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Abstract

The Dirichlet problem for the wave equation is a classical example of a prob-1

lem which is ill-posed. Nevertheless, it has been used to model internal2

waves oscillating harmonically in time, in various situations, standing inter-3

nal waves amongst them. We consider internal waves in two-dimensional4

domains bounded above by the plane z = 0 and below by z = −d(x) for5

depth functions d. This paper draws attention to the Abel and Schröder6

functional equations which arise in this problem and use them as a conve-7

nient way of organizing analytical solutions. Exact internal wave solutions8

are constructed for a selected number of simple depth functions d.9

Keywords: Internal waves, analytical solutions, Schröder functional
equation, Abel functional equation

1. Introduction

Internal gravity waves form the final chapter of a classic book on “Waves10

in Fluids” [14]. Equation (22) at [14] states that the the upward component11

of the mass flux, denoted there by q but here by w, satisfies12

∆(
∂2w

∂t2
) = −N(z)2

(
∂2w

∂x2
+
∂2w

∂y2

)
,

where ∆ is the 3-dimensional Laplacian, and z is the vertical coordinate.13

Here N(z) is the Brunt-Väisälä frequency. For 2-dimensional flows, i.e. no14

y dependence, there is a stream function, and several problems of physical15

interest involve solutions of the form w(x, z, t) = ψ(x, z) exp(iωt), and when,16
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additionally, the Brunt-Väisälä frequency is constant, ψ satisfies the one-17

dimensional wave equation in the space variables. (See equation (2.1).)18

The problem we treat in this paper - standing internal waves - is ill-19

posed, and, in particular, solutions when they exist are not unique. The20

same pde but with different boundary conditions describes two-dimensional21

internal waves generated by an oscillating cylinder in a uniformly stratified22

fluid and a few comments on such local wave generation are given in our23

§9. A photograph of the wave pattern for local wave generation is given in24

Figure 76 on page 314 of [14] and a diagram indicating the beams of internal25

waves is given in Figure 2 of [10]. The characteristic directions of the pde are26

very evident. For our standing wave problem, once again the characteristic27

directions are often evident in the flow fields: see, for example, our Figure 328

and other publications on the subject, including photographs of experiments.29

For general plane domains standing waves are treated in [1]: see the30

sections in [1] starting with that on Sobolev’s equation. In this paper we31

specialise to fluid domains confined by a flat surface z = 0 and a bottom32

boundary z = −d(x) for a given non-negative depth function d. Exact so-33

lutions for certain depth functions d are known, e.g. Wunsch’s solution for34

a subcritical wedge [23], Barcilon’s solution in a semi-ellipse [2] and a self-35

similar solution in a specific trapezoid [16], among many others. It is known36

that analytical solutions to the wave equation (2.1) with Dirichlet boundary37

conditions can be constructed from functions which satisfy the functional38

equation39

f

(
x+

d(x)

ν

)
= f

(
x− d(x)

ν

)
+Q,

for ν > 0 and Q given constants. Of course, when Q > 0 the preceding equa-40

tion can be scaled and if a solves equation (1.1a) below, then Qa will solve41

the preceding equation. Results concerning the following linear functional42

equations are central to our study of standing internal waves:43

a

(
x+

d(x)

ν

)
= a

(
x− d(x)

ν

)
+ 1, (1.1a)

f

(
x+

d(x)

ν

)
= f

(
x− d(x)

ν

)
, (1.1b)

These functional equations have been used for internal wave studies for44

several decades: see [15] and references therein. The physical interpretation45
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of Q non-zero is a constant mass-flux through the domain and it is consid-46

ered in [17, 3] in the context of tidal conversion. The zero-flux boundary47

condition Q = 0 as in equation (1.1b) is the physical condition appropri-48

ate to standing waves (and blinking modes) and is the main topic of this49

article. It has been noticed by [18] (their Theorem 2) and [21] that there50

are reformulations of equation (1.1b) such that one can associate solutions51

to equation (1.1b) with solutions to equation (1.1a). However, to date, very52

little use of advantages associated with these reformulations seems to have53

been made in the construction of analytical internal wave solutions.54

For a large class of depth functions d one can invert the arguments in55

the functional equations (1.1) and formulate them as the functional equa-56

tions (3.1) presented in §3, which corresponds to a special case of Schröder’s57

functional equation for Q = 0 and Abel’s functional equation Q 6= 0. The58

Schröder and Abel functional equations are well-studied functional equa-59

tions [11, 12]. In this article known properties of these functional equations60

are put into context for the construction of internal waves. A selection of61

analytical internal wave solutions constructed from solutions to these func-62

tional equations is presented. Besides the application to internal waves, there63

are other wave phenomena described by the same boundary-value problem:64

we mention some of these at the end of §2.65

The structure of this paper is as follows. In §2 we present the partial66

differential equation boundary-value problem that models the internal waves67

and in §3 we present the corresponding functional equations. We present in §468

Wunsch’s solution for a subcritical wedge, and follow this in §5 with various69

solutions for standing waves with everywhere subcritical bottom profiles.70

Our treatment in §6 and in §7 indicates results for bottom profiles that71

have some supercritical parts. The latter of these two sections, §7, treats72

a particularly simple solution method appropriate when d is related in a73

certain way to involutions. We are confident that the methods allow both74

for further application and further development. The question of what other75

wave problems lead to similar functional equations, a topic which takes us76

away from internal waves, is addressed in §8. We return to internal waves77

in §9 and propose related problems where the functional equation methods78

might be used.79

There is no claim that any new solutions in this paper – or indeed any80

other solutions from our functional equation approach – can only be obtained81

by the methods of this paper. Our paper is an exposition of the easier results82

associated with the functional equations (1.1) and (3.1), and we hope that83
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others will develop the approach. We expect that future developments are84

most likely to be useful in establishing general qualitative aspects of the85

solutions. For the present, we wish to remind researchers in the area of the86

spectacular nonuniqueness of solutions, and the methods of generating more,87

as given in Theorem 2. This result and some others in this paper are given88

in [21], albeit without noting the relation to the standard functional equation89

