

11:1 1,1 111411111111 w
| 1 -11-11-11-1| 4
| 1 1-1-111-1-1| w
I-Liol 11d —1-1 L[ 1111 1-1-11}
1701 1=1-1-1-111 1 1 1 -1-1-1-1] ¥,
1
1
1

I
1-1:1 -1l -1 1 -1

1 1-1-11 1 -1-1

1-1 1 -4=11-11/1-11-1-11-11] #y,
11—1-1:—1_111 1 -1-1-1-11 1] ¥,
1-1-111-11 1 -1 -1-11-111-1] ¥y
He=\TT 111 11 L d 01011111 @ =
1-11-11-11-1-11-11-11-11] #,
11 -1-111-1-lj-1-111-1-11 1]
1-1-11 1 -1-11{-11 1 -1-11 1-1| 1
11 1 -1-1-1-1-1-1-1-11 11 1] W,
111 -1-11-=11{-11-111-11-1] iy,
11 -1-1-1-11 1|-1-11 1 1 1-1-1| #s
1-1-11-11 1~1{-11 1-11-1-11] g

As indicated on the right hand side of (78). each row of the matrix H, corresponds to

one bipolar Walsh sequence.

By examining Walsh sequences listed in Table 4. it is clear that they do not fultil
the randomness criteria. In order to assess their usefulness in DS CDMA systems. let
us examin their correlation properties using the methods described in the previous
chapter. Because the bipolar Walsh sequences are orthogonal, their crosscorrelation
functions take zero if the functions are perfectly synchronised (v = 0). However, for
other values of t. they can take quite significant values, with the normalised periodic
CCFs reaching 1. Also their autocorrelation properties are far from acceptable, with
some of them. e.g. Wy or W 4. corresponding to the rectangular functions having their
periods of 2 and 1 chips. respectively. The example plots of periodic ACF and CCF for

Walsh sequences are given in Figure 19 and Figure 20, with delay expressed in chips.
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The aperiedic crosscorrelation functions are not as bad as the periodic ones. with the

average mean-square value of crosscorrelation, R . equal to 0.7292.

PERIODIC AUTOCORRELATION

R 1 1
1) 5 10 15

DELAY IN CHIPS

Figure 19: Normalised periodic autocorrelation function for Ws.

PERIODIC CROSSCORRELATION

-1 L 1

0 5 10 15
DELAY IN CHIPS

Figure 20: Normalised periodic crosscorrelation between sequences fvs and ﬁPlo '

On the other hand. the aperiodic autocorrelation functions are very poor, with the
coefficient R, (see Section 3.4) equal to 4.0625. The example plots of normalised

aperiodic autocorrelation and crosscorrelation functions are given in Figure 21 and



Figure 22.

APERIODIC AUTOCORRELATION
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Figure 21: Normalised aperiodic autocorrelation function for ﬁf’s .

0.8} p

APERIODIC CROSSCORRELATION
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Figure 22: Normalised aperiodic crosscorrelation between sequences Ws and Wio-

4.1.2 Maximal Length Sequences

One of the very few classes of PN sequences which can satisfy all three randomness

criteria is the class of binary maximal length shift-register sequences, or m-sequences,



e.g. [29], [84]. The binary m-sequences are generated using linear feedback shift-re-
gister and exclusive OR-gates. A linear shift-register sequence is defined by a linear

generator polynomial £(x) of degree m >0, where:

m
otk xth, = Y R (79)

i=0

hix) = hoxm+h1xm

To construct an m-sequence of length 2™ — 1, the polynomial h(x) needs to be a
primitive polynomial [29], [58], [84] in which Ay = &, = 1. A mathematical defini-
tion of a primitive polynomial is that 2(x) is a primitive polynomial of degree m if the
smallest integer n for which ~(x) divides x"+1isn=2"-1 [58]. A primitive
polynomial is irreducible, which means that it cannot be factored into a product of

polynomials with lower degrees; but the converse is not true. Extensive tables of pri-

mitive polynomials have been published in literature, e.g. [97], [122].

A

]
L

T

L (7 PO l
CQUTPUT

Y

. 3 L]

Y
R
Y

4 3
Figure 23: Feedback shift register corresponding to A(x) = x +x + 1.

Example: 1et us consider the shift register, as shown in Figure 23, corresponding to

the primitive polynomial:
4 3
h(x) = x +x +1. (80)

Assuming the initial state 1000, we can easily obtain the output sequence utilising
the mod 2 arithmetic. The first 18 states of the register are listed in Table 5. It is clearly

visible that the output sequence 000111101011001 000... has a period of 2* 1 = 15.
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Table 5: Consecutive states of the shift register of Figure 23.

No. State
0 1000
| 1100
2 1110
3 1111

‘ 4 0111
5 1011
6 0101
7 1010
8 1101
9 0110

10 0011
11 1001
12 0100
13 0010
14 0001
15 1000
16 1100
17 1110

As we mentioned at the beginning of this section, m-sequences satisty all three
randomnes criteria. Apart from that, they have several other useful properties. A very
comprehensive list of those properties can be found in [65]. Here, we give only some

of those, which are most important from the viewpoint of DS CDMA systems.
i.  The Shift Property: A cyclic shift (left- or right-cyclic) shift of
an m-sequence is also an m-sequence. There are exactly

N = 2" — 1 nonzero m-sequences generated by A{x).

ii. Characteristic Phase: Among N m-sequences generated by
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fil.

v

vI.

N-1

. _ 1 an®an+t —

@ =50
n=

h{(x) . there is exactly one {a,} which has the property:

Vn:O.l.Z.... {an} = {a2n}’

- where {a;,} denotes the sequence obtained by taking every kth

element of cyclicaly repeated sequence {a,] .

One more 1s than Os: Any m-sequence contains 2" ' 1s and
2"~ 11 0.

m—

The Shift-and-Add Property: The mod 2. term by term sum of
an m-sequence and a cyclic shift of itself is another m-sequence

generated by the same polynomial A(x).

Runs: One-half of the runs have length 1. one-quarter have
length 2, one-eighth have length 3, and 50 on. as long as these
fractions give integral numbers of runs. In each case the number

of runs of 0s is equal to the number of runs of 1s.

Two Valued Autocorrelation: The normalised periodic autocor-

relation function of an m-sequence is a two valued function:

1. 1= 0 (modN)
5+ T# 0 (mod N) '

vii. Sampling: Sampling a binary m-sequence with each f such that

f and N are relatively prime numbers and

m
1<f<N-1,N = 2" 1. will produce all dﬁm‘ﬁ binary

P
m-sequences of period 2™ —1 (each exactly m times), with
$(n) denoting the Euler’s totient function [109]. [110]. No oth-

er sequence will be produced.

viii. Sampling with f = 21 = 0,1, 2, ...:If a binary m-sequence

is sampled with fequal to 2 power of 2, then the same sequence

results.
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Proof of those properties can be found in [58].

As far as m-sequences are concerned. usually for a given m. only a small subset of
the m-sequences can be regarded as having good (low) CCFs among any pair of the
sequences. According to the sampling property of m-sequences, any m-sequence of the
length 2™ —1 can be generated from a given m-sequence {a,} of the same length
2" — 1 by sampling with an appropriate sampler f. Therefore, the problem of choosing
m-sequences having low CCFs can be viewed as a problem of choosing appropriate

values for the sampler f.

The methods of selecting the sampler f were presented by various authors, e.g.
[40]. [55]. [64]. [77], [90]. For m not being a power of 2. we can obtain from an m-
sequence {a,} another m-sequence {b,} such that their periodic crosscorrelation
function is a three-valued function, if the sampler f = 2*+1 or f= 2% _2F 1. and
k is an nonnegative integer. If in addition!, e = ged(m, k) is such that m/e is odd,

then the normalised aperiodic crosscorrelation 7, ,(#) is three valued and [29]:

+e)’2 -e—-1 H—e—2)"2 .
1422 gecurs 277 e 207 imes

] 1
Fo o8 = -1 occurs  2"-2""°—1  times
m-e——l_z(m—e—Z)/Z

(83)

_1- 2(m +e)72

occurs 2 times

“~

It is visible, that for low values of e. r,, () takes smaller values more frequently.

By analysing equation (83). it can be noticed that, if m £0 (mod 4), there al-
ways exist pairs of m-sequences with three-valued normalised periodic CCF, taking its
value from the set (1/N){—1 -2l 2720 _1 1 4 olm+ 2720y "4 CCF taking on
these three values is referred to as a preferred three-valued CCF and the corresponding

pair of m-sequences is referred to as a preferred pair of m-sequences.

Preferred pairs of m-sequences do not existif m=0 (mod 4), however, there ex-
ist decimations which give four-valued periodic CCFs which are better than the three-

valued periodic CCF.

Example: For m = 5, wehave N = 2> _1 = 31, and there are $(31)/5 = 6 cycli-

1. ged(i, J) denotes the greatest common divisor of { and J.
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cally different! m-sequences of this period. They are all listed below:

a, = (0000100101100111110001101110101)
a, = (0001010110100001100100111110111)
ay =(0011011111010001001010110000111)
a, = (0111110010011000010110101000111)
as = (0010111110110011100001101010010)
ac = (0111011000111110011010010000101)

135), _ 9
(1+277°) = 3 for

1

Since m is odd. the peak periodic crosscorrelation r.,, = 31

pairs of the preferred sequences. However, for other pairs of m-sequences. r.,, can be

higher. The list of r_,, for any pair of the m-sequences of the length 31 is given in

ci

Table 6, and the example plots of r,-j(t) for the pair of preferred sequences

A1) (3 . A1), .
(a( ), &l )) . and the pair of nonpreferred sequences (am, a(ﬁ)) are given in Figure 24

and Figure 235, respectively.

Table 6: List of . for all pairs of m-sequences of length 31.

cm

a(l) 3(2) 5(3) a(4) a(S) a(ﬁ)
all - 0.2903 | 02903 | 02903 | 02903 | 03548
a?| 02903 - 0.2903 | 03548 | 02903 | 0.2903
a| 02903 | 0.2903 - 0.2903 | 03548 | 0.2903
a®| 02903 | 03548 | 0.2903 - 02903 | 0.2903
>l 02003 | 02903 | 03548 | 0.2903 - 0.2903
a®| 03548 | 02903 | 02903 | 02903 | 0.2903 -

1. Two sequences are cyclically different if one of them cannot be obtained from another one
by a cyclic shift.
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Figure 24: Periodic crosscorrelation function between the sequences a( } and a( : .
A set of m-sequences which has the property that each pair in the set is a preferred

pair is often referred to as a connected set of m-sequences. A largest possible connected

set for a given N, is called a maximal connected set. [29].

0.5 - T T
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0 5 10 15 20 25 30
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A1 (6
Figure 25: Periodic crosscorrelation functien between the sequences a{ ) and a( ) .
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4.1.3 Gold and Gold-like Sequences

For DS CDMA applications the number of sequences required is usually much larger
than the size of the maximal connected set for a given N. Therefore, we need to obtain
larger sets of sequences of length N, having good correlation functions. Certainly,

such sets must contain some non-m-sequences. and their normalised out-of-phase

ACF is usually not constant and exceeding 1/N.

Gold [39] and Kasami [53] have proven that using the preferred m-sequences of
lengtﬁ' N, one can construct larger sets of sequences of length N, having better periodic
crosscorrelation functions than the sets of all m-sequences of length N. However, this
is obtained by increasing the value of out-of-phase ACFs compared to that of m-se-

quences of the same length.

In secﬁon 3.5, we have introduced the method of obtaining Gold sequences from

a pair of preferred m-sequences of length N. We construct a set of Gold sequences by

taking the element by element modulo-2 sum of one of the preferred m-sequences with

each of the N cyclicly shifted versions of another preferred m-sequence. Including the
"

two original preferred sequences in the set, we obtain a total of N+2 = 27 + 1 se-

quences.

dyp =] 9

b

a3 F— Qyy [P 4y.5

i ny

OUTPUT

w1
A\

b F—™ by.2 i b3 > by, 4 by.s

Figure 26: Two independent linear feedback shift registers used to generate Gold sequences,

There are two equivalent methods of implementing Gold sequences of period
N = 2" —1 by using feedback shift registers. The first, definition based, method gen-
erates Gold sequences G(a, b) utilising two independent feedback shift registers one

generating the preferred m-sequence @ and another one generating the preferred m-se-
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quence b with two sequences being module-2 added chip-by-chip. The block diagram
example of such a generator is presented in Figure 26, with the primitive polynomials
hi(x) = X®x @1 and hy(x) = OO OxD] corresponding to the se-
quences a and b, respectively. This generator generates Gold sequences of length 31.

The exact generated sequence depends on the initial state of the registers.

The second method follows from the fact that the set of all sequences of the form
a® b, where a and b are two cyclically different m-sequences (a pair of preferred m-
sequences is always cyclically different), is just the set of all sequences generated by

the polynomial [29]:

h(x) = h(Dhy(x) = x°@X @ @' DX 2@ 1. (84)

Thus a feedback shift register implementing a polynomial #(x) can be used to gener-

ate any of Gold sequences G(a, b). It is possible to prove [29] that the maximum

nontrivial periodic correlation value r,, . defined in Section 3.1, is given by:
m+ 1
1 2 _
O — 1+2 . m odd . (85)
2% 1 m+2
142 ° \ m=2 (mod 4)

On the other hand. we have N = 2" —1 and M = 2" + 1. Therefore, for large m., we

have N =~ M, and according to Sidelnikov bound

m+1
2
2 1 {mtt+1 2

"imax = '\/A;T= m 2" -2 e : (86)

27 -1 27 -1

Utilising (85), for large odd m we have:
m+ 1 m+1
2 2

s = 2 2,,,’; L. ;‘ - (87)

Thus, comparing (86) and (87). we can conlude that in such cases r, .. for Gold
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sequences approaches the Sidelnikov bound.

As we mentioned in the previous section, there is no preferred pair of m-sequences

for m=0 (mod 4), and therefore there are no Gold sequences of length

Ht

N =2"_1,m=0 (mod 4).However, in literature [22], [29]. {39]. we can find de-
scription of the so called Gold-like sequences. having their properties similar to Gold

sequences. There are two main classes of such sequences, denoted [29] as H(a, b) and
{a,b).

