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Abstract 

 

The fungal pathogen Peyronellaea pinodes, Peyronellaea pinodella, Ascochyta pisi 

and Phoma koolunga are the most destructive fungal pathogens of field pea. Whole 

genome sequencing, comparative and in planta transcriptome studies were pursued to 

test the hypothesis that these pathogens secrete effectors as part of their pathogenicity 

arsenal. The genome of isolates of P. pinodes (2), P. pinodella (2), A. pisi (3) and Ph. 

koolunga (2) were completely sequenced and evaluated. In planta transcriptomes of 

P. pinodes, P. pinodella and Ph. koolunga were obtained as part of effector prediction. 

The genome assemblies varied between 29 and 33 Mbp with equilibrated GC content 

(51- 53%). The synteny relationship between P. pinodes and other fungal pathogens is 

congruent to their established evolutionary relationship. Genome analysis uncovered 

plant cell wall de-polymerization strategies evolved by ascochyta blight pathogens to 

establish themselves in their host. Heterologous expression confirmed that necrosis-

inducing proteins (NLP) from Didymellaceae elicited cell-death only to dicots. This 

cytotoxic NLP is absent from cereal pathogens analysed suggesting niche adaptive 

evolution of Didymellaceae pathogens. About 223, 226 and 123 effector candidates 

were predicted from P. pinodes, P. pinodella and Ph. koolunga, respectively. In planta 

expressed effectors might play crucial role during infection. Further functional 

analysis will lead to development of novel pea breeding techniques. The availability 

of these genome data have contributed to scare molecular data available for studying 

host pathogen interaction. It is perceived that public availability of these data will 

increase public research engagement, hasten integration of available host and pathogen 

genome resources and boost pea improvement programs. 
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1. General Introduction 

 

The production of cereal crops continue to be the most important food source to feed 

the growing world population [81]. Increasing crop yield and crop diversifications are 

required to support projected population growth by 2050 [317]. Gan et al. [101] 

indicated that cropping systems diversification with pulses improves soil water 

conservation, ameliorate soil nitrogen availability, and promote overall system 

productivity. Field pea (Pisum sativum L.) is a pulse crop valued for its ability to aid 

in cereal production in crop rotation systems [215]. The productivity of field pea is 

constrained by a number of biotic stresses among which ascochyta blight (syn: 

Blackspot) is the most detrimental diseases of field pea worldwide [28, 84].   

 

Ascochyta blight of field pea is caused by at least four fungal pathogens, including 

Peyronellaea pinodes, Peyronellaea pinodella, Ascochyta pisi and Phoma koolunga 

[31, 57, 240]. The disease is responsible for losses of AUD$19.6 million per annum to 

the Australian pea industry [223]. Littile is known about the molecular basis of the 

interaction between the four pathogens and field pea at a molecular level. Advances in 

molecular studies of these pathogens have been restricted largely by a scarcity of 

molecular data. Despite a plethora of fungal genomes having been sequenced, there is 

no published genome sequence available for the Didymellaceae family – an important 

fungal taxonomic group containing these four important pea pathogen species. This 

research project was designed to understand the molecular interaction between P. 

pinodes, P. pinodella, Ph. koolunga and their host Pisum sativum through genome and 

in planta transcriptome sequencing and profiling of each pathogen during pea 

infection. The objectives are: sequencing and comparative analysis of P. pinodes, P. 

pinodes, P. pinodella, and Ph. koolunga genomes, evaluation and characterization of 

key pathogenicity gene candidates, and in planta transcriptome profiling of P. pinodes, 

P. pinodella, and Ph. koolunga at various pea infection stages.  
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The project’s outputs are organized into six main chapters as shown in Figure 1. The 

first chapter describes the profile of P. pinodes, P. pinodella, Ph. koolunga and A. pisi 

within the context of taxonomic relatedness, economic relevance, and host range and 

disease epidemiology. The overall summary of current research project is highlighted 

in chapter 1. Chapter 2 covers pathogen profile, population structure and molecular 

mechanisms of pathogenicity including phytoalexin detoxification, secretion of 

molecules that suppress host defence responses and production of toxic metabolites.  

 

Chapter 3 describes genome assembly and gene annotation of the Didymellaceae 

pathogens, with a major focus on improving the assembly of the reference species (P. 

pinodes isolate M074) using multiple libraries of different insert sizes. It presents a 

summary of genome assembly statistics, repeat contents of each genome, number of 

predicted open reading frames and comparative analysis between fungal genomes 

within the taxonomic order Pleosporales. Analyses include investigation of 

compartmentalized genome structure and the location of isolate specific genomic 

regions in closely related species (P. pinodes and P. pinodella), enrichment of 

morphogenesis and transcription related domains in P. pinodes, and gene family 

expansion of carbohydrate active enzymes (CAZymes). 

 

Chapter 4 describes findings associated with pathogenicity related genes that have 

been reliably identified and partially characterized in Ascochyta Blight Pathogens of 

Field Pea (ABPFP). It looks into the functional divergence between necrosis- and 

ethylene inducing - peptide like proteins (NLPs) of ABPFP based on cytotoxicity assay 

of purified proteins upon infiltration on pea stipules and other dicot plants. Also 

presented are comparative and phylogenetic analysis followed by a functional assay 

implemented to delineate the level of sequence conservation and functional relevance 

of NLPs in ABPFP are also presented. 

 

Chapter 5 includes detailed accounts of conserved fungal effector candidate genes 

derived from the analyses presented in earlier chapters. This chapter comprises the 

prediction and identification of lysine motif (LysM) and Cyanovirin-N (CVNH) 
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protein families which are compared against well-characterized LysM effectors in 

other fungal pathogens to elucidate their possible involvement in fungal infection 

process. This chapter also covers prediction, comparative and phylogenetic analysis of 

putative pisatin demethylase CYP450 (PDA), a potent antifungal compound produced 

by pea plant. Finally, this chapter includes speculation that the LysM and pisatin 

demethylation processes may work together toward protecting the fungus and 

promoting survival in hostile host-associated environments during infection.  

 

Chapter 6 provides secretome and in planta transcriptome analysis, combined with 

data derived from in-silico and experimental sources to predict putative effector 

candidate genes in P. pinodes, P. pinodella and Ph. koolunga. The level of congruence 

between fungal effector prediction using overall ranking of various evidences and 

recently developed machine learning based effector prediction tools is illustrated. The 

chapter also encompass catalogues of secreted protein sequences, in planta expression 

patterns of predicted effectors and shortlisted effector-like candidate genes in P. 

pinodes, P. pinodella and Ph. koolunga. It outlines the possible role of predicted 

effector like candidate genes, present evidence of selective constraints and indicates 

conservation of effector-like candidate genes exhibited across the three fungal 

pathogens. 

 

The final chapter (Chapter 7) summarizes the purpose of the research project and the 

major findings of each previous chapters, with further discussion of the implications 

and benefits to both the scientific community and to industry. 
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Figure 1 Flowchart of the research projects implemented in this studies. 
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2. Molecular Basis of Ascochyta Blight Pathogens of Field Pea in 

the genomic Era 

 

2.1 Introduction 
 

Ascochyta blight (syn: Blackspot) disease is among the most detrimental diseases of 

field pea worldwide [28, 84]. The disease is caused by at least four pathogen species 

including Peyronellaea pinodes, Peyronellaea pinodella, Ascochyta pisi and Phoma 

koolunga [28, 84].  It inflicts an estimated yield loss of between 10% and 100% under 

various conditions around the globe [31, 112, 270, 339]. 

 

Exploration of genomics of agriculture related microbe significantly contributed to the 

improvement of crop for human welfare through development of novel techniques to 

fight phytopathogens. The bulk of knowledge and information accumulated on 

contribution of genomics to host – pathogen interaction studies of major fungal 

pathogens of dicot and monocot fungal pathogens were summarized in recent 

publication [68, 69]. These resources continue to assist in the development of novel 

solutions to new problems that may arise in the agricultural development. However, 

there is limited information available for fungal pathogens of pulse crops in general 

and field pea in particular. So far, there is no published genome information available 

for the fungal pathogens in the Didymellaceae family that attack field pea.  

 

2.2 Molecular basis of interaction between plants and pathogens  
 

Comprehensive understanding of the interaction between the pathogen and host is 

crucial for understanding the compatibility that leads to disease symptom 

development. The discovery of effectors involved in host-pathogen interaction is one 

of the major advances in the field of molecular plant pathology. Effectors are proteins 

or small metabolites that alter host cells structure and function or alter immune 

responses [137, 154]. Various pathogenic fungi utilize diverse effectors to override 
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intrinsic host defence mechanisms regardless of pathogen lifestyle. Necrotrophic, 

biotrophic, mutualistic as well as endophytic microbes produce effector molecules to 

manipulate their host [197, 254, 267]. These indicate that fungi with diverse lifestyles 

secrete/produce effector repertoires to modulate their host to survive and flourish while 

restricting themselves from recognition by their respective host.  

 

Current knowledge of necrotrophic fungal effectors indicate two types of effectors 

employed to debilitate host immune responses. The first group of necrotrophic 

pathogens such as Cochliobolus victoriae, Parastagnospora nodurum (SnTox1, 

SnTox3, SnToxA, SnTox6) and Pyrenophora tritici-repentis (PtrToxA) secrete 

effectors that triger host susceptibility (effector – trigered susceptibility) [90, 93, 102, 

196, 198]. On the other hand, necrotrophic pathogens such as Rhynchosporium 

commune and Botrytis cinerea secrete non-specific effectors that induce plant cell 

death [165, 276]. Biotrophic and hemibiotrophic pathogens like Cladosporium  

fulvum, Melampsora lini, Ustilago maydis, Leptosphaeria maculans, Magnaporthe 

oryzae and Colletotrichum higginsianum secrete avirulence effectors that trigger 

hypersensitive response [100]. Some of these fungal pathogens have evolved effectors 

that prevent the activation of pathogen associated molecular pattern (PAMP triggered 

immunity). The Ecp6 gene in C. fulvum and Slp1 gene in M. grisea are examples of 

such effectors [63, 216]. Therefore, both generalized and specialized effector 

candidates could be expected from pathogens of necrotrophic lifestyle. Moreover, both 

necrotrophic and hemi/biotrophic pathogens maneuver their host and their distinction 

remains elusive [231]. 

 

Effector discovery in ABPFP of field pea is at its infant stage. As in other filamentous 

ascomycete fungi, ABPFP may secrete a number of effectors to establish compatibility 

with their host. Peyronellaea pinodes is reported to secrete suppressors that are able to 

inhibit host plant defence responses [284, 285]. This review will attempt to document 

recent developments in the fields of ascochyta blight pathogen and field pea interaction 

and highlight research areas that could be addressed in the future to enhance the 

development of pre-breeding tools in field pea improvement programs. 
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2.3 Taxonomy and relatedness of ascochyta blight pathogens of field pea 
 

Ascochyta blight of field pea is caused by at least four fungal pathogens including 

Peyronellaea pinodes, Peyronellaea pinodella, Ascochyta pisi and Phoma koolunga. 

In addition, Boeremia exigua var. exigua and Phoma herbarum were reported as part 

of the ascochyta blight of field pea [192, 193]. Based on phylogenetic analysis of 

multiple loci, P. pinodes, P. pinodella and A. pisi are closely related species that belong 

to specific clade of Didymellaceae family within the order Pleosporales [11, 57, 60, 

240]. 

 

Peyronellaea pinodes and P. pinodella are very closely related species. Phylogenetic 

analysis of sequence data from Internal Transcribed Spacer regions (ITS) are unable 

to differentiate the two specie [240, 335]. They can, however, be distinguished based 

on phylogenetic analysis of glyceraldehyde-3-phosphate dehydrogenase (G3PD) 

sequence [240]. Evolutionary analysis using multiple loci including 28S rDNA (Large 

Subunit - LSU), 18S rDNA (Small Subunit - SSU), the ITS 1 and 2 and 5.8S rDNA 

(ITS) and part of the β-tubulin (TUB) gene region refined their polytomy distribution 

and confirmed their placement in the Peyronellaea (Berk. & A. Bloxam) Aveskamp, 

Gruyter & Verkley [11].   

 

Molecular analysis based on mating loci can also be used as a marker to distinguish 

the P. pinodella from P. pinodes as opposed to ITS [335] . In fact P. pinodes and P. 

pinodella are different in their mode of reproduction. Peyronellaea pinodes is a 

homothallic where both reproductive structures are on same thallus whereas P. 

pinodella is a heterothallic requiring two opposite partners for sexual reproduction [29, 

38, 171]. Similarly, A. pisi is heterothallic mating type confirmed by both molecular 

investigation and in vitro crossing [38]. 

 

The prevalence and economic importance of A. pisi in Australia is currently limited. 

A recent report by Murray and Brennan [223] showed that  A. pisi is present in major 

pea growing regions with negligible impact on crop yield, which is consistent with 
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previous reports from southern Australia [5]. The availability of good sources of 

resistance to A. pisi might have controlled the pathogen in Australia and elsewhere [5], 

but the disease is recently expanding in global distribution. It has been recently 

reported from Spain [151] and South Dakota [212] and Idaho [123] in the United States 

of America. The pathogen could be a potential threat to the pea industry in the event 

of its resurgence under the present climate scenario.  

 

Phoma koolunga has been reported as an important causative agent of ascochyta blight 

of field pea in Southern Australia [57, 223]. Recent report indicated the existence of 

this pathogen in Western Australia (Li et al., 2014). The species is becoming more 

frequent in samples from field pea sites with similar distribution to P. pinodes [58]. 

The fungus can be clearly distinguished from the other ABPFP in culture [57]. 

According to phylogenetic analysis based on DNA-dependent RNA polymerase II 

nucleotide sequences (RPB2) and G3PD Ph. koolunga is more closely related to A. 

pisi than P. pinodes and P. pinodella [38]. To date, there is no information on the 

species’ teleomorph nor its mating types. The reproductive mode has significant 

epidemiological implications and is one of the factors influencing the relative 

prevalence of ascochyta blight complexes in the field. 

 
2.4  Infection and disease development in ascochyta blight pathogens of field pea 
 

The nature of infection and establishment strategies of the ABPFP are not fully 

understood. Only Clulow et al. [44] indicated occurrence of biotrophic and 

necrotrophic stage of development in P. pinodes during epicotyle infection which was 

not observed during leaf infection. As opposed to this, Roger and his colleagues [262] 

indicated that cuticle penetration takes place by germ-tube formed underneath 

appressoria followed by intercellular mycelial growth before inciting cell death and 

suggested as hemibiotrophic pathogen. Toyoda et al. [318] regarded P. pinodes as 

hemibiotrophic while Le May et al. [183] and Tivoli et al. [316] considered as 

necrotrophic pathogen. Based on recent fungal developments observed during pea leaf 

infection, consideration of ABPFP as a necrotrophic pathogen where penetration takes 

place via natural openings or direct penetration through formation of appresoria.  
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Leaf infection by P. pinodes, P. pinodella and Ph. koolunga induces indistinguishable 

disease symptoms under field conditions. Early infection of plants results in small 

purple spots that under favourable conditions enlarge and turn brown to black with 

sometimes-definite margins and zonate appearance [31, 315]. Lesion expansion is 

followed by aggressive mycelium extension through diffusion of toxins, enzymes and 

suppressors that allow removal of physical barriers and delay host responses [315]. 

