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Optimal Beamforming for
Non-Regenerative MIMO Relays with Direct Link

Yue Rong, Member, IEEE, and Feifei Gao, Member, IEEE

Abstract—In this letter, we generalize the existing works on
the design of the optimal relay amplifying matrix for non-
regenerative multiple-input multiple-output (MIMO) relay com-
munication systems by including the direct source-destination
link. We show that for most commonly used objective functions,
the optimal relay amplifying matrix has a general beamforming
structure, that is, the relay first sets beams to the direction of
the source-relay channel, then conducts a linear precoding, and
finally beamforms towards the direction of the relay-destination
channel.

Index Terms—MIMO relay, linear non-regenerative relay,
direct link.

I. INTRODUCTION

RECENTLY, non-regenerative multiple-input multiple-
output (MIMO) relay communications attract much re-

search interest. For a MIMO relay system, there are two
independent links between the source and the destination
nodes: the source-relay-destination link and the direct source-
destination link. Many works studied the optimal relay am-
plifying matrix for the source-relay-destination channel. In
[1], [2], the optimal relay amplifying matrix which maximizes
the mutual information (MI) between source and destination
was derived. In [3], [4], the relay amplifying matrix was
designed to minimize the mean-squared error (MSE) of the
signal waveform estimation at the destination. An optimal
relay amplifying matrix based on the maximum signal-to-noise
ratio (SNR) criterion was developed in [4]. All these works
did not consider the direct source-destination link.

In practice, the direct source-destination link provides valu-
able spatial diversity to the MIMO relay system and should not
be ignored. Obviously, the relay amplifying matrix designed
for the source-relay-destination link only [1]-[4] is not optimal
when the direct link is included. It was conjectured in [1]
that with the direct link, the left coordinate of the optimal
relay amplifying matrix is given by the right singular matrix
of the relay-destination channel. In [2], the structure of the
relay amplifying matrix that maximizes the source-destination
MI in the presence of the direct link was derived. However,
the structure of such relay amplifying matrix is suboptimal,
since it does not consider the structure of the transmission
power constraint at the relay node.

In this letter, we investigate the optimal relay amplifying
matrix for non-regenerative MIMO relay communication sys-
tems with the presence of the direct source-destination link.
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We prove the conjecture in [1] and show that for most com-
monly used objective functions, the optimal relay amplifying
matrix has a general beamforming structure. First, the relay
performs receive beamforming using the Hermitian transpose
of the left singular matrix of the source-relay channel. Then
the relay conducts a linear precoding operation. Finally, a
transmit beamforming is performed by the relay using the right
singular matrix of the relay-destination channel. In contrast to
MIMO relay systems with only the source-relay-destination
link, a closed-form solution of the optimal linear precoding
matrix can not be obtained. Nonetheless, one can always
resort to numerical ways to optimize the linear precoding
matrix. Numerical example demonstrates the effectiveness of
our algorithm.

II. SYSTEM MODEL

We consider a three-node MIMO communication system
where the source node transmits information to the destination
node with the aid of one relay node. The source, relay, and
destination nodes are equipped with 𝑁𝑠, 𝑁𝑟, and 𝑁𝑑 antennas,
respectively. Due to its merit of simplicity, a non-regenerative
strategy is applied at the relay node to amplify and forward the
received signal. The signal vector received at the destination
node over two consecutive time slots is

y(𝑡)≜
[
y𝑑(𝑡+ 1)
y𝑑(𝑡)

]

=

[
H𝑟𝑑FH𝑠𝑟

H𝑠𝑑

]
Gs(𝑡) +

[
H𝑟𝑑Fv𝑟(𝑡) + v𝑑(𝑡+ 1)

v𝑑(𝑡)

]
(1)

where y𝑑(𝑡+1) and y𝑑(𝑡) are 𝑁𝑑× 1 signal vectors received
at the destination through the source-relay-destination link
and the direct source-destination link, respectively, H𝑠𝑑, H𝑟𝑑,
H𝑠𝑟 are the channel matrices for the source-destination, relay-
destination, and source-relay links with dimension 𝑁𝑑 ×𝑁𝑠,
𝑁𝑑 × 𝑁𝑟, 𝑁𝑟 × 𝑁𝑠, respectively, s(𝑡) is the 𝑁𝑠 × 1 source
signal vector, F is the 𝑁𝑟×𝑁𝑟 relay amplifying matrix, G is
the 𝑁𝑠×𝑁𝑠 source precoding matrix, v𝑟(𝑡) is the 𝑁𝑟×1 noise
vector at the relay, v𝑑(𝑡+ 1) and v𝑑(𝑡) are the 𝑁𝑑 × 1 noise
vectors at the destination at time 𝑡+ 1 and 𝑡, respectively.