Construction of the set H{a, b) of sequences follows from the fact that for

m=0(mod 4) and f = 1+2'"" 22 it can be proven that:

gcd(f, 2" -3) = 3. (88)

Therefore, if a is an m-sequence of length N = 2™~ 1 generated by h(x). and

b k = 0, 1, 2. 1s the result of decimating of k-positions cyclically shifted sequence

a by a sampler £, then, according to the Sampling property of m-sequences. the &*
are sequences of period N' = N/gcd(f,N) = N/3. They can be generated by the

polynomial #,(x) whose roots are the fth powers of the roots of k,(x).Therefore set

H(a, b) being generated by the polynomial h(x) = h;(x)h,(x). is defined as:

5 (0 _1.(0
Hab) = (aa®b®,a®T”,a@Tb .., a®T" 1, (39)
1 _ 1
P N VARLIH S LT ALY % At
_ 2
a@6? a1, a0, a0 ")

where T, i = 0, 1,2, ... is the shift operator defined in Section 3.5. The sequences
b are repeated three times in order to perform the operation « & b on a bit by

n

bit basis. The number of sequences in the set H(a, b) isequalto M = N+1 = 2.

Example: For m=4, we have f= 1429?29, and

ged(£,2" — 1) = ged(9, 15) = 3. One of the m-sequences of the length 15 is given
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a = {a,} = (011110101100100)

Table 7: Gold-like sequences of period N = 15.

No. | Gold-like Sequences

1 (011110101100100)
2 (000000010001011)
3 (110001110010011)
4 (101001000011111)
5 (100101011011001)
6
7
8
9

(100011010111010)
(000110011101000)
(010010110100010)
(011000100000111}
10 | (111101101010101)
11 | (101111001111100)
12 | (010100111000001)
13 | (111011100110110)
14 | (001100001001101)
15 | (110111111110000)
16 | (001010000101110)

Decimating the sequence 7"a with sampler f = 9 for k = 0, 1, 2, yields:
»'* = (011110111101111)
p'" = (011000110001100)

p'® = (001010010100101),

and all Gold-like sequences of the set H(a, b). of size M = 16 and the period

N = 15, can be synthesised using the formula (89). They are all listed in Table 7.

To illustrate correlational properties of the Gold-like sequences, the example plots
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of normalised periodic ACF and CCF as well as the aperiodic ACF and CCF are given
in Figure 27, Figure 28, Figure 29, and Figure 30, respectively. The average mean
square measure of the aperiodic autocorrelation for the set R, = 0.7490, and aperi-

odic crosscorrelation measure R = 0.9627.
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Figure 27: Periodic autocorrelation function for Gold-like sequence ¢ D T3b( ) .
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Figure 28: Periodic crosscorrelation between Gold-like sequences ¢ ©T b( : and

a® Tﬂbm.
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Figure 29: Aperiodic autocorrelation function for Gold-like sequence a D Iab( ) .
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Figure 30: Aperiodic crosscorrelation between Gold-like sequences @ &7 b and
2
a®Tb".

Another group of Gold-like sequences are those sequences which are obtained for
N =2"_1.m=0 (mod 4) in the same way as Gold sequences if instead of pre-
ferred pair of m-sequences one uses pair of four-valued CCFs or reciprocal m-sequenc-

es {29] are used.
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4.1.4 Kasami Sequences

There are two classes of Kasami sequences. the so called small sets of Kasami

sequences denoted by Kg(a, b). and the large sets of Kasami sequences denoted by

K;(a,b,c). Both are constructed in a very simillar way to Gold or Gold-like

sequences [29].

The small set of Kasami sequences is of the form:

K(a,b) = {a, a®ba®Th,a®Th,...,ad f””’"zb}. (90)

where a is an m-sequence of period N = 2" — 1. m is an even integer. and b is a

ms2

sequence obtained from a by sampling it with a sampler f = 1+27 7. Itis easy to

notice (see Sampling property of m-sequences) that period N' of the sequence b is

given by

N N 2m/2_ 1.

= Gcd@p - oD

and that, in order to perform bit-by-bit operations prescribed by equation (91), the

sequence b must be cyclically repeated.

Kasami has proven that the periodic crosscorrelation functions of small sets of

Kasami sequences a;, a; € K(a, b). i %, take only three values:

ms2 ms2
~1 or—l_2 or_1+2 ) (92)

2]}1 _ 1 2"! _ 1 21‘!! _ l

rais aj(r) =

Clearly the value of r,,, . for small sets of Kasami sequences is much lower than the

value of r_ . for the set of Gold or Gold-like sequences of the same length. However,

Mnex

small sets of Kasami sequences contain only:
M=2"7= /N+1, (93)
compared to Gold or Gold-like sequences containing M = N+ 2o M=N+1
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sequences, respectively.

Much larger set of sequences K, (a, b, ¢}, referred to as large set of Kasami se-
quences can be constructed on the basis of known set of Gold or Gold-like sequences

for even values of m. There are two separate cases:

i. IfTm=2 (mod 4),then

m2

K, (a, b, c) = {G(a, b), G(a, D®c,Gla,b)®Tc,....G(a, b)® 7 _20} . (94)

where G(a, b) is the set of Gold sequences, ¢ is obtained from

m’2

a by sampling with the sampler f = 1+2 and
Gla,b)®Te. i=0,1,..,2"%-2
denotes the set {d® T'c: d € G(a, b)}.

i, Ifm=90 (mod 4).then

K,(a,b,c) = (H(a,b), H(a,b)®c, ..., H(a, b) ® % L (95)

0 0 0 M _q1yr3-1
e v VeTe, ..., 0 V0T 3-1e.

m:2

WPacprPeore .. per® D7
PP pPeTe, . 0P eT? TV e

where where H(a, b) is the set of Gold-like sequences. ¢ is ob-

tained from a by sampling with the sampler f = 1 + 2

H(a,b)® Te. i = 0,1,...,2""" =2

denotes the set {d & Te: de H(a,b)}. and the sequences
b(k), k = 0,1,2 are obtained from the sequence yu using a

sampler f = 1+2(m+2)_,'2-

Even though a large Kasami set contains both a small set of Kasami sequences and
a set of Gold or Gold-like sequences as subsets, its maximum nontrivial periodic cor-

relational value is the same as for Gold or Gold-like set.

59



4.1.5 Barker Sequences

The m-sequences have the best periodic autocorrelation functions as far as the mini-
mum of the out-of-phase periodic autocorrelation is concerned. Barker [7] optimised
sequences from the viewpoint of minimising sidelobes of the aperiodic autocorrela-

tion function. Binary bipolar sequences a satisfying the condition:
<i 10 (96)
lca (T < N T

are referred to as Barker sequences. Such sequences are known for length

N = 2,3,4,5,7,11, 13 and are listed below.

++

++-

e
-+
ottt
I

T e e S

No other binary Barker sequence of longer length is known. There are even proofs
that they do not exist for odd values of N greater than 13 {102}]. There is no general
proof for even lengths, however, it is generaly believed that also no other even-length
binary Barker sequence exists. To illustrate the aperiodic autocorrelation performance
of Barker sequences, the plot of aperiodic autocorrelation function for the Barker se-

quence of length 13 is presented in .

Golomb and Scholtz [41], and Golomb and Win [42] investigated sequences
whose elements are complex numbers of the absolute value 1, which sidelobes satisfy
the original Barker constraint given by equation (96). Such sequences are referred 1o

as generalised Barker sequences, and it is conjectured that 6-phase Barker sequences
exist for all N [58].
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Figure 31: Autocorrelation function of Barker sequence, N = 13.

4.2 Nonbinary Sequences

In the previous section, while considering the generalised Barker sequences, we have
already mentioned that a possible alternative to binary sequences lies in sequences
which elements are complex numbers . Most of the complex sequences contemplated
for DS CDMA applications are those which elements can be thought of as roots-of-
unity, where the sequence values vary from symbol to symbol on the unit circle in the
complex plane. This additional level of freedom increases the number of the
sequences that have good correlation properties. In general, however, complex
sequences may have also non-unity magnitudes. Another class of non-binary
sequences are those where sequence elements are real but non-binary numbers, €.2.
[15], [36], (48], [49], [72], [94]. In this section, we will introduce some examples of
complex polyphase sequences with good correlation properties, e.g. [4], [6), [11],
[271, [31], [571, [59], (601, [61], [70], [71}, (73], (74, [75], [79], [99], which can be
used for DS CDMA applications.

4.2.1 Complex m-sequences

The very natural extension of binary m-sequences discussed previously, are complex

m-sequences [58]. For prime numbers p, the pth roots of unity are the complex num-
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bers of the form:
P 0<k<p-1. (97)

If p = 2, we have two roots equal to 1 and -1. The complex m-sequences are gener-

ated in the same way as their binary counterparts, i.e. they are generated by the use of

primitive polynomial:
-1
,_ g(x) = gox" + 81X .t B 1X+ 8 (98)

of degree m. The coefficients g;.i = 0,1, ...,m of g(x) take values from the set

{0,1,2,...,p—1}, and we have g, =0 and go# 0. As with the binary m-

sequences, we sel g(x) = 0 and solving for ¥ can find the shift-register circuit to

generate sequences which is given in Figure 32 [58].

Op-i ] 3yp —9 Qy.3 | soe nm [ oUTRUT

Figure 32: Shift-register circuit for generation of complex m-sequences.

The arithmetic in Figure 32 is computed mod p, and the period of complex m-

. "
sequences is N = P -1,

As an example, the plot of magnitudes of periodic and aperiodic normalised ACFs

are given in Figure 33 and Figure 34, respectively, for the complex m-sequence [29]:

{a,} = (00101211201110020212210222). (99)

The above sequence is generated for m = 3 and p = 3 by use of the primitive (mod

3) polynomial:

gl{x) = X4+ 2x+ 1. (100)
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Figure 33: Magnitude of the normalised periodic ACF for the complex m-sequence {an} .
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Figure 34: Magnitude of the normalised aperiodic ACF for the complex m-sequence {a n} .
The elements of the complex sequence {&,} are calculated using the formula:

JP (101)
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4.2.2 Frank-Zadoff-Chu Sequences

Frank-Zadoff sequences [32], denoted here by F = {"m, - at"” a“"”} are

g meey

another class of polyphase sequences which can be used for DS CDMA. application.

They are defined for length N = q2 . where gth roots of unity are the elements of the

(-\(r) A(r) N ~{r)

sequences a" ., @y 1), in which:

a, —atq+k=e =o , O<ki<gq, (102)

j2m/ : . i . 2
= ¢°""% rand q are relatively prime numbers, ¢ is any integerand 0<n<g - 1.

The - elements aff) of Chu sequences [17], denoted here by

A(1 NG A (N~ A A1) 4 A
C = {a( ),...,a('),...,a(N I)} S = (a, (') (') e ;’,) 1) of length NV, are given

*

by:

exp [%t r(n+ l)n], N odd
ay = | , (103)
exp (%t rnz) , N even

where r and N are relatively prime numbers, and 0 <n < N.

It can be shown [29] that Frank-Zadoff sequences and Chu sequences belong to the

class of the so called perfect sequences. It means that their periodic ACFs are given by:

r (1) = { 1, t=0 (mod N) ’ (104)
! 0, 120 (mod N)

and their periodic CCFs are expressed as:

i.  For Frank-Zadoff sequences:
r, (1) = JI/N, ¥1,r#s, ged(r—s,q) = 1, g isodd. (105)

ii. For Chu sequences:
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"r,s(T) = J1/N, Vt,r#s, . (106)
ged(r-5,N) = 1, gcd(r,N) = 1, ged(s,N) = 1

Usually, the number of Frank-Zadoff sequences of a given length is very low, and
the number of Chu sequences satisfying the conditions for optimal CCFs is very low,
too. Therefore, very often it is convenient to use a combined set of Frank-Zadoff-Chu
(FZD) sequences being the union of Frank sequences F = {}1;)} and Chu sequences
C= {ﬁf)} of the same length, N = qr2 should be odd, and all conditions required for
optirnafl CCFs in both types of sequences need to be satisfied. Certainly, ACFs of all
sequences in the set are exactly the same as those of the Frank-Zadoff and Chu se-
quences. The CCF is equal to J1/N for a pair of sequences being either a pair of
Frank-Zadoff or a pair of Chu sequences. This is somehow more complicated if one of

the sequenées is a Frank-Zadoff sequence and the other is Chu sequence. According to

[29] it is given by:
| o = SL/N. r#s (mod q) (107)
0, VEVG = %-—1
\rnmhq) #0 = , r = s (modaq), (108)
© g+1
lg(h, s)I, v=vg=to—

where 0 <h<g, T = ug +v,and

g-1
_2...-—1 (5 + hq)k(k+ 1}/2q —su(k+ vg) " (109)

q g-1 (5 + hq)k(k+ 1)/ 2q —s(u+ 1)(k +vy)
NZ q—la

Example; For ¢ = 3, N = 9, there are M = g—1 = 2 Frank-Zadoff sequences.

This corresponds to ged(r,q) = 1, r = 1,2. Also these two sequences have the
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optimal periodic CCF:

1
F}Lu,j.{lz)(‘t)| = 5 (110}
The sequences are given by:
T i3 b4 TG
A1 j2% AL 43 i3
g =(1, LLLe e le e 3} (111)

L TE .~ v Te .,
~(2) 43 3 i3 0%
{ffrt Yy =11,1,1,1,e e T,l,e ",e

There are M = 6 Chu sequences of length N = 9 for r = 1,2,4,5,7,8. Out of

this 6 sequences, we can chose only one pair which satisfy the condition:
ged(ry—ry, N) = 1, (112)
where r,, r, are sequence numbers.

Let us chose r, =4,r, = 5. The corresponding Chu sequences can be obtained

using equation (103), and are given by:

T et 1t sl juaf jeg g
A(4) 5 % 5 /%% g /%% J% i
{CTI}: l’e ’e 76 ,E ,E ,€ ,e 519 . ( 3)
iy . T LR I 4 LT . T . T_E
{5) ]109 ]129 169 ]IU9 169 ]129 1109 .
(¢;’y=121le “,e e ,e e e €

Therefore, the FZC sequence set for N = 9 can consist of 4 sequences, e.g.lz

FZC = #B 2 2y (114)

!n’n

To illustrate the correlation properties of the FZC sequences, the example plots of
magnitudes of periodic ACF, and periodic CCFs are given in Figure 35 and Figure 36,

while the magnitudes of their aperiodic ACFs and CCFs are given in Figure 37 and

1. Combinations of two Frank-Zadolf sequences of length 9 with other pairs of Chu sequences
of length 9 are also possible.
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Figure 38, respectively. The superiority of FZC sequences as far as their autocorrela-
tion properties are concerned is fully reflected in the value of the R, coefficient

which is equal to 0.0858.

