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Abstract 
 
There are several methods to estimate permeability from pore throat sizes and NMR 

T2 relaxation time. Although most of the methods are well-established and work well 

for conventional reservoirs they fail to estimate permeability for tight gas sands. The 

aim of this study was to establish relationships between permeability and pore throat 

sizes, derived from mercury injection analysis, and NMR T2 relaxation time.  

Regression analysis was used to achieve a set of relationships between dry gas 

permeability, porosity and pore throat sizes for 50 tight gas sand samples. Unlike for 

normal sandstone, pore throat radii corresponding to a mercury saturation of 10% 

(r10) is the best permeability predictor for tight gas sands.   

For tight gas sands, NMR T2 relaxation spectra fall on the shorter values 

corresponding to the smaller pores. This is because pore spaces are significantly 

reduced both in size and volume due to extensive compaction and cementation. This 

study shows that using NMR T2peak and multi-regression analysis, permeability can 

be estimated with high accuracy even in rocks with substantially constricted pore 

throats. 

Keywords: permeability estimation, tight gas sands, mercury injection capillary 

pressure, NMR relaxation time. 

 

 



Tight Gas Sands Permeability Estimation       Rezaee et al., 

 

2 

 

1. Introduction 

Based on the in-situ permeability values, reservoirs can be divided into conventional 

reservoir (permeability more than 1 mD), near tight (permeability between 1 and 0.1 

mD), and tight reservoirs (permeability less the 0.1 mD) (Figure 1). In general tight 

gas sand is defined as a low permeability gas reservoir that needs specific 

treatments such as advanced drilling technology, correct way of completion and 

stimulation jobs to produce gas in commercial scale. For conventional reservoirs, 

porosity is high and pores are fully connected, whereas on the other hand for near 

tight and tight rocks pores are occluded and there are fewer connections between 

the pores. Figure 2 shows the size of pore connections for the conventional sands, 

tight gas sands and shales. It can be seen that for tight gas sands the typical size of 

pore throat may become less than 0.1 micron. 

 

Permeability which is a measure of the capacity of a reservoir to deliver 

hydrocarbons, is one of the most important parameters in reservoir studies. Variation 

of permeability is related to a series of factors, and there have been many efforts to 

establish a relationship between these factors and permeability. Permeability is a key 

parameter in determining the economic value of a hydrocarbon accumulation. It is a 

complex interplay of porosity, pore connectivity, grain packing, grain size and rock 

diagenesis.  

Generally the magnitude of permeability in a normal sandstone is controlled by the 

processes active in depositional environment. Therefore rock texture may yield some 

information about permeability and porosity. Usually for a normal sandstone, 

diagenesis has small effect on petrophysical properties of the rocks and it is possible 

to predict the reservoir quality based on sedimentary environment. Tight gas sands, 
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on the other hand, present a picture of extremes. Matrix permeability is very low due 

to extensive compaction and cement precipitation. Techniques that succeed in 

evaluating the normal sandstones may fail in tight formations. 

 

1.1. Permeability from Mercury Injection Capillary Pressure (MICP) 

Capillary pressure is the pressure difference existing across the interface separating 

two immiscible fluids. It critically affects reservoir initial fluid distribution and 

hydrocarbon recovery during primary or enhanced production. The distribution of 

multiple fluids in reservoir pores is a function of capillary forces, which in turn are 

related to system wettability, fluid density and pore geometry. Capillary pressures 

data have, in the past, been used primarily to evaluate reservoir rock quality, 

calculate the height of oil columns or estimate relative permeability characteristics. 

Today, capillary pressure measurements have widespread applications. One of the 

most important and frequently cited applications is to derive absolute permeability 

from some attributes extracted from MICP curves (e.g. Purcell, 1949; Calhoun, et al., 

1949; Burdine et al., 1950; Wyllie & Spangler, 1952; Thomeer, 1960; Swanson, 

1981; Wells & Amaefule, 1985; Pittman,  1992; Rezaee, 2006).  

A mercury injection curve is a curve which represents the increasing saturation of 

mercury as a function of pressure. Mercury injection curves can indicate the amount 

of porosity existing behind pore throats of various sizes (Purcell, 1949). As the 

mercury is a non-wetting phase, it must be forced to enter the pores of the samples. 