The lesions developed in response to infection by A. pisi were easily distinguished 

from those symptoms induced by P. pinodes and P. pinodella by tan-coloured lesions 

with discrete dark margins [38, 118, 315]. 

 

The ABPFP disease cycle is very similar to those described for Ascochyta rabiei by 

Kaiser  and his co-workers [150]. During wet weather ascospores of P. pinodes can be 

transported a considerable distance by wind while asexual pycnidiospores will be 

distributed over short distances by rain splash [261]. Early infection coupled with 

periodic wet weather events lead to rapid spread of the disease and can result in 

complete crop failure. Affected leaves remain attached to the plant. Stem lesions are 

similar in colour, elongate vertically or girdle the stem killing the entire plant with a 

blue-black appearance. Under conditions unfavourable for the pathogen, the lesions 

remain brownish on the stem. Infection can also appear on flowers and seed infection 

may show no symptoms or may show shrinkage and dark-brown discolouration [31]. 

Severe infection aggravates the senescence of plants at early maturity leading to 

extensive quality deterioration.  

 

Peyronellaea pinodes and P. pinodella can survive on stubble, seeds and pea trash and 

in the soil as sclerotia and chlamydospores that serve as a primary source of inoculum 

(Figure 2)In A. pisi, chlamydospores are rare or absent and the pathogen has low 

saprophytic ability to survive during non-cropping season and over-summer on pea 

remnants [31, 249]. Therefore, seed infection is the most important aspect of A. pisi 

transmission [31]. Tivoli and Banniza [315] also showed that seeds were the main 

source of introduction and dissemination of various ascochyta species in many 

countries. Although epidemiological studies on Ph. koolunga is limited, emerging 

reports indicated that Ph. koolunga can be transmitted through seed infection [160]. 
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Figure 2 Peyronellaea pinodes disease cycle. 

Red and black arrows indicate processes that take place during winter and summer, 

respectively. Red arrows with broken line indicates long distance dispersal of 

ascocpores released from pseudothesia. The figure is collated based on [31, 261, 315].    
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2.5 Population structure of ascochyta blight pathogens of pea (ABPFP) 
 

There are two conflicting views with regard to P. pinodes pathotype variation. The 

first posits that there is no or only minor host genotype specialization in the P. pinodes 

pathogen population [232, 336]. The other view is the existence of 6 – 22 pathotypes 

among P. pinodes population [280, 300, 338, 350]. Each study considered different 

with respect to host genotypes, isolate population, culture age, seedling stage, and 

experimental conditions used to categorize the pathogen population. The lack of 

concordant findings is related to the quantitative nature of resistance in cultivated 

Pisum [87, 248, 313, 314, 351] and high level of genotype by environment interaction 

of such traits and differences in experimental settings.  

 

Variation in the level of aggressiveness among isolates of A. pisi has been reported. 

Ali et al. [4] identified fifteen groups of A. pisi isolates based on 58 differential lines 

in Australia. Similarly, Darby et al. [56] identified five pathotype groups among 57 

isolates of A. pisi tested on 15 host lines in Britain. As opposed to P. pinodes and A. 

pisi, there was no variation in aggressiveness of P. pinodella that could group into 

pathotype [4]. The level of isolate variation in Ph. koolunga population has not been 

reported. Generally, it seems that there is no compelling evidence of host genotype 

specificity in cultivated Pisum species. 

 

It is essential to consider isolates from both cultivated and wild Pisum species in 

pathotype variation studies. Human selection for agronomically desirable trait 

decreases the level of genetic variation in the domesticated crop relative to their wild 

type ancestors [107]. This will compromise the resistance level in the domesticated 

crop and predispose these cultivars to susceptibility [298]. The spatial and temporal 

selection pressure imposed by the host can lead to emergence of homogeneous 

pathogen population structure. Therefore, it is not a surprise to see more or less 

uniform ABPFP population from cultivated Pisum species which are selected for 

desirable agronomic traits, but lack high level of resistance.   
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2.6 Host specificity of ascochyta blight pathogens of field pea 
 

Fungal pathogens in the Didymellaceae exhibited different levels of host specificity.  

Previous studies indicate that P. pinodes was able to infect Pisum, Lathyrus, 

Phaseolous, Vicia species, Medicago, Vicia and Trifolim [249]. Because of this, Le 

May et al. [182] concluded that P. pinodes is not a specialized pathogen. However, 

when taxonomic relatedness of the hosts exploited by P. pinodes are considered, all 

the enlisted hosts belong to the Fabaceae family indicating specialization to this 

specific host group. Similarly, A. pisi is able to induce visible disease symptom only 

on specific hosts within Fabaceae [135, 240]. [240]. In contrast to the narrow host 

ranges of P. pinodes and A. pisi, P. pinodella was able to infect hosts that belong to at 

least ten families including Fabaceae (pea, glycine), Amaranthaceae (Beta), Rubiaceae 

(coffee), Malvaceae (Gossypium), Poaceae (Hordium, Casuarinaceae (Casuarina), 

Polemoniaceae (Phlox), Asteraceae (Lactuca), Amaryllidaceae (Galanthus), and 

Appiaceae (petroselinum)[164]. Thus, consideration of taxonomic relatedness is 

important to capture the level of host exploitation over evolutionary time rather than 

classical cross infection tests alone [246]. Critical analysis of such concept using host 

and pathogen phylogenetic approach would answer why and how very closely related 

pathogen species evolved different degree of host specificity in ascochyta blight 

pathogens of field pea.  

 

Interests has been growing in discovering determinants and mechanisms of pathogens 

host specificity. Determinants of host specificity are impacted by changes in genetic 

constituents of the pathogen, ranging from single nucleotide changes to genomic 

islands or mobile elements [17, 166, 299]. Some of this host specificity determinants 

are under rapid evolution [245]. Most of the necrotrophic host specific determinants 

are secreted molecules that confer pathogen compatibility to a particular host [93]. 

Interestingly, the generalist necrotrophic fungal pathogen B. cinerea also contains a 

host specific virulence factor encoding endo-arabinanase (BcAra1) [224]. It will be 

interesting to investigate the molecular basis of host specificity exhibited by the closely 

related pathogens of ABPFP. The research achievements made toward understanding 
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the ABPFP – pea interaction at molecular level were described in the following 

sections. 

2.7 Molecular mechanisms of pathogenicity (effectors in ABPFP) 
 

Most necrotrophic plant pathogen have evolved similar mechanisms to penetrate their 

host surface. They kill their host cell ahead of colonization using toxic molecules and 

lytic enzymes to support their life [231, 322]. The phytotoxins and lytic enzymes are 

secreted into the host tissue both prior to and during colonization leading to appearance 

and development of necrotic lesions [175, 322].   

 

The early infection mechanisms, disease development and induced symptoms by 

ABPFP are typical characteristics of necrotrophic lifestyle. Microscopic in planta P. 

pinodes development showed that host cell death are evident ahead of colonization 

within the first 21 hours post infection (Figure 3). In addition, previous and emerging 

research results indicated that the pathogens are able to produce a number of molecules 

including toxic metabolites and hydrolytic enzymes during their interaction. Cell wall 

degrading enzyme production and possible contribution to lesion formation during 

infection by P. pinodes, P. pinodella and A. pisi was reported in 1970s [10, 134] but 

no further progress made to understand their role as virulence factors. 

  



CHAPTER TWO 

 

14 
 

  

 

 

 

 

 

   

Figure 3 Disease symptom and in planta development of P. pinodes during pea 

infection. 

A) Conspicuous sunken lesions at 21 hours post inoculation on youngest stipules. 

B) Coalescence of lesions and infection advanced toward stem 96 hours post 

inoculation. 

C) Mycelium development inside plant tissue observed under microscope after 

Alexa flour staining. 

D) Proliferation of the fungus inside death tissue at 96 hours post infection. 

E) Formation of pychnidia 

F) Pychnidia maturation and spore libration 

E F 
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Red and yellow scale bar indicate 50 µm and 100 µm, respectively. 

2.8 Phytoalexin detoxification is associated to virulence  
 

Phytoalexins are toxic molecules synthesized de novo by plant tissues in response to 

microbial infection or stress conditions [304]. A number of reports indicate that fungal 

pathogens are capable of detoxifying phytoalexins. Studies have shown that Alternaria 

brassicola, Leptosphaeria maculans and B. cinerea are able to detoxify camalexin and 

brassinin, potent phytoalexins produced by cruciferous species, to non-toxic 

compounds [236, 237]. Moreover, Joubert et al. [148] suggested that camalexin and 

brassinin might activate fungal mitogen-activated protein kinases (MAPKs) which can 

help in shielding the fungus from host-induced stresses. In line with this, brassinin 

detoxification by A. brassicola leads to the suppression of various crucial plant defence 

responses [238].  

 

A well characterized phytoalexin of pea is pisatin.  It has been demonstrated that many 

pea pathogens (P. pinodes, P. pinodella, A. pisi, Nectria haematococca, Fusarium 

oxysporum f.sp. pisi) and other pathogens such as F. oxysporum f.sp. phaseoli detoxify 

pisatin via demethylation [71, 105, 120, 213]. The rate of demethylation positively 

correlates with virulence [71]. The gene responsible for the detoxification of pisatin 

was identified as a cytochrome P450 monooxygenase (known as pisatin demethylase, 

PDA)[213]. The PDA encoding cytochrome P450 monooxygenase are natural inducer 

of pisatin demetylation [159] and shown to have strong substrate specificity toward 

pisatin [104], are highly divergent from other known cytochrome P450 

monooxygenases [203] and are expressed during infection of pea [195]. The existence 

of a similar cytochrome P450 in F. oxysporum f.sp. pisi was determined via southern 

blot analyses [71] and later by comparative genomics. P450 also exists in F. 

oxysporum f.sp. phaseoli, a pathogen of common bean [47].  

 

Previous reports suggest that pisatin detoxification contributes to ascochyta blight 

disease development in field pea. Studies using a biochemical approach have shown 

that cytochrome P450 monooxygenase induce pisatin demethylation in P. pinodes, P. 
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pinodella and A. pisi [71, 105]. Very high concentration of pisatin was observed at 

early stage of pea (48 hours post infection) epicotyl infection by A. pisi [221]. 

 

Available evidence suggests that ABPFP carry unique form of PDA different from the 

wilt pathogen N. haematococca.  There was no significant hybridization observed 

when DNA specific to the pisatin demethylase gene from N. haematococca was used 

to probe genomic DNA from P. pinodes, P. pinodella and A. pisi [71]. In contrast, 

cytochrome P450 genes with high similarity to N. haematococca MPVI pisatin 

demethylase (PDA) genes have been identified from F. oxysporum and 

Neocosmospora species [71, 309]. The authors hypothesized that pisatin demethylase 

from ABPFP may have a divergent evolutionary path. Further sequence analysis using 

phylogenetic and comparative genomics will allow us to better understand the 

evolution and relatedness of pisatin demethylases within ABPFP and across distantly-

related fungal pathogens. 

 

Plant pathogens have also evolved non-degradative phytoalexin tolerance 

mechanisms. The N. haematococca ABC transporter gene (NhABC1) was able to 

confer tolerance to a phytoalexin produced by potato (rishitin) and confer virulence 

(Coleman, et. al., 2011). Similarly, in B. cinerea, an ABC transporter (BcatrB,) is a 

virulence factor that increases pathogen tolerance towards camalexin in A. thaliana 

[294]. Stergiopoulos et al. [297] also indicated that an ABC transporter (MgAtr4) is a 

virulence factor of M. graminicola during pathogenesis on wheat. Because both the 

ABC transporter and P450 contribute to pathogenicity, it was proposed that NhABC1 

and the cytochrome P450 act sequentially toward pisatin tolerance [47]. It will be 

interesting to see whether contribution of both ABC transporter and cytochrome P450 

are functionally active in ABPFP. Whole genome sequencing and comparative 

analysis of aggressive pathogens of field pea and their in planta transcriptomic analysis 

will help to identify the expression pattern of P450-related genes. 
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2.9 Suppressors interfere with host defence via the jasmonic acid signalling 
 pathway  

 

The intricate product of host and pathogen interaction determine their compatibility. 

Plants can sense their environment and are able to recognize invading pathogens 

through pathogen-associated molecular patterns (PAMPs), a process called PAMP-

triggered immunity (PTI). At the same time, fungal pathogens may produce a diverse 

arsenal of pathogenicity effector molecules that can manipulate host-defence 

mechanisms or suppress host-immune responses. Although effectors are evolved by 

plant pathogens to establish basic compatibility, some effectors could be recognised 

by specific intracellular proteins leading to effector triggered immunity (ETI) which 

contribute to basal host defence [349]. 

 

Some plant pathogens secret molecules that incite both PTI and ETI simultaneously to 

deceive their host. For instance, two nonspecific glycoproteins are known to be 

secreted from pycnidiospores of P. pinodes and recognized by P. sativum. The 

glycoproteins are reported to act as elicitors and induce a number of active defence 

responses such as phytoalexins, superoxide generation, and formation of infection 

inhibitors and induction of pathogenesis related proteins (PR-proteins) [284, 318]. The 

induced defence in response to infection of pea plants by P. pinodes is blocked by two 

molecules released from the fungal spores known as supprescin A and B. These 

suppressors are small molecules secreted by P. pinodes that help the pathogen to 

establish inside plant tissue [285]. Over three decades of research devoted to 

understanding the mechanism of suppression of defence responses at the plant cell 

walls has been reviewed recently [284]. Accordingly, suppressors condition pea plants 

to be susceptible to a number of otherwise avirulent pathogens including: A. alternata, 

Mycosphaerella ligulicola, Mycosphaerella melonis and Stemphylium sarcinaeforme 

[284].  

 

Recent studies on the molecular responses of pea to P. pinodes suppressors have used 

Medicago truncatula as a model infection system to dissect P. pinodes - pea interaction 

[318]. Toyoda et al. [318] showed that application of suppressors from P. pinodes 
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significantly reduced the accumulation of medicarpin, the phytoalexin produced by M. 

truncatula. Rao Uppalapati et al. [255] showed that the suppressor acts through 

inhibition of mitogen-activated protein kinase (MAPK) pathway, likely via the 

phosphoinositide (PI) signalling pathway, which leads to establishment of infection in 

pea. Recent suppression subtractive hybridization (SSH) analysis using a M. 

truncatula detached leaf disc assay indicated that P. pinodes was able to induces 

disease susceptibility via interference with jasmonic acid regulated cellular processes 

[318]. Such leaf disc inoculation analysis in M. truncatula has provided invaluable 

information for pea improvement, but may not reflect actual induced responses in pea.  