PERIODIC AUTOCORRELATION
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Figure 35: Magnitude of the normalised periodic autocorrelation function for FZC sequences.
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Figure 36; Magnitude of the normalised periodic crosscorrelation function for FZC sequences.
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Figure 37: Magnitude of the normalised aperiodic autocorrelation function for FZC sequences.
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Figure 38: Magnitude of the normalised aperiodic crosscorrelation function for FZC sequences.

The aperiodic correlation properties are also good with the coefficient
R = 1.0763.The main disadvantage of FZC sequences is the size of a sequence set,

which is usually much lower than the length of the sequence M < N.
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4.2.3 EOE Sequences

A set of complex polyphase sequences {aft")} of period N and size M is referred to as

EOE sequence set, if and only if, they have Equal Odd and Even correlation functions
at each time [29] [34], i.e.

R, ()] = R s(0],  Vrst 0srs<M-L. (115)

Recalling the definitions of odd and even correlation functions, we can write an equiv-

alent condition using the aperiodic correlation function:
2 2
IC”' J(T) + C"n S(T - N)‘ = |Cr, s(T)_Cr, s(T - N)I : (116)

Therefore, we have:

Re{|C, (C, (x-N)|} = 0, (117)

which yields:

IC,. s()||C,, (t—N)| = O (118)

ArglC, (0] —Arg[Cr‘s(t -N)] = 7%6

where k is an arbitrary odd integer. The equation (118} constitutes a necessary and

sufficient condition for constructing EOE sequences.

The best way of constructing EOE sequences is to first find a set {EE:') } of arbitrary
real-valued sequences of period N and size M, having good even correlation, for exam-
ple Gold sequences or Kasami sequences. Then, we design complex-valued EOE se-
quences 4.’ having their elements described by:

jrk

. Son+ P
aﬁr) _ bff)ew . 0<n<N-1,0<r<M-1, (119)

where k is an arbitrary constant and B is an arbitrary real constant such that

0 <P <2n. The sets of EOE sequences usually contain the name of the set of real-

valued sequences in their name, for example EOQE-Gold means the set of EOE
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sequences obtained on the basis of a set of Gold sequences.

It is important to notice here a very important feature of EOE sequences [29]. Tt
can be proven that the maximum nontrivial even and odd correlations of the complex

valued EOE sequences are not higher than those of the original real-valued sequences.

Example: Let us consider the set of Gold sequences of length N = 31, as discussed in

Section 3.5. On the basis of this set, we can construct a set of EOF sequences, assum-

ing k = 31, p = 0. The sequences are listed in Table 8. The most important charac-

feristics of the sequence set from the view point of their application in DS CDMA

system are the aperiodic correlation functions, and the characteristic parameters

Rec, Ry Their values are as follows: Ree = 0.9707 and R, = 1.0064, which

are exactly the same as for the binary Gold sequences.

Table 8: EOE-Gold sequences of length 31.

No.

Sequence

1 O(O-1(1 0(O0 1} 1 OP(O-1HCT OP(O-1HEL TGO 11 0NCO 1] 0)(0 1)
(-1 0)(O-1(1 00 (1 0)(O 11 0O 11 0HCO 11 0O 1i)-E 0j}(0 13)
(1 0 0-1j¢1 0

-1 05)(0-1j)(1 0)(O-1HEL X O 11 0PCO-1H(1 (O -1E1 0PLO 11 00 -1
(1 OP(0-1C1 0D(O-1( 1 00 -1)(-1 0(0-1H(-1 (O -1H(T 0j)(O 1i)-1 05)(0 1)
(100 15(¢-1 0))

(1 0)(0-1(T 0(0 11 0DCO-1HEL 0HCO-1H(1 0P(O-1C-1 o0 -1 GXO 1))
(-1 OP(O-1)(-1 OHCO -1 1 0H(O 1H(L OCO 1HEL BK O -1 0j)( 0 -1)(1 0(0 -1
(100 1p(1 o)

(1 00 1HCT OO 1HCT 0O (1 00 11 0O -1( 1 0} 0 151 00 1))
1 0(0-15)(1 OO -1¢1 0NCO )1 00 -1)(-1 0j)(0 111 Q)0 -1 1 CO-1j)
-1 0)(0-15(1 0j)

(1 0)(0 1i)-1 0)CO 1)C1 OPCO-1H)1 0(O-1j)(1 0HCO 1L 0j)( 0 -1j)-1 0pCO-17)
(1 (0-1)(C1 OO 1)%-1 0O -1 (O (1 0i(O 1H(1 0i(0-1H( 1 (0 -1
(-1 OCO 1)1 0D

1 OO 15}-1 0PCO-1(T OO -1( 1 0D(O 1i)-1 00 -1))(-1 0 0-1i(1 G0 1j)
(1 ODCO-1i(T OO 1T OPCO-IHCT 0O 1j)¢-1 0HCO-1)( 1 o0 (1 G 0-19)
(-1 00 1)1 0

(1 OP(O -1 OO -1(-1 OO -1PCT L0 -1 1 0)(0 11 0j)(0 (Y 0(0-1j)
1 0j)(0 IHCT OO 1HCT 0O 1T 00 -1¢1 0RO 1)1 00 1j)-1 00 -1j)
(-1 00 1j} 1 0j)

(1 00 1)1 0DCO-1)-1 ON(O 1CT 0O -1¢-1 0)( 0 -1)(-1 0(0-1)-1 &PCO-1p
(1 0j)X 0 -1j-1 0D(O 11 ONCO 11 i) 0 -1i)( 1 (O (1 0)C0-15)¢-1 G0 1i)
(-1 00 1)L 0
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Tahle 8: EQOE-Gold sequences of length 31.

No.

Sequence

(1 00 1)(-1 0)(0 1i)-1 0O 1¢-1 0O-1E1 0H(0 1DCT 0O 1)1 0)CC 1j)
(100 1C1 ONCO-1CT OH(O 1i}-1 0 ¢ 1HCT 0PCO-1j)(T 0(O 1j)( 1 0CO 1)
(1 0)(0 1(1 0

10

(1 0C0 1-1 GHCO-1CT OO 1)1 0O L)1 (0 1j}-1 ONCO-1i)-1 0§)(0-1))
-1 0(0 1EE 0O 1HET 0PCO 1T 0K O 1HET 0PCO-1i}-1 0O 11 BN E -1
{1.0)(0-1)C1 0j)

11

(100 1)¢-1 0R(O-IET 0H(O-1HE1 G0 1HH(T 0O 1)1 (0 1p(1 (O 1)
(1 0DCO-1EE OPCO-1( 1 OCO-1)-1 0)(0 1(-1 (O 11 OHCO-1-1 0D 1)
-1 05 C-1j)(-1 0j)

12

(1 ONCO 1HET OPCO-1HEL 0RO L 0HCO L)1 00 -1¢-1 0)(0 Ipe-1 0¥ 0 -1
(-1 OCO 1H(T 0H(C-1-1 GO 11 0H(0 1E1 0H(O 1HCT OCO-1HCT 00 1i)
(1 00 1j}-1 0j)

13

1 0CO0-1)(-1 OIO-1)(-1 00 1CF OO -L( L G(O-1(1 0)(O 1j)-1 00 1))
(1 OC0-1C1 GO 151 (O -15-1 O(Q-11¢-1 0(O 1N(T OP(O 1)1 0))(0-1j)
(1 0(O-1j)( 1 0j)

14

(1 0(0-1(1 ON(O-1HC-1 GPCO THET 00 1E1 OO -EH(T GO -1)(-1 O(O 1))
(-1 0)(0 1(1 0H(O-1H( 1 ONCO-1( 1 0HCO (L BHCO 1H(1 O} 1)1 0)(O-1})
-1 0O -HX-1 0f)

15

(-1 00 151 OO )1 OHCO 1)1 (O 1)(1 0O 1j(1 00 -1 L 0j)(0 1)
¢1 0RO -1)-1 ONCO 11 OO 11 OP(O-1(-1 0CO-1(1 OCO 1ET 00 17
(-1 0i)(0 1(-1 05

16

(1 O)CO-15¢-1 OO 1HCT OO 11 GO 1)1 00 -1¢-1 0O -1j)(1 0§(0 1))
¢1 OCO-15( 1 0PCO-1(1 OO -1i)-1 O(O-1(1 0O 1j}-1 0DCO 1ET 00 1)
(1 0)(C 1)(1 0

17

(1 0(0-1i)( 1 OCO-1i)( 1 OPCO-1¢-1 GO 1HCT OPCO-1i)(L 00 1)(1 00 -1j}
(1 OCO-1HCT GO 1HET ODCO 1HCT 0O 1HCT 0(O-1i) 1 0HCO-1)-1 0O 1)
(1 0DCO-1H(T 0

18

(100 11 0RO THEE BH(O-1H(T &0 11 00 -15(1 00 -1)¢-1 05(0 -13)
(1 00 (1 0CO (1 00 -1 0O -1i-1 0)(0-1C-1 K0 1)1 0O 1)
(1 0} 0-1¢-1 0j)

19

-1 0)(0 11 OO (T OO 1HCT OHCO-1i( 1 0O -1CT OP(O-1)H(L 00 1))
(1 00 Li)-1 00 1CE 0RCO 1N 0H(C 1H(1 0PCO 1)1 0O -1(-1 (O -1j)
(1 0} 0-1¢1 0j)

20

(1 0)C0 -1 OH(O-1H( 1 00 -1j)¢-1 0H(O-1¢-1 OPCO-1H(T OP(O-1j)(1 0O -1j)
1 00 1)CT 00 -1HCT OHO 11 OO 11 0(0-1H)(1 OHCO-1i)(1 00 17
-1 ODCO-1HC-1 o)

21

1 00 -13}( 1 OO -1-1 0D(O-1(1 OCO 1)1 BHCO 1j)( 1 0O -1j)( 1 0§)( 0 -1j)
(1 O)(0-1)¢-1 GO -1G-1 0O 11 G0 11 0H(0 1T 0O (1 00 -1}
{1 00 1j)-1 0

22

(-1 ONCO-1( 1 0O 1ET 0HCO 1T 0H(0-1H(1 00 1K1 00 -1)( 1 0i)( 0 -1j)
(1000 1)1 00 -1E-1 0D(O-1C1 BHCO 1)1 (O -1j( T 00 -1 0)(0-1
{-1 0p(0-1)( 1 Of)

23

(1 O(O-1HH( 1 (O 1L OO 1E1 OP(O-1)¢1 0O -1j)-1 0)(0 1H(1 05)( 0 -1j)
(1 OPCO 1¢1 00 THE1 0HCO-1)( 1 GO 1j-1 0H(O 11 00 1)1 00 1j)
(-1 0pCO 1)1 0j)

24

1 00 TH(1 ONCO 1(1 0H(0-1H(-1 0O 1C1 GHO (1 OO 1) 0} 0 -1j)
(1 OO 1)-1 0D(O-1( 1 00 -1 1 0j(0-1C1 0O 1)1 0O -1pE-1 0j)( 0 -1j)
(1.0Dp(0 1j)(1 0f)
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Table 8: EOE-Gold sequences of length 31.

No. Sequence

(1 0(O-1j-1 0O 1)(T OCO-1C1 0O L) L 00 Li)-1 00 -1j)-1 050 1j)
25 | (1 0)(0 Li-1 0)¢ 0-1j-1 ODCO LT O O-1( L OO 11 00 1j 1 00 1)
1 0p(0-1p¢1 0f)

(1 0)CO 1H(L 0 0-1j 1 0 0 -1j(1 O O-1j)( 1 OO -1HE-1 0PCO 1)1 030 1))
26 | 1 0O 1j)-1 0j( 0-1j)-1 OO -1¢-1 ODCO -1} 1 OPCO-1i( 1 OO 1j)-F 0O -1}
{1 0(0 -1 &)

1 0)(0 11 OPCO 11 0CO-1i)( 1 0O -1¢-1 OPLO -1 1 0} O 1j-1 00 -1j)
27 | (1 0pCO-TpL 0011 0 0-1i)( 1 00 1i(1 0O -1pE1 0H(O 11 0} 0 1j)
1 0)C0-1p(1 0}

(1 0)C0-E)-1 0CO-11)(1 0(O 1)(T &HCO-1-1 00 1PCL 00 -1i)-1 ONCO 1p
28 | (1 0(0-1i( 1 0 @-1)-1 GO -1( 1 ) 0-Lj-1 O 0 -1i)-1 OO -L-1 050 1)
(100 1j)N-1 03}

-1 0O 11 00 -1)-1 0RO -EHET OO -1)-1 ODCO 1j)-1 OCO-1p( 1 OO 1p
29 | 1 0(0 1i(1 0O 1j)X-1 00 -1(1 ) O-1(1 OH O E-1 0 0 -1ix 1 00 1)
{1 0C0-11 0p

(1 0)(0-1DE1 0)(O 11 05C0 1L 0O LiX-1 050 1HE-L OO Lj( 1 00 -Li)
30 | 1 0p(O-I)EL 0)(O 11 OH(O-1i T OH(O-1j)(1 0L O-1P(1 G 0-1j 1 0(0-1j)
(1 0j) 0 -1j)-1 0j)

-1 0§ 0 1)(1 O(O-1j)( 1 OO 1T OPCO-1(T 0CO L1 00 -1 0)(0-1j)
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Figure 39: Magnitude of aperiodic autocorrelation function for the sequence {af1 : } of Table 8

and for the corresponding Gold sequence.
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Figure 40: Magnitude of aperiodic crosscorrelation function between the sequences {a’i1 )} and

{EILS) } of Table 8 and between the corresponding Gold sequences.