literature. We expect future developments will treat ‘attractor’ solutions, as90

in [15, 16] and will establish results, particularising to domains with z = 091

as part of their boundary, using functional-equation and dynamical-systems92

approaches as in [1]. These matters concern bottom profiles which contain93

both subcritical and supercritical parts (as defined in §2.1) and situations94

where for some values of ν the only solution is the zero flow solution (f is95

constant); then, as exemplified in §6.1 one is required to determine for which96

values of ν there are nontrivial solutions, and find f then. We have chosen97

to organize our paper around a selection of exact solutions as, despite the98

large number of different methods available for solving functional equations,99

this seems a relatively easy way of introducing the functional equations to100

researchers familiar with internal waves, and internal waves to researchers101

familiar with functional equations.102

2. Internal wave differential equation

2.1. The boundary-value problem

Let the bottom topography d(x) be a positive function defined on the103

interval I = [b−, b+] ⊂ R. If b± are finite, then d(b±) = 0. Define the104

simply-connected open domain D in the plane by105

D = {(x, z) ∈ R2 | b− < x < b+,−d(x) < z < 0},

with x and z representing the horizontal and vertical coordinates respec-106

tively. For a constant Brunt-Väisälä frequency, the streamfunction ψ of107

small-amplitude internal waves in D is governed by108

∂2ψ

∂x2
− ν2∂

2ψ

∂z2
= 0 in D,

ψ(x, 0) = 0 for b− < x < b+

ψ(x,−d(x)) = Q for b− < x < b+

(2.1)

where ν > 0 and Q are given constants. A derivation of (2.1) can be found in109

many books on fluid dynamics, e.g. Chapter VI §4 on Sobolev’s equation in110

[1]. See also [15] equations (2.4) and (2.5)-(2.6), the latter specifically for the111
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case Q = 0. For Q nonzero, see [17], in particular the paragraph containing112

his equation (2.1).113

The quantity ν can be interpreted as the inclination of the characteris-114

tics (internal wave rays or beams) relative to the horizontal. A point x on115

the bottom of the domain D is called subcritical if the bottom topography116

function d satisfies |d′(x)| < ν, where d′ denotes the derivative of d, and117

supercritical if the reverse holds. If all points on the bottom are subcritical118

(supercritical), then the bottom profile d and the domain D are each refered119

to as being subcritical (supercritical).120

Notice that it is always possible to stretch the z-coordinate such that ν121

takes the value 1 in the problem with the scaled bottom topography d(x)/ν.122

In the following, unless ν is explicitly referenced, the parameter ν > 0 is123

assumed to be 1.124

We will consider Q 6= 0 when it is appropriate. This happens when all125

points on the bottom are subcritical (see §5), and in some other instances (see126

§6.2). For bounded domains D the physical interpretation has (harmonically127

oscillating) sources and sinks at (b±, 0).128

Various comments are appropriate. The standing wave solutions, i.e.129

those with Q = 0, harmonic in time, can be used to solve initial-boundary-130

value problems for the Sobolev equation. Related problems occur in other131

applications, for example, in some theoretical physics applications (e.g. [9]),132

and other moving boundary problems for the wave equation (e.g. [8]).133

2.2. Preparing for functional equations; the ‘extension of f ’ to ψ

Assume a solution of the differential equation in (2.1) is represented by134

ψ(x, z) = f
(
x− z

ν

)
− f

(
x+

z

ν

)
for (x, z) ∈ D (2.2)

for some differentiable real function f . The boundary condition ψ(x, d(x)) =135

Q is satisfied if f satisfies the functional equation given in §1. Note that136

ψ(x, 0) = 0 is already satisfied by the definition (2.2).137

With ψ defined from (2.2), ψ will inherit smoothness properties from f .138

Piecewise linear functions f will produce piecewise linear ψ.139

We have used the term ‘extends’ merely to indicate the following. Given140

a function f defined on an interval (c−, c+) one can view equation (2.2) as141

extending the one-dimensional domain (c−, c+) to a domain in the plane.142

(Strictly speaking f itself might better be thought of as extending to the143

hyperbolic conjugate of ψ [15] as this is such that its restriction to z = 0 is,144

except for a factor of 2, the function f .) This extension defines the function145
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ψ in the triangle in z ≤ 0 with its other sides the characteristics through146

(c±, 0), namely the lines z = c± ∓ νx. When d is everywhere subcritical, we147

can take c± = b± and, when both b+ and b− are bounded, the triangle so148

formed contains the whole of the domain D. The extension via (2.2) might149

well lead to a ψ defined over a larger set than the domain D. In the case150

Q = 0, the curve z = −d(x) is then a nodal curve of ψ defined over the larger151

set.152

Suppose now that b− = −b+. When f is an even function the correspond-153

ing ψ is odd in x. When f is an odd function the corresponding ψ is even in154

x.155

3. Functional equations

The functional equations in this paper are all linear; the Q = 0 case being156

homogeneous. Some properties hold for any Q zero or nonzero. If one has a157

solution f then f + c is also a solution for any constant c. Suppose f0 and158

f1 are solutions at the same Q. The minimum of f0 and f1 is also a solution.159

The convex combination (1 − t)f0 + tf1 is also a solution. Consequences of160

these are used without further comment in this paper.161

Equations (1.1) can sometimes be transformed to the much more widely162

studied pair of equations (3.1) and this section is a review of these. The163

results are applied in §4, §5 and §7. Some results for equations (3.1) extend, in164

obvious ways, to equations (1.1), and it is appropriate to use equations (1.1)165

in parts of §sec:partSuper.166

3.1. The forward map T

Define the functions δ± := x ± d(x)/ν. If the δ− in equations (1.1) is167

invertible, then one can (provided the domain of δ+ includes the image of168

δ−1− ) define the map T+ := δ+ ◦δ−1− and rewrite the functional equations (1.1)169

as the functional equation170

f(T+(x)) = f(x) +Q.