 
2.10 Phytotoxic metabolites in ascochyta blight pathogens of field pea 
 

Peyronellaea pinodes produces potent phytotoxic metabolites enable to induce 

necrosis on pea. Evidente et al. [79] identified three structurally related compounds in 

P. pinodes that belong to pinolidoxin nonenolides, which have strong phytotoxic 

activity on pea and beans. Later, [42] isolated and identified¸ pinolide herbarumin II 

and 2-epi-herbarumin II, compounds closely related to nonenolides from the 

aggressive P. pinodes isolate C0-99 liquid culture filtrates. Phytotoxicity assay of the 

pure metabolites on the host plant, some legumes and weeds indicated that only 

pinolidoxin induced non-specific necrosis across multiple host species. As mentioned 

earlier, P. pinodes has been suggested to have a broader host range than previously 

reported [182]. This may be related to the P. pinodes’ ability to produce various 

phytotoxic compounds that might assist in establishment and disease development 

within Fabaceae. 

 

Ascochtya pisi is also known to produce a phytotoxic secondary metabolite known as 

ascochytine [88]. Among the four species that form the ascochyta blight pathogen 

complex, ascochitine production is restricted to A. pisi [208]. A non-host specific 

phytotoxic chemical known as ascosalitoxin has also been reported to be produced by 

A. pisi [79]. There is no directly reported evidence for the contribution of ascochytine 

to A. pisi virulence.  However, in vitro toxin production positively correlated to isolate 

virulence [189]. Conversely, Marcinkowska et al. [208] found that equally pathogenic 
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isolates of A. pisi produced different amounts of ascochytine under in vitro conditions. 

Furthermore, no relationship between pathogen virulence and in vitro production of 

ascochytine was observed in Ascochyta fabae [19], the ascochyta blight causing fungal 

pathogen in faba bean. 
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3. Genome Sequencing and Comparative Analysis of 

Peyronellaea pinodes, P. pinodella, Ph. koolunga and 

Ascochyta pisi 

 

3.1 Introduction 
 

Sequencing of fungal genomes started with the sequencing of the commercially 

important eukayotic fungus, Saccharomyces cerevisiae, first published in 1996 [109]. 

This was followed by genome sequences for Neurospora crassa, the first model 

organism representing filamentous ascomycetes [96]. Since then, the whole-genome 

sequencing of a number of economically-important fungal phytopathogens was driven 

by Sanger-based whole-genome shotgun (WGS) sequencing approaches [99]. The 

arrival of next-generation sequencing (NGS) technologies, single molecule real-time 

sequencing technology (SMRT), and advances in bioinformatics techniques for 

handling and processing large volumes of data have revolutionised whole-genome 

analysis. These advancements have each made it increasingly possible to study non-

model organisms and perform comparative genomics at relatively low cost.  

 

The revolution in phytopathohen sequencing and genome availability expanded our 

understanding of fungal evolutionary dynamics. Comparative genome analysis has 

enabled the identification and tracking of the origin of horizontal gene transfer between 

fungi and other organisms [85, 92], [207, 259]. Horizontal transfer of the necrotrophic 

effector gene ToxA from Parastagonospora nodorum to Pyrenophora tritici-repentis 

was first inferred from comparisons of both whole genomes [92, 271]. Recent reports 

suggest that Pyrenophora teres and P. tritici-repentis contain 14 horizontally 

transferred genes that have originated from bacteria and plants [301]. In addition, the 

acquisition of a hybrid NPPS/PKS gene cluster by ascomycete fungi from bacteria 

[181], transfer of cellulase genes from microbes to nematodes [214], and gain of a 

number of small secreted proteins from fungi by oomycetes [259] are only a few 

examples of HGT events that have been uncovered via whole genome sequence 

analysis. 
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Progress in comparative genomics has also expanded our understanding of mode of 

chromosomal evolution in fungi. Hane et al. [129] identified a unique pattern of 

chromosome sequence conservation specific to the filamentous ascomycetes, known 

as ‘mesosynteny’. The authors indicated that in mesosynteny, genes within 

homologous chromosomes are generally conserved, however gene order and 

orientation becomes rearranged with increasing phylogenetic distance. Subsequent 

simulation of different types of chromosomal dynamics in whole-genomes sequences 

from the class Dothideomycetes suggested that mesosyntenic may arise through the 

accumulation of multiple inversions [229]. 

 

The existence of repeat-induced point mutation (RIP) in fungi was first observed in in 

Neurospora crassa [279]. As more fungal whole-genome sequences became available, 

it became clear that signatures of RIP are common in filamentous Ascomycetes [8, 30, 

45, 126, 229]. Previous reports have indicated that RIP recognizes duplicated DNA 

sequences and is likely to prevent genome invasion by transposable element through 

their inactivation, primarily via nonsense mutations [97]. While RIP is generally 

accepted to be restricted to the sub-phylum Pezizomycotina, a few studies also report 

RIP-like mutation in some species of the Basidiomycetes [127, 138]. Whole-genome 

analysis of the multi-nuclear fungus Rhizoctonia solani AG8, may suggest that where 

multiple nuclei are present RIP may not be restricted solely to repetitive elements, but 

could also broadly affect coding regions as well [127]. Furthermore, a number of 

avirulence genes have been observed within RIP affected genomic regions (typically 

long stretches of AT-rich sequences) in repeat-rich genomes such as that of 

Leptosphaeria maculans [94, 266, 321], where it may also be rapidly mutated by 

‘leaked’ RIP mutations. It has been suggested that RIP mechanism may contribute to 

sequence diversification and adaptation to new hosts or new resistance genes within a 

host [116]. Evidence of RIP and inferences about its influence on pathogenicity 

adaptation learned from numerous genome studies, has informed monitoring and 

management strategies of L. maculans in canola [140, 266]. 

 

Whole genome sequencing followed by comparative analysis indicated the movement 

of pathogenicity genes in the genus Fusarium [201]. Genes in fungal pathogens with 
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dispensable chromosomes are enriched with duplicated genes and repetitive elements 

as observed in Nectria haematococca [46].  

 

Whole-genome sequencing has exposed concealed lifestyle of necrotrophic fungal 

pathogens. Necrotrophic pathogens produce a number of effector genes to manipulate 

their host and establish compatibility [116, 168, 227, 231, 266, 308, 322]. Molecular 

studies increased our understanding of pathogen speciation and host specialization 

[299] and has enabled large scale analysis of plant cell wall degrading enzymes in 

fungi [163]. Moreover, widespread occurrence of necrosis and ethylene-inducing 

peptide-like proteins across three major taxa (fungi, bacteria & oomycetes) and their 

evolutionary histories were recognized from bioinformatics analysis of sequences 

sourced from various public database genome resources [106, 233, 234, 293].  

 

Taking advantage of whole-genome sequencing, a number of economically important 

fungal plant pathogens from the class Dothideomycetes have been sequenced. Among 

these, P. nodorum [128], Cochliobolus heterostrophus [229], Alternaria brassicicola 

[55], Pyrenophora teres fsp. teres [78], Pyrenophora tritici-repentis [205], 

Mycosphaerella graminicola [111] and Leptosphaeria maculans [266] are few of the 

well-studied pathogens species from Dothideomycetes. The fungal pathogen 

Peyronellaea pinodes, Peyronellaea pinodella, Phoma koolunga and A. pisi also 

belong to the class Dothideomycetes within the family Didymellaceae. The genome 

sizes of P. pinodes, P. pinodella and A. pisi have been estimated to be between 24.0 - 

28.8, 21.6 - 29.9 and 4.3 - 32.1 Mbp with 11 - 12, 10 - 15 and 12 - 16 chromosomes, 

respectively [2]. Only the P. pinodes genome has been sequenced using Illumina’s 

Solexa paired-end (75 bp) sequencing technology, giving a fragmented assembly of 

32.8 Mbp regardless of fragmented assemblies [158]. 

 

Sequencing the closely related pathogens from Didymellaceae would enable us to 

better understand the molecular basis of their pathogenicity shared among these 

complex pathogens, allow for comparative evaluation of the genome landscape 

between and within a species, and to design molecular markers for rapid species-
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specific identification suitable for disease surveillance applications. One approach 

would be to build a good quality reference genome and sequence multiple isolates 

sequence at lower depth for comparison. The main objectives of this chapter are to 

assemble, annotate, and comparatively evaluate the P. pinodes, P. pinodella, Ph. 

koolunga and A. pisi genome sequences and improve the assemblies of the reference 

species (P. pinodes M074). This chapter covers comparative analysis of these genome 

sequences, describes their gene content including their expansion of carbohydrate 

active enzymes (CAZymes), and assesses the potential of ascochyta blight pathogens 

of field pea (ABPFP) to produce secondary metabolites.  

 

3.2 Materials and Methods 
 

3.2.1 Genome data acquisition and genome assembling 

 

Aggressive isolate of P. pinodes M074 was collected from Medina, the Western 

Australia[158]. Additional isolates of P. pinodes and isolates of P. pinodella, Ph. 

koolunga and A. pisi were obtained from various sources as indicated in Table 1. The 

DNA from each pathogen species was isolated from single spored mycelium following 

cetyltrimethyl ammonium bromide (CTAB) genomic DNA extraction protocol [333]. 

 

The genome of Peyronellaea pinodes reference isolate M074 was initially sequenced 

using 454 life science sequencing (454 GS-FLX Titanium, Roche, Basel, Switzerland) 

with insert size 2000 bp, at University of Western Australia (UWA). Additional 

sequencing was performed using Illumina 75-100 bp paired-end reads with 200 – 500 

bp insert sizes (Illumina, San Diego, USA). Additional long jumping distance (LJD) 

libraries (insert sizes 3kb, 8kb and 20kb) were applied to the reference isolate M074 

(Eurofins, Luxembourg, Germany). All the remaining isolates of P. pinodes, P. 

pinodella, Ph. koolunga and A. pisi were sequenced using Illumina libraries with insert 

sizes between 200 and 500 with read lengths of 100 bp. 
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Table 1. Sequenced fungal pathogen species and generated genome data in genome assembling 

 

Pathogen 

species 
Isolates 

Number 

of 

libraries 

Number of reads after quality control (in Million) 

Region of Origin 75 bp 100 

bp 

3kb 

(LJD) 

8kb 

(LJD) 

20kb 

(LJD) 

2kb 

(454) 

P. pinodes M074 5 18.20* - 30.42 16.02 23.8 0.23 Western Australia 

P. pinodes MP1 1 - 16.12 - - - -  USA 

P. pinodella 410/95 1 - 19.22 - - - - South Australia 

P. pinodella AWPP4B1I0 2 - 72.16 - - - -  USA 

Ph. koolunga  FT04040 2 - 74.91 - - - - South Australia 

Ph. koolunga  FT0713 1 - 30.02 - - - - South Australia 

A. pisi AP1 3 - 74.89 - - - - Bulgaria 

A. pisi Georgia-12 1 - 8.73 - - - - Georgia 

A. pisi Georgia-7 1 - 8.71 - - - - Georgia 

  

*Data available from prevous studies [158]. LJD long jumping distance; bp base pair; kb killobase  

 



   CHAPTER THREE 

 

27 
 

Low quality (≤ 28 phred score) sequences, adapter sequences and reads with less than 

25 bp after trimming were removed from the reads using cutadapt version 1.1 

(parameters -q 28 and  -m 25) [211]. Unpaired reads resulted from quality clean up 

were separated from paired data into singleton fastq file formats. Paired-end reads with 

detectable overlap at their 3’ ends were combined together to obtain longer single reads 

using FLASH version 1.2.2 (–x set to 0.2) [202]. The data quality process for LJD 

libraries was pre-processed by Eurofins as part of their services. The genome 

sequences were de novo assembled using SOAPdenovo2 version 2 [199]. GapCloser, 

(a module of SOAPdenovo) was also used to fill ‘N’ gaps created during scaffolding 

[199]. The general P. pinodella, Ph. koolunga and A. pisi genome assembly workflow 

was depicted in figure 4 B.  

 

In hybrid assembling of the P. pinodes reference isolate  M074, the LJD paired - end 

reads were sequentially used to scaffold the pre-assembled contigs using SSPACE  

(parameters: -x 1 –m 32 –o 20  –t 0 –k 5 –a 0.70 –n 15 -z 200 –p 0 –v 0 –g 0 –T 1) 

[22]. Gaps introduced between each scaffolding step were closed by GapFiller using 

paired-end reads between each steps [23]. In GapFiller, options were customised (-m 

30 -o 2 -r 0.7 -n 10 -d 50 -t 10 -g 0 -T 1 -i 1) to a stringent gap overlap.  Final assembly 

was achieved by a single round application GapCloser during initial assembling of 75 

bp paired - end reads followed by four round of SSPACE and four rounds of gap filling 

steps. The overall P. pinodes reference isolate (M074) genome assembly strategies 

employed is indicated in Figure 4 A. 
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Figure 4 Whole genome assembly and annotation pipeline workflow  for P. pinodes 

reference isolate (M074) (A) and P. pinodella, Phoma, koolunga and A. pisi (B).   
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3.2.2 Repeat identification and repeat-induced point mutation (RIP) 

analysis  

 

The repeats in the genome sequences of ABPFP were predicted using RepeatMasker 

version 4.0.3  [16]. The distribution of repeats in the genome sequences were 

determined by aligning the genome sequences against RepBase version 20130422 with 

Cross Match version 1.090518 in sensitive mode [16]. The GFF output file from the 

RepeatMasker and respective genome sequences were supplied to  RIPCAL to detect  

RIP-like activities following majority consensus model [125]. RIP index scanning 

were performed on each aligned repeat families using default RIP-index scanning 

parameters.  

 

3.2.3 Gene finding 

 

The assembled sequence of each fungal pathogen species was supplied to ab inito gene 

finding tool, GeneMark-ES version 2, to identify potential protein-coding genes in the 

fungal genome [27, 311] (Figure 4 A and B). Except for the reference isolate (where 

default parameters were used), minimum scaffold length was set to 15,000 nucleotides 

at initial self-training stage. The resulting proper output was translated into protein 

coding and nucleotide sequences with a minimum threshold length of ten amino acids. 

 

To improve accuracy of genome annotation in the P. pinodes reference isolate (M074), 

in vitro transcripts from four conditions were de novo assembled using Trinity (2013-

02-25) [114, 122]. The assembled transcript from each library was aligned to reference 

isolate genome through PASA alignment assembly pipeline using genomic mapping 

and alignment program (GMAP) as aligner [121]. Protein sequences from closely-

related fungal pathogens were obtained from sources described in Supplementary 

Table 1. The proteomes were aligned to the genome assembly of P. pinodes reference 

isolate M074 using Analysis and Annotation Tool (AAT) [141] to obtain spliced-

alignment of protein homologs. The PASA transcript assemblies, ab initio gene 
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prediction and proteome spliced alignments were supplied to EVidenceModeler [121] 

to generate a final set of gene predictions in GFF3 format.The reference isolate gene 

prediction workflow was indicated in figure 4 (A). 

 

3.2.4 Functional annotation  

 

The potential predicted genes from genomes of each ABPFP were functionally 

annotated using gene similarity search at National Centre for Biotechnology 

Information (NCBI) non-redundant dataset using BLASTp alignments tool [6].  

InterProScan (version 4.8 - with signalp version 4.1) is used to predict the functional 

domains present in the protein sequences. Putative Gene Ontology (GO) terms were 

assigned based on InterproScan and BLASTp hits analysed through BLAST2GO [50]. 