To complete the comparison of the behaviour of aperiodic autocorrelation func-
tions of EOE-Gold and Binary Gold sequences the example plots of the magnitudes of
these functions f are given in Figure 39 and Figure 40. It is clearly visible that the plots

obtained for both sequence sets (Gold and EOE-Gold) are identical.

4.2.4 Opperman-Vucetic Sequences

Opperman and Vucetic in {79] have proposed the new family of complex sequences of

length N, U

n,p.s

(N}, with sequences {E‘c;") } having their elements defined by the for-

mula;

in(r"nf +1°)

ai}-) _ (_1)""exp[1 N ] gde(r,Ny =1, 1<n<N, (120)

where m. p, and 5 are any real numbers. The definition equation (120) is so general

that it includes some well known classes of sequences. like for example FZC

sequences, which can be generatedby m = 2,p = 1,5 = — [79].

The sets of sequences defined by (120) can achieve impressive range of correlation

properties with the improvement in crosscorrelation properties of a set ususally
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achieved on the expense of significant worsening of autocorrelation properties, and

vice-versa.

APERIODIC AUTOCORRELATION

-30 -20

-10 [} 10 20 30

DELAY
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Figure 41: Example plot of magnitude of the normalised aperiodic autocorrelation function for

the Opperman-Vucetic sequences of length 31 generated by /11 = 09,p =15 =

1.325.

To illustrate the correlational properties of Opperman-Vucetic (OV) sequences.

the example plots of magnitudes of the aperiodic ACT and CCF are given in Figure 41

and Figure 42, respectively, for the set of length N = 31, generated by

1.325.
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is characterised by the parameters
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Figure 42: Example plot of magnitude of the normalised aperiodic crosscorrelation function for

the Opperman-Vucetic sequences of length 31 generated by m = 0.9,p = 1,s = 1.325,
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We have also generated another set of sequences of the same length using the pa-
rameters m = 1.075,p = 1,s = 2. The example plots of magnitudes of the aperiod-
ic ACF and CCF are given in Figure 43 and Figure 44, respectively. The correlation

measures obtained for this set are Ro = 0.9975, R, = 0.1126.

09 k
0.8} r=10 h

07+ o

APERIODIC AUTOCORRELATION
<
[+

04f 4
0.3+
0.2 . k
! w
o w . :
-30 -20 -10 o 190 20 30

DELAY IN CHIPS

Figure 43: Example plot of magnitude of the normalised aperiodic autocorrefation function for

the Opperman-Vucetic sequences of length 31 generated by 1 = 1.075,p = 1,5 = 2.
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Figure 44: Example plot of magnitude of the normalised aperiodic crosscorrelation function for
the Opperman-Vucetic sequences of length 31 generated by /m = 1.075,p = I,s = 2.
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4.3 Sequence comparison

There are several methods of comparing sets of spreading sequences. A very good
classification including comparison of the most of known sequences can be found in
[29]. However, from the viewpoint of this work, i.e. application of sequences to DS

CDMA high data rate wireless networks, the most important are the following param-

eters:

+ length of the sequence N,
» size of the set M,
+ average mean-square value of crosscorrelation function for every sequence in the

set Recs

« average mean-square value of autocorrelation function for every sequence in the

set Ry

The values of the abovementioned parameters for the example sequence sets consid-
ered in this chapter are given in Table 9 with the parameters Rcc and Ry ¢ calculated

for the case of one sample per chip.

Table 9: Parameters of some sequence sets.

Name of the set | LengthN | Size M Rec Ryc
Walsh 16 16 0.7292 4.0625
Gold 31 . 33 0.9707 1.0064
Gold-like 15 16 0.9627 0.7490
FZC 9 4 1.0763 0.0858
EOE-Gold 31 33 0.9707 1.0064
OV{1.075,1,2} 31 30 0.9975 0.1126
0ov{0.9,1,1.325} 31 30 0.7846 16.7653

The parameters R and R, for short sequences, such as those required in high
data rate wireless systems, can be considered only as an indication of the expected sys-
tem performance [58]. In some cases, even with relatively low average bit error rate,

error bursts may be so long that an applied error control algorithm is not able to protect
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transmitted data. Therefore, while making the final decision about using the particular
sequence set, a comprehensive simulation of system performance, i.e. average biterror
rate, statistics of errors caused by the multiaccess interference, and in some cases syn-

chronisability of the system needs to be performed.

One of the other characteristics not mentioned so far, is power spectral density of
a spread signal. It is highly desired to, achieve similar bandwidth for the signals spread

by different sequences in the set.

i
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5. New methods to design polyphase sequences

for wireless data applications

In the previous chapter we discussed several families of binary and complex spreading
sequences proposed in literature, with some of them, e.g. OV sequences allowing fora
good compromise between CCFs and ACFs for the whole set. There are, however, no
clear ways how to chose appropriate values of parameters to achieve the desired spec-
tral cHaracteristics. While designing the sequence sets for use in DS CDMA wireless

data network, one also needs to look into some specific system requirements:

i, Because for the downlink (base station to mobile transmission)
the conditions for synchronous operation can be met, the de-
signed sequences should be orthogonal or almost orthogonal for
perfect synchronization. This would allow for cancellation of
MAI for the downlink, and for simpler receiver in mobile termi-
nals.

ii. It is highly desirable to achieve the situation where power of
spread signals is distributed uniformly in the available band-
width, therefore ensuring similar level of the frequency diversity

for any channel in the system.

In this chapter, we propose a method to design a useful set of sequences for DS
CDMA wireless data networks. Based on the fact that use of complex spreading codes
introduces a phase modulation into the band-pass signal, we first look into the proper-
ties of sequences obtained on the basis of baseband chirps [121], which are one of the
analogue signals having very good autocorrelation properties. The similar approach
has been used by Popovic [83] in design of his P3 and P4 sequences. Here, however,
we will look into design of sequences for any given length N. Ability to do so, is very
important from the viewpoint of applying such sequences in wireless data networks for
variable data rates. Later we will investigate application of multiple chirps and the lin-
ear combinations of them. Finally we show the way how, using a similar approach to
that behind EOF sequences, we can significantly improve correlational properties of

known orthogonal sequence sets, e.g. Walsh sequences.
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5.1 Chirp sequences

5.1.1 Design method

Chirp signals are widely used in radar applications for pulse compression [18], [19],
and were also proposed for use in digital communications by several authors, e.g. [8],
(28], [56], [86], [101]. They refer to creation of such a waveform where an instantane-
ous frequency of the signal changes linearly between the lower and upper frequency
limits: This is graphically illustrated in Figure 45, which presents the two basic types

of chirp pulses and their instantaneous frequency profiles.

co(th c.(t) b
1 1
! 1
-1 -1
5k Sik
fu— fu—
e fid

Figure 45: Positive and negative chirp pulses and their instantaneous frequency profiles.

For the positive chirp c,(#), the instantaneous frequency f;() increases during the

pulse duration, according to the formula:
t
i@ = i+ G-fg (121)

where f; and £, are the lower and the upper {requency limits, respectively, and T'is the

duration of the chirp pulse. In the case of the negative chirp ¢_(#), the instantaneous
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frequency f(t) decreases during the pulse duration, accordingly:

) = fiGu- g (122)

Introducing a modulation index k, defined as for binary frequency shift keying (FSK)

[84], h = (f,—f)T = AfT, wecanexpress f(1); 0<t<T,as:

(fc _ 2%) + % for c,(f)
£ = : (123)

hY\ ht
( Lt ﬁ)_# for c. (1)

where f. denotes the central frequency of the chirp pulse, sometimes referred to as the

carrier frequency.

Hence, we can describe the waveform ¢, (¢); 0 <f<T,having anamplitude 4, by

means of:
]
¢, () = Acos [mj FA)dt + ¢0} , (124)
0
g h
= Acos%nfc (fc T Ta) dt + <b0}
which after performing an integration yields:

c, (1) = Acos\:Qn(fc th r+7‘;12f +¢0} (125)

By a direct analogy, the ¢ (¢); 0 <¢<T waveform is given by:

c (1) = Aco{Zn(f ;}):-’Eh—f +¢0} (126)
e

In equations (124), (125), and (126}, ¢, being an initia] phase value is a real constant
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0<dg<2m.
Using a bandpass signal notation [84], and for simplicity assuming A = 1, wecan
express ¢, () as:

(1) = { expli2nhq, (DlexpljQ2nf t+ o)),  0<t<T (127)

0, otherwise
where: g P(r) is an elementary phase pulse given by [121]:

2
t

t
q,(t) =4 o 2T

0, otherwise

. O<r<sT . (128)

Using the same notation, we have:

() = { exp[~j2mhq, ()] exp /2, + 4o)l,  0<t<T (129)

0, otherwise

Therefore, the baseband chirp pulses are given by:

b(t) = { explj2nhg, (],  0<i<T -

0, otherwise

b() = { exp[-j2mhq, (0], 0<t<T (131)

0, otherwise

Discretising the analog chirp pulses by substituting r for ¢, and N for T in equations

(128) and (130), we can write a formula defining a complex polyphase chirp sequence

16,00} = (ba(h); n=1,2,..,N), (132)

wlhere:

ba(h) = exp[j2nhb,], n=12,..,N, (133)
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2
n —-nN
b, = — (134)
2N

and h can take any arbitrary nonzero real value.

Certainly, both periodic and aperiodic ACFs strongly depend on the value of /1. To
illustrate this dependency, the plots of magnitudes of aperiodic ACFs for chirp se-

quences are given in Figure 46 for three values of parameter /.
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Figure 46: Magnitudes of aperiodic autocorrelation functions for example chirp
sequences, ¥V = 31,

0.9 E
0.B}+ J

0.7t ' i

0.5+ p
.4 E
0.3r E

0.2¢F

-30 -20 -10 o 10 20 30
DELAY IN CHIPS

APERIODIC CROSSCORRELATION

Figure 47: Magnitudes of aperiodic crosscorrelation function between a pair of chirp
sequences, N =31, h; = 6, Ay =30.



The chirp sequences exhibit also good crosscorrelation properties for some pairs
of parameter k values. This is illustrated in Figure 47, where the magnitude of aperi-

odic CCF is plotted for an example pair of chirp sequences (h; = 6, h, = 30).

The main advantage of chirp sequences compared to other known sets of sequenc-
es, lies in that we can easily generate the set for any given length N, while most of the
known sets of sequences can be generated only for a certain values of N. The values of

parameter & for the sequences can be optimised to achieve:

i,  minimum multiaccess interference - by minimising value of
Rees
i, the best synchronisability - by minimising value of R,
.ii.  minimum peak interference - by minimising the maximum val-

ue for the aperiodic CCFs, (ACCF,,,, ), over the whole set of

the sequences.

Usually, by improving one of the above features the other two need to be compro-
mised. Therefore, while searching for the optimum values of parameter h for the

whole set of sequences, the acceptable compromise needs to be achieved.

5.1.2 Example

Let us design a set of 16 polyphase chirp sequences { b(,:')} of length N = 16.

Because the parameter & can take any real non-zero value, we chose them according

to the following patternlz

W { (r-9d, forr=172,..,8 (135)

(r—8)d, for r=910,...,16

To find the proper value of d, we then calculate the values of Rec, Ry, and

ACCF. . for 1 <d <20 with a step of 0.1, calculated for a single sample per chip.

max

The plots of Re(d), Ryc(d), and ACCF,, (d), are given in Figure 48, Figure 49,

1. Certainly, any other choice can be considered, and may even lead Lo better performance.
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and Figure 50, respectively. By analysing those plots , we can find a reasonable com-

promise at d = 7.3, with R (7.3) = 1.0041, R,(7.3) = 0.7405, and
ACCF, (7.3) = 0.4824.

nax

3.5[

al

2.5F

Re¢e

Parameter o

Figure 48: Plot of R ~-(d) for the example chirp sequence sets.

250
)

Q;: 2r
15}
1k

0.5 1

. . . . ]

a 5 10 15 20

Parameter d

Figure 49: Plot of R, -(c) for the example chirp sequence sets.

For the comparable set of 16 sequences, i.e. Gold-like sequence set of length
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N = 15, we have the following values: R, = 0.9627, R,. = 0.7490, and

ACCF__. = 0.6000.
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Figure 50: Plotof ACCF, , (d) for the example chirp sequence sets.
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Figure 51: Plots of ACCF,__ (T) for the set of 16 chirp sequences of length N = 16 and

max

parameter d = 7.3, and for the set of 16 Gold-like sequences of length N = 15.

To further compare these two sets of sequences, in Figure 51, we show the plots of
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ACCF,,,.(1). The plots of Figure 51, indicate that the designed chirp sequence set

exhibits better performance than the Gold-like sequence set in the case of a perfect

synchronisation.

Additional comparison of these two sets needs to be done from the viewpoint of
spectral characteristics of the sequences. There are several different methods of esti-
mating power spectrum of complex signals. They can be classified [47] as nonparamet-
ric methods, like the periodogram, the Bartlett and Welch modified periodogram [112]
and the Blackman-Tukey methods [12], or parametric methods, e.g. [13], [33], [51].
[54], [66]. The nonparametric methods exhibit a low spectral resolution in the case of
short records and require windowing to reduce spectral leakage [47]. On the other
hand, the very significant disadvantage of the parametric methods are difficulties in de-
riving an appropriate time series model. Therefore, we have decided to use here the
nonparametric Welch method to estimate power spectrum of the spread signal. The
method is implemented in a standard MATLAB Signal Processing Toolbox as a func-
tion ‘psd’ 69].

To obtain a good spectral resolution, we simulated random bipolar, {+1,-1}, data
sequences of length 64 bits spread by the spreading sequences, and applied sampling
of four samples per chip. For other parameters of the ‘psd’ function we used MAT-
LAB default parameters [69], i.e.: FFT length - 256, Hanning window of length 256,
50% overlapping. The results of computations are plotted in Figure 52, Figure 53 for
each of the 16 chirp signatures. In addition, Figure 54 shows the spectrum of a com-
pound signal obtained in the case where all 16 chirp sequences are used simultane-
ously to produce 16 spread signals, transmitted over the same channel. The frequency,

on all plots, is normalised to the data rate, so the chip rate is equal to 16.