In the same way, when appropriate conditions are satisfied, defining the map171

T− := δ− ◦ δ−1+ , one is led to the functional equation f(x) = f(T−(x)) + Q.172

Let d(b±) = 0 for the remainder of this section, so that δ±(b±) = b±. The173

domains of both δ− and δ+ are the same as the domain of d namely [b−, b+], It174

remains to specify the domains of T+, T− and of f . It is simplest to consider175

a subcritical bottom d. Then (i) both δ− and δ+ are monotonic increasing176
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so invertible, (ii) the maps T± are bijective on [b−, b+] – in fact increasing on177

(b−, b+) with T±(b±) = b±. To simplify notation, where this is appropriate,178

we omit the subscript +, and the equations we study are179

a(T (x)) = a(x) + 1, (3.1a)

f(T (x)) = f(x). (3.1b)

For more on the case of subcritical bottoms, see the beginning of §5. Partly180

or entirely supercritical domains are more complicated: see §6.181

There are geometric and physical relations between the functions d and182

T . A rightwards ray starting from (x, 0) reflects from a subcritical bottom d183

and is next incident at the top at (T (x), 0). (For partly supercritical bottoms,184

we view (T (x), 0) as the point where the reflected ray – possibly prolonged185

through the bottom profile – meets z = 0, possibly with T (x) > b+.) The186

reflection at the bottom takes place halfway between x and T (x) along the187

x-coordinate and at the depth −ν T (x)−x
2

, so188

d

(
x+ T (x)

2

)
= ν

T (x)− x
2

. (3.2)

From this, with189

X =
x+ T (x)

2
, T (X − d(X)

ν
) = X +

d(X)

ν
.

Provided the range of T is a subset of the domain of T , repeated composition190

– iterates of T– can be defined. When T is (strictly) increasing, with T (b+) =191

b+, repeated compositions of the map T applied to any x ∈ (b−, b+) give a192

sequence {T [k](x)}k∈N which converges to the fixed point T (b+) = b+ for193

k → ∞. Similarly, when T (b−) = b−, one gets a sequence {T [−k](x)}k∈N194

converging to T (b−) = b− for repeated compositions of the inverse map T [−1]
195

to any x ∈ (b−, b+).196

3.2. Schröder functional equation (3.1b)

Equation (3.1b) is a special case of the Schröder functional equation197

f(T (x)) = s · f(x)

for s = 1 [11, 12]. This subsection presents a few properties of solutions198

to (3.1b). A comprehensive list of known properties of Schröder functional199

equation - sometimes also referred to as Schröder-Konig’s functional equation200

- can be found in Chapter VI of [11] and at various parts of [12].201
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One comment on the case s > 0 is appropriate (and will be used in § 5.2:202

see equation (5.6)). The following old result is standard: see, for example,203

[11] p163, [12] p128.204

Theorem 1. If f is a positive solution of the Schröder functional equation205

f(T (y)) = s · f(y) for s > 0, s 6= 1, then a(x) = log(f(x))/ log(s) is a206

solution of the Abel equation FET(1).207

Some properties of solutions of (3.1b) are easy to see. If T is not the208

identity function T (x) = x (or equivalently if d is not the zero function), no209

solution of (3.1b) (or of equation (1.1b) can be monotonic. Hence any solution210

must have a local maximum or minimum in (b−, b+). The solutions we present211

for f have various numbers of maxima and minima – sometimes finitely many,212

e.g. §6.1, sometimes countably infinitely many, e.g. the domains treated in213

§5.214

Theorem 2. If f : I → f(I) ⊂ R is a solution to FET(0) and F is any real215

function whose domain contains the image f(I) of f , then the composition216

F ◦ f is also a solution to FET(0).217

Proof. If f is a solution of (3.1b), then f(x) = f(T (x)). F works on the image218

f(I) of f , so it follows directly that F (f(x)) = F (f(T (x)). This shows that219

the composition F ◦ f also satisfies (3.1b) and completes the proof.220

221

The nodal curves for ψf associated with f according to (2.2) remain nodal222

curves for ψF◦f associated with F ◦ f . There may be more nodal curves for223

ψF◦f unless F is invertible.224

225

So if a solution to Schröder’s functional equation (3.1b) exists, then it is226

not unique - and one can be more constructive on this point: one is free to227

choose a function on some subset I0 of the interval I on which (3.1b) must228

hold. This subset I0 is refered to as a fundamental interval [15]. Once a229

choice for a solution f on some fundamental interval I0 is made, then f is230

uniquely defined on all of I. Notice that a solution f to (3.1b) takes the231

same value for each element of the set {T [k](x)}k∈Z for each x ∈ (b−, b+).232

So if f(x) is prescribed for one x ∈ {T [k](x)}k∈Z, then so it is for the entire233

set {T [k](x)}k∈Z. Together with the property T (x) > x it shows that I0 =234

[x0, T (x0)) is a fundamental interval for any x0 ∈ (b−, b+). Such a connected235
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fundamental interval (with x0 = 0) is considered at the beginning of §5. Be236

aware that it is not necessary for a fundamental interval I0 to be a connected.237

The solvability of Schröder functional equations (3.1b) depends crucially238

on the property T [k](x) 6= x for all x in the open interval on which (3.1b)239

holds and for every positive k ∈ N [11, 12]. The following (easily proved)240

theorem deals with the consequences of fixed points of the map T on the241

solvability of (3.1b).242

243

Theorem 3. Let T be a strictly increasing continuous function on (b−, b+)244

for which T (b±) = b±. Suppose also that T [k](x) → b± as k → ±∞ for245

b− < x < b+. Then the only solutions of (3.1b) which are continuous on the246

closed interval [b−, b+] are the constant solutions.247

3.3. Abel functional equation (3.1a)

Abel’s functional equation (3.1a) is appropriate for problems with Q 6= 0.248

In some theoretical physics papers, e.g. [9], it is called Moore’s equation. The249

physical interpretation of Q 6= 0 is a constant non-zero flux Q through the250

bottom z = −d(x). Mathematically one can treat Q as a non-zero constant251

and associate it with the no-flux condition Q = 0 of Schröder’s functional252

equations (3.1b), as motivated in the following observation.253

Any solution f to the Schröder’s functional equation (3.1b) has to be254

identical on the endpoints x0 and T (x0) of a connected fundamental interval255

I0 = [x0, T (x0)). This is the motivation to consider any solution f to (3.1b)256

to be a composition of a periodic function P with an argument function a.257

The function f(x) = P (a(x)) with P having period Q > 0 then satisfies the258

(3.1b) if and only if the argument function a satisfies one of the functional259

equations260

a(T (x)) = a(x) +Q · n for n ∈ Z. (3.3)