We assume that the source signal vector satisfies
E[s(𝑡)(s(𝑡))𝐻 ] = I𝑁𝑠 and all noises are independent and
identically distributed (i.i.d.) additive white Gaussian noise
(AWGN) with zero mean and unit variance. Here E[⋅] stands
for the statistical expectation, I𝑛 is an 𝑛× 𝑛 identity matrix,
and (⋅)𝐻 denotes the Hermitian transpose. We also assume
that the relay and destination nodes know all the channel
state information (CSI). However, the CSI is unavailable to
the source node. Thus, the source chooses G =

√
𝑃𝑠/𝑁𝑠I𝑁𝑠 ,

where 𝑃𝑠 > 0 is the transmission power available at the source
node.
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When a linear receiver is used at the destination node, the
estimated signal waveform is given by

ŝ(𝑡) = W𝐻y(𝑡) (2)

where W is a 2𝑁𝑑 ×𝑁𝑠 weight matrix. The receiver weight
matrix which minimizes the signal waveform estimation error
is the Wiener filter given by [5]

W =
(
H̄H̄𝐻 + C̄

)−1
H̄ (3)

where

H̄≜√
𝜌

[
H𝑟𝑑FH𝑠𝑟

H𝑠𝑑

]
, C̄≜

[
H𝑟𝑑FF

𝐻H𝐻
𝑟𝑑 + I𝑁𝑑

0𝑁𝑑×𝑁𝑑

0𝑁𝑑×𝑁𝑑
I𝑁𝑑

]
.

Here 0𝑚×𝑛 denotes an 𝑚 × 𝑛 matrix with all zeros entries,
(⋅)−1 denotes the matrix inversion, and 𝜌 ≜ 𝑃𝑠/𝑁𝑠. Using
(1)-(3), the MSE matrix E of the signal waveform estimation
is given by

E = E[(ŝ(𝑡)− s(𝑡))(ŝ(𝑡)− s(𝑡))𝐻 ]

=
[
I𝑁𝑠 + 𝜌H𝐻

𝑠𝑑H𝑠𝑑 + 𝜌H𝐻
𝑠𝑟F

𝐻H𝐻
𝑟𝑑

×(H𝑟𝑑FF
𝐻H𝐻

𝑟𝑑 + I𝑁𝑑
)−1H𝑟𝑑FH𝑠𝑟

]−1
. (4)

III. OPTIMAL RELAY BEAMFORMING

In this section, we derive the structure of the optimal relay
amplifying matrix. Most commonly used objective functions
in MIMO system design are closely linked to the MSE
matrix E [6]. For example, the negative MI objective is
MI = log2 ∣E∣, where ∣ ⋅ ∣ denotes the matrix determinant.
The MSE objective is given as MSE = tr(E), where tr(⋅)
denotes the trace of a matrix. In the sequel, we use 𝑞(E) as a
unified notation for the objective function. It is worth noting
that any practical objective function should be an increasing
function of E, i.e., if E1 ⪯ E2, then 𝑞(E1) ≤ 𝑞(E2), where
E1 ⪯ E2 means that E2−E1 is a positive semidefinite matrix.