To compare spectral characteristics of the designed chirp sequences with the spec-
tral characteristics of the Gold-like sequences of length 15, in Figure 55 we also show
the spectrum of a compound signal obtained in the case where all 16 Gold-like se-
quences are used simultaneously to produce 16 spread signals, transmitted over the
same channel. It is visible, by comparing Figure 54 and Figure 55, that the designed

sequences have similar spectral properties to Gold-like sequences of length 15.
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Figure 52: Plots of power spectrutn magnitudes for signals obtain by spreading a random bipo-
lar signal by the use of the chirp signatures of length 16, and parameters i defined by the use of
equation (135) withd=73,r=1,2, ..., 8.

87



Power Spectrum Magnitude [dB]

Power Spectrum Magnitude [dB)

—
m
o .
=
]
°
=
=
S 20
]
=
E
El
=
[5
@
/=8
1]
-
2
o
o

-45

-25

-30

-3

.40

Power Spectrum Magnitude [dB]

-10 a 10 20
Normalised Frequency

. 1 L L

-10 n 10 20
Normalised Frequency

0
Normalised Frequency

-30

-1 L] 10 20
Normalised Frequency

an

Power Spectrum Magnitude [dB]

50 bt . i i L L L
-30 -20 -10 0 to 20 3

Normalised Frequency

o

L P
m S ;B @

o
&

Power Spectrum Magnitude [dB]

E
o

i L L A .

-30 -20 -0 Q 10 20 30
Normalised Frequency

@
o

o

L

H

wn

o
S

r
wn

&
)

w
0

Power Spectrum Magnitude [dB]

A
2l
T
.

-30 -20 -10 @ 10 20 an
Normalised Freguency

&
=

Power Spectrum Magnitude [dB]

sols 2. 1 . " . L
-30 -2% -10 bl 1a 29 30

Normalised Frequency

Figure 53: Plots of power spectrum magnitudes for signals obtain by spreading a random bipo-
lar signat by the use of the chirp signatures of length 16, and parameters h defined by the use of
equation (135) withd =7.3,r =9, .., 16.

&8



This time, we used the same normalisation for the frequency, so the chip rate is 15 for
the Gold-like sequences. The only significant difference is the position on the fre-

quency axis of the first ‘null’ in the spectrum, being 16 for chirp sequences of length

16, and 15 for Gold-like sequences of length 15.
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Figure 54: Power spectrum of a compound of 16 signals spread by all 16 different chirp signa-
tures of length 16, and parameters i defined by the use of equation (135) with 4 = 7.3.
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Figure 55: Power spectrum of a compound of 16 signals spread by atl 16 different Gold-
like signatures.
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5.2 Sequences designed by the use of multiple chirps

5.2.1 Design method

In the previous section, we showed that using sequences based on the baseband chirp
pulses we can design useful sets of spreading sequences of any arbitrary length. Here.
we will consider an extension to this idea, i.e. design of sequence sets comprising
sequences designed on the basis of baseband chirp pulses of higher order or even the
linear, combination of them. To do so, we first introduce a definition of the chirp pulse

of order s.

A pulse is referred to as a chirp pulse of the order s, if and Only if the first time
derivative of its instantaneous frequency (the angular acceleration) is a step function
with the number of time intervals where it is constant being equal to s. In addition, if
the integral of the instantaneous frequency over the duration of the pulse is equal to ze-

IOl

T

[frdr = o, (136)

0

then such a pulse is called a baseband chirp pulse of the order s.

TGN a) f0 1\ b)
A T A T
| 1 t —
0 0.5T T 5T, T
-Af —Af

Figure 56: Example baseband chirp pulses of the order: a) 2, b) 4.

As an example, a baseband chirp pulse of orders 2 and 4 are shown in Figure 56.
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The presented pulses are symmetrical, in general, however, the chirp pulses do not

need to be so regular.

The instantaneous frequency function f;(¢) for the chirp pulse of order 2, depicted

in Figure 56 is given by:

4t T
TAf— Af, D<t< 5
() = 4 . 137
. T =Y 4y, Leisr (37
T 2
0, otherwise
Substituting £/T for Af, as we did in the previous section, yields:
4t h T
—h—-=, O<t<>
7 T 2
(1) = < } , 138)
1) _4—éh+33, Leter (
T T 2
i 0, otherwise

which, after integration, gives the following expression for the elementary phase pulse

qp(t) for the chirp pulse of order 2:

2
2t th T
“T—z'h —F D<t< 5
qp(t) =4 52 o T . (139)
——h+3=-1, s<t=<T
T T 2
0, otherwise

Substituting n for z, and N for T to discretise the pulse g,(¢) given by equation
(139), we obtain the formula for the elements ¢, of a normalised (h = 1) double chirp

sequence {d, }:
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2
2n” n N
—_——, O<n<sg
N N 2
d, = ¢ 2 {140}
N
" —2’—12+3;—¢—1, 5<nsN
N
L 0, otherwise
The complex double chirp sequence elements (fn are therefore given by:
d, = exp[j2nhd,]; n=1,2,..,N (141)

In the same way, we can find the formula of the elements g,, of a normalised quad-
ruple chirg sequence {g,}, corresponding to the chirp pulse of the order 4. The ele-

ments g, are expressed as:

2
4’—12—2, 0<ts%r
N
2
4n n N N
——— +3=+1, —<t<=
Nz N 4 2
NZ N 2 2 4
2
N
_1_1%4_7%_3, §4—<tSN
N
| 0, otherwise

and the elements of the complex quadruple chirp sequnces are given by:

g, = explj2rnhg,); n=1,2,..,N. (143)

Analogically, one can develop the formulae describing any, even irregular, chirp

sequences.

Another class of higher order chirp sequences, can be obtained if a superposition
of chirp sequences of different orders is used to create the complex polyphase se-
quence. In the following example, we will show that by using such a superposition we

can create sequence sets having better performance.
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5.2.2 Example

Let us consider a set of 16 complex sequences {3,(1")}, r=1,2..16 of length 16

obtained by the use of a superposition of a single and double chirp sequences. There-

fore, their elements Si")(h(r), h({)) are given by:

8000, 0) = explan(h”b, +hy'd )l k= 1,160 = 1,16, (140

where the coefficients h(lr) and h(z") can be any real numbers, with the only exception

that they cannot be equal both to zero for the same r.

In order to find the acceptable values for the coefficients h(l") and h(zr) for all 16

sequences, let us define them in the following way:

(!.) dl (I’-—g), r= 1, 2, Py 8
h = , (145)
d(r-8), r=910,..,16

KD = v v = 1,16, (146)

and compute the values of R..(d,,d;), R,-(d,,d;y), and ACCF

max

(d,,d,) for
I<d,,d,<20 with a grid of 0.2. The plots of R.(d,d;), Ryc(d, d;), and

ACCF,, (d,,d,) are given in Figure 57, Figure 58, and Figure 59, respectively.

From the plots of Figure 57, Figure 58, and Figure 59, it is visible that all three
functions, R--(d|,d,), Ryc(dy, d;5), and ACCF

max

(d,, d,), are highly irregular
functions of ¢, and d,. As one could expect, the local minima of R.(d}, d;) occur

usually for such values of 4, and d, where local maxima of R, (d;, d;) take place.

Since the average mean aperiodic crosscorrelation is generally regarded as more
important from the viewpoint of multiaccess interference in DS CDMA systems, we
decided here, to chose those values of d; and d,, where the minimum of R--(dy, d;)

appears,ie. d, = 142,and d, = 7.6.
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Figure 57: Plotof R»-(d;, d,) for the designed sequence set.

Figure 58: Plot of R, ~(d, d,) for the designed sequence set.

24



1 n "i“ :ji |" 'J
.l::'g 'ju”q IJ"'r

i |u-' 3
J "‘! ‘r-HM”':J

20

Figure 59: Plot of A CCFmax(dla dz) for the designed sequence set.

Table 10: List of coefficients h(lr) and hg‘) for the designed sequence set.

r ) g

1 -113.60 7.60
2 -99.40 15.20
3 -85.20 22.80
4 -71.00 30.40
5 -56.80 38.00
6 -42.60 45.60
7 -28.40 53.20
8 -14.20 60.80
9 14.20 68.40
10 28.40 76.00
11 42.60 83.60
12 56.80 91.20
13 71.00 98.80
14 85.20 106.40
15 99 40 114.00
16 113.60 121.60
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" Figure 60: Plotof ACCF

max

(t) for dy = 14.2,and d, = 7.6.

This results in Rec(14.2,7.6) = 0.9057, R,((14.2,7.6) = 1.7439, and
ACCF,_(14.2,7.6) = 0.6085. The full list of corresponding values of 4} and &5’

for all 16 sequences is given in Table 10, and the plot of ACCF,,, (1) for d; = 14.2,
and d, = 7.6 is given in Figure 60.

Another important set of characteristics for a spreading sequence set is power
spectral densities of signals spread by these sequences. The plots of the magnitudes of
power spectra for signals spread by each of the 16 sequences are given in Figure 61 and
Figure 62. These plots were obtained using the same method as described in the previ-

ous section.

Further improvement in the value of R can be obtained if coefficients h(lr) and
h{? are optimised for all 16 sequences from the viewpoint of reaching minimum of
R Several different methods of optimisation can be used for this purpose, and de-
termining which one is the most efficient exceeds the scope of this thesis. To show
however, that reductionin R is possible, we have applied the Nelder-Meade simplex
search [76] implemented in MATLAB as the function ‘fimins’ [68] and described in Ap-
pendix 1, chosing the values given in Table 10 as a starting point. More details about

the optimisation procedure are given in Apendix 2.
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lar signal by the use of the designed sequences, ¥ = 1,2, ..., 8.
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Figure 62: Plots of power spectrum magnitudes for signals obtain by spreading a random bipo-
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Table 11: List of the optimised coefficients 1" and &} .

T I (O I I R

1 -112.6513 7.5972 9 132249 69.7038
2 -96.7127 15.2773 10 28.2715 78.1511
3 -84.1755 23.557% 11 422284 85.7450
4 -71.0210 31.3700 12 57.6174 02.8630
5 -56.8045 364517 13 70.2810 08.7896
6 -44.9827 442826 14 854777 105.8103
7 -27.9950 49.9467 15 96.5492 112.4437
8 -14.5283 63.7458 - 16 114.0881 121.3066

After the completing optimisation, we were able to achieve R = (0.8441 . How-
ever, as expected the abovementioned gain was counteracted by deterioration in the
synchronisability performance due to R, - = 2.4875. The list of the optimised coeffi-

cients 4\ and &) is given in Table 11.

In Figure 63 we present two example plots of the magnitude of aperiodic CCF be-

tween the sequences (1, 2) and (I, 16) , having their pararneters h(l") and h({) accord-

ing to Table 11.

Even though the value of R, = 2.4875, the aperiodic ACFs for all of the se-
quences are still reasonable, exhibiting significant peaks at zero. The example plots of
the magnitudes of ACFs for three different sequences are given in Figure 64. Certainly,

one can optimise the coefficients h(l") and h(zﬂ , in order to minimise other parameters

like R, . Also, one can chose different starting point for the optimisation.
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5.3 Modified Walsh sequences

5.3.1 Design method

In [114], we have described the method to reduce 1S and MAI for non-synchronized
CDMA signals by means of a modification to the carrier waveform. The modified car-
rier has been obtained by a regular distortion to the frequency of the original carrier,

resulting in the ith user line signal s(i)(t) expressed by:

s = 8P - COS[@CI+J w9 (0)dx +¢“)(f)], (147)
0

where w(!)(t) is a frequency distorting function, which can be optimized to minimize

the cross-cormrelations between users, and to minimize the off-peak auto-correlation of

the ith line signal, dnm(r) is an information carrying phase component.

A base-band approach [ 1 18] follows from the fact that for the real spreading signal
b(i)(t) being a physical representation of a real spreading sequence

{BE:)}; n = 1,2,..., N, equation (147) can be rewritten in the exponential form as:

, . - 4 i (i)
s = b‘”(:)-Re{e’ ”Eexplzj_[ W' )(r)dt}eq’ “’}. (148)
0

The complex envelope [84] o(¢) of such a signal is given by:

I
. - (f) - 1]
o) = B@exp|jfw P @arlet V= D@t ), (149)

0

Because signal is usually processed using digital signal processing (DSP) technol-

ogy in the receiver, instead of the analogue spreading waveform:

t
Ny = bPexp| ifw(x)ar (150)

0
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one can use the polyphase complex spreading sequence {Eff)}; n=12.,N.

The length N of the signature {Ef}} is equal to the length of the original sequence

{BS)} multiplied by the number of samples per chip used in the receiver, s. The ele-

ments &J(,:) 6(‘)

of the sequence {C, } are calculated according to the formula:

Efj} = wS)&(’i), m = LR_IJ’”,H =1,...,N", (151)
5

with the factors wi(,,i) obtained by discretising the function Wm(t):

t

W(i)(r) = exp jj.w(i)('c)dt (152)
0

by substituting » for t and N” for T.

5.3.2 Example

In order to optimise the spreading sequences for the use in a 13 channel DS CDMA
ATM WLAN [30], we have chosen a subset of 13 orthogonal Walsh sequences {faf:)}
of length ¥ = 16, where their elements Eg—) are the rth rows of a Hadamard matrix

H, forr =2 ..8,10, 11,12, 14,15, 16.

To minimise the crosscorrelation between any pair of the spreading signatures, in-
dependently of the relative delay, we applied the described method with the functions

w0, i = 1,2, ..., 13, being of the form:
wo) = 2x[aPc@e/16) + e 8) + v/ 4)], (153)

where the triangular wave ((¢) is defined as:

a9

(= 3 At-n), (154)

a = -0
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and

0, t<0
1
Ar) = o ] (155)
4t
Tt 05T<t<T
L 0, t>T

with T being the duration of a data bit.
The values of the coefficients " . B(i) , y(i) ,i=1,..,13 were optimised [118§]
to find their values minimising R ~(A):

o OL(13)

A= g 0], (156)

1 13
Y() “{( )

Since the function to be minimised is highly irregular having many local maxima

and minima, we have used the following algorithm to find the solution:

. Inthe first step of the optimisation we set:

o =a,i=1,2,..,13

1 B0=p.i=1,2..,13 (157)
YWey, i=1,2,..,13

and calculated the values of R.-(A) for 20 <o, P,y <20
with grid step being equal to 0.2 for each of the parameters o,
B,and y.

ii. Next we perform optimization for all 39 variables using the
Nelder-Meade simplex search [76] implemented in MATLAB
as the function ‘fmins’ [68] (sce Appendix 1). For the starting

point, we choose
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*

o
A =gttt (158)

*

’){

where: &  denotes the Kronecker product, on* , [3*, and y*
are the values of o, B, and v, respectively, for which R--(A)
reaches the minimum in the previous step. More details of the

. optimisation procedure can be found in Appendix 3.