Pores with the largest throats will be the first penetrated by mercury under increasing 

pressures. Pores connected with the smallest throats are the last parts of the 

effective porosity that may be invaded and filled with mercury at the relatively highest 

pressures. As the reservoir properties such as porosity and permeability are 
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controlled by the size and arrangement of pores and throats (McCreesh et al., 1991), 

mercury injection method is commonly employed to characterise pore-size 

distribution in rocks.  

In addition to dependency of capillary pressure on reservoir properties, numerous 

researchers have emphasized that the shape of the capillary pressure curve may be 

primarily affected by the pore geometry (e.g. Rose & Bruce, 1949). These authors 

suggest that MICP curves, that reflect capillary pressure of a reservoir rock, are 

suitable representatives for quantification of pore geometry and incorporation of 

dynamic data into reservoir models.  

Washburn (1921) was one of the pioneers who expressed the relationship between 

capillary pressures and pore throat radii as:  

 

PC = -2 Cos / rc      (1) 

 

where PC is capillary pressure (psi),  is mercury surface tension (dynes/cm), θ is 

contact angle and rc is the radius of the pore throat (micron) being intruded by 

mercury.  

Purcell (1949) related capillary pressure empirically to air permeability through the 

graphical integral of the curve of mercury saturation versus reciprocal capillary 

pressure squared. Swanson (1977) noticed that the complete saturation of effectively 

interconnected pore spaces with a non-wetting phase (Wood’s metal) corresponded 

to the apex of the hyperbola of a log-log mercury injection capillary pressures curve. 

Swanson (1981) empirically expressed the relationship between permeability and the 

hyperbola of the log-log mercury injection capillary pressures curve by the following 

equation:  
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   kair=339(SHG/PC)apex
1.691 

     (2) 

      

where kair is air permeability (mD), SHG is the mercury saturation (%) corresponding 

to the apex of the hyperbola and PC is capillary pressure (psi).  

Katz and Thompson (1986, 1987) reported the following relationship:  

 

k =1/226(lc2) (Co/Cw)      (3) 

 

where lc is the characteristic pore size (e.g. the calculated pore size (mm) for the 

threshold pressure at which mercury forms a connected pathway through the 

sample), and Co/Cw is the ratio of rock conductivity to the conductivity of the 

formation water. This approach, however, requires a rock sample, laboratory 

measurement of the threshold pressure and the measurement of rock and formation 

water conductivity and assumes zero or negligible surface conductivity.  

Winland developed an empirical relationship between porosity, air permeability and 

throat size corresponding to a mercury saturation of 35% (r35). This relationship was 

published by Kolodzie (1980) as:  

 

Logr35 = 0.732 + 0.588Logkair - 0.864Log    (4) 

 

Pittman (1992) extended Winland’s work and introduced a series of equations 

extracted from the multi-regression analyses of mercury injection, permeability and 

porosity data for sandstone samples. He pointed out that the following equation 

yields the best R-squared for permeability, porosity and mercury injection data:  
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Logk = -1.221 + 1.415Log + 1.512Logr25    (5) 

 

Rezaee et al., (2006) conducted regression analysis and achieved a set of 

relationships between permeability, porosity and pore throat size for 144 carbonate 

samples. They indicated that pore throat radii corresponding to a mercury saturation 

of 50% (r50) is the best permeability predictor for carbonates with complex pore 

networks: 

Log k =−1.160 + 1.780 Log + 0.930 Log r50    (6) 

 

In above equations ri is the pore throat corresponding to ith percentile, k is 

uncorrected air permeability (mD) and  is porosity (%).  

 

 

1.2. Permeability from Nuclear Magnetic Resonance (NMR) 

The ability of NMR to distinguish between bound and free fluids increases the 

capability of NMR to estimate the formation permeability. Several examples of the 

application of NMR as a tool for prediction of permeability have been reported in the 

literature (Chang et al., 1994; Coates et al., 1994; Kleinberg et al., 1996; Howard et 

al., 1997; Tariq et al., 1997; Flaum et al., 1998; Logan et al., 1998; Castelijns et al., 

1999; Epping et al., 1999; Quintero et al., 1999; Sezginer et al., 1999; Glover et al., 

2006; Daigle and Dugan, 2009). NMR allows differentiating the clay-bound water 

volume (CBW), pore sizes as irreducible bulk volume (BVI), and the Free Fluid Index 

(FFI) (Figure 3). This allows defining effective porosity (e), total porosity (t), and 

permeability index (k) (Coates et al. 1999). The cutoff to separate BVI from FFI is 

considered 33msec for normal sandstone. This cutoff could be well established for 
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any lithology by conducting NMR measurements on core plug samples under 

irreducible water saturation (Swir) condition (Chen et al., 1998). 