Protein domains were identified by searching Pfam (Pfam-A) database [250] through 

HMMER3 using default parameters (gathering thresholds). Proteins destined for 

secretion were predicted using a combination of SignalP4.1 [243], Phobius 1.01 [153] 

and localized using WOLFPsort 0.2 [139]. Proteins with predicted transmembrane 

domains were identified using TMHMM 2.0 [172] . Protein sequences were classified 

as secreted if supported by either of SignalP, Phobius or WOLFPsort and contained ≤ 

1 transmembrane domain. 

 

3.2.5 Comparative genomic analysis 

 

3.2.5.1 Synteny and read mapping analysis 

 

Global alignment of whole genome were made using PROmer  via MUMmer 3.0 [174] 

using max-match option. The MUMmer program delta-filter (-l 100 -i 70 -g) was also 

use to filter repetitive matches from the PROmer alignment. The mummerplots and 

coordinates of genomic regions were generated from the filtered output using 

mummerplot programs and show-coords, respectively. Estimates of the proportion of 

aligned genomic regions were computed for each reference sequence, from the filtered 
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coordinate’s files.  In addition, genome sequences from each P. pinodes, P. pinodella, 

Ph. koolunga  and A. pisi isolates were aligned to their respective reference using 

NUCmer (MUMmer 3.0) to determine genome coverage and single nucleotide 

polymorphisms (SNP), computed via MUMmer 3.0 show-snps [174]. Sequence length 

of less than 5kb were excluded from the synteny analysis. The genome sequences of 

P. pinodes isolate M074, which is considered as a reference species for the ABPFP, 

was aligned against genome from Dothideomycetes (Parastagonospora nodorum, 

Pyrenophora tritici-repentis, Leptosphaeria maculans, and Cochliobolus sativus), 

Sordariomycetes (Fusarium graminearum, Magnaporthe oryzae, Fusarium 

verticillioides and Neurospora crassa) to determine synteny relationship. The sources 

of the genome data were indicated in supplementary Table 1 

 

Because P. pinodes and P. pinodella are closely related species, genome comparisons 

could be further generated employing a read mapping approach. The sequence reads 

from two isolates of P. pinodella were mapped to the assembled genome of P. pinodes 

reference isolate M074 using Bowtie 2 [177] in a sensitive mode. The mapped reads 

were processed and converted to BAM file using SAMtools [190]. Genome coverage 

was computed from the read mapping across non-overlapping intervals of 2 kb  using 

BedTools coverageBed [251].  Intervals were considered absent from the reference if 

mapped reads covered (breadth) was less than 5% of the interval length [48]. Similar 

analyses were performed by mapping the genome sequences of the reference isolate 

of P. pinodes (M074) to each of the P. pinodella isolates. The genomic regions 

(Scaffolds) unique to P. pinodella relative to P. pinodes were then extracted and 

aligned against P. nodorum, L. maculans and M. oryzae using PROmer. Absence of 

matching sequence in P. nodorum, L. maculans and M. oryzae confirmed species or 

isolate specificity.  

 

3.2.5.2 Analysis of secondary metabolite gene clusters 

 

Plant pathogenic fungi produce a number of putative secondary metabolites during 

their life cycle. Polyketides, non-ribosomal peptides, terpenes, and alkaloids are the 
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major natural secondary metabolites (SM) produced by fungi [157]. The fungal toxin 

such as HC-toxin, AM-toxin and the extracellular coprogen siderophore produced by 

C. carbonum, A. alternata and C. heterostrophus, respectively are pathogenicity 

determinant products of NRPSs [36, 49, 230].  Similarly, the pathogenicity 

determinant T toxin in C. heterostrophus [142], the botcinic acid in B. cinerea [54], 

the mycotoxin alternariol in A. alternata (strawberry pathotype) [268] are the products 

of iterative type I PKS. 

 

Recent comparative genomics has shown that genes encoding secondary metabolites 

are high in Pleosporales and there is high variation across species [229]. There was 

little information available for pathogens that belong to the Didymellaceae family with 

regard to SM gene clusters. Since fungi mainly contain type I PKS, the predicted ORFs 

from each pathogen species were analysed for PKS I and NRPS gene clusters. The 

PKS-I and NRPS backbone genes and modular organizations were identified by 

searching Pfam database [250] through HMMER3. An automated online antibiotics 

and secondary metabolites analysis tool (antiSMASH) [21] was also used for detection 

of homologous protein sequences. Each potential sequence involved in SM gene 

clusters was reanalysed via InterProScan [220] webserver 

(http://www.ebi.ac.uk/interpro/) as a confirmatory signature to functional domain 

organization. 

 

3.2.5.3  Carbohydrate active enzyme (CAZymes) annotation 

 

The CAZymes content of P. pinodes, P. pinodella, Ph. Ph. koolunga and A. pisi were 

assigned using database for automated carbohydrate-active enzyme annotation 

(dbCAN). The analysis was performed on the dbCAN web server 

(http://csbl.bmb.uga.edu/dbCAN/index.php) and parsed outputs are used for 

comparative analysis [343]. The CAZymes  encoding domains were also identified by 

searching Pfam database through HMMER3 [250] as supportive evidence. Multiple 

hits to the same CAZymes domain on a single gene are only counted once, and the 

http://www.ebi.ac.uk/interpro/
http://csbl.bmb.uga.edu/dbCAN/index.php
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existence of some CBM families associated to other CAZymes families (such as 

GH18) were ignored from absolute counts.  

To establish if there are similarities or differences in pectin degradation between 

ABPFP and other pathogens infecting dicot plants in pectin degradation, we predicted 

and compared genes for their potential to encode pectin-degrading enzymes. All 

predicted pectin lyase (PL) family 3 encoding protein sequences were extracted from 

proteome database and aligned using CLUSTAL W. A phylogenetic tree was 

constructed using Molecular Evolutionary Genetics Analysis version 6 [307] to make 

inference about the relationship of PL3 across ABPFP and other plant pathogens. 

 

3.3 Results and Discussion  
 

3.3.1 Phylogenetic relatedness of ascochyta blight pathogens of field pea  

 

The phylogenetic relationship among the ABPFP of field pea were analysed using 

concatenated sequences of beta-tubulin, RNA polymerase II subunit (RPB2) and 

lyceraldehyde-3-phosphate dehydrogenase (G3PD) predicted from the genome 

assemblies. As indicated in (Figure 5). P. pinodes and P. pinodella are closely related 

species with 100% bootstrap support and in agreement with previous report [11]. 

Similarly, Ph. koolunga and A. pisi are more closely related to each other with 100% 

bootstrap support as observed in [38]. Further comparison to Dothideomycetes and 

Sordariomycetes indicate the pathogens from the Didymellaceae are closely related to 

other pathogens in the Dothideomycetes, such as P. nodorum and L. maculans 

[11].The overall phylogenetic analysis corroborates previous findings [11, 38, 60]. 
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Figure 5 Species phylogenetic tree constructed using Neighbour-Joining method. 

 

Analysis was conducted based on Poisson distribution of concatenated protein 

sequences of beta-tubulin, RNA polymerase II subunit (RPB2) and glyceraldehyde-3-

phosphate dehydrogenase (G3PD). Values at the node indicate percent bootstrap 

obtained from 1,000 replicates. All ambiguous positions were removed for each 

sequence pair. There were a total of 895 positions in the final dataset. The tree is rooted 

to Phytophthora infestans as outgroup. 
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3.3.2 Genome sequence assembly statistics 

 

Full genome sequences of various fungal plant pathogens in the order Pleosporales 

were published. Here, the first comprehensive genome sequences for P. pinodes and 

draft genome sequences for closely related species and their evaluation are presented. 

Genome sequences of the P. pinodes reference isolate was assembled in to 33.3 Mbp. 

The first 15 largest scaffolds (N50) varying from  0.82 Mbp to 1.53 Mbp in the genome 

assembly of P. pinodes is comparable size to chromosome estimates (11–12) [2]. 

Equilibrated GC (53.2%) content was observed in the largest scaffolds of the reference 

genome (P. pinodes M074), as opposed to regions of AT rich sequence such as 

previously observed throughout the L. maculans genome [266]. An overview of the 

genome sequences of P. pinodes reference isolate (M074) is shown in (Figure 6). The 

daft genome assemblies of P. pinodes isolate MP1 was assembled into equivalent size 

of 31.7 Mbp with average GC content of 53.4%.  

 

Similarly, the first draft genome sequence assembly of  isolates of P. pinodella (2), 

Ph. koolunga  (2) and Ascochyta pisi (3) were assembled into comparable genome 

sizes spanning  32 – 33.9, 29.4 – 30.9 and 30.3 – 31.7 Mbp, respectively (Table 2). 

The average GC content is 53.3% in P. pinodella and varies from 51.9 – 52.2% in Ph. 

koolunga and 52.7 – 53% in A. pisi (Table 2). 

 

The genome size of ABPFP pathogens are smaller than M. graminicola (39.7 Mbp) 

[111], Botrytis cinerea (39  – 42.3 Mbp) [7], P. nodorum (37.2 Mb) [128],  F. 

graminearum ( 36.2 Mbp) and Pyrenophora tritici-repentis 37.84 Mbp [205] but 

equivalent to Dothistroma septosporum [66] and higher than the postharvest pathogen 

Penicillium digitatum [206]. The overall genome assemblies are estimated to represent 

87 – 97% of core conserved genes based on the core eukaryotic genome mapping 

approach (CEGMA, [235]) indicating good capture of the gene contents in the 

genomes of these ABPFP pathogens. Nevertheless, genome assemblies of P. 

pinodella, Ph. koolunga and A. pisi are relatively fragmented and would require further 

improvement for bioinformatics analyses dependent on long sequences.  
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The average GC content in ABPFP is higher than observed in Leotiomycetes [7] and 

equivalent to Magnoporthe oryzae [340]. The relatively high and uniform GC contents 

across the majority of the ABPFP pathogen genomes may indicate a stable genomic 

landscape in the Didymellaceae that is free from the influence of repeat-induced point 

mutation (RIP). What is more likely however, is that these regions comprise the shorter 

length sequences, due to difficulties in the de novo assembly of repetitive and AT-rich 

sequences, as RIP is widespread across the filamentous Ascomycota [45].  

 

3.3.3 Repeat content of the genome assembly 

 

The distribution of repeat class (types) across P. pinodes, P. pinodella, Ph. koolunga 

and Ascochyta pisi genome sequences are similar but vary in the amount of repeats 

present in the genome. Peyronellaea pinodes isolate M074 and P. pinodella isolate 

AWPP4B1I0 contained 4.5% and 5% of repetitive elements, respectively Table 3). 

Other isolates in each species contain less than 3% repetitive elements. DNA 

transposons invasion is higher in P. pinodes and Ph. koolunga while P. pinodella 

isolate AWPP4BB1I0 and all isolates of A. pisi contain high retrotransposon. The 

amount of repetitive DNA identified in the ascochyta blight pathogens is generally 

comparable to P. nodorum (4.5%) but less than S. sclerotiorum (7.7%) and 

Cladosporium fulvum (47.2%) [7, 66, 128]. 

 



   CHAPTER THREE 

 

37 
 

Table 2 Feature of genome sequence assemblies of P. pinodes, P. pinodella, Ph. koolunga and A. pisi 

 

Species Isolate 
Assembly 
length 
(Mbp) 

Scaffold 
max. 
length 
(Kb) 

Number of scaffolds 

N50ac L50b Unknown 
N (%) 

GC 
(%) >200bp >5kb >10kb 

P. pinodes* M074 33.3 1534.9 828 109 97 15 817,551 1.35 53.2 

P. pinodes MP1 31.7 143.9 2,795 1366 963 347 27,524 2.21 53.4 

P. pinodella** 410/95 32.0 600.3 1,158 512 427 100 102,821 0.08 53.3 

P. pinodella AWPP4b1I0 33.9 254.5 4,764 764 623 176 60,527 0.18 53.3 

Ph.  koolunga** FT04040 30.9 446.0 4,541 960 718 461 18,683 0.04 51.9 

Ph.  koolunga FT0413 29.4 110.7 2,603 1505 944 201 43,333 0.69 52.2 

A. pisi Georgia-12 31.7 157.7 1,828 1036 800 234 41,289 0.06 53.0 

A. pisi Georgia-7 30.3 82.8 4,743 1001 1815 638 14,152 0.04 52.7 

A. pisi** AP1 32.6 418.9 1953 552 461 106 95354 0.40 52.1 

*P. pinodes reference isolate. a N50: The number of scaffolds >=L50. b L50: weighted average scaffold length covering at least 50% of 

the scaffold length. c N50 indicated for total scaffolds greater than 200bp.  ** Reference isolate for each species. 
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Figure 6 Overview of the largest 15 scaffolds of the P. pinodes (reference isolate 

M074). 
Note that the distribution of repeats, GC and gene density across the N50 
scaffolds are uniform across the genome. I, II, III and IV indicate distribution 
of repetitive elements, percent GC content, gene density, and the first N50 
scaffolds, respectively.  
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Table 3 Repeat contents in genome sequences of P. pinodes, P. pinodella, Ph. koolunga and A. pisi 

Class/Family 
Length Occupied (Kbp) 
P. pinodes  P. pinodella  Ph. koolunga   A. pisi 
M074 MP1  410/95 AWPP4B1I0  FT04040 FT0713  G-12 G-7 AP1 

Retroelements 69.0 37.8  27.9 217.9  49.5 24.8  23.7 20.5 39.6 
      Penelope 0.1 0.0  0.0 0.05  0.1 0.07  0.0 0.07 0.4 
     LINEs 24.9 13.8  9.7 4.9  2.2 1.0  3.0 2.1 7.2 
         
R1/LOA/Jockey 0.0 0.0 

 
0.0 0.0 

 
0.2 0.2 

 
0.0 0.0 0.0 

    LTR elements 44.2 24  18.2 213  47.3 23.8  20.7 18.45 32.4 
         Ty1/Copia 8.5 5.8  10.3 67.8  19.2 8.8  7.7 8.06 11.3 
        Gypsy/DIRS1 35.6 18.1  7.8 145  28.0 15.0  13.0 10.4 21 
DNA transposons 349.7 65.6  91.8 229.6  87.5 56.2  26.6 19.9 33.9 
     hobo-Activator 0.36 0.5  0.2 0.03  0.05 0.05  0.1 0.04 0.1 
     Tc1-IS630-Pogo 347.9 63.5  91 228.9  84.9 54  25.1 18 31.7 
     Tourist/Harbinger 0.2 0.37  0.1 0.18  1.4 0.95  0.4 0.53 0.5 
     Other  0.0 0.05  0.0 0.0  0.0 0.0  0.0 0.0 0.1 
Unclassified 0.07 0.2  0.1 0.06  0.6 0.77  0.5 0.0 0.5 
Total interspersed 
repeat 418.8 103.6 

 
119.8 447.6 

 
137.7 81.8 

 
50.8 40.5 74 

Small RNA 11.8 4.6  4.9 14.3  7.2 3.8  6.6 4.47 7.1 
Satellites 0.0 0.0  0.0 0.0  0.0 0.0  0.1 0.04 0.2 
Simple repeats 160.4 128.6  160.6 209.5  366.7 305.6  341.9 334.1 453.5 
Low complexity 20.1 15.9  18.1 21.4  25.8 23.3  29.3 267.7 31.8 
Total 1491.6 482.4  560.5 1800.2  858.5 600.1  549.6 744.9 745.3 
Percent 4.49 1.53  1.75 5.3  2.76 1.95  1.72 1.66 2.5 
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3.3.4  Gene content of genome assemblies 

 

The number of predicted genes vary from 9,679 in A. pisi (Georgia_12) to 12,432 in 

P. pinodes (MP1) (Table 4). In the well-assembled P. pinodes reference isolate 

(M074), a total of 11,352 genes with a minimum translated length of 50 amino acids 

were predicted. About 75 – 83% of RNA-seq data derived from in vitro culture were 

mapped to the M074 genome, indicating that the assembly represents most of the 

transcribed genes. The number of predicted genes in P. pinodes M074 are larger than 

the ‘finished’ genome sequence of Zymoseptoria tritici (10, 933 genes) [111] but 

equivalent to the recent re-annotation of P. nodurum SN15 (12,383 [305]. Aside from 

the P. pinodes reference isolate M074, it is likely that the number of predicted genes 

are either under-estimated as in A. pisi (Georgia 12) or over-estimated as in P. pinodes 

MP1.  