It is always possible to scale a(x) such that Q = 1.261

The fundamental interval introduced in the previous subsection applies262

in the same way to Abel’s functional equation, e.g. if a solution exists, then263

it is uniquely determined if and only if it is prescribed on a fundamental264

interval. (See the beginning of §5 for an existence result.)265

Theorem 4. Let a ∈ C1 be a strictly increasing solution of FET(1).266

(1) The general solution agen of FET(1) is given by267

agen(x) = a(x) + P (a(x))

9



where P is a periodic function with period 1.268

(2) If a∗ is another strictly increasing C1 solution of FET(1) then there exists269

some periodic function P with period 1 such that P ′(x) > −1 for all x and270

a∗(x) = a(x) + P (a(x)). (3.4)

Conversely any a∗ of the form (3.4) is an invertible solution of FET(1).271

Part (1) is Theorem 1 of [20]. Part (2) is from [22] who attributes it to272

Abel (1881). Part (2), with its condition P ′(x) > −1 is developed for Ck
273

solutions in Theorem 2 of [20], with further development in his Theorem 3.274

275

Theorem 5. Let a and f be C1 solutions to respectively FET(1) and (3.1b)276

on I. Assume further that a is injective and T : I → I bijective. Then there277

exists some periodic function P , with period 1, such that f(x) = P (a(x)).278

A direct consequence of Theorem 5 is that for subcritical bottom topogra-279

phies all continuous solutions to (3.1b) are constructed by applying the set280

of all continuous periodic functions with period 1 to any continuous injective281

solution to (3.1a).282

Theorem 6. Given a strictly increasing continuous map T on (b−, b+) with283

T (b±) = b±, some fundamental interval I0 = [x0, T (x0)) and a strictly in-284

creasing continuous function a0 on I0, then the unique continuous solution a285

to (3.1a) with a = a0 on I0 and a0(T (x0))− a0(x0) = 1 satisfies286

a(x) = a0(T
[−k](x)) + k (3.5)

for all x ∈ Ik := [T [k−1](x0), T
[k](x0)) and k ∈ Z.287

This theorem is a special case of Theorem 4.1 in [13], which proves that288

a(x) = a0(T
[−k](x)) + k for x ∈ Ik if a is continuous solution satisfying289

(3.1a). In [13] the function a0 satisfying a0(T (x0)) − a0(x0) = 1 is assumed290

to be linear, which is in fact not necessary for the proof.291

The solution a(x) to (3.1a) is clearly continous in all points x in the interior292

of some interval Ik. For the boundary points xk := T [k](x0) study the limits293

x→ xk for x > xk and x < xk: If x > xk, x ∈ Ik = [xk, xk+1), then294

lim
x→xk

a(x) = a0(T
[−k](xk)) + kQ = a0(x0) + kQ.

For x < xk, x ∈ Ik−1 = [xk−1, xk) it follows that295
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lim
x→xk

a(x) = a0(T
[−k+1)](xk)) + (k − 1)Q = a0(T (x0)) + (k − 1)Q.

These two expressions are equal because a(T (x0)) = a(x0) + Q by the defi-296

nition of Q.297

To prove uniqueness observe that for every x ∈ (b−, b+) there exists a unique298

k ∈ Z such that x ∈ Ik because
∞⋃

k=−∞
Ik = [b−, b+] and all Ik are disjunct. So299

for every x ∈ (b−, b+) the function a(x) is uniquely defined by the expression300

(3.5) since T , a0 and Q are given.301

3.4. Comments on equations (1.1)

Some of the results of §3.2 and of §3.3 have analogues for the equa-302

tions (1.1b) and (1.1a) respectively. In particular, we remark that if P is a303

periodic function with period 1 and a solves (1.1a), then the composition304

P ◦ a solves the Schröder-like equation (1.1b).305

4. Wunsch’s solution: subcritical wedge

Let b− = −∞, b+ ∈ R and ν = 1. For a subcritical wedge d(x) = τ(b+−x)306

with τ ∈ (0, ν) the map T is the linear function T (x) = px+s where p = 1−τ
1+τ

307

and s = b+
2τ
1+τ

. The Schröder functional equation (3.1b)308

f(px+ s) = f(x) for x < b+ (4.1)

can be formulated as the Abel’s functional equation FET(1) under the as-309

sumption f = P ◦ a with P any period-1 function:310

a(px+ s) = a(x) + 1 for x < b+. (4.2)

A continuous, strictly increasing solution to (4.2) is a(x) = log(−x+ b+)/log(p).311

So the Schröder functional equation (4.1) is solved by functions312

f(x) = P

(
log(−x+ b+)

log(p)

)
for any arbitrary continuous period-1 function P .313

The solution given by [23] had P as a sine or cosine function. The nodal314

curves which intersect z = 0 in these solutions are hyperbolae. Of course315

there are many other periodic functions. For certain piecewise exponential P316

all the nodal curves are straight lines: for appropriate P some nodal lines are317

vertical straight lines. This makes a connection with this section and §5.1.318
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5. Symmetric domains with subcritical bottom profiles

Our treatment of the functional equations in §3 deliberately avoided gen-319

eral existence matters as these can be rather intricate, except in the context320

of subcritical bottoms. The existence result in the next paragraph is stated321

as it provides a lead-in to §5.1.322

In the existence result below we have a genuine interval as a fundamen-323

tal interval. (That this is not always the case is mentioned in §3.2.) For a324

symmetric domain, take as the domain of x the interval [b−, b+] = [−b, b] for325

some b > 0. The following is stated in [20] (giving references for the proof,326

including [11]).327

328

Theorem 7. If T is a continuous strictly increasing real-valued function de-329

fined on a half- open interval [0, b), 0 < b ≤ ∞,330

T ([0, b)) = [c, b) with c > 0, (so we can extend, by continuity, the domain of331