 

Pore size in terms of T2 relaxation time distribution is the main tool for permeability 

calculation using NMR data. Two common models to estimate permeability are 

Coates model or the free-fluid model; (applicable in formations containing water 

and/or hydrocarbons) and Mean T2 model (applicable in formations containing only 

water). 

In the Coates model, k is estimated by: 
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     (7) 

 

where, k = permeability;  = porosity; C = a constant which is a term that reflects the 

correlation between the rock's pore throat and pore size and in fact it is a function of 

pore geometry; FFI = the free fluid index, and BVI = the bound volume of irreducible 

water. Core porosity and permeability should be used to estimate C for the Coates 

model. 

The mean T2 model which is also called SDR model (Schlumberger Doll Research) 

is expressed as: 

 

42

2 gmaTk 
     (8) 

where T2gm is the geometric mean of the T2 distribution, milliseconds; = NMR total 

porosity, fraction and "a" is a coefficient that depends on the formation type. "a" has 
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to be determined through calibration with core porosity and permeability. “a” is equal 

to 4 for sandstone, and researchers often disagree on the value of the pre factor "a" 

for carbonate. Chang et al. (1994) believed that a=4.75 should be considered for 

carbonates, which is close to the value used in sandstones.  

Figure 4 illustrates the Coates and the SDR models that use the FFI/BVI ratio and 

geometric mean of the T2 values respectively for permeability estimation.  

 

2. Results and Discussions 

A total of 16 core plugs from one of the Western Australian tight gas sand fields were 

analysed for this study. Although all samples are collected from a specific tight gas 

sand reservoir, but due to the nature of the samples, NMR and MICP tests were carried 

out on different samples. All of the studied samples are fine- to coarse-grained 

sandstone and are mainly quartz-rich with sub-dominant components of feldspar and 

lithic fragments. In general, the sandstone could be classified as arkose to lithic-

arkose. Illite/smectite, kaolinite, and chlorite are the main clay types. There are 

several major diagenetic processes that have affected the reservoir quality for the 

studied tight gas sands. Compaction, chlorite, illite-smectite, kaolinite and carbonate 

cements are the most significant one.  

An AP-608, automated permeameter and porosimeter were used for porosity and 

permeability measurements. Helium porosity and dry gas permeability of the 

samples used for NMR test were measured under different confining pressures. For 

these samples porosity ranges from about 12% to less than 2%. Porosity reduction 

with increasing confining pressure is not significant for most of the samples (Figure 

5). Permeability ranges from about 0.1mD to less than 0.001mD at 5000psi. 

Permeability values reduce significantly when confining pressure increases (Figure 
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6). One of the main controlling parameter for permeability is the pore throat size 

which is a very tiny element in the rock. Any reduction in the pore throat size will 

affect the permeability significantly. 

 

2.1. Mercury Injection Capillary Pressure Test (MICP) 

MICP tests were conducted on 10 samples to examine their pore throat size 

distribution. Mercury injection capillary pressures were measured using a 

Micromeritics Autopore 9200.  

A total of 40 MICP data from the Mesaverde tight sand database were also used for 

this part of the study.  

Figures 7 and 8 show mercury injection curves and pore throat distribution. Pore 

sizes have been classified by Hartmann and Beaumont (1999) as nanopores (<0.1 

microns), micropores (0.1‐0.5 microns), mesopores (0.5‐2.5 microns), macropores 

(2.5‐10 microns) and megapores (>10 microns). The dominant pore throat sizes for 

the studies samples are around 0.1 and 1 microns and fall in micropores and 

mesopores realm. 