 

Table 4 Number of genes functionally annotated in ascochyta blight pathogens of field 
pea 

Pathogen Species 
Isolates 

Total predicted 

orf* 
Pfam GO 

P. pinodes M074 11352 9318 7000 

 
MP1 12432 9613 6177 

P. pinodella 410/95 11058 9083 6185 

 
AWPP4B1I0 11482 8585 6260 

Ph. koolunga  FT04040 10084 8340 6488 

 
FT0713 10899 8746 5834 

A. pisi AP1 11260 9513 6018 

 
Georgia-7 10625 8412 5530 

 
Georgia-12 9679 7849 5715 

                  *Only amino acids >=50 considered.  
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3.3.5 Comparative genomics  

3.3.5.1 RIP like activities are unusual in ascochyta blight pathogens of field pea 

 

RIP analysis of whole genome sequences indicated occurrences of RIP-like mutation 

with variable strength according to the species and repeat classes involved, which may 

be attributable to the relatively fragmented nature of the current assemblies. Both DNA 

transposons and long terminal repeat (LTR) retrotransposons were mutated. 

Directional mutation preferences of CT ↔ TT in both LRT and DNA transposon were 

noticed. Clear evidence is presented for LTR retrotransposon LMR1 in Figure 7. 

 

 Ascochyta blight pathogens of field pea showed different level of RIP strength. 

Strongest RIP-like activities in LTR retrotransposons were observed in Ph. koolunga 

isolate FT0713 and P. pinodella isolate AWPPB4I10 followed by A. pisi isolate AP1 

and P. pinodes M074 Figure 8. Phoma koolunga and A. pisi showed relatively more 

RIP in DNA transposon than P. pinodes or P. pinodella while RIP in non–LTR 

retrotransposon is high in Ph. koolunga (FT04040) and A. pisi (AP1).   

 

The strong RIP-like activities in P. pinodella and Ph. koolunga may reflect their better 

genome defence against invasion by repetitive elements. RIP is known as fungal 

defence strategy that recognizes and inactivates duplicated sequences [97, 98, 279]. 

The observed directional mutation in this study is also consistent with typical of RIP 

mutation [45, 97]. Previous research showed that RIP is common among ascomycete’s 

fungi [45]. The RIP strength within a species varied with isolate origin. P. pinodella 

isolate from USA (WPPB4I10) had stronger RIP than isolate from Australia (410/95). 

On the other hand, P. pinodes isolate from USA (MP1) showed weak RIP than isolate 

from Australia (M074). This is partly associated to the high repeat content of P. 

pinodella isolates AWPPB4I10 than isolate 410/95. The result may also suggest 

geographically isolated pathogen species exposed to transposable element invasion 

evolved different strength of deactivation mechanism (RIP). The high RIP-like 

activities in DNA transposon of P. pinodes (MP1) Ph. koolunga  and A. pisi (Georgia-
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7 and Georgia-12) is likely related to the relatively high DNA transposons identified 

in the genome assemblies (Table 3).  

 

Repeat induced point mutation index comparison between homothallic species P. 

pinodes and heterothallic species P. pinodella is similar and even higher in 

heterothallic species (Figure 8). Peyronellaea pinodes is expected to possess strong 

RIP index compared to P. pinodella or A. pisi because P. pinodes can undergo multiple 

sexual cycle in a season (See chapter 1) and RIP is active during sexual cycle [97]. 

This unexpected result may imply sexual cycles during disease epidemics within a 

season may have little impact on RIP occurrence in P. pinodes. Studies in Podospora 

anserina indicated that RIP is detected in late maturing ascospores [115] suggesting 

early maturing ascospores within a season could escape RIP effect. 
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Figure 7 Evidence of RIP like mutations observed in ascochyta blight pathogens of field pea invaded with repeat family LMR1. 

Types of observed mutation in each species were indicated above the graph according to respective colour. 
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Figure 8 Dinucleotide mutation preferences observed in ascochyta blight pathogens 

of field pea. 

The graph indicate CT ↔ TT transition index as computed by RIPCAL.  

 

3.3.5.2 Synteny relationship between P. pinodes and other pathogens 

 

The relationship between P. pinodes genomes and related fungal species were 

investigated through aligning their translated genome sequences via MUMmer 

(PROmer). Sequences of each species are laid out along the x- and y-axes and 

sequence matches are depicted as dotplots along diagonal lines. Dots appearing as a 

diagonal line and randomized ‘dots within boxes’ indicate chromosome-level synteny 

(shared gene-content in co-linear order between two sequences (syn. ‘macrosynteny’) 

and widespread intra-chromosomal rearrangements (syn. ‘mesosynteny’), respectively 

[129]. The matching sequences between the genomes of P. pinodes reference isolate 

(M074) and both isolates of P. pinodella showed high level of matching sequences 

with up to 100% similarity. Bases on PROmeralignment, 92 – 94% of P. pinodes 

genome can be covered by sequences from P. pinodella isolates (Figure 9, Table 5). 

This showed that a large proportion of the genomic regions between P. pinodes and P. 
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pinodella are conserved and only about 6% of P. pinodella genomic regions contribute 

to its difference from P. pinodes.  

 

Regardless of high sequence similarity, there are potential genome re-arrangements 

observed along assembled scaffolds. For instance, Scaffold_1 from P. pinodella isolate 

410/95 is co-linear to Scaffold_5 and Scaffold_14 in P. pinodes (M074) with shuffled 

sequences (Figure 10; Table 1). It could be possible that genome re-arrangement at 

this particular locus was driven by transposable elements, as remnants of repeats such 

as Marriner_ABr, Gypsy and Molly were observed on P. pinodes M074 Scaffold_5 

and Scaffold_14. As opposed to the P. pinodes, there were no repetitive elements 

detected on corresponding Scaffold_1 in P. pinodella (410/95). 

 

Most sequence matches between P. pinodes and Ph. koolunga or P. pinodes A. pisi 

showed 80% sequence similarity forming continuous straight line across diagonals of 

the dot-plot matrix. The synteny relationship between P. pinodes and other pathogens 

from the Didymellaceae family, Dothideomycetes and Sordariomycetes is congruent 

to the established evolutionary relationship of the fungal pathogens considered in the 

analysis (Figure 9). Dot plot comparison of P. pinodes (M074) against pathogens from 

Dothideomycetes showed typical mesosynteny patterns. The level of similarity 

dropped to below 60% similarity with widespread inter-chromosomal rearrangements 

when compared to pathogens from class Dothideomycetes and Sordariomycetes. The 

observed mesosynteny within Dothideomycetes corroborate previous findings [129]. 

The synteny relationships between the genomes of P. pinodes and other fungal species 

follow expected phylogenetic pattern. Very closely related ABPFP showed 

macrosynteny, while more distantly related fungal species showed breakdown of 

macrosynteny (mesosynteny) (Figure 9).  

 

http://en.wikipedia.org/wiki/Sordariomycetes
http://en.wikipedia.org/wiki/Sordariomycetes
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Figure 9 Six fram translation alignment comparison between P. pinodes reference isolate M074 genome to closely related fungal species 

in Didymellaceae and representatives from Dothideomycetes and Sordariomycetes.  

Sequences of each species are laid out along the x- and y-axes and sequence matches are drown as colour coded dots according to their 

similarity level as indicated on right side of the graph. Dot plots appearing as a diagonal line and randomized dots within a boxes indicate 

chromosome-level synteny and widespread intra-chromosomal rearrangements, respectively. 
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Figure 10 Genomic re-arrangements between sister species P. pinodes and P. pinodella. Upper line indicate Scaffold_1 from P. 

pinodella and lower line indicate Scaffold_5 and Scaffold_14 from P. pinodes. 
Coloured block indicate sequence matches between the two species.
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To investigate genome regions contributed to difference between P. pinodes and P. 

pinodella, unassembled reads from P. pinodella were mapped to P. pinodes genome 

and vice- versa. About 71 - 80% of the unassembled reads from P. pinodella can be 

mapped to P. pinodes reference isolate M074. This result was comparable to 

unassembled reads from P. pinodes isolate MP1 (83%) mapped to the same genome 

(Table 5). When P. pinodes unassembled reads were mapped to P. pinodella isolate 

410/95, there about 1.1 – 1.4 Mbp were unique to P. pinodella (at 10% minimum read 

coverage cut-off) which is in agreement to the PROmeralignment analysis (Table 5, 

Table 6). The slight discrepancy between the PROmer alignment and the read mapping 

maybe related to exclusion of sequences less than 5 kb in PROmer analysis. Majority 

of scaffolds uncovered by read mapping are short scaffolds of less than 2kb (146 

scaffolds) each consisting of one gene or no gene at all (Supplementary Table 2). The 

longest sequence region or scaffold carrying the highest number of genes not observed 

in P. pinodes contained fifteen predicted genes on Scaffold_236.  

 

Similar mapping of reads from P. pinodella to P. pinodes isolate M074 showed 

absence of 41 – 43 genes on Scaffold_2. Interestingly, about 27% to 50% of predicted 

genes from P. pinodella genome specific regions are isolate/species specific (Table 6). 

Potential species/isolate specific regions identified in P. pinodes and P. pinodella were 

summarized in supplementary Table 3 and 4. Given the current assembly, the variation 

between P. pinodes and P. pinodella mainly relate to regions assembled into short 

scaffolds. These short scaffolds may explain the observed variation in genome size 

and chromosome number between P. pinodes (11 – 12 chromosomes) and P. pinodella 

(10 – 15 chromosomes)[2]. The result uncovered the existence of compartmentalized 

species specific loci in the genome of P. pinodes and P. pinodella that harbour species 

specific genomic regions.  
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Table 5 Comparison of P. pinodes reference isolate (M074) genome to the closely related species P. pinodella 

 
 

P. pinodella 

(410/95 ) 

P. pinodella 

(AWPP4B1I0) 

P. pinodes 

(MP1) 

P. pinodes 

(M074) 

PROmeralignment analysis 
   

 

Assembly length (Mbp) 31.98 33.88 31.72 33.3 

PROmeralignment length  29.96 30.92 30.74 - 

Percent alignment length 91.26 94.20 93.64 - 

M074 read mapping analysis 
   

- 

Mapping (%) 71.25 79.80 83.20 - 

Total regions not covered (Mbp)a  0.994 1.20 0.23 - 

Total regions not covered (Mbp) b 1.10 1.40 0.23 - 

a and b represent unassembled read mapping coverage at cut-off of 5% and 10%, respectively. Mapping coverage is computed in non-
overlapping intervals of 2 kb using BEDTool suite “coverage”. Coverage is computed against M074 whole assembly.  
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Table 6  Species specific genome regions identified in Peyronellaea species using reciprocal unassembled read mapping approach 

 

 Total number of 

Genes not 

covered* 

Number of genes in 
the longest 
sequence region 

 

The longest sequence 

region 

#Isolate 

specific 

proteins 

% Isolate 

specific 

P. pinodella  (410/95)c 508 15 Scaffold_236 252 49.6 

P. pinodella (AWPP4B1I0 ) c 742 26 Scaffold_443 204 27.5 

P. pinodes (M074)d 329 - 384 41- 43 Scaffold_2 142 - 161 41.9 - 43.2 

  c The reads from P. pinodes were mapped to P. pinodella  (410/95 and AWPP4B1I0) to identify unique regions in P. pinodella 

 d The reads from P. pinodella were mapped to P. pinodes (M074) to identify unique regions in P. pinodes 

    Reads from M074 (3 libraries, 3, 8 & 20kb) mapped to both P. pinodella isolates. 
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3.3.5.3 Defining core protein sequences in Didymellaceae  

 

Ascochyta blight pathogens core proteins were defined as protein sequences that are 

common to all isolates of P. pinodes, P. pinodella, Ph. koolunga and A. pisi.  A total 

of 297, 042 proteome sequences from 24 fungal genomes were classified into 86,702 

protein families using Proteinortho. Among these, a total of 4,555 protein families 

were found common to the four fungal pathogens complexes of field pea (Figure 11). 

These proteome common to ABPFP may determine their communalities of niche 

adaptation. Peyronellaea pinodes and P. pinodella shared the largest number of 

predicted protein sequences (>70%) while lowest number of proteins were shared 

between P. pinodes and A. pisi (Figure 11). This result is in accordance with the 

species phylogenetic tree where P. pinodes is more closely related to P. pinodella 

while A. pisi is distantly related to P. pinodes and P. pinodella [11, 38]. 

 

Further analysis indicated that about 109 protein families from 25 fungal pathogens 

were found specific to ABPFP. Functional assignment of these protein families based 

on P. pinodes reference species (M074) indicated that  most of them are contain 

conserved  Pfam domain associated to oxidoreductase, hydrolases, and transferases, 

peptidases, and kinases, transcription factors, production of toxin or protein domains 

of unknown function (Supporting Table 5).  Most of these protein domain containing 

proteins are linked to fungal pathogenesis or domains of unknown function. For 

instance, glutathione S-transferase (GST; PF13417) are large family proteins involved 

in the degradation of xenobiotic compounds and oxidative stress responses [136, 209]. 

Recent research finding indicated that  GST contribute to virulence of A. brassicicola 

to its host [35]. In general those protein sequences specific to the four species play a 

role in determining host specificity of the ABPFP pathogens determine host 

specificity. Furthermore, protein domains with unknown function would be a potential 

effector candidates for further evaluation. 
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Figure 11 Orthology relationships among proteomes of ABPFPs. 
Only proteins with ≥ 50 amino acid sequence length were included in the analysis. The 

defined core proteins (protein sequences common to P. pinodes, P. pinodella, Ph. 

koolunga and A. pisi) are indicated in blue font.  A total of 2, 2, 2 and 3 isolates of P. 

pinodes, P. pinodella, Ph. koolunga and A. pisi, respectively, included in the analysis. 
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3.3.5.4 Functional annotation abundance in P. pinodes 

 

Conserved protein domain analysis of Pfam annotations indicated that over 8,000 of 

predicted protein sequences in each species matched conserved protein domains. In 

addition, over 6,000 of the predicted protein sequences were also assigned GO 

annotations (Table 4). According to Fisher’s exact test, a number of Pfam domain-

containing proteins were over-represented in P. pinodes compared to the overall 

average across P. pinodes, P. pinodella, Ph. koolunga and A. pisi (Table 7). These 

were mostly heterokaryon incompatibility protein (PF06985), cytochrome P450 

(PF00067), helix-turn-helix (PF03221 and PF05225), fungal specific transcription 

factor (PF04082), NACHT domain (PF05729) and alpha/beta hydrolase (PF12695), 

which appeared to be expanded in gene number in P. pinodes relative to other ABPFP 

(Table 7). 