T so T (b) = b) and332

T (x) > x for 0 ≤ x < b333

then there exists a solution for FET(1). Furthermore under the above con-334

ditions, there is a unique solution a with prescribed values on the interval335

[0, T (0)). If, moreover, it is continuous on [0, T (0)) and (taking the limit336

from above)337

lim
x→T (0)

a(x) = a(0) + 1

then a is continuous on [0, b).338

All the conditions on T above are satisfied by the forward maps T of sym-339

metric domains with subcritical bottom profiles. (A hydrodynamic inter-340

pretation is that, for a given bottom profile d, there is a solution for all ν341

satisfying ν > max(|d′(x)|).)342

343

Any such solution a necessarily tends to minus infinity as x tends to b−,344

and to plus infinity as x tends to b+. (If a were to be continuous on the345

closed interval [b−, b+] the solutions of the Schröder equation generated from346

it could also be continuous, contradicting Theorem 3.)347

In the context of the symmetric domains and Q 6= 0 our main interest is348

in odd solutions a.349
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5.1. Subcritical isosceles triangle

In this section we construct all possible solutions to (3.1b) for the isosceles350

triangle with bottom topography function d(x) = τ(1 − |x|) with τ ∈ (0, 1)351

for x ∈ (b−, b+) = (−1, 1) and ν = 1. To the best of our knowledge this352

is the first exact description of all possible solutions for isosceles triangle.353

According to Theorem 5 one can construct all solutions f to (3.1b) via the354

relation f = P ◦ a with P all periodic functions with period Q (=length of355

connected fundamental interval I0 when, as here, ν = 1) and a a continuous,356

strictly increasing solution to Abel’s functional equation (3.1a). The goal357

is therefore to construct one solution to (3.1a) for some Q 6= 0 using the358

expression (3.5). The map T = δ+ ◦ δ−1− and its inverse T [−1] associated with359

δ± = x± d(x) are given by360

T (x) = p−1x+ s− for − 1 ≤ x ≤ −τ
T (x) = px+ s+ for − τ ≤ x ≤ +1

T [−1](x) = px− s+ for − 1 ≤ x ≤ +τ

T [−1](x) = p−1x− s− for + τ ≤ x ≤ +1

(5.1)

where p = 1−τ
1+τ

< 1, s+ = 2τ
1+τ

and s− = 2τ
1−τ . A fundamental interval is given361

by I0 = [−τ, τ), as can be verified by checking that T (−τ) = τ . Repeated362

compositions of function T or its inverse T [−1] map this fundamental interval363

I0 onto the intervals Ik := T [k](I0), k ∈ Z. So for x ∈ Ik and k ≤ −1 a solution364

a(x) to the Abel equation FET (Q) is given by a(x) = a0(T
[k](x)) − kQ365

where a0 is an arbitrary strictly increasing choice for a on I0 which satisfies366

a0(τ) − a0(−τ) = Q. Similarly for k ≥ 1 and x ∈ Ik one gets a(x) =367

a0(T
[−k](x)) + kQ.368

Compositions of the maps T , and T [−1], give respectively369

T [k](x) = 1 + p−k(x− 1) for − τ < x

T [−k](x) = −1 + p−k(x+ 1) for x < +τ.
(5.2)

For the simple choice a0(x) = x on the fundamental interval I0, which implies370

Q = a0(τ)− a0(−τ) = 2τ , the continuous solution a is given by371

a(x) = p−n(x− 1) + 1 + 2τn for x ∈ In, n ∈ N

a(x) = p−n(x+ 1)− 1− 2τn for x ∈ I−n, n ∈ N.
(5.3)

In Figure 1 a continuously differentiable streamfunction solution Ψ(x, z) =372

f(x − z) − f(x + z) for the choice P (x) = cos(π
τ
x) is presented. The black373

line shows the bottom d(x) = τ(|x| − 1). There are many nodal curves. The374

plotted solution is also a solution for many bottom topographies, including375
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Figure 1: This figure shows the analytical streamfunction solution for τ = 0.35 with
P (x) = cos(πτ x). The bottom of the isosceles triangle is indicated by the black line. All
streamfunction values z < |x| − 1 are set to zero.

partly and entirely supercritical bottom topographies. It is speculated that376

some of these nodal curves are independent of the choice of the periodic func-377

tion P , e.g. streamfunction solutions to the bottom topographies along these378

isoclines can be constructed from f = P ◦ a for arbitrary period-2τ function379

P and a satisfying (5.3).380

5.2. Subcritical symmetric hyperbolae

5.2.1. Symmetric hyperbolic lens

Again, set ν = 1. For the subcritical bottom topography381

d(x) = c−
√
c2 − 1 + x2 for − 1 < x < 1 with c > 1 (5.4)

the corresponding map T is given by382

T (x) =
1 + cx

c+ x
= x+

1− x2

c+ x
for − 1 < x < 1. (5.5)

The map T is fractional linear. Defining another fractional linear map r383

and motivated by the fact that compositions of fractional linear maps are384

fractional linear,385

r(x) =
1 + x

1− x
gives r(T (x)) = r

(
1

c

)
r(x).
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Figure 2: The streamfunction soltuion Ψ(x, z) = f(x − z) + f(x + z) is plotted with f
being the composition of P (x) = sin( 2π

arctanh(1/c)x) for c = 2 and a(x) =arctanh(x) (which

solves FET(a(1/c))). The color bar is as in Figure 1.

(The function r satisfies a Schröder functional equation with s = r(1/c) posi-386

tive.) Take logarithms of r(x) and notice that a(x) = 1
2

log(r(x)) =arctanh(x)387

satisfies388

a(T (x)) = a(x) + a(
1

c
). (5.6)

This solution has been suggested by [21]. The solution a(x) =arctanh(x)389

is injective on the fundamental interval I0 = [0, 1
c
) because 1

c
< 1. So ac-390

cording to Theorem 5 all solutions f to (3.1b) can be derived by apply-391

ing arbitrary periodic function P with period a(1
c
) = 1

2
log
(

1+c
−1+c

)
to a(x):392

f(x) = P (arctanh(x)). The streamfunction solution for a sinusoidal choice393

for P is shown in Figure 2.394

There are infinitely many nodal curves intersecting z = 0 at points in395

−1 < x < 1. Modes with different numbers of cells stacked vertically are396

easily constructed.397

5.3. Some other subcritical bottom profiles

The entries in the table indicate some other subcritical bottom profiles for398

which we have solutions (with ν = 1). The column headed a gives solutions399
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of the Abel functional equation for the given T (from which one can generate400

all standing-wave solutions). A banal comment – useful when both a and its401

inverse a−1 have simple forms – is the simple formula for T given a solving402

(3.1a):403

With Q = 1 in T (x,Q) = a−1 (a(x) +Q) , T [k](x,Q) = a−1 (a(x) + kQ) :