The relay amplifying matrix optimization problem is written
as

min
F,E

𝑞(E) (5)

s.t. tr
(
F(𝜌H𝑠𝑟H

𝐻
𝑠𝑟 + I𝑁𝑟 )F

𝐻
) ≤ 𝑃𝑟 (6)

where (6) is the power constraint at the relay node, and 𝑃𝑟 > 0
is the power budget available at the relay. Let us introduce the
following singular value decomposition

H𝑠𝑟 = U𝑠Λ𝑠V
𝐻
𝑠 , H𝑟𝑑 = U𝑟Λ𝑟V

𝐻
𝑟 (7)

where Λ𝑠 and Λ𝑟 are 𝑅𝑠 ×𝑅𝑠 and 𝑅𝑟 ×𝑅𝑟 square diagonal
matrices (i.e., zero singularvalues are excluded). Here 𝑅𝑠 ≜
rank(H𝑠𝑟), 𝑅𝑟 ≜ rank(H𝑟𝑑), rank(⋅) denotes the rank of
a matrix. The following theorem states the structure of the
optimal F.

THEOREM 1: If 𝑞(E1) ≤ 𝑞(E2) for E1 ⪯ E2, then the
optimal F is given by

F = V𝑟AU𝐻
𝑠 . (8)

PROOF: Without loss of generality, we write F as

F =
[
V𝑟 V⊥

𝑟

] [A B
C D

] [
U𝐻

𝑠

(U⊥
𝑠 )

𝐻

]
(9)

where V⊥
𝑟 (V

⊥
𝑟 )

𝐻 = I𝑁𝑟 − V𝑟V
𝐻
𝑟 , U⊥

𝑠 (U
⊥
𝑠 )

𝐻 = I𝑁𝑟 −
U𝑠U

𝐻
𝑠 , such that V̄𝑟 ≜ [V𝑟 V⊥

𝑟 ] and Ū𝑠 ≜ [U𝑠 U⊥
𝑠 ]

are unitary matrices, A, B, C, D are arbitrary matrices with
dimensions of 𝑅𝑟 × 𝑅𝑠, 𝑅𝑟 × (𝑁𝑟 − 𝑅𝑠), (𝑁𝑟 − 𝑅𝑟) × 𝑅𝑠,
(𝑁𝑟 − 𝑅𝑟) × (𝑁𝑟 − 𝑅𝑠), respectively. Applying the matrix
inversion lemma (T+XYZ)−1 = T−1 −T−1X(ZT−1X+
Y−1)−1ZT−1, (4) can be written as

E =
[
I𝑁𝑠 + 𝜌H𝐻

𝑠𝑑H𝑠𝑑 + 𝜌H𝐻
𝑠𝑟

× [
I𝑁𝑟 − (I𝑁𝑟 + F𝐻H𝐻

𝑟𝑑H𝑟𝑑F)
−1

]
H𝑠𝑟

]−1
. (10)

Substituting (7) and (9) into (10) we have

F𝐻H𝐻
𝑟𝑑H𝑟𝑑F = Ū𝑠

[
A𝐻Λ2

𝑟A A𝐻Λ2
𝑟B

B𝐻Λ2
𝑟A B𝐻Λ2

𝑟B

]
Ū𝐻

𝑠 . (11)

From (10) and (11) we see that the objective function (5) does
not depend on C and D. Substituting (11) back into (10) we
have

E =
[
I𝑁𝑠+𝜌H𝐻

𝑠𝑑H𝑠𝑑 + 𝜌V𝑠Λ𝑠

(
I𝑅𝑠−U𝐻

𝑠 Ū𝑠

×
[
A𝐻Λ2

𝑟A+I𝑅𝑠 A𝐻Λ2
𝑟B

B𝐻Λ2
𝑟A B𝐻Λ2

𝑟B+I𝑁𝑟−𝑅𝑠

]−1

Ū𝐻
𝑠 U𝑠

)
Λ𝑠V

𝐻
𝑠

]−1

=
[
I𝑁𝑠 + 𝜌H𝐻

𝑠𝑑H𝑠𝑑 + 𝜌H𝐻
𝑠𝑟H𝑠𝑟 − 𝜌V𝑠Λ𝑠

× (
A𝐻Λ2

𝑟A+ I𝑅𝑠 −M
)−1

Λ𝑠V
𝐻
𝑠

]−1

(12)

where we applied the matrix inversion lemma for parti-
tioned matrix to obtain the second equation, and M ≜
A𝐻Λ2

𝑟B(B𝐻Λ2
𝑟B + I𝑁𝑟−𝑅𝑠)

−1B𝐻Λ2
𝑟A. Since 𝑞(E) is in-

creasing with respect to E, in order to minimize 𝑞(E), E
should be minimized. It is well-known that for two positive
definite matrices A and B, if A ≻ B, then A−1 ≺ B−1.
Thus, from (12), E is minimized if M = 0𝑅𝑠×𝑅𝑠 , which
holds if B = 0𝑅𝑟×(𝑁𝑟−𝑅𝑠).