The values of the coefficients oa(i), [3(0, y(i) ,i=1,...,13 for which R--(A)

reaches a local minimum of 0.8167, and R, ~(A) = 1.2888, are given in Table 12.

Table 12: Optimised values of coefficients a(i), B(i), *y(i) .

i o a0 0

1 2.4029 1.2238 -2.5695
2 10.5088 2.2025 1.6241
3 0.0276 1.8266 0.3233
4 7.4261 -0.5551 3.4070
5 3.3230 -3:1656 -0.0607
6 5.4877 0.1337 37314
7 -4.4534 -3.3895 -1.5841
3 3.6984 -4.4512 0.1607
9 5.5630 -2.9983 -3.5744
10 -5.3085 6.7429 0.0321
11 -5.2342 -3.1874 -0.4403
12 0.7175 -0.3491 0.8905
13 -0.7613 5.8160 2.8800

In Figure 65 and Figure 66 we show example plots of aperiodic ACFs and CCFs,
for the designed set of sequences, respectively. The maximum value of aperiodic CCk's

over the whole set of sequences is given in Figure 67.
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sequences: {Eil)} and {EEIT)} - solid line, and {E'ET})} and ’C‘E,m)} - dotted line.

APERIODIC AUTOCORRELATION

-3:0 =20 -10 ¢] 10 20 ao
DELAY IN CHIPS

Figure 66: Example plots of the magnitude of aperiodic autocorrelation functions for the
sequences {E‘ff)} - solid line, and {E‘ig) } - dotted line.
From Figure 65, and in particular from Figure 67, it is visible that even though the

original set of Walsh sequences is a set of orthogonal sequences, ACCF,

"m(t) is not

equal to zero for T = 0, and therefore the designed sequences are no longer orthogo-

nal. On the other hand, we have achieved a significant improvement as far as the auto-
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correlation properties of the set are concerned, compared to the original set of Walsh

sequences.

0.8r

0.8

07

0.6}

ACCF pax

-30 ~2!O -1ID (; 1I0 2I0 SID
DELAY IN CHIPS

"Figure 67: Plotof ACCF,,_ (1) for the designed set of sequences.

nax

As usual, among the very important characteristics of the set of spreading sequenc-
es are power spectra of the signals spread by those sequences. Using the same method
as described in Section 5.2, we calculated power spectra for the random bipolar signals
of length 64 data bits, spread by each of the designed signatures. The plots of the com-
puted power spectra magnitudes are given in Figure 68, and Figure 69. From these
plots, it is clear that the bandwidth required to transmit such signals is about twice as
wide as in the case of 16 chip sequences considered in the two previous sections.
Therefore, the lower value of R in this case can be, at least partially, attributed to

the increase in the bandwidth occupancy.
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5.4 Sets of orthogonal polyphase spreading sequences

5.4.1 Design method

At the beginning of this chapter, we indicated that one of our goals in developing the
new methods to design sets of spreading sequences for high capacity wireless data DS
CDMA networks is achieving orthogonality of the sequences in the case of perfect

synchronisation. Using similar approach to that employed in design of EOE

sequences [34], we can keep orthogonality of sequences, if the elements affj of the

sequences aff]}, i =1,2,...,M, are given by:

o™ = w B n=1,2,...,N, (159)
where
w, = explj2n(h b, +h,d,))], (160)

b, and d, are defined by equations (134) and (140), respectively, and ES) are Lhe ele-
ments of orthogonal sequences By, i=1,.., M.

We will prove now the following theorem:
Theorem: If two sequences {ai”} , and {aff’} of length N are orthogonal, then the

~{1 -~ 2 . .
sequences di ! , and {di )} having their elements of the form:

A1
Ay = w all (161)
ar(tz) = wnaf}
n=12..,N
are also orthogonal, if
ww, =1n=1_.,N, (162)
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*
where w, denotes the complex conjugate of w,,.

Proof: Two complex valued sequences {&fll)} and {Esz)} are said to be orthogonal if

and only if their aperiodic crosscorrelation ¢, ,,(t) is equal to zero for t = 0:

N
1 (1) A (2)4*
Cat,a2(0) = 5 22 a’1aP1" = o. (163)

n=1

Utilising equation (161), we can write the aperiodic crosscorrelation cyy 4,(0)
~(1) ~(2)
between the sequences {d, }.and {d, "} as:

N
1 R () F
Car,a2(0) = N > ""’na“}[""n"lﬁt )] . (164)

n
ne=1

~(1 ~
Therefore, the sequences {alfvl )} , and {df)} are orthogonal.

Because the factor w, given by equation (160) fulfils the condition (162), then by
keeping it constant for all sequences {BE:)} , we can maintain the orthogonality of the

sequences {65:)} .

5.4.2 Example

Using the same subset of the orthogonal Walsh sequences as in Section 5.3, design a

set of orthogonal polyphase sequences of length N = 16.

In order to find the appropriate values for the coefficients 2, and h,, we calculated
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the value of R for 0 <k, <30 and 0 < h, < 30, with the grid of 0.2. The results are
plotted in Figure 70. In the investigated region, R, reaches the minimum of 0.8532
for h, = 15.8 and h, = 24.4. For those values of &, and k, the R, takes the

value of [.5962, and the plot of R, ~(#;, h,) is given in Figure 71.

Figure 70: Plot of R~ ~(h, h;) for the designed set of sequences {65:)} i=1,...,13.

Figure 71z Plot of R, ~(h, h,) for the designed set of sequences {5? Yoi=1,...,13.
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To show that the designed set of sequences is orthogonal, we plotted ACCF,,(7) in

Figure 72, where it is clearly visible that ACCF,,,(0) = 0. The same is visible in

Figure 73, where we plotted the magnitudes of aperiodic CCFs for two example pairs
of designed sequences. The autocorrelation properties of the designed set of

sequences are also good, and to illustrate this we plotted magnitudes of ACFs for two

example sequences in Figure 74.
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Figure 72: Plot of ACCF ,, (1) for the designed set of sequences {55:)} ,i=1,..,13
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Figure 73: Magnitudes of the aperiodic CCFs between the sequences: (1,10) - solid line, and (4,11)
- dashed line.
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Figure 74: Magnitudes of the aperiodic ACFs for the sequences: 4 - solid line, and 10 -
dashed line.

As with the previously designed sequence sets, we will now look into the power spec-
tra of random bipolar signals spread by means of the designed sequences. The plots of
the power spectra magnitudes of such signals are given in Figure 75, and Figure 76.
They were computed using ihe same method as the one used throughout this chapter.

From the plots of Figure 75 and Figure 76, it is visible that the first nulls in the power

spectra magnitudes is at the normalised frequencies =16, which is half that of the

sequences considered in Section 5.3.
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5.5 Summary

In this chapter we have introduced four new methods to design spreading sequences

for DS CDMA wireless data networks:
i.  chirp sequences, (Section 5.1),

ii. sequences being superposition of chirp sequences of different

order, (Section 5.2),
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iii. modified non-orthogonal Walsh sequences, (Section 5.3),
iv. orthogonal polyphase sequences, (Section 5.4).

The example sets of designed sequences exhibit good correlational properties

reflected in the values of R and R, -, and also the last method can give us the set of

orthogonal sequences with good correlation properties. The major benefit of the two

first methods lies in the fact that we can design sequences of any arbitrary length with

the reasonable values of R and R, . In the next chapter we will follow our investi-

gations and present the results of simulated bit error rates for DS CDMA system if the

sequences designed in this chapter are used.
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6. Multiuser performance of the designed sequences

In this chapter we will use some of the sequence sets designed in the previous chapter
to simulate the multiuser DS CDMA system and to obtain the bit error rate (BER)
characteristics of such systems, depending on the number of simultaneous users and
the noise level. While simulating the DS CDMA systems we will not be taking to
account other factors which can influence the BER, for example imperfect sequence

acquisition, and the impact of the near/far effect {26], [87).

In the first section of this chapter we describe the simulation procedure, and in the
following sections we present results of the simulation for the DS CDMA systems uti-
lising three of the sequence sets developed in the previous chapter, compared with the

results obtained for the system employing a set of 15-chip Gold-like sequences [29].

6.1 Simulation procedure

In order to finally assess the usefulness of a designed spreading sequence set, particu-
larly in the case of small sets of short sequences, one needs to simulate operation of
the CDMA multiuser system utilising those sequences. In such a way, one can sensi-
bly approximate BER caused by muitiaccess interference (MAI), noise, or multipath

propagation.

We have assumed that data transmitted in any of the active channels is random,
grouped into encapsulated wireless ATM (WATM) frames comprising 424 bits of an
ATM cell plus 100 bits of a wireless overhead [30]. With ATM being the widely ac-
cepted standard for broadband networking, it is highly desirable for new broadband
wireless networks to interwork seamlessly with existing and emerging fixed ATM net-
works. Accordingly, the ATM Forum is working towards the specification of a wire-
less ATM (WATM) standard to support both terminal mobility and wireless access
with mjnimal modifications to the existing ATM technology [20]. We have considered
such frames not because we wanted to associate the methods developed in the thesis
with WATM technology, but because with such a short packet we could assume the
channel to be static for the duration of a whole packet. However, any other frame for-

mats can be considered.

Because the simulated system has been considered as an asynchronous system,
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only the examined channe! has been kept synchronised with the corresponding refer-
ence sequence generated at the receiver while the interfering m channels have been ran-
domly delayed with respect to the examined channel. Those random delays T,
i = 1,..., m, have been chosen as integer multiplies of 0.5, and satisfying the condi-

tion:

0=<t<N, (165)

where N is the length of the spreading sequences.

Since in a real system phases of the generators used in all of the transmitting ter-

minals can be different, we multiplied each of the interferers’ signals by a coefficient:

p; = exp(d;), (166)

where ¢, is a constant chosen randomly from the interval [0, 27) .

In order to simplify the simulations, we have kept those randomly chosen coeffi-
cients t, ¢;, i = 1,..., m, constant throughout the transmission of a single WATM
frame in the examined channel, with drawing of them repeated before every new trans-

mission of a single WATM frame being simulated.

Generally, the MAI caused by the signals obtained by spreading data with different
sequences is different. Therefore, for each of the simulated frame transmissions in the
examined channel, the sequences used by the interferers has been chosen randomly
from the set of all possible spreading sequences utilised in the system, disregarding the

one used by the channel under examination.

To avoid being drawn into considering the problems associated with the near/far-
effect, we have assumed a very stringent power control, keeping powers of all signals
arriving at the receiver at the same level. Failure to do so, could dim the process of
drawing the conlusions about usefulness of the designed sequences, not mention the
significant increase in complexity of simulation routines and a processing time for sim-

ulation.
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Figure 77: Simplified flow chart of the simulation program.
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All simulation programs have been written in MATLAB, and run on UltraSparc
SUN workstation. It is, however difficult to make any comments on the time required
for simulations, because the workstation has been used by other users too. The simpli-
fied flow chart of the simulation program is shown in Figure 77. The program can be
easy extended to accommodate different channel models and interferers’ powers can

be also adjusted to cater for near-far-effect.

The simulation program has been run for different sets of spreading sequences,
with the number of possible interferers being changed from 1 to M-1, where M has
been the total number of spreading sequences in the given set. All results have been
stored, and later processed to obtain histograms of the number of errors in the received

WATM frames, as well as the average BER as functions of the number of interferers.

The simulation results for four different spreading sequence sets, including 15 chip
Gold-like sequences described in Section 4.1.3, and the sequences developed in Chap-
ter 5, i.e. 16-chip poly-chirp sequences, 16-chip modified orthogonal Walsh sequenc-
es, and 32 -chip non-orthogonal modified Walsh sequences, are given in the next four
sections of this chapter. In all cases we have simulated the situation of 1000 independ-

ent WATM frames transmitted through the system.

Apart from the presence of MAI, we have assumed the presence of white Gausian
noise in the channel, We have repeated the simulations for two values of noise level,
resulting in E,/N, = 20 dB and E,/N, = 8 dB , where Ny is single sided power

spectral density of white noise, and Ej, is energy per information bit [84], [96].

6.2 System utilising 15-chip Gold-like sequences

In order to evaluate performance of the developed sets of spreading sequences we
decided to compare their performance with the performance of the set of Gold-like
sequences of 15-chip length. We have chosen 15-chip Gold-like sequences because of
their length, and therefore the spreading ratio are similar to those of 16-chip poly-
chirp sequences or 16-chip modified orthogonal Walsh sequences. The simulation
results are presented in Figure 78 through to Figure 85. Apart from the overall system
performance given in Figure 84 and Figure 85, we present the results achieved for the
channels exhibiting the highest and the lowest BER. We refer to them hereafter as ‘the

worst channel” and ‘the best channel’, respectively.
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Figure 78: Histogram of the numbers of errors during simulated transmission of 106¢ WATM
frames for 7 interferers, £, /Ny = 20 dB, in the case of the worst channel.
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Figure 79: Histogram of the numbers of errors during simulated transmission of 1000 WATM
frames for 7 interferers, £,/ N, = 20 dB, in the case of the best channel.
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Figure 80: Plots of the BER for a system utilising 15-chip Gold-like sequences as functions of the
number of interfering channels for the best and the worst channel out of 16 possible

channels; £,/N, = 20 dB.
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Figure 81: Histogram of the numbers of errors during simulated transmission of 1000 WATM
frames for 7 interferers, £,/ Ny = 8 dB, in the case of the worst channel.
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Figure 82: Histogram of the numbers of errors during simulated transmission of 1000 WATM
frames for 7 interferers, £, /N, = 8 dB, in the case of the best channel.
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Figure 83: Plots of the BER for a system utilising 15-chip Gold-like sequences as functions of the
number of interfering channels for the best and the worst channel out of 16 possible

channels; £,/N, = 8 dB.
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Figure 84: Plots of the BER for a system utilising 15-chip Gold-like sequences as functions of the
number of interfering channels, averaged over 16 possible channels.
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Figure 85: Plots of maximum number of errors per WATM frame for a system utilising 15-chip
Gold-like sequences as functions of the number of interfering channels.