[b−, b+] T a Comments

[0, 1/2] 2x(1− x)
log( log(1−2x)

log(1−2c) )
log(2)

Unsymmetrical parabolic segment

(−∞,∞) See below arcsinh(x) Symmetric hyperbolic hump

See below x
1+x

1
x

Source where a hyperbolic

slope intersects z = 0
• For the symmetric hyperbolic hump, for an appropriate value of τ with404

0 < τ < 1,405

Tτ (x) =
(1 + τ 2)x+ 2t

√
1 + x2

1− τ 2
, dτ (x) = τ

√
1

1− τ 2
+ x2.

• The entry in the table corresponding to a(x) = 1/x can be viewed as a406

singular flow corresponding to a dipole located at the origin. (The domain407

of a is no longer an interval.) All streamlines are hyperbolas passing through408

the origin and located in the wedge shapes containing z = 0 and bounded by409

characteristics through the origin.410

There are many other solutions in the literature e.g. in [6, 9]. A symmet-411

rically placed fully submerged subcritical (isosceles) wedge will yield to the412

methods of §5.1.413

6. Some domains where part or all of the bottom is supercritical

Here we are concerned with solutions of equation (1.1b)414

f(x+
d(x)

ν
) = f(x− d(x)

ν
))

where the function f may need to be defined on a larger interval than is the415

function d. [b−, b+]×{−1,+1}: I.e. we are treating the case Q = 0. However416

in §6.2, we solve (1.1a) with Q > 0 as part of the method of solving (1.1b). In417

this section we use the FEd formulations and in §7 the FET version. When418

the domain of f is larger than that of d it restricts us to functions which419

extend to a ψ with a domain larger than D and vanishing on z = 0 over420
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more than that part which is on the boundary of D: we might find just some421

of the solutions of the differential equation problem (2.1). By treating the422

problem in the form (1.1a) rather than (3.1a) we avoid some of the difficulties423

associated with the lack of invertibility of one or other of δ+ or δ−.424

There are other methods of solving the problem, some of which are men-425

tioned at the end of this section.426

6.1. Barcilon’s solutions for the semi-ellipse

Let the bottom topography be a semi-ellipse: d(x) =
√

1− x2 for x ∈427

(−1, 1). The functional equation (1.1b) then becomes428

f(x−
√

1− x2
ν

)− f(x+

√
1− x2
ν

) = 0.

With this restriction the preceding functional equation can be re-written429

f(cos(θ)− sin(θ)/ν)− f(cos(θ) + sin(θ)/ν) = 0 (6.1)

A family of solutions, involving Chebyshev polynomials is given in [2]. These430

solutions have been rediscovered several times, e.g. [15].431

6.1.1. Reduction to a constant coefficient functional equation

We now indicate one method to solve the functional equation (6.1), and432

find, amongst others, the Chebyshev function solutions. We begin with seek-433

ing solutions to434

f+ = f(cos(θ)− sin(θ)/ν) = f(cos(θ) + sin(θ)/ν) = f−.

Next define cos(θν) = ν/
√

1 + ν2. Define also f̃(θ̃) = f(
√

1 + ν2 cos(θ̃)/ν).435

The functional equation in terms of f̃ is:436

f̃(θ + θν) = f̃(θ − θν)

or, equivalently437

f̃(θ) = f̃(θ + 2θν).

This is solved, for f̃ , by any periodic function P with period 2θν . However438

restrictions on ν may be required to ensure that the extension of f to ψ leads439

to a physically acceptable ψ. Barcilon’s Chebyshev solutions, with integer m440

and k, result from441

f̃(θ̃) = cos(
mπθ̃

θν
) with θν =

mπ

k
.

Returning to the general 2θν-periodic f̃ , having found f̃ we can determine f442

as follows. Set443
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Figure 3: Different solutions with k = 3, m = 1. At left the periodic function is cos. At
right, the periodic function replaces cos with a 2π periodic even triangle wave. In the
same way as a triangle wave can be expressed as a Fourier cosine series, the solution at
right can be represented as an infinite series superposition of polynomial solutions.

X =

√
1 + ν2

ν
cos(θ̃) =

cos(θ̃)

cos(θν)
, θ̃ = arccos(X cos(θν)),

f(X) = f̃(arccos(X cos(θν)).

For Barcilon’s solutions this is444

ν = cot(
mπ

k
) f(X) = cos(k arccos(cos(

mπ

k
)X))

A couple of solutions for the lowest mode – no interior nodal curves – (and445

ν = 1/
√

3) are shown in Figure 3.446

For plots of some other modes, see [2, 15].447

6.1.2. Taylor series methods for (1.1b) and (3.1b)

There are other methods that can be used to solve (1.1b) with d(x) =448 √
1− x2. One can form a Taylor series about x = 0 of each of f(x±d(x)/ν).449

If one is to seek a polynomial solution the Taylor series is a finite sum,450

and furthermore only even powers of d(x) enter the equation to be solved.451

It is easy to recover Barcilon’s Chebyshev polynomial solutions from this452

approach. One can also find other d(x) which lead to polynomial f . The453

method can also be adapted to shapes other than the semiellipse, finding454

rational functions f , and to solving the Abel’s functional equation (Q non-455

zero) not merely the Q = 0 Schröder functional equations.456
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6.1.3. A forward map T with range bigger than [−1, 1]

T (determined using equation (3.2)) is457

T (X) =
2
√

1− ν2 (X2 − 1) + (ν2 − 1)X

ν2 + 1

Barcilon’s Chebyshev solutions of f satisfying f(X) = f(T (X)) are read-458

ily verified. (An easy example is f(X) = 2X4 − 4X2 + 1 = T4(X sin(π/4))459

corresponding to ν = 1 and T (X) =
√

2−X2. Here T4 denotes the Cheby-460

shev polynomial of degree 4.)461

6.2. Dai’s solutions for hyperbolae

The case of a hyperbolic bottom profile d(x) = r/x for x > 0 is treated462

in [5]. One readily verifies that (1.1a)463

a
(
x+

r

νx

)
= a

(
x− r

νx

)
+ 1 is solved by a(x) =

νx2

4r
.