Now we look at the constraint (6). The power consumed by
the relay node can be rewritten as

tr
(
F(𝜌H𝑠𝑟H

𝐻
𝑠𝑟 + I𝑁𝑟)F

𝐻
)
= tr

(
A(𝜌Λ2

𝑠 + I𝑅𝑠)A
𝐻

+BB𝐻 +C(𝜌Λ2
𝑠 + I𝑅𝑠)C

𝐻 +DD𝐻
)
. (13)

Obviously, B = 0𝑅𝑟×(𝑁𝑟−𝑅𝑠), C = 0(𝑁𝑟−𝑅𝑟)×𝑅𝑠
, and D =

0(𝑁𝑟−𝑅𝑟)×(𝑁𝑟−𝑅𝑠) minimize the power consumption. Thus
we have F = V𝑟AU𝐻

𝑠 . □
Theorem 1 shows that the optimal relay amplifying matrix

can be viewed as a general form of beamforming. The relay
first performs receive beamforming using the Hermitian trans-
pose of the left singular matrix of the source-relay channel
U𝐻

𝑠 . Then the relay conducts a linear precoding operation
using A. Finally, a transmit beamforming is performed by the
relay using the right singular matrix of the relay-destination
channel V𝑟. It has been shown in [1]-[4] that without the
direct link, the optimal relay amplifying matrix is

F = V𝑟1AU𝐻
𝑠1 (14)

where V𝑟1 and U𝑠1 contain 𝐿 ≜ min(𝑅𝑠, 𝑅𝑟) columns of
V𝑟 and U𝑠 associated with the largest 𝐿 singular values,
respectively, and A is an 𝐿 × 𝐿 diagonal matrix. Obviously,
Theorem 1 includes [1]-[4] as special cases.
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Fig. 1. BER versus SNRsr. 𝑁𝑠 = 𝑁𝑑 = 2, 𝑁𝑟 = 6, SNRrd = 20dB,
SNRsd = SNRsr − 10dB.

The remaining task is to optimize A. From (12) and (13),
we can write the optimization problem as

min
A

𝑞
([
I𝑁𝑠 + 𝜌H𝐻

𝑠𝑑H𝑠𝑑 + 𝜌H𝐻
𝑠𝑟H𝑠𝑟

−𝜌V𝑠Λ𝑠

(
A𝐻Λ2

𝑟A+ I𝑅𝑠

)−1
Λ𝑠V

𝐻
𝑠

]−1
)

(15)

s.t. tr
(
A(𝜌Λ2

𝑠 + I𝑅𝑠)A
𝐻
) ≤ 𝑃𝑟 . (16)

Both problem (5)-(6) and problem (15)-(16) have matrix
optimization variable. However, in the former problem, the
optimization variable F is an 𝑁𝑟 × 𝑁𝑟 matrix. While in the
latter problem, the dimension of the optimization variable A is
only 𝑅𝑟×𝑅𝑠. Since 𝑅𝑟 ≤ 𝑁𝑟 and 𝑅𝑠 ≤ 𝑁𝑟, the dimensional
reduction from 𝑁2

𝑟 to 𝑅𝑠𝑅𝑟 can be quite significant. Note
that if H𝑠𝑑 ∕= 0𝑁𝑑×𝑁𝑠 , there is no specific structure for the
optimal A for general H𝑠𝑑 and A should be designed as a
general matrix.