From the presented plots it is clear that BER very strongly depends on the number
of interferers. Because there is a significant difference in the performance of the best
and the worst channels, it means that BER also strongly depends on the sequence used

to spread the data. Additionally, BER depends on E,/N . In average, that 12 dB dif-
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ference in the value of E,/N,, equates to 3 additional interferers if the cases of
E,/N, = 8 dB and E,/N,, = 20 dB are compared. Similar differences are obtained

if performance of the best and the worst channel are compared.

Generally, considering the BER characteristics, we can conclude that for
BER < 0.01 we need to assure less than 5 concurent users if E,/Ny = 8 dB, and less

than 8 concurent users if £,/N, = 20 dB.

These resuits, however, are somehow cloded by taking into account the maximum
number of errors per WATM frame. The plots of Figure 85 indicate that with the
number of concurent users exceeding 3, the maximum number of errors per frame can
be too high for detection if a 100 bit overhead is used. Thus such a system might release

erroneous frames, diminishing system reliability.

6.3 System utilising 16-chip multiple chirp sequences

In this section we consider the performance of a 16 channel DS CDMA system uti-
lising 16-chiﬁ chirp-double-chirp sequences developed in the Section 5.2.2. The same
set of simulations, as for the 15-chip Gold-like sequences has been repeated, and the
results are presented in Figure 86 to Figure 93 in the same order as in the previous sec-

tion.
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Figure 86: Histogram of the numbers of errors during simulated transmission of 1000 WATM
frames for 7 interferers, £,/ Ny = 20 dB, in the case of the worst channel.
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Figure 87: ﬁistogram of the numbers of errors during simulated transmission of 1000 WATM
frames for 7 interferers, £,/ N, = 20 dB, in the case of the best channel.
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Figure 88: Plots of the BER for a system utilising 16-chip chirp-double-chirp sequences as func-

tions of the number of interfering channels for the best and the worst channel out of 16
possible channels; £,/N, = 20 dB.
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Figure 8%: Histogram of the numbers of errors during simulated transmission of 1000 WATM
frames for 7 interferers, £, /Ny = 8 dB, in the case of the worst channel.
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Figure 90: Histogram of the numbers of errors during simulated transmission of 1000 WATM
frames for 7 interferers, £, /N, = 8 dB, in the case of the best channel.
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Figure 91: Plots of the BER for a system utilising 16-chip chirp-double-chirp sequences as func-
tions of the number of interfering channels for the best and the worst channel out of 16

possible channels; £,/N, = 8 dB.
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Figure 92: Plots of the BER for a system utilising 16-chip chirp-double-chirp sequences as func-
tions of the number of interfering channels, averaged over 16 possible channels.

128



100

90}

£

g 8ot

5

e 7o}

[

5 0 dB

g seop

@

2 sof

é 8 dB

E a0}

=

, E a0}

E

&z 20}

=
10}
- L L
0 5 10 15

Number of interferers

Figure 93: Plots of maximum number of errors per WATM frame for a system utilising 16-chip
chirp-double-chirp sequences as functions of the number of interfering channels.

From the presented results it is visible that for the examined system utilising 16-
chip chirp-double-chirp sequences the dependency of the BER on the number of inter-
ferers and on the value of E,/N, is similar as that for the system utilising 15-chip
Gold-like sequences. However, the values of BER for the system utilising 16-chip
chirp-double-chirp sequences are more than 25% lower than the equivalent values ob-
tained for the system utilising 15-chip Gold-like sequences. The values of,
BER < 0.01 in the case considered here, can be échieved for 7 simultaneous users if
E,/N, = 8 dB and 10 simultancous users in the case of £,/ N, = 20 dB. Therefore,
the system utilising 16-chip chirp-double-chirp sequences can support more simulta-
neous users than the one utilising 15-chip Gold-like sequences. This is particularly ev-

ident for the lower values of E,/N,.

Both of the system considered so far have the similar properties, from the view-
point of the maximum number of errors per WATM frame characteristics. As result,
one should expect the similar reliability problems in both cases. However, the devel-
oped set of 16-chip chirp-double-chirp sequences has significantly better properties
with respect to the average BER than the set of 15-chip Gold-like sequences, which re-
sults in a possible increase of system capacity. Another benefit of the chirp-double-

chirp sequences is the fact that they can be designed for any arbitrary length.
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6.4 System utilising 16-chip orthogonal Walsh-chirp sequences

In this section, we consider a system utilising 16-chip orthogonal Walsh-chirp
sequences developed in Section 5.4.2. The set of system simulations, the same as for
the system considered in the two previous sections, has been performed and the

results are presented in Figure 94 to Figure 101.
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Figure 94: Histogram of the numbers errors during simulated transmission of 1000 WATM
frames for 7 interferers, £,/ N, = 20 dB, in the case of the worst channel.
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Figure 95: Histogram of the numbers of errors during simulated transmission of 1000 WATM
frames for 7 interferers, £, /Ny = 20 dB, in the case of the best channel.
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Figure 96: Pfots of the BER for a system utilising 16-chip orthogonal Walsh-chirp sequences as
functions of the number of interfering channels for the best and the worst channel out

of 13 possible channels; E, /N, = 20 dB.
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Figure 97: Histogram of the numbers of errors during simulated transmission of 100¢ WATM
frames for 7 interferers, £, /N, = 8 dB, in the case of the worst channel.
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Figure 98: H-istogram of the numbers of errors during simulated transmission of 1000 WATM
frames for 7 interferers, £, /N, = 8 dB, in the case of the best channel.
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Figure 99: Plots of the BER for a system utilising 16-chip orthogonal Walsh-chirp sequences as
functions of the number of interfering channels for the best and the worst channel out

of 13 possible channels; E,/N, = 8 dB..
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Figure 100: Piots of the BER for a system utilising 16-chip orthogonal Walsh-chirp sequences as
funictions of the number of interfering channels, averaged over 13 possible channels.
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Figure 101: Plots of maximum number of errors per WATM frame for a system utilising 16-chip
orthogonal Walsh-chirp sequences as functions of the number of interfering channels.

The simulation results presented in this section show that the properties of the sys-
tem utilising 16-chip orthogonal Walsh-chirp sequences are significantly better that
those of the system utilising 15-chip Gold-like sequences. They are, however, not as

good as those of the system utilising 16-chip chirp-double-chirp sequences, as far as
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the BER for high number of interferers and the maximum number of errors per WATM
frame are concerned. On the other hand, the system capacity measured by the number
of simultaneous users for BER = 0.01 is equal to 7 and 10 for E,,/N, = 8 dB and
E,/N, = 20 dB, respectively, which is exactly the same as than in the case of 16-chip

chirp-double-chirp sequences.

Additionally, the sequences considered in this section are orthogonal for a perfect
synchronisation. Therefore, MAI for a down-link transmission (base station to mobile

terminals) can be regarded as negligable.

6.5 System utilising 32-chip non-orthogonal Walsh-chirp sequences

In this section, we consider a system utilising 32-chip non-orthogenal Walsh-chirp
sequences developed in Section 5.3.2. Because the length of those sequences is twice
the length of considered previously 16-chip sequences and more than twice the length
of 15-chip Gold-like sequences, there is no direct way of comparing their perform-
ance. However, looking into bandwidth utilisation, we should expect the number of

simultaneous users to be more than twice the number achievable for those 16-chip

sequences under the same conditions (BER, E,/Ng).
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Figure 102: Histogram of the numbers of errors during simulated transmission of 1000 WATM
frames for 7 interferers, £, /N, = 20 dB, in the case of the worst channel.
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Figure 103: Histogram of the numbers of errors during simulated transmission of 1000 WATM
frames for 7 interferers, £,/ N, = 20 dB, in the case of the best channel.

The set of system simulations, the same as for the system considered in the three

previous sections, has been performed and the results are presented in Figure 102 to
Figure 109.

-a
x10

BER

The worst channel

1} The best channel p

0 1
0 2 4 ] 8 10 12

Number of interferers

Figure 104: Plots of the BER for a system utilising 32-chip Walsh-chirp sequences as functions of
the number of interfering channels for the best and the worst channel out of 13 possible

channels; £,/ N, = 20 dB.
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Figure 105: Histogram of the numbers of errors during simulated transmission of 1000 WATM
frames for 7 interferers, £,/ N, = 8 dB, in the case of the worst channel.
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Figure 106: Histogram of the numbers of errors during simulated transmission of 1000 WATM
frames for 7 interferers, £,/N; = 8 dB, in the case of the best channel.
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Figure 107: Plots of the BER for a system utilising 32-chip Walsh-chirp sequences as functions of
the number of interfering channels for the best and the worst channel out of 13 possible

channels; £,/N, = 8 dB.
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Figure 108: Plots of the BER for a system utilising 32-chip Walsh-chirp sequences as functions of
the number of interfering channels, averaged over 13 possible channels.
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Figure 109: Plots of maximum number of errors per WATM frame for a system utilising 32-chip
Walsh-chirp sequences as functions of the number of interfering channels.

It is clearly visible that properties of the system utilising 32_-chip non-orthogonal
Walsh-chirp sequences are in fact substantially better than properties of any of the sys-
tems considered so far in this chapter. However, they lag short of being twice as good
as any of the considered systems utilising 16-chip chirp derived sequences, i.e. 16-chip
chirp-double-chirp sequences or 16-chip orthogonal Walsh-chirp sequences, if the
number of simultaneous users alowed for BER < 0.01. Therefore, a better badwidth
utilisation can be obtained if two such systems utilising 16-chip chirp derived sequenc-
es are used with two different carrier frequences instead of a single system utilising 32-
chip non-orthogonal Walsh-chirp sequences derived on the basis of 16-chip Walsh
functions. Ultimately, one can use the same technique as applied in design of 16-chip
orthogonal Walsh-chirp sequences to design 32-chip orthogonal Walsh-chirp sequenc-
es based on 32-chip Walsh functions. The resultant set of sequences would have better

properties, and, in addition, the set size can be significntly greater.

6.6 Summary

In this chapter we have performed a comparative analysis of four DS CDMA systems.
The short comparison of those system performance is given in Table 13 and Table 14.
One of the systems has been a system utilising 15-chip Gold-like sequences, to which

we have compared characteristics of three other systems utilising the sequence sets
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Table 13: Comparison of system performance for £,/N, = 20 dB.

1 2 3 4
Average (over all channels)
BER for 7 interferers 0.0084 0.0045 0.0041 4.47e-4
BER for 7interferersinthe | 0108 | 00075 | 00065 | 8.63e-4
worst channel
BER for Tinterferersinthe | 5050 | 00013 | 00021 | 4.58e-5
best channel
Average number of simultane-
ous users for BER = 0.01 8 10 10 13
Maximum number of errors 58 57 61 35

per WATM frame for 8 users

1 - Set of 15-chip Gold-like sequences
2 - Set of 16-chip Chirp-Double-Chirp sequences

3 - Set of 16-chip orthogonal Walsh-chirp sequences
4 - Set of 32-chip non-orthogonal Walsh-chirp sequences

Table 14: Comparison of system performance for £,/N, = 8 dB.

1 2 3 4
Average (over all channels)
BER for 7 interferers 0.0227 0.0102 0.0115 0.0026
BER for 7interferersin the | 00 | o156 | 00150 | 0.0048
worst channel
BER for 7interferersinthe \ 9196 | 00066 | 00082 | 4.77e-4
best channel
Average number of simultane- 5 7 7 12
ous users for BER =< (0.01
Maximum number of errors 58 58 7 42

per WATM frame for 8 users

1 - Set of 15-chip Gold-like sequences
2 - Set of 16-chip Chirp-Double-Chirp sequences

3 - Set of 16-chip orthogonal Walsh-chirp sequences
4 - Set of 32-chip non-orthogonal Walsh-chirp sequences
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developed in the previous chapter. By doing so we have shown that by using the
design methods introduced in the previous chapter, we can produce useful sequence

sets for such applications where the short spreading sequences are required.
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Figure 110: Comparison of the avarage BER as functions of the number of interfering channels
for the simulated systems; E,/N; = 20dB .
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Figure 111: Comparison of the avarage BER as functions of the number of interfering channels
for the simulated systems; £, /N, = 8 dB.
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We have also demonstrated that the performance of systems utilising those se-
quences can be significantly better than the performance of the system utilising Gold-
like sequences of the comparable length. This is clearly visible in Figure 110 and Fig-
ure 111, where the average BER characteristics for all of the simulated systems are pre-
sented. In addition, it is worth to notice that a system utilising orthogonal Walsh-chirp
sequences performed very well even for the simulated up-link transmission. Therefore,

we can recommend this for the futare applications in wireless data networks.
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7. Conclusions

In the thesis we examined several well known families of spreading sequences f{rom
the viewpoint of their usefulness for DS CDMA wireless data applications. Therefore,
we were particularly interested in the sequences of short lengths (up to 32 chips).
Since non of the analysed sequence sets could provide us with the satisfactory charac-
teristics guaranteeing the desired level of system reliability in both synchronous and
asyncpronous modes of operation, we decided to look into the new ways of designing
complex polyphase spreading sequences, which we could optimise to make them suit-

able for wireless data services.

We proposed four new methods to design sequences for DS CDMA wireless data

networks:

N

i.  chirp sequences, (Section 5.1},

ii.  sequences being superposition of chirp sequences of different

order, (Section 5.2),
iii. modified non-orthogonal Walsh sequences, (Section 5.3),
iv. orthogonal polyphase sequences, (Section 5.4).

Then, we utilised the three most promising sequence sets designed by the use of
the introduced methods to simulate the multiuser DS CDMA systems. We compared
performance of those simulated systems with the performance of the simulated system
utilising 15-chip Gold-like sequences. The comparison results indicate that by using
the design methods introduced in the thesis we can produce useful sequence sets for
applications where short spreading sequences are required. This is of a special impor-
tance in the case of high data rate wireless networks, due to the limited bandwidth
available for such services. The presented results also demonstrate that the perform-
ance of systems utilising those sequences can be significantly better in terms of the
number of simultaneously active users or BER that the performance of the system em-

ploying Gold or Gold-like sequences of the similar length.