 

Heterokaryon incompatibility proteins control the viability of heterokaryon after 

fusion of cells between and within individuals and strictly prevent heterothallism 

[275]. The enrichment of P. pinodes with heterokaryon incompatibility protein may 

be related to the homothallic nature of this pathogen compared to heterothallic species 

such as P. pinodella and A. pisi.  Although there were no evidences on mating type 

studies in Ph. koolunga, low heterokaryon incompatibility protein content similar to 

A. pisi and P. pinodella may suggest likely existence of heterothallic mating type in 

Ph. koolunga.  

 

Membrane transport proteins (PF07690), alpha/beta hydrolase (PF12697) were 

slightly higher in P. pinodes and P. pinodella than Ph. koolunga and A. pisi. Major 

facilitator family (MFS) proteins are known to regulate transport of solutes and toxic 

compounds across the cell membrane of an organism. While the MFS domain can 

relate to a broad range of biological functions, MFS genes Bcmfs1 in B. cinerea [132] 

and MgMfs1 in M. graminicola [264] are involved in shielding the fungus from natural 

toxins and fungicides. Families of alpha/beta hydrolase proteins have diverse function 

including hydrolases, lyases, and transferases activities [187].
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Table 7 Proteins domains over-represented in P. pinodes compared to average protein domains identified in Didymellaceae 

PFAM 

P.  

pinodes  

P 

value 

P. 

pinodella 

P  

value 

Ph. 

koolunga   

P  

value A. pisi 

P  

value 

Average  

Pfam  
Pfam description 

PF00067.17 115 0.02 96 0.06 80 0.03 94 0.06 97 Cytochrome P450  

PF03184.14 49 0.00 11 0.03 4 0.00 1 0.00 21 DDE superfamily  

PF03221.11 34 0.00 8 0.04 6 0.02 6 0.02 16 Helix-turn-helix 

PF04082.13 137 0.01 117 0.05 104 0.03 91 0.01 119 Fungal specific TF domain 

PF05225.11 17 0.01 1 0.05 1 0.05 2 0.11 6 Helix-turn-helix 

PF05729.7 87 0.02 72 0.07 61 0.04 55 0.02 73 NACHT domain 

PF06985.6 122 0.00 64 0.04 38 0.00 36 0.00 75 HET protein 

PF07690.11 352 0.03 350 0.03 334 0.03 343 0.03 345 Major facilitator family 

PF08659.5 156 0.04 143 0.05 130 0.04 145 0.05 143 KR domain 

PF12417.3 6 0.01 6 0.21 0 0.02 2 0.23 4 Protein of unknown function 

PF12695.2 146 0.04 137 0.05 126 0.04 137 0.05 136 Abhydrolase_5 

PF12697.2 134 0.04 130 0.05 114 0.04 127 0.05 126 Alpha/beta hydrolase 6 

PF13191.1 171 0.02 152 0.05 140 0.03 141 0.03 154 ATPases (AAA_16) 

PF13358.1 16 0.02 4 0.12 3 0.08 2 0.04 8 DDE superfamily  

PF13401.1 175 0.03 164 0.04 144 0.03 144 0.03 161 ATPases (AAA_22)  

PF13460.1 114 0.04 104 0.06 90 0.04 105 0.05 102 NAD(P) H-binding  

PF13498.1 5 0.01 1 0.38 0 0.09 0 0.09 2 DUF  

PF13721.1 7 0.00 0 0.09 0 0.09 1 0.38 2 SecD export protein N terminal 

             *P values are computed P values according to Fisher’s exact test.  HET: Heterokaryon incompatibility, TF Transcription Factor, 

DUF Domain of unknown function
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The high structural DNA binding motif observed in P. pinodes relative to other 

pathogens of field pea could correlate to enrichment of DNA transposons encoding 

DDE superfamily endonuclease (PF13358.1 and PF03184.14) observed in the Pfam 

domain analysis as well as  repeats identified in the genome sequences of P. pinodes 

(Table 3, Table 5). 

 

3.3.5.5 Secondary metabolite gene clusters in ascochyta blight pathogens of  

 field pea 

 

The genome sequences revealed the potential of ABPFP to produce various secondary 

metabolites using genes encoded by multimodular type I polyketide synthase (PKS-I). 

There were about 4 to 9 PKS-I gene clusters identified from the draft genome 

sequences of ABPFP (Supplementary Table 6). Sequence analysis at NCBI indicated 

that one of the PKS-I found in all isolates of ABPFP has 49 - 59% identity to L. 

maculans PKS2 and 78 - 80% identity to A. alternata (PksA). The organization of the 

former cluster of genes in P. pinodes and P. pinodella were indicated in Figure 12. 
Peyronellaea pinodes, P. pinodella and A. pisi genome also carry a PKS-I homologous 

to P. nodorum PKS (52% identity at protein level) responsible for the production of 

mellein. The genomes of both Ph. koolunga isolates consisted of two PKS-I with high 

identity to P. zeae-maydis (70%) and C. heterostrophus PKS2 (66%) identity at amino 

acid level (Table 8). 

 

In L. maculans, PKS6 is involved in phomonic acid production [266]. While not 

required for virulence of the pathogen to infect canola, it has been suggested that PKS6  

plays a role in prevention from other invaders [266]. Similarly, recent studies showed 

that P. nodorum contain PKS associated to mellein synthesis has no impact on fungal 

virulence on wheat [40, 330]. On the other hands, the PKS2 identified from A. 

alternata is involved in the biosynthesis of melanin. Melanin is reported to be involved 

in pathogenicity and adaptation to host niche in both plant and animal pathogenic fungi 

[110, 162, 176, 306]. One PKS involved in melanin synthesis is reported to be 

conserved across Dothideomycetes [229]. Homologous PKS-I identified in P. zeae-
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maydis and C. heterostrophus are known to produce the pathogenicity determinant 

PM-toxin [345] and T-toxin (PKS2) [15], respectively. The presence of homologs gene 

clusters in closely related ABPFP may shed light on their capabilities to produce 

similar product which are likely to be involved in pathogenesis or assist in their 

adaptation or provide competitive advantage over other microbes.  

 

Each ABPFP genome also possessed protein domain with distinctive characteristics of 

NRPSs as observed in other fungal plant pathogens. These fungal pathogens consisted 

of at least 2 (P. pinodes and P. pinodella) to 3 NRPS (Ph. koolunga) NRPS gene 

clusters in their genome (Supplementary Table 7). Sequence analysis of some putative 

NRPS encoding genes showed high identity to A. alternata NPS6 in A. pisi (68%), Ph. 

koolunga (70%) and Peyronellaea species (76%) at amino acid level (Table 9). These 

homologous genes contain a single adenylation domain (A), three thiolation domains 

(ACP) and two condensation domains (C) required for NRPS production. Similar 

NRPS encoding genes identified in C. heterostrophus (NPS2, NPS6), A. brassicicola 

(NPS6) and F. graminaerum (NPS6, SID1) are known to be involved in siderophore 

biosynthesis [36, 117, 230]. Siderophore is required for virulence and oxidative stress 

tolerance via iron uptake mediated siderophore production [145, 186, 230].  

 

The orthologous genes observed in genome of ABPFP likely encode NRPS with 

similar conserved molecular function. Previous studies showed that introduction of 

NPS6 homologs from saprophytic N. crassa into mutant phenotype of C. 

heterostrophus restored virulence on maize and tolerance to H2O2, indicating 

preserved activities across fungi [230]. Previous studies suggested that accumulation 

of reactive oxygen species play role in resistance to P. pinodes in resistant pea line 

compared to susceptible one [86]. The ability of the ABPFP to perpetuate under 

oxidative stress is likely related to their siderophore production. Most known fungal 

pathogens that produce siderophore as part of their virulence determinants belong to 

necrotrophic life style [230].  
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Figure 12 Co-linear organization of polyketide synthase gene cluster in P. pinodes and P. pinodella. 

Upper and lower plots indicate gene order and orientation of P. pinodes (M074 Scaffold_30) and P. pinodella (410/95), respectively. 

Orthologous genes are indicated by arrow of same colour. Arrow head indicate direction of the transcripts. 
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Table 8 Some putative type I PKS encoding genes identified in ascochyta blight pathogens of field pea 

 

Organism Loci ID Modular in Query Gene Bank ID Identity (%) Known gene/ 

predicted product 

Organism Modular in Subject 

P. pinodes Ppdes_30.68 KS AT DH ER KR ACP AGC79958.1 59 Phomonic acid  Leptosphaeria maculans KS-AT-DH-ER-KR-ACP 

 (M074) Ppdes_57.33 KS AT DH ER KR ACP AIA58899.1 38  Brefeldin A Penicillium brefeldianum KS AT DH ER KR ACP  

  Ppdes_57.36 KS AT DH ER KR ACP XP_007792497.1 50* unknown Eutypa lata UCREL1 KS AT DH ER ACP 

  Ppdes_14.166 KS AT ACP TE AFN68292.1 80 Melanin (PksA) Alternaria alternata KS AT ACP TE  

  Ppdes_16.63 KS AT DH KR ACP AIW00670.1 52 mellein  Parastagonospora nodorum KS AT DH KR ACP 

  Ppdes_23.93 KS AT ACP TE XP_001939987.1 46* unknown*** Pyrenophora tritici-repentis  KS AT DH TE 

  Ppdes_30.82 KS AT DH KR  ACP AAV66110.2 45 fusaridione A  Fusarium heterosporum KS AT DH KR ACP ACP ACP 

P.pinodella Pdlla_2691 KS AT DH KR ACP AIW00670.1 52 mellein  Parastagonospora nodorum KS AT DH KR ACP 

(410/95)  Pdlla_448 KS AT ACP ACP TE AFN68292.1 80 Melanin (PksA) Alternaria alternata KS AT ACP ACP TE  

  Pdlla_2197 KS AT ACP TE  XP_001939987.1 46 unknown*** Pyrenophora tritici-repentis  KS AT DH ACP TE 

  Pdlla_6178 KS AT DH ER KR AGC79958.1 59 Phomenoic acid  Leptosphaeria maculans KS-AT-DH-ER-KR-ACP 

  Pdlla_9495 KS AT DH KR AGO86662.1 42 equisetin  Fusarium heterosporum KS AT DH KR ACP ACP  

  Pdlla_9801 KS AT DH ER KR XP_007792497.1 50 unknown  Eutypa lata UCREL1 KS AT DH ER ACP 
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Table 8 continued… 

Organism Loci ID Modular in Querry Gene Bank ID Identity (%) Known gene/ 

predicted product 

Organism Modular in Subject 

Ph. koolunga  

(FT04040)  

  

  

  

Phkol_3871 KS AT DH ER KR ACP AGC79958.1 49 Phomenoic acid  Leptosphaeria maculans KS AT DH ER KR ACP 

Phkol_6434 KS AT DH ER KR ACP ABB76806.1 66 T-toxin (PKS2) Cochliobolus heterostrophus KS AT DH ER KR ACP 

Phkol_3862 KS AT ACP ACP TE AFN68292.1 79 Melanin (PksA) Alternaria alternate(PksA) KS AT ACP ACP TE  

Phkol_6027 KS AT DH ER KR ACM42412.1 46 Radicicol Chaetomium chiversii KS AT DH ER KR 

Phkol_2655 KS AT ACP AAR90258.1 73* polyketide synthase  Bipolaris maydis KS AT DH ER KR ACP 

Phkol_6429 KS AT DH AAR85531.1 70 PM-toxin  Peyronellaea zeae-maydis KS AT DH ER KR ACP 

A.pisi 

(Georgia 7) 

Apisi_2241 AT DH ER KR ACP AGC79958.1 58 Phomenoic acid  Leptosphaeria maculans KS-AT-DH-ER-KR-ACP 

Apisi_3671 KS AT DH KR ACP  AIW00670.1 52 mellein  Parastagonospora nodorum KS AT DH KR ACP 
 

Apisi_53 KS AT ACP ACP TE AFN68292.1 78 Melanin (PksA) Alternaria alternata KS AT ACP ACP TE  

Apisi_2617 KS  AT  DH ACP KFA70666.1 44 Atr6  Stachybotrys chartarum KS AT DH ER KR 

Apisi_7511** AT ER KR ACP AFN68292.1 37 Melanin (PksA) Alternaria alternata KS AT ACP ACP TE  

*Most similar hit was considered when there is no characterized product found in the top 100 blast hit at NCBI. BLAST hit E value 0.0. 