Permeability estimated from the Winland, Pittman and Rezaee’s equations for the 

tight gas sand samples show a poor correlation with measured core permeability  

(Figure 9). To find a better relationship between permeability and pore throat sizes, 

mercury saturations from 5% to 80% were used to evaluate the relationship between 

permeability, porosity and pore throat radius at each saturation. Multi-regression 

analysis was carried out to establish various relationships between porosity and pore 

throat size as and permeability. The approach was to develop empirical equations for 

calculating permeability from porosity and pore throat radius at several mercury 

saturation percentiles. Table 1 lists the equations developed from the regression 
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analysis and the R-squared between the measured permeability and the permeability 

calculated from the equations. All of the R-squared values are larger than 70% for r5 

to r25 but r10 yields the highest R-squared, 78.1%. The corresponding equation that 

uses r10 is as follows: 

 

logk= -1.92 + 0.949 logPhi + 2.18 logr10      (9) 

 

where k is the dry gas permeability (mD), Phi is porosity (%) and r10 is the pore throat 

size (micron) corresponding to the 10th percentile of mercury saturation on a 

cumulative mercury injection plot.  

It seems that Winland, Pittman and Rezaee’s equations overestimate permeability 

(Figure 9) whereas, on the other hand, permeability estimated from the new equation 

show relatively a good match with the measured permeability (Figures 10).  

 

2.2. Nuclear Magnetic Resonance (NMR) analysis  

NMR analysis was conducted on nine core plugs fully saturated with 50,000 KCl 

brine using a MARAN Ultra Magnetic Resonance Core Analyzer. The samples were 

kept immersed in the solution under vacuum for 48hrs and then taken out for 

pressure-saturation at 3MPa for another 48 hrs. Following that the samples were 

placed in jars full of brine and transferred into the water bath with the temperature of 

40C for a minimum of 1 or 2 hours to prepare them for NMR tests.  

NMR analysis confirms major pore size occurring at about 1.0 millisecond (Figure 

11). Comparing T2 distribution of the tight gas sands with normal sands, it can be 

seen that larger T2 times are not present due to the lack of the macropores in the 

tight gas sands. Large pores can contribute to higher permeability values. Instead 
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the main T2 appears as a major dominant peak at the shorter T2 times (Figure 11).  

For most of the samples analysed there are minor peaks or a tail distribution of T2 

around 10 to 40 millisecond that are most likely related to the remaining larger pores. 

Prince et al., (2009) demonstrated that T2mode can represent the most common pore 

size for tight gas sand and shale and thus could be used for permeability estimation. 

The current study supports their approach but instead of selecting mode value that 

cannot be statistically obtained from T2 spectrum, value of the T2peak was selected. 

T2peak is the value of T2 that shows the highest frequency on the spectrum and thus is 

the dominant pore size in the sample. Using NMR T2 dominant peak or T2peak and 

multi-regression analysis, permeability can be estimated with high accuracy. 

Multi-regression analysis resulted in the following equation for permeability 

estimation using T2peak and porosity: 

 

k = - 0.0461 - 0.0601 T2peak + 4.37     (11) 

 

where k is permeability (mD), T2peak is dominant T2 on the T2 spectrum (ms), and  is 

porosity (fraction). 

Cross plot of measured permeability versus NMR T2peak permeability shows a very 

close correlation (Figure 12). 

The general form of the equation is: 

 

k = - a - bT2peak + c     (12) 

 

where a, b and c could be extracted from the multi-regression analysis for any tight 

gas sand formation. 
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3. Conclusions 

This study indicates that for tight gas sands pore throat radius at 10% mercury 

saturation (r10) yields the best correlation with permeability. This suggests that both 

micropores and mesopores, which fall in such a range, are the main contributing 

parameters for permeability in tight gas sands.  

Winland (Kolodzie 1980) and Pittman (1992) proposed r35 and r25 respectively as the 

best permeability estimator for normal sandstones. A possible explanation for this 

difference of the normal sandstone with the tight sands is the pore network 

complexity of tight sands compared to normal sandstones. For tight gas sands pore 

throat radius at 10% mercury saturation (r10) range from 0.1 to 1 micron. This is the 

dominant pore throat radius for the samples studied (Figure 8). For normal 

sandstone at such mercury saturation pore throat radius must be much larger in size 

and they cannot be a good representative for controlling permeability.  On the other 

hand, for higher mercury saturation (e.g. 35%), for tight gas sands pore throat radius 

fall in nanopores range that seems has a little control on permeability (Table 1). 

 

There are two common models for permeability estimation from NMR spectrum. 

Coates’ model uses BVI and FFI defined by a cutoff that should be obtained by core 

analysis. The second model uses geometric mean of NMR spectrum to estimate 

permeability. Multi-regression analysis of the dominant NMR T2 (T2peak) and porosity 

resulted in an equation that estimate permeability for very low permeability tight gas 

sands with high accuracy. 
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