The streamfunction associated with this a has fluid entering from (∞, 0) and464

exiting via (0,−∞).465

In this case it happens that the problem can be recast using the forward466

map T (x) =
√

4r/ν + x2 for x > 0 into an Abel equation (3.1a). The467

solution appears elsewhere. For example, [9], near his equation (9), gives the468

solution with469

d(x) =
1

d0 + rx
and ν = 1, a(x) = −1

2
(d0x+

r

2
x2).

Solutions to the Schröder problem are found, in the usual method, by470

composing a period-1 function, P , with a. A typical example with P chosen471

to be a cosine is shown in figure 4. The plotted streamfunction has many472

interesting nodal curves in addition to the nodal curve along the bottom473

topography d(x) = 1/|x| (black line). With the cosine P there are elliptic474

nodal lines around the origin.475

7. Involutions, and a particularly simple family of solutions

Involutions are functions which when composed with themselves give the476

identity function:477

invol(invol(x)) = x

for all x in the domain of the function.478

It has already been noted, e.g. [15], that everywhere subcritical symmetric479

profiles lead to functional equations f(x) = f(T (x)) where T (x) = −invol(x):480
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Figure 4: Dai’s streamfunction solution for hyperbolic bottom profile d(x) = 1/|x| corre-
sponding to the solution f(x) = cos(π2x

2) to (3.1b).

various examples are treated in §5. We do not know of any general method481

which is convenient to apply for all equations of this type. If one simply482

changes the minus to a plus, we will see that the equation is extremely easy483

to solve.484

Theorem 8. There are no solutions to the Abel functional equation, with485

Q 6= 0486

a(invol(x))− a(x) = Q

Proof. Suppose there were to be a solution to the Abel functional equation487

above, then we also have488

a(x)− a(invol(x)) = a(invol(invol(x)))− a(invol(x)) = Q

Adding the two preceding equations gives 0 = 2Q which contradicts the489

assumption Q 6= 0.490

Because of the preceding result, the approach – using a solution of the491

Abel equation to generate solutions to the Schröder equation by compositions492

with periodic functions – fails here. However an alternative approach is493

available:494
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Theorem 9. Let S be any symmetric function of two variables, meaning495

that S(u, v) = S(v, u) for all u, v. Then the function f(x) = S(x, invol(x))496

solves the Schröder equation497

f(invol(x)) = f(x) with invol an involution. (7.1)

Proof.498

f(invol(x)) = S(invol(x), invol(invol(x))) = S(invol(x), x) = S(x, invol(x)) = f(x).

For invol(x) to correspond to a forward map T we need to make sure that499

its domain is such that invol(x) > x.500

The entries in the table below indicate some flows associated with the501

involutions given. We take ν = 1. The entry d is the solution of invol(x−d) =502

x + d . There are many possibilities for S; our descriptions of the flow are503

for S(u, v) = u + v. (Any streamfunction ψ defined by the usual extension504

of f is zero on z = −d(x).)505

invol(x) d Comments
1
x

√
x2 − 1 for x < −1 corner flow with a hyperbolic boundary

x0−x
1+bx

√
(x+ 1

b
)2 − 1+x0b

b2
further flows with hyperbolic d√

2b2 − x2
√
b2 − x2 d: portion of ellipse

PL(x0,m, x) with m > 1 (m+1)(x−x0)
m−1 piecewise linear ψ giving a corner

flow in a supercritical wedge

506

Some comments on the table above follow:507

• Concerning the third entry in the table, we remark that Barcilon’s solution508

in a circular quadrant with ν = 1 can be constructed using the discontinuous509

involution sign(x)
√

1− x2 and f(x) = x4 + invol(x)4.510

• In the fourth entry in the table, the piecewise linear involution PL is defined,511

with m > 1, by512

PL(x0,m, x) =
1

2

(
m− 1

m

)
|x0 − x|+

1

2

(
m+

1

m

)
(x0 − x) + x0

There are several ways to generate the piecewise linear ψ corner flow. One513

might take the symmetric function S as S(u, v) = u+ v or, alternatively, as514

S(u, v) = min(u, v). Let Γ be the characteristic through (x0, 0) extending515

downwards and to the right. The flow has its streamlines parallel to z = 0516

in the triangle below the top boundary and above Γ and parallel to the517

bottom profile z = −d(x) in the triangle above it and below Γ. Taking518

f = x+ PL(x0,m, x) generates a similar corner flow.519
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The corner flows, with no interior nodal lines, can be composed with other520

functions, e.g. periodic functions, and then the ψ has nodal curves – the flow521

exhibiting cells as in many of our earlier examples.522

Functions whose k-th iterate, k ≥ 2 is the identity are called involutions523

of order k. The account above treats the case k = 2, and it generalises.524

For any k ≥ 2 there are no solutions to the involution Abel equations with525

Q 6= 0. Also, let S be a function of k arguments which is invariant as one526

cycles through them,527

S(u1, u2, u3, . . . , uk) = S(u2, u3 . . . , uk, u1),

and define528

f(x) = S(x, involk(x), invol
[2]
k (x), . . . invol

[k−1]
k (x)).

Then, for any k ≥ 2, f solves (3.1b) when T = involk is an involution of529

order k. (Examples of S include symmetric functions such as the sum of k530

variables, etc..)531

8. Other hyperbolic equations

At the end of §2.1 we noted that the pde problem of this paper arose532

in contexts other than that of standing internal waves under rather special533

conditions. Broadly similar pdes arise when the buoyancy frequency is a534

function of z, i.e. ν2 depends on z, or where the waves arise superposed on535

some steady base flow. The question arises as to what extent the functional536

equation approach of this paper might be applied to other hyperbolic pdes.537

To the best of the author’s knowledge, the pdes in this subsection are not538

related to internal waves, but the subsection is here to indicate that other539

hyperbolic pdes are amenable to similar approaches, and may have some540

application to other wave phenomena. The method is applicable when the541

general solution of the pde is of the form542

ψ(x, z) = Ψ(x, z) (f−(X(x)− Z(z))− f+(X(x) + Z(z))) ,

often with some condition like Z(0) = 0.543

Rather than beginning with the immediately preceding solution and find-544

ing pdes that it satisfies, we note here various equations whose solutions545

are particular cases of the form above. A special case of the telegrapher’s546

equation547

∂2u

∂x2
− ν2∂

2u

∂z2
− bν ∂u

∂z
− b2u

4
= 0
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has as its general solution548

u(x, z) = exp

(
−bz
2ν

)(
f−(x− z

ν
) + f+(x+

z

ν
)
)
.