** KS domain truncated. *** Conidial yellow pigment biosynthesis polyketide synthase. KS= β-ketoacyl synthase; AT=acyltransferase; 

DH=dehydratase; ER=enoyl reductase; KR = ketreductase; ACP=acyl carrier protein  
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Table 9 Some putative NRPS encoding genes identified in ascochyta blight pathogens of field pea 

 

Organism/isolate Loci ID 
Gene Bank 

ID 
Identity 

(%) 
Known product/ 

predicted product 
Organism 

P. pinodes (M074) Ppdes _6.236 AFN69082.1 76 Siderophore Alternaria alternata 

P. pinodes (MP1) Ppdes _6179 AAX09984.1 56 Siderophore Bipolaris maydis 

P. pinodella (410/95) Pdlla_6336 AFN69082.1 68 Siderophore Alternaria alternata 

P. pinodella (410/95) Pdlla_7784 AAX09984.1 54 siderophore Bipolaris maydis 
P. pinodella 
(AWPP4B1I0) 

Pdlla_4823 AFN69082.1 76 NPS6/Siderophore Alternaria alternata 

P. pinodella 
(AWPP4B1I0) 

Pdlla_1211 AAX09984.1 54 Siderophore Bipolaris maydis 

Ph. koolunga (FT04040) Phkol_2906 FN69082.1 70 Siderophore Alternaria alternata 

Ph. koolunga (FT04040) Phkol_6050 AAX09984.1 55 Siderophore Bipolaris maydis 

Ph. koolunga (FT04040) Phkol_7592 KGQ06423.1 47 Bacitracin synthase 3 Beauveria bassiana 

A. pisi (Georgia 7) Apisi_391 AFN69082.1 68 Siderophore Alternaria alternata 

A. pisi  (Georgia 12) Apisi_4327 ABU42595.1 46 NRPS 2 Alternaria 
brassicicola 

  

http://www.ncbi.nlm.nih.gov/protein/59876557?report=genbank&log$=prottop&blast_rank=4&RID=AN1TBR29015
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3.3.5.6 Genomes of Didymellaceae, pathogens of field pea are enriched with  

 carbohydrate active enzymes 

 

The genomes of P. pinodes, P. pinodella, Ph. koolunga and A. pisi pathogens encode 

similar number of genes involved in carbohydrate metabolism with slight differences 

according to their clade. The P. pinodes, P. pinodella, Ph. koolunga and A. pisi 

contained 562 – 581, 592 – 600, 511– 520 and 503 – 509 CAZymes, respectively in 

order of decreasing total number of CAZymes (Table 10, Supplementary Table 8).  Ph. 

koolunga and A. pisi consisted of lower number of GT families than P. pinodes and P. 

pinodella.  The genes encoding putative CAZymes in the genomes of ABPFP were 

compared to other pathogens from the Dothideomycetes and Sordariomycetes. The 

number of putative CAZymes encoding genes in Peyronellaea spp. are higher than 

pathogens of broad host range (e.g. B. cinerea and S. sclerotiorum) and less than the 

hemibiotrophic pathogen F. verticillioides (651) and N. haematococca (777), but 

equivalent to cereal pathogens such as Colletotrichum graminicola (578), F. 

graminearum (561). Interestingly, the genomes of ABPFP contain higher number of 

pectin degrading enzymes than all the pathogens compared except N. haematococca 

(36); a necrotrophic pathogen that infect field pea (Table 11). The expansion of PL 

gene families acting on pectin in genome sequences of vascular wilt pathogen in 

Verticillium species has been reported [168]. The pectin degrading enzymes observed 

in the genomes of ABPFP may partially substantiate previous findings. Plant 

pathogens infecting dicot reported to contain high number of pectin degrading 

enzymes than pathogens of monocot plants [229]. Dicot plants contain 20 - 35% pectin 

as compared to 5% in monocots [325]. This host differentiation alone could not explain 

the high CAZymes content because even pathogens with broad host range contain 

lower number of CAZymes than ABPFP. 
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Table 10 Comparison of CAZymes contents across fungal species with diverse life 

style 

 

Species 
Mode  
of infection Host preference GH PL CE CBM GT Total 

Botrytis cinerea Necrotrophic Dicot 243 11 118 15 103 490 
Sclerotinia sclerotiorum Necrotrophic Dicot 223 5 99 22 91 440 
Alternaria brassicicola  Necrotrophic Dicot 226 23 117 24 89 479 
Leptosphaeria maculans  Hemibiotrophic Dicot 214 18 109 16 99 456 
Nectria haematococca  Necrotrophic Dicot 368 34 194 37 118 751 
Cochliobolus 
heterostrophus  Necrotrophic Monocot 256 15 132 27 96 526 
Magnaporthe oryzae  Hemibiotrophic Monocot 265 5 136 38 100 544 
Colletotrichum 
graminicola Hemibiotrophic Monocot 293 15 137 31 102 578 
Fusarium graminearum  Hemibiotrophic Monocot 261 21 140 33 106 561 
Fusarium verticillioides  Hemibiotrophic Monocot 309 25 175 36 106 651 
Mycosphaerella fijiensis  Hemibiotrophic Monocot 244 6 121 15 106 492 
Pyrenophora tritici-
repentis Necrotrophic Monocot 239 10 123 16 104 492 
Parastagonospora 
nodorum  Necrotrophic Monocot 257 10 140 24 95 526 
Neurospora crassa Saprophytic Saprophytic 196 4 75 15 95 385 
Peyronellaea pinodes Necrotrophic Dicot 287 32 139 22 101 581 
Peyronellaea pinodes Necrotrophic Dicot 282 31 126 27 96 562 
Peyronellaea pinodella Necrotrophic Dicot 298 31 141 23 107 600 
Peyronellaea pinodella Necrotrophic Dicot 292 31 142 20 107 592 
Phoma koolunga  Necrotrophic Dicot 260 31 113 18 89 511 
Phoma koolunga  Necrotrophic Dicot 258 31 123 22 86 520 
Ascochyta pisi Necrotrophic Dicot 256 33 109 21 90 509 
Ascochyta pisi Necrotrophic Dicot 268 33 101 15 86 503 
Ascochyta rabiei Necrotrophic Dicot 262 31 126 19 95 533 
Ascochyta lentis Necrotrophic Dicot 281 34 142 24 102 583 
Phoma medicaginis Necrotrophic Dicot 264 31 138 19 97 549 

GH Glycoside hydrolase; PL Polysaccharide lyase; CE Carbohydrate esterase; CBM 
Carbohydrate – binding modules; GT Glycosyle transferase 
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3.3.5.7  Pectin degradation is a common host adaptation mechanism in   

 ascochyta blight pathogens of field pea  

 

In silico analysis revealed the genome of P. pinodes encode at least two PL3 highly 

similar to the PL3 characterized in pea pathogen N. haematococca and Colletotrichum 

gloesporioides. In comparative analysis, the PL encoding genes, particularly, the PL1 

and PL3 are expanded in Didymellaceae. Similarly, the PL11 gene families are 

observed only in ABPFP pathogens and in N. haematococca. This family is also 

reported to be present in V. dahliae. On the other hand, the broad host range B. cinerea 

is deficient in PL3 families. Conversely, ABPFP contain lower number of (<=12) GH 

family 28 specifically acting on pectin. This indicate one of the different mechanisms 

fungal pathogens may deploy to breakdown the same substrate of their host plants.  

 

Pathogen Host Interaction database (PHI-base) search was conducted to identify 

potential homologous genes known to be involved in fungal pathogenesis. Analysis of 

the reference isolate M074 using reciprocal best BLAST hit (RBBH) returned a well 

characterized gene encoding PL family from N. haematococca and C. gloesporioides 

(causal agent of anthracnose on Avocado). The phylogenetic analysis of the protein 

sequences predicted to encode pectin lyases 3 (PL3) from ABPFP were clustered with 

that of pectate lyases (A, B, C, D) from N. haematococca and C. gloesporioides 

(Figure 13). Importantly, the genes from each ABPFP that formed a unique clade 

together with genes from N. haematococca are very similar (paralogues) within a 

species. The N. haematococca encodes at least four PLs two of which are very similar. 

Previous studies of double mutants of pelA and PelD in N. haematococca indicated 

dramatic reduction of virulence, which could be recovered through supplementation 

suggesting its role as virulence factor on pea [263]. In C. gloesporioides pectin lyase 

(PLB) is identified as a virulence factor on avocado fruit [341].  Similarly, the C. 

lindemuthianum Clpnl2 gene is related to pectin lyase and involved in fungal virulence 

[179]. Recent finding also indicated that Alternaria alternata Pl1332, which encode 

pectate lyase is required for virulence of its host [39]. As shown in Figure14, the PL 

genes closely associated to N. haematococca PLs (PLC, PLA or PLB), existed in 
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duplicate and such redundancy is relevant for virulence to pea as single gene disruption 

has no impact on virulence [263]. 

 

 To complement the relevance of PLs during infection and subsequent disease 

development, RNA sequence analysis generated from P. pinodes time point infection 

assay used in candidate effector gene idenytification was evaluated (see chapter 6 for 

further information).The result indicated that 28% of the predicted genes are expressed 

at early stage while 62% of the genes are expressed at medium or late stage of disease 

development. Most pair of orthologues proteins encoding PLs were also co-expressed 

in at least two time points in P. pinodes and P. pinodella during in planta infection 

studies. Similar pattern of up-regulation of CAZymes encoding genes observed in B. 

cinerea and S. sclerotiorum [7]. 

 

The early expression of PL genes, its high similarity to the known N. haematococca 

PLs and its extracellular localization suggest ABPFP may deploy pectinolytic enzymes 

to overcome host defence reaction. Some of the PLs in P. pinodes (M074) are 

constitutively expressed while others are induced at latter infection stages and disease 

development. Absence of expression at early infection stage may not rule out the 

importance PLs in pathogenesis. Carrying genes with redundant function has a cost to 

the pathogen for energy expenditures but could be necessary for re-activation of the 

genes when required. The existence of inducible genes with redundant function has 

been demonstrated in various pathogens that use CWD arsenals during pathogenesis 

[263]. In ABPFP, only few PL encoding genes were expressed at early stage while 

most of the genes activated at mid and late stages; suggesting that most of the PL of 

ABPFP may be inducible in response to host as observed in N. haematococca - pea 

interaction. The typical symptom appearance on succulent shoot tips of pea before 24 

HPI, may also suggest the fungus could use CWDE such as PLs to overcome host 

response.  
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Table 11 Comparison of polysaccharide lyase encoding genes from ascochyta blight 

pathogens of field pea and other pathogenic fungal species 

Organism 

PL
1 

PL
11

 

PL
14

 

PL
15

 

PL
20

 

PL
22

 

PL
3 

PL
4 

PL
7 

PL
9 

G
H

28
 

G
H

43
 

G
H

78
 

G
H

88
 

G
H

95
 

G
H

10
5 

G
H

11
5 

P. pinodes M074 11 1 1 0 0 0 12 5 0 2 11 21 9 2 2 6 2 

P. pinodes  MP1 11 1 1 0 0 0 11 5 0 2 11 21 9 2 2 6 3 

P. pinodella 410/95 11 1 0 0 0 0 11 5 1 2 12 21 10 2 2 6 2 

P.pinodella AWPP4B1I0 11 1 0 0 0 0 11 5 1 2 12 21 9 2 2 6 2 

Ph.koolunga  FT04040 13 0 0 0 0 0 11 4 1 2 12 18 4 2 2 6 1 

Ph.koolunga  FT0713 13 0 0 0 0 0 11 4 1 2 12 18 5 2 1 6 1 

A. pisi Georgia -7 14 0 0 0 0 1 10 6 0 2 8 20 8 1 1 5 1 

A. pisi Georgia 12 14 0 0 0 0 1 10 6 0 2 9 21 7 2 1 5 1 

A. rabiei 12 0 0 1 0 0 10 6 0 2 11 18 5 1 2 6 1 

A. lentis 14 0 0 0 0 1 10 6 1 2 10 21 9 2 2 6 1 

B. cinerea  7 0 0 0 0 1 2 0 1 0 19 6 7 1 3 2 1 

C. sativus 6 0 0 0 0 0 5 4 0 0 4 15 3 1 2 2 2 

L. maculans 8 0 0 0 0 0 6 4 0 0 7 10 1 1 1 3 1 

M. oryzae 2 0 0 0 1 0 1 1 0 0 4 18 4 1 1 3 3 

P. tritici-repentis 3 0 0 0 0 0 3 4 0 0 6 15 4 1 2 3 1 

S. sclerotiorum 4 0 0 0 0 0 0 0 1 0 16 5 4 0 2 1 1 

A. brassicola 8 0 0 0 0 0 11 3 0 1 7 17 1 1 1 4 2 

C. graminicola 7 0 0 0 0 0 4 3 0 1 7 16 4 1 1 5 2 

F. graminearum  9 0 0 0 1 0 7 3 0 1 6 18 7 1 2 3 2 

F. verticillioides 11 0 0 0 0 1 7 3 0 3 8 21 8 2 1 3 2 

M. fijiensis 2 0 0 0 0 1 1 2 0 0 5 15 8 0 1 4 3 

P. nodorum  4 0 0 0 0 0 2 4 0 0 4 12 4 1 2 2 1 

N. haematococca 14 1 0 0 1 1 11 6 1 1 11 32 11 5 3 4 2 

C. fulvum 3 0 0 0 0 1 3 2 1 0 14 20 5 2 0 6 1 
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Figure 13 Phylogenetic analysis of pectin lyase 3 in some fungal species. 

Phylogenetic tree was constructed from 153 amino acid sequences using the Neighbor-

Joining method following Poisson correction after elimination of positions with less 

than 95% coverage. The numbers indicate the bootstrap support from 1000 pseudo 

replicates and branched with less than 0.50 bootstrap support were collapsed. Coloured 

branches indicate the position of functionally characterized PLs from N. haematococca 

((PLA and PLB (light green), PLC (brown) and PLD (yellow)) and   C. gloesporioides 

(grey).   
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3.4 Conclusion 
 

The genome sequences of pathogens  that  cause ascochyta blight in field pea showed 

similar assembly sizes equivalent to those predicted using pulse field gel 

electrophoresis [2]. Protein family analysis indicated significant amount of genes 

shared among ABPFP which may imply their common strategies to adapt to same host 

species. The identification of necrosis inducing proteins, genes involved in 

phytoalexin detoxification (pisatin demethylase) and pectin lyases shed light onto the 

mechanism of pathogenicity and disease development in ABPFP – pea interaction. 

Moreover, the potential of secondary metabolite production coupled with high 

CAZymes content may help in understanding of survival strategies of ABPFP. Further 

studies will uncover the competitive or antagonistic effects of secondary metabolite 

production of pathogens adapted to the same ecological niche. The antagonistic effect 

of co-occurrence of P. pinodes and P. pinodella on inoculated pea was previously 

reported [184]. Similarly Ph. koolunga has an antagonistic effect on both P. pinodes 

and P. pinodella as determined by DNA quantification using real-time quantitative 

PCR (qPCR) [58]. 

 

In comparative analysis, over 100 potential gene families were found specific to 

ABPFP which may determine their host specificity. Significant differences were also 

noticed within ABPFP using Pfam domain enrichment analysis. Over-represented 

domains in P. pinodes were associated to osmotic adjustment, sexual reproductive 

cycle, and proteins with alpha/beta hydrolase that have diverse catalytic activities. 

These findings could explain adaptive advantage of P. pinodes to the hostile 

environment during infection that result in rapid disease development and host 

colonization compared to other ABPFP. The sequence data is a substantial contribution 

to the scarce molecular information currently available for pathogens in 

Didymellaceae. The data should serve in discovering and characterisation of key 

pathogenicity related genes in ABPFP. It will also help to identify host specificity 

factors among these complex pathogen–pea interaction to develop breeding tools that 

will enhance crop improvement. 
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4. Evaluation of Nep1-like Genes in Didymellaceae Provide 

Insight to Subtype Predominant in Fungal Pathogens of 

Dicots 

 

4.1 Introduction  

 

It is generally accepted that genes diverged after speciation event undertakes 

equivalent function [95], a concept that has been employed in comparative genomics 

to associate unknown gene-to-function relationship [95, 170]. Compelling evidences 

suggest partial functional replaceability of orthologues genes in distantly related 

organisms [149, 225]. The divergence of orthologous genes are often driven by 

positive selection [113, 302]. A large number of genes also acquire new function 

through duplication [133]. In pathogenic fungi, an evolutionary arms race of pathogen 

with host enhances the evolution of pathogenicity related genes via change in selection 

pressure which provides chances for rapid adaptive evolution.  