Now let us look at a specific example of 𝑁𝑠 = 1 and
there is no constraint on 𝑁𝑟 and 𝑁𝑑. The MSE matrix is
a scalar in this case and is given by 𝐸 =

[
1 + 𝜌

(
h𝐻
𝑠𝑑h𝑠𝑑 +

h𝐻
𝑠𝑟h𝑠𝑟−𝜆2

𝑠(a
𝐻Λ2

𝑟a+1)−1
)]−1

, where for clarity we rewrite
the corresponding matrices terms in (15) into vectors and
scalars. In this example, the optimization problem (15)-(16)
is equivalent to

max
a

a𝐻Λ2
𝑟a s.t. (𝜌𝜆2

𝑠 + 1)a𝐻a ≤ 𝑃𝑟 . (17)

The solution to problem (17) is a =[√
𝑃𝑟/(𝜌𝜆2

𝑠 + 1),01×(𝑅𝑟−1)

]𝑇
. Since in this example

u𝑠 = h𝑠𝑟/∥h𝑠𝑟∥, the optimal relay amplifying matrix is

F =

√
𝑃𝑟/(𝜌𝜆2

𝑠+1)

∥h𝑠𝑟∥ v𝐻
1 h𝑠𝑟 , where ∥h𝑠𝑟∥ =

√
h𝐻
𝑠𝑟h𝑠𝑟 and v1 is

the column vector of V𝑟 associated with the largest singular
value. We find that for 𝑁𝑠 = 1, F is a rank-one matrix.
This indicates that the relay first forms a “beam” towards
the direction of the source-relay channel, and then points
the “beam” to the strongest direction of the relay-destination
channel. Interestingly, in this case the direct link does not
affect F for any 𝑁𝑟 and 𝑁𝑑.

Unfortunately, for 𝑁𝑠 ≥ 2, the problem (15)-(16) does not
have a closed-form solution for general H𝑠𝑑. We should resort

to numerical methods, such as the projected gradient method
[7] to solve (15)-(16).

IV. NUMERICAL EXAMPLE

We simulate a MIMO relay system with 𝑁𝑠 = 𝑁𝑑 = 2
and 𝑁𝑟 = 6. All channel matrices have Gaussian entries with
zero-mean and variances 𝜎2

𝑠/𝑁𝑠, 𝜎2
𝑟/𝑁𝑟, 𝜎2

𝑑/𝑁𝑠 for H𝑠𝑟, H𝑟𝑑,
and H𝑠𝑑, respectively. Consequently, the SNRs are defined as
SNRsr ≜ 𝜎2

𝑠𝑃𝑠/𝑁𝑠, SNRrd ≜ 𝜎2
𝑟𝑃𝑟/𝑁𝑟, SNRsd ≜ 𝜎2

𝑑𝑃𝑠/𝑁𝑠

for the source-relay, relay-destination, and source-destination
links, respectively. We simulate a scenario where the distance
between the relay and destination nodes is fixed, while the
source-relay distance (and thus also the source-destination
distance) are varying. We set SNRrd = 20dB, SNRsd =
SNRsr − 10dB. All simulation results are averaged over 1000
independent channel realizations.

We compare the performance of the optimal (OPT)
algorithm in (8) with the naive amplify-and-forward (NAF)
algorithm where F =

√
𝑃𝑟/tr(𝜌H𝑠𝑟H𝐻

𝑠𝑟 + I𝑁𝑟 )I𝑁𝑟 ,
the pseudo match-and-forward (PMF) algorithm where F =√
𝑃𝑟/tr((H𝑠𝑟H𝑟𝑑)𝐻(𝜌H𝑠𝑟H𝐻

𝑠𝑟 + I𝑁𝑟)H𝑠𝑟H𝑟𝑑)(H𝑠𝑟H𝑟𝑑)
𝐻 ,

and the suboptimal (SUB) algorithm (14) which optimizes
only the source-relay-destination link. For both the OPT and
the SUB algorithms, we chose MSE tr(E) as the objective
function. For the OPT algorithm, the projected gradient
method is applied to optimize A in (15)-(16).

Fig. 1 shows the performance of four algorithms in terms
of bit-error-rate (BER) versus SNRsr using the QPSK constel-
lation. It can be seen that the NAF algorithm has the worst
performance, since it does not exploit the information on H𝑟𝑑.
The OPT algorithm outperforms all competing algorithms in
the whole SNRsr range. In fact, it achieves a much higher
diversity order than the other algorithms.

V. CONCLUSION

In this letter, we have derived the general structure of the
optimal relay amplifying matrix for non-regenerative MIMO
relay systems in the presence of the direct source-destination
link. Such relay amplifying matrix is optimal for most com-
monly used objectives.
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