Variable coefficient pdes can also be treated. A very simple example is549

∂2u

∂x2
− ν

Z ′(z)

∂

∂z

(
ν

Z ′(z)

∂u

∂z

)
+

aν

Z ′(z)

∂u

∂z
+
a2u

4
= 0,

and its solution is550

u(x, z) = exp

(
−aZ(z)

2ν

)(
f−(x− Z(z)

ν
) + f+(x+

Z(z)

ν
)

)
.

Another widely studied wave equation concerns ‘spherically’ symmetric waves551

in polar coordinates552

∂2u

∂x2
− µ2

rN−1
∂

∂r

(
rN−1

∂u

∂r

)
+
µ2a0u

4r2
= 0.

(When a0 = 0 this is equivalent to the Euler-Poisson-Darboux equation.553

Copson p98.) With a0 as given, it’s general solution is554

a0 = (N − 1)(N − 3), u(x, r) =
f−(x− r

µ
)− f+(x+ r

µ
)

r(N−1)/2
.

The case N = 1 is the pde of this paper. The Dirichlet problem with u = 0555

on x = 0 and on r = ±
√

1− x2 leads to the functional equation solved in556

§6.1. The polynomial f of §6.1 lead to solutions at other values of N .557

There are many other pdes for which the general solution can be found,558

including examples with first derivatives with respect to x. A simple example559

of this, generalizing the special case of the telegrapher’s equation noted at560

the beginning of this subsection, is the equation – with α and β functions of561

x and z –562

∂2u

∂x2
−ν2∂

2u

∂z2
+
∂(αu)

∂x
−ν ∂(βu)

∂z
−
(
∂α

∂x
− ν ∂β

∂z
− α2 − β2

2

)
u

2
= 0 with βx = ναz.

The last condition ensures that there is a function φ for which β = −2νφz/φ563

and α = −2φx/φ, Then the general solution is564

u(x, z) = φ(x, z)
(
f−(x− z

ν
) + f+(x+

z

ν
)
)
.

For appropriate boundary value problems for any of the pdes of this subsec-565

tion, functional equation methods may prove to be useful.566
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9. Discussion

9.1. Conclusion

Solutions to the functional equations (1.1) and (3.1) can be used to567

construct exact two-dimensional standing internal wave solutions. Several568

approaches for subcritical and (partly) supercritical domains are presented569

making use of the functional equations. There are others, e.g. the iterative570

methods due to Levy and others (see [11, 12]). We believe that our exposition571

of the methods is satisfactory in the case of everywhere subcritical bottom572

profiles, our §4 and §5: these are solutions where the ‘rays focus to the end-573

points’. For partly supercritical bottom profiles – where the determination574

of the values of ν for which there are solutions is also part of the problem –575

our examples suggest that the functional equation approach may have value.576

Our work on this in §6 and §7 is as much intended to publicise the problem577

as to present solutions.578

The functional equations (1.1b) and (3.1b) have been used in the past to579

construct exact internal wave solutions, and [21] has also pointed out that580

one can associate solutions to (3.1b) with solutions to (3.1a). What is new581

with respect to earlier work on internal waves is to link (3.1a) to Abel’s582

functional equation and to make use for known properties and solutions of583

Abel’s functional equation. Theorem 5 guarantees that for subcritical bottom584

topographies all solutions to (3.1b) are derived by applying the set of periodic585

function with period 1 to any injective continuous solution of (3.1a). We are586

convinced that there is more to be elaborated, especially with the results on587

Abel’s functional equation in [11, 12].588

9.2. Anticipating applications to other internal-wave problems589

We expect that functional equation techniques may prove useful for some590

other internal wave problems in which z = 0 is a streamline.591

1) One such situation concerns the generation of internal waves by horizontal592

oscillations of a symmetric cylinder. The usual formulation has the stream593

function ψgen nonzero on the cylinder: ψgen = −Uz on the cylinder z =594

±d(x): see equation (2.7) of [10]. The pde remains the wave equation as in595

our equations (2.1), but the boundary conditions, except for ψgen(x, 0) = 0596

are different. The representation of solutions as in equation (2.2) with the597

boundary condition on the cylinder yields the functional equation598

fgen(x− d(x)

ν
)− fgen(x+

d(x)

ν
) = −Ud(x).
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One solution of this is of the form fgen(x) = cgenx with the constant cgen =599

νU/2. If f solves the homogeneous equation (1.1b) it follows that the general600

solution is fgen(x) = cgenx+f(x). The problem now requires complex-valued601

solutions of the functional equation with appropriate behaviour at infinity, a602

radiation boundary condition there. Several special cases have been investi-603

gated, and some solved by other techniques.604

• Elliptical cylinders with axes aligned with the coordinate axes are a605

particular case of the more general treatment in [10]. Here consider606

only the case when V = 0 in equation (3.42). The σ± in [10] is a multi-607

ple of our x± z/ν: see his equation (3.3). Barcilon’s (real) polynomial608

solutions correspond to blinking modes. For the wave-generation prob-609

lem of [10] the complex-valued f requires careful treatment of branch610

cuts in order that the radiation conditions at infinity are satisfied.611

• An experimental treatment of a square cylinder is given in [7].612

2) Tidal conversion is treated in [17, 3]. Another situation where complex f ,613

and radiation conditions, are involved is the propagation, transmission and614

reflection of monochromatic internal waves in a channel with a rigid upper615

lid {(x, 0)| −∞ < x <∞} and an everywhere subcritical bottom, see [19, 4].616
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