In addition, a system utilising orthogonal Walsh-chirp sequences performed very
well in the simulations, even for the up-link transmission. Therefore, it can be regarded

as a good candidate for future high data rates DS CDMA wireless networks.
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On the other hand, the two first methods, even though not leading to design of the
orthogonal sequences, can be used to design useful sequence sets of any arbitrary cho-

sen length. Hence, they can be very useful in development of systems where variable

length sequences are required.

We expect that the application of the sequence design methods developed in the
thesis is not limited to the high rate data networks, but they can be also used to improve
such parameters of other DS CDMA networks like BER due to MAI, and system ca-

pacity measured in the number of active users.

The achieved performance improvement might be not as dramatic as reported in
some cases where the sophisticated multiuser detection techniques are applied with
Gold or other bipolar sequences employed (e.g. [23]). However, complexity of those
multiuser detection techniques, so far, prohibited their use in high data rate systems,
while in our case, most of the complexity is removed from the circuitry and passed onto
the sequence design. Additionally, the demodulation method employed in the simula-
ted systemé was a simple correlational demodulation, which does not require any
knowledge neither about spreading sequences of other active users nor about the chan-

nel state.

Ultimately, one can always use multiuser detection together with the sequences de-
signed using the methods presented in the thesis. Definitely, the detailed system per-
formance in such a case needs to be carefully assessed, albeit one can expect the overall
performance improvement to be even better than when the similar multiuser technique

is applied with Gold or other bipolar sequences of the comparable length.

The investigations reported in this thesis inspire the rise of several research ques-

tions, which are, in our opinion, worthy of being pursued. Some of such topics com-

plementing our studies are:

i, Research into combination of the multiuser DS CDMA system
utilising sequence sets designed by the use of the developed
methods with the advanced error control strategies, in order to
improve system performance. We have already started research
in this direction. Some preliminary results on the use of error

and erasure decoding in the case of such a system were reported
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in [120].

Investigation into the possible application of the developed se-
quence design methods to generate low correlation zone (LCZ)
sequence sets for use with quasi-synchronous DS CDMA sys-

terns like the one proposed by Suehiro in [98].

Analysis of the performance of the system employing the devel-
oped sequences in the case of realistic wireless channel models,
and with the imperfect power control. We intend to perform
simulations of such systems with imperfect power control and
under different multipath scenarios, for both, the conventional
asynchronous and the quasi-synchronous cases. Firstly we hope
to obtain system performance for raw transmission (without any
error control invelved), and to continue research with advanced

error conirol algorithms.
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Appendix 1: MATLAB function ‘fmins’

Matlab function ‘fmins’ having a syntax:
X = finins(‘fun’, x0, options);

minimizes a function of several variables, ‘fun’. It returns a vector X, which is a local
minimizer of fun(x) near the starting vector x0. ‘fun’ is a string containing the name
of thewfunction to be minimized. fun(x) is a scalar valued function of a vector variable.
options is a vector containing control parameters. Apparently only four of the 18

components of options are referenced by finins. These four options are:

i.  options(1) controls the display of the intermediate steps in the
solution; if options(1) is nonzero, then the itermediate steps are

displayed. The default value is options(i) = 0.

ii. options(2) is the termination tolerance for x. The default value

is 107,

iii. options(3) is the termination tolerance for fun(x). The default

value is 107,

iv. options(14) is the maximum number of steps. The default value

18 500.

There are two other, optional parameters of the function ‘fimins’, grad and varargin,
but these are not used in the computations reported in the thesis. We have also not
used the extra output value provided by mins’, which returns a count of the number

of the optimization steps.

The function ‘finins’ implements the Nelder-Meade simplex search algorithm. It is
a direct search method not requiring gradients or other derivative information. In each
step of the search, a new point in or near the current simplex is generated. The function
value at this new point is compared with the values at the vertices of the simplex and,
one of the vertices is usually replaced by the new point. Thus the new simplex is gen-
erated. This step is repeated until the diameter of the simplex is less than the specified

tolerance or the maximum number of steps is reached.
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The full implementation of the algorithm from the MATLAB 5.2 is shown below.

function [x, options) =

fmins(funfcn,x,options,grad,varargin)

ZFMINS Minimize function of several variables.

containing the name
a string expression

(X,P1,P2,...}

in CPTIONS(10).

NNNNNNNNNNNNNNNWNNNNNNNNNNNNNNNNNN

if nargin<3, options =

[X,0PTIONS] = FMINS(.

X = FMINS('F’,X0) attempts to return a vector X which is a local
minimizer of F(x) near the starting vector X0. 'F' is a string

of the objective function to be minimized,
representing the objective function, or an

inline function object. F(x) should be a scalar valued function
of a vector variable.

X = FMINS('F’,X0,0PTIONS) uses a vector of control parameters. If
OPTIONS (1) is positive, intermediate steps in the solution are
displayed; the default is OPTIONS(1l) = 0. OPTIONS(Z2} is the
termination tolerance for x; the default is l.e-4. OPTIONS(3)} is
the termination tolerance for F(x); the default is l.e-4.
OPTIONS(14) is the maximum number of function evaluations; the
default is OPTIONS(l4) = 200*length(x). The other components of
OPTIONS are not used by FMINS. For more information, see FOFPTIONS.

X = FMINS('F',X0,0PTIONS,{],P1,P2,...) provides for additional
arguments which

are passed to the objective function,

Pass an empty matrix for OPTIONS to use the default values,

..) returns the number of function evaluations

FMINS uses the Nelder-Mead simplex (direct search) method.

See also FMIN, FOPTIONS.
Reference: Jeffrey C.
Paul E. Wright, "Convergence Properties of the Nelder-Mead Simplex
Algorithm in Low Dimensions®, May 1, 1997. To appear in the SIAM
Journal of Optimization,

Lagarias, James A. Reeds, Margaret H. Wright,

Copyright (c) 1984-98 by The MathWorks, Inc.
SRevision: 5.14 § $Date: 1997/11/21 23:30:44 §
(}; end

options = foptions({options};

prnt = options(l);
tolx = options(2};
tolf = options(3);

7 The input argument grad is there for compatability with FMINU in
7 the Optimization Toolbox, but is not used by this function.

7 Convert to inline function as needed.

funfcn = fenchk (funfcen, length(varargin)};

n = prod(size(x)};

if (Toptions(l4))
options{1l4) = 200%n;

end

Z Initialize parameters

rho = 1; chi = 2; psi =

gnesn = ones(l,n};

twoZnpl = Z:n+l;

oneZn = l:n;

7 Set up a simplex near

xin = x{:}; 7 Force xin

0.5; sigma = 0.5;

the initial guess.
to be a column vector
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v = zeros(n,ntl); fv = zeros(l,n+l);

v = xing; Z Place input guess in the simplex! (credit L.Pfeffer at
Stanford)
x(:) = xin; 7 Change x to the form expected by funfcn

fv = feval(funfcn,x,varargin{:}};
7 Following improvement suggested by L.Pfeffer at Stanford

usual_delta = 0.05; Z 5 percent deltas for non-zero terms
zero_term delta = 0.00025; Z Even smaller delta for zero elements
of x
for j = L:n

vy = xin;

if y(j) 7= 0
y{j) = (1 + usual _delta)*y(j);

else
y(j) = zero_term_ delta;
end
vi:,j*tl) = ¥;
x(:) =y; £ = feval(funfen,x,varargin{:}};
fv(l,j+l)y = £;

end
7 sort so v(1l,:) has the lowest function value
(fv,]] = sorti(fv);
v = wv(:,3);
func _evals = n+l;
if prnt > 0
clc
formatsave = get(0,{ format’, ' formatspacing’});
format compact
format short e
disp(’ ")
disp(’initial’)
v
fv
func_evals
end
%7 Main algorithm
7 Iterate until the diameter of the simplex is less than tolx
7 AND the function values differ from the least by less than tolf,
Z or the max function evaluations are exceeded.
while func_evals < options(1l4)
if max(max(abs{v(:,two2npl)-v(:,onesn}))) <= tolx &...
max(abs{fv(l)-fv(twoZnpl))) <= tolf
break
end
how = '';

7 Compute the reflection point

7 xbar = average of the n (NGT ntl) best points
xbar = sum{v(:,oneZn), 2){n;

xr = (1 + rho)*xbar - rho*v(:,end};

x{:) = xr; fxr = feval(funfcn,x,varargin{:});
func_evals = func_evals+l;

if fxr < fv(:,1)
7 Calculate the expansion point
xe = (1 + rho*chi)*xbar - rho*chi*v(:,end)};
x{:) = xe; fxe = feval (funfcn,x,varargin{:});
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func _evals = func_evals+l;
if fxe < fxr
v{:,end) = xe;
fv(:,end) = fxe;
- how = ’expand’;
else
v(:,end} = xr;
fv{(:,end) = fxr;
how = *reflect’;
end
else Z fv(:,1) <= fxr
if fxr < fv(:,n)

v(:,end) = xr;
4 fv(:,end) = fxr;
how = "reflect’;

else 7 fxr »= fv{:,n)
? Perform contraction
if fxr < fv(:,end)
Z Perform an outside contraction
xc = (1 + psi*rho)*xbar - psi*rho*v(:,end);
x(:) = xc; fxc = feval(funfcn,x,varargin{:});
func_evals = func_evals+l;

if fxc <= fxr

v(:,end) = xc;

fv({:,end) = fxc;

how = ‘'contract outside';
else

2 perform a shrink

how = *shrink’:

end
else
2 Perform an inside contraction
xcc = (l-psi)*xbar + psi*v(:,end);
x(:) = xcc; fxce = feval(funfcn,x,varargin{:});
func _evals = func_evals+l;

if fxcc < fv(:,end}

v({:,end) = xcc;

fv(:,end) = fxcc;

how = ’contract inside’;
else

2 perform a shrink
how = *shrink’;
end
end
if strcmp(how, 'shrink’)
for j=twoZnpl
vi{:,j)=v(:,1)+sigma*(v{:,j) - v{:,1));

¥{:} = v(:,j); fxcc = feval(funfcn,x,varargin{:
end
func_evals = func_evals + n;
end
end
end
{Ev,i] = sort(fv);
vo=v(:,j)

if prnt > ©
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disp(' ")
disp(how)
v
fv
func _evals
end
end Z while
x(:) = v{:,1);
if prnt > 0,
7 reset format
set(0, {’format’, 'formatspacing’}, formatsave);
end
options(10)=func_evals;
optiohs(8)=min(fv);
if func_evals >= options(l4)
if options{(1l) >= 0
disp(’ ")
disp((’'Maximum number of function evaluations (’,
int2str(options(14)),’) has been exceeded’]};
disp( °' (increase OPTIONS(14)).")
end .
end
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Appendix 2: Optimisation of coefficients for

Example 5.2.2

The set of coefficients 2\ and 2%’ in Example 5.2.2 are optimised to achieve mini-

mum of Rcc. To do that we used the MATLAB function ‘finins’, described in Appen-

dix 1 in the following way:

H_opt = fmins(*dchopt’, HO, [0, 1.e-3, 1.e-3, 0,0,0,0,0,0,0,0,0,0, 10000]);

where HO denotes the matrix containing the coefficients h(l'b) and h(z") given in Table

10, H_opt is the matrix containing the optimised coefficients (given later in Table 11),

and ‘dchopt’ 15 the name of the function dchopt(H) returning the value of R for the

set of 16 chip chirp-double chirp sequences defined by equation (144) with the coeffi-

cients h(lr) and hf,_") contained in the matrix H.

The listing of the function dchopt(H) is given below.

function csm = dchopt(H);

b4

Z Function returning the value of mean square aperiodic

Z crosscorrelation R_cc for the set of 16-chip chirp-double chirp
% sequences generated by the functjon d chirp 16(H}.

Z H is the matrix containing the coefficients h_1(r) and h_2{(r},
Z where r is the number of the sequence; r = 1, 2, ..., 16.

F3

7 Author: Beata Wysocki Date:12/11/98

b

S = d_chirp_l16(H); 7 Generatjon of the sequence set
5.

csm = cormeas{S); Z Calculation of R _cc

The function d_chirp_I6(H) generates the set of 16 sequences using equation (144),

while the function cormeas(S) computes the value of R for the set of sequences

contained within the matrix S.
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Appendix 3: Optimisation of coefficients for

Example 5.3.2
The values of the coefficients a(i), Bm \ ym , i =1,..., 13 are optimised 1n Ex-
ample 5.3.2 to find the values minimising R--(A):
a(n “_(103)
’ A= g g (Ap:1)
1 13
".-’( ) Y( )

To do that we used the MATLAB function ‘finins’, described in Appendix 1 in the

following way:
A_opt = fmins(‘'wal_mod_opt’, A0, [0, 1.e-3, 1.e-3, (,0,0,0,0,0,0,0,0,0, 10000]);

where

*

o
A0=B*®[1111111111111]. (Ap:2)

*

Y

The oc*, B*, and 7* are the values of «, B, and vy, respectively, for which R.-(A)

reaches the minimum when the triple {(«, B, v} is the same for all 13 sequences and

the values of R-(A) are calculated for all -20 <o, B,y <20 with grid step being

equal to 0.2 for each of the parameters o, B, and y. The function wal_mod_opt(A)
returns the value of Rp for the set of sequences from Example 5.3.2 for the given

matrix of coefficients A..

The listing of the function wal_mod_opt(A) is given below.
function csm = wal mod opt(A);

Function returning the value of mean square aperiodic
crosscorrelation R_cc for the set of 13 nonorthogonal Walsh-chirp
sequences generated by the function wal_chirp_non(A).
A is the matrix containing the coefficients alfa, beta, and gamma
being, in general, different for different seguences,.

O e g e
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4

Z Author: Beata Wysocki Date:17/02/98

b4

§ = wal_chirp_non{A}; %7 Generation of the sequence set
5.

csm = cormeas(5}; Z Calculation of R_cc

The function wal_chirp_non(A) generates the set of 13 sequences from the Example

5.3.2, while the function cormeas(S) computes the value of R for the set of

sequences contained within the matrix S.
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