  

The necrosis and ethylene-inducing peptide (Nep1-like protein, NLP) is an 

extracellular protein initially identified from Fusarium oxysporum culture filtrate [13], 

[14]. This protein is present in various microorganisms including fungi, bacteria and 

oomycetes [12, 106]. Also, NLP genes are not exclusive to pathogens that infect 

dicotyledons but are also present in the genomes of pathogens that infect 

monocotyledons. One of the hallmarks of an NLP is a conserved heptapeptide motif 

‘GHRHDWE’ located in the central region of the protein is the hallmark of the NLP 

[234]. Furthermore, over, 90% of the identified NLPs contain an N-terminal signal 

sequence, which suggest that the protein is destined for secretion [233]. The NLPs can 

be classified based on the number of disulphide bonds where type I, II and III form 

one, two and three disulphide bridges, respectively [106]. Fungi all the three NLP 

types, bacteria contain type I and II while oomycetes have an expanded type I NLP.  
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Several studies have shown that NLPs causes necrosis only in dicot plants while 

monocots are unaffected [13, 241, 253, 276, 293]. They are involved in the virulence 

of Colletotrichum coccodes, Abutilon theophrasti, and Rhynchosporium commune [9, 

83, 165]. Although the exact mechanism is yet to be determined, [234] showed that 

NLP contribute to disease development through the destruction and cytolysis of 

plasma membranes. The heptapeptide motif is understood to be essential for the 

phytotoxic activity [234, 276]. In addition, amino acid substitution studies in 

Verticillium dahliae revealed that several conserved amino acid residues are important 

for necrotic activities [354]. Whole genome analysis showed that most NLPs exist as 

multiple copies in different microbes with only a few exceptions such as 

Mycosphaerella graminicola, which contain only one NLP [222]. However, only two 

of the nine NLPs in V. dahliae cause necrosis [354]. Likewise, one out of five NLPs 

in Moniliophthora perniciosa [347] and eight out of nineteen representative NLPs in 

Phytophthora sojae [74] induce necrosis. This suggests that the existence of multiple 

copies of NLPs in a given species do not necessarily imply a greater degree of their 

phytotoxic activity. The proteins have either functionally diverged or inactivated to 

minimize functional redundancy as observed in many pseudogenized NLPs in P. sojae 

[346]. 

 

In addition to necrotic activities, NLP stimulates host immune responses in dicot plant 

(Arabidopsis thaliana) [12, 24, 82, 234, 253]. These include pathogen-associated 

molecular patterns, high expression of pathogenesis-related genes, induction of 

ethylene and salicylic acid biosynthesis, production of biosynthetic enzymes and 

reactive oxygen species. Intact protein sequence are not required for such responses. 

Experimental evidences in Arabidopsis indicated that 20 - 24 amino acids in the central 

region of NLP are sufficient to trigger plant immune responses [24, 233]. Both 

phytotoxic and non - phytotoxic NLP induce immune response in Arabidopsis [24]. 

 

Most fungal pathogens belonging to the family Didymellaceae in the class 

Dothideomycetes attack cool season pulse crops (Fabaceae). Peyronellaea pinodes, 

Peyronellaea pinodella, Phoma koolunga and Ascochyta pisi are the key pathogens 

that infect field pea while Ascochyta rabiei, A. fabae and A. lentis are principal 
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pathogens of chickpea, faba bean and lentil, respectively. These pathogens induce a 

typical necrotic symptom on their respective host collectively called ascochyta blight 

(AB). Regardless of the economic importance of pathogens belonging to 

Didymellaceae, limited molecular information is available in the public databases. 

This study aims to identify, compare and functionally test the necrosis inducing 

activity of the putative NLP(s) among key fungal pathogens in Didymellaceae.  

 

4.2 Materials and Methods 

 

4.2.1 Identification of NLP in Didymellaceae  

 

Conserved functional domains present in the whole protein sequences of P. pinodes, 

P. pinodella, Ph. koolunga and A. pisi were identified by searching the Pfam-A 

database [250] using HMMER3 [77]. The NLP containing domain identified in P. 

pinodes was used to retrieve homologous protein sequences from A. rabiei, A. lentis, 

A. fabae and A. vicea-vilosae predicted proteomes using BLASTp [6]. The NLP 

protein sequences from other fungal pathogens including Colletotrichum graminicola, 

Cochliobolus heterostrophus, Parastagonospora nodorum, Pyrenophora tritici-

repentis, Fusarium graminearum, Fusarium. oxysporum f.sp lycopersici, F. 

verticillioides, Botrytis cinerea, Sclerotinia sclerotiorum, and M .oryzae were 

identified from proteins clustered into families through whole proteome comparative 

analysis using Proteinortho version Proteinortho (version 5.1); parameters -singles –

selfblast [185]. Sixty two NLP-containing sequences from various fungal, bacterial 

and oomycetes were retrieved from the genbank protein database using P. pinodes 

NLP as query (Supplementary Table 7). Presence of a NLP domain in all protein 

sequences from various sources of organisms was confirmed by sequence analysis at 

InterProScan [147]. 

 

The signal peptide domain of each proteins was predicted using SignalP 4.1 [243]. 

Glycosylation sites were predicted using the NetOGlyc 4.0 server hosted 
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at http://www.cbs.dtu.dk/services/NetOGlyc/. Linear structure of the protein 

illustration were drawn using DOG1 [257].   

Full length protein sequences were aligned using Clastl W [180]. Phylogenetic tree 

was generated using maximum likelihood method according to Whelan and Goldman 

[331] model implemented in MEGA6 [307]. Sequence alignment coverage of less than 

95% was excluded from phylogenetic analysis. The bootstrap branch support was 

obtained from 1,000 replications. Tree was edited using Evolver online tool 

(http://www.evolgenius.info/evolview) and exported in scalable vector graphics (svg) 

for further processing. 

 

4.2.2 Test for amino acids under positive selection  

 

A total of 20 and 21 protein coding nucleotides were aligned based on amino acid 

sequences using TranslatorX [1] (http://translatorx.co.uk/). Aligned coding sequences 

were tested for evidence of positive selection using CODONML as implemented in 

PAML version 4.7b [342].  

 

4.2.3 Genome region context analysis 

 

To assess the scale of sequence variation in genomic regions comprising NLP in a 

closely related species, whole genome sequences were aligned using PROmer via 

MUMer 3.0 [174] with max-match option. Coordinates of matching genomic regions 

were generated from the delta filtered Promer output using show-coords. Genomic 

regions (Scaffolds) matching to NLP regions were extracted from the whole genome 

and re-aligned using Promer with default parameters. Mummerplots were generated in 

scalable vector graphics (svg) file format for visualisation. 

  

http://www.cbs.dtu.dk/services/NetOGlyc/
http://www.evolgenius.info/evolview
http://translatorx.co.uk/
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4.2.4 In planta expression assay of P. pinodes, P. pinodella and Ph. 

koolunga 

 

Seeds of pea cultivar ‘KASPA’ commonly grown in Australia were planted on 

vermiculite and perlite mixed in 3:1 and grown on porous plastic pot for 27 days. The 

plants were inoculated with a conidial suspension of 5x105 spore/ml determined by 

haemocytometer and covered with plastic sleeves to retain humidity over 95%. The 

plastic sleeves were removed 48 hours post inoculation. Plants were retained in a 

controlled growth chamber ‘Conviron’ (Argus Control System Ltd, Canada) adjusted 

to 200 C ± 2 and relative humidity of 60% followed by manual daily water spraying to 

maintain high humidity. Samples were collected at 0, 3, 6, 9, 21, 33, 48, 72 and 96 

hours post inoculation (HPI).  Samples were immediately frozen in liquid nitrogen and 

stored at -800C. Total RNA was extracted using Trizole method (Trizole® life 

technologies, USA), treated with DNase (Ambion® life technologies, USA). The 

integrity of RNA was analysed on 1% agarose gel electrophoresis using SYBR safe 

staining (SYBR® life technologies, USA). Based on cytological observation, 

approximately equal amount of RNA samples were pooled into early (0 – 6HPI), 

medium (9 – 33HPI) and late (48 – 96 HPI). The RNA was subjected to strand specific 

sequencing at Australian Genome Research Facilities (AGRF, Melbourne, Australia) 

following Illumina NGS standards with paired end reads of 100 bp. Low quality phred 

score (<28) and adaptors were trimmed from the reads and mapped to the whole 

genome sequences of respective species using TopHat (v2.0.9) [161]. Expression 

levels of NLP genes of interest were determined using Cufflinks version 2.1.1 [319]. 

 

4.2.5 Cloning, expression, and purification  

4.2.5.1  Heterologous expression of Ppdes_NLP1 in Pichia pastoris 

 

For functional studies, NLPs from P. pinodes were used to test for its necrosis inducing 

activity.  The full length cDNA of Ppdes_nlp1 was amplified using Q5 polymerase 

(New England Biolabs) with primers that harbor EcoRI and XhoI restriction sites at 

the 5’ and 3’ end, respectively. The primers are 5´-

cgcgGAATTCATGgTCTTCAATATTCAGTCTC-3´ forward and 
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5´-taGCGGCCGCtGAAGTAAGCATCCGCAAG-3´ reverse, respectively. The 

digested PCR product was cloned into appropriately digested pGAPZ (Invitrogen) to 

produce a C-terminal His6-tag. The resulting vector was transformed into Top10 cells 

and positive transformants were selected on LB plates containing Zeocin (30 ug/ml). 

The sequence of the clones was confirmed by Sanger sequencing (Macrogen 

sequencing facility, Korea). Expression of Ppdes_NLP1 was carried out in Pichia 

pastoris X33 (Invitrogen) according to the manufacturer’s instructions. Briefly, the 

cells were grown in yeast extract peptone dextrose broth supplemented with Zeocin 

(100 ug/ml) at 300C with shaking at 220 rpm for 48 hours. The culture supernatant was 

collected by removing the cells by centrifugation, then concentrated using amicon spin 

filter (MWCO: 3kDA; Millipore). Purification of His-tagged protein secreted into the 

culture medium was achieved using metal affinity chromatography (Nickel-

Nitrilotriacetic acid agarose column, GE life sciences) equilibrated with Buffer A (50 

mM Tris-HCl, pH8, 300mM KCl). Bound proteins were eluted with Buffer A 

containing 250 mM Imidazole. Fractions containing Ppdes_NLP1 were pooled and 

dialysed against 25mM Tris-HCl, pH 8.0. The protein purity was assessed by SDS-

PAGE and protein concentration was determined (Coommassie Protein Assay Reagent 

kit; Pierce USA) using bovine serum albumin (BSA) as standard. Immunoblotting was 

performed using Anti-His6 antibody (Biosensis) and the bands were visualized using 

chemiluminescence (Chemidoc, Biorad). The amino acid sequence was confirmed by 

LC-MS (Proteomics International, Australia).  

 

4.2.5.2  Heterologous expression of Ppdes_NLP2 in E. coli 

 

The coding region of the mature Ppdes_NLP2 (without the signal sequence) was 

amplified from Ppdes_nlp2 cDNA using iProof polymerase with primers containing 

PciI and XhoI restrictions sites incorporated at the 5´end and 3´end, respectively. The 

locus specific primers are 5´-CATACATGTCACCTACTCCTGCCACGCT-3´ in 

forward and 5´-TCTTGAAGCCCTCCACTGGTGTTACCCGCA-3´ in the reverse 

direction. The amplified PCR product was digested with appropriate restriction 

enzymes and cloned in pET28a cut with NcoI (New England Biolabs) and XhoI (New 

England Biolabs). Transformation, selection and sequence confirmation of positive 

clones were carried as described in section 4.2.5.1. Escherichia coli Rosette cells 
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(Novagen) containing the positive clone was used to express Ppdes_NLP2 His6-tag 

fusion protein. Cells were grown in Terrific Broth (Yeast extract, glycerol) 

supplemented with 30 ug/ml kanamycin (Amresco, USA) and 34 ug/ml 

Chloramphenicol (Amresco, USA) at 370C and 220 rpm. Over expression was induced 

by 400 uM isopropyl-1-thio-d-galactopyranoside (IPTG) at mid-logarithmic stage. 

The culture was further incubated for 4 hours at 370C at 200 rpm after addition of 

IPTG.  Cells were harvested and resuspended in Buffer A and lysed using sonicator 

(Bandelin, Germany). Soluble fractions were clarified by centrifugation. Purification 

and characterization of Ppdes_NLP2 were performed as described for Ppdes_NLP2. 

 

4.2.5.3 Infiltration bioassay  

 

Seeds of Pisum sativum cultivar ‘KASPA’, Triticum aestivum cultivar ‘Mace’, 

Hordeum vulgare cultivar ‘FLAGSHIP’, Cicer arietinum cultivar ‘MOTI’ were 

planted on vermiculite and perlite mixed in 4:1 and grown on porous plastic pots for 2 

- 3 weeks. Protein infiltrations were performed using needleless 1cc syringe and 

pressure infiltrated on stipules of P. sativum (2-3 weeks old), leaves of T. aestivum and 

B. vulgare (2-3 weeks old) at 2 µM protein concentration. Necrosis was allowed to 

develop 2-5 days post infiltration and leaf tissues were excised and scanned at 1200 

dpi (Epson XP200). All experimeintes were conducted in three replicaion.  

 

4.3  Results and Discussion 

 

4.3.1 Fungal pathogens in Didymellaceae contain two NLP  

 

Bioinformatics and comparative genome analysis enabled us to identify a pair of NLP 

encoding protein sequences in eight key fungal pathogens from Didymellaceae, causal 

agent of ascochyta blight in pulse crops. All closely related fungal pathogen species 

from Didymellaceae including P. pinodella, Ph. koolunga, A. pisi, A. lentis, A. fabae, 

A. rabiei and A. vicea-vilosae contain a pair of NLP collectively named as NLP1 and 

NLP2. The number of observed NLPs in Didymellaceae are equivalent to those 
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reported in B. cinerea [51, 293], S. sclerotiorum [53] but less than that observed in V. 

dahliae [354] and F. oxysporum [14]. 

 

All of the eight pathogens from Didymellaceae contain type I NLP characterized by 

two conserved cysteine residues predicted to form a disulphide bridge. The NLP1 

proteins are composed of 239 amino acid residues while NLP2 has 244 amino acids in 

P. pinodes, P. pinodella, Ph. koolunga and A. rabiei and 242 amino acids in A. pisi, A. 

lentis, A. fabae and A. viciae-villosae. Both NLPs contain two conserved cysteine 

residues, thus belonging to type I category. All sequences contain a signal peptide at 

the N-terminus and a perfect heptapeptide motif at the central region except in A. fabae 

and A. viciae-villosae NLP1 as shown in Figure 14. Previous research indicated that 

the two conserved cysteines are essential for phytotoxic activity of NLPs in various 

microbes [82, 234, 354]. Predicted glycosylation sites are higher in NLP1 than NLP2 

but most of the predicted O-glycosylation sites in NLP1 and NLP2 are similar and 

conserved across fungal species from the Didymellaceae (Figure 14). In addition, 

NLP2 predicted to contain two N-glycosylation sites not observed in NLP1. 

Glycosylation is important for the secreted protein to retain structure and activity as 

well as to prevention from degradation [265, 323]. 

 

The two NLPs have only 36 – 42% identical amino acid sites within each species. 

There is high sequence variation between the two paralogues (NLP1 and NLP2) in all 

species. Similar levels of paralog divergence was also reported in Botrytis species 

[293]. Some mutations are also observed in the heptapeptide motif. For instance, 

histidine is substituted with asparagine in the heptapeptide motif ‘GHRHDWE’ in A. 

fabae and A. viciae-villosae. Previous studies have shown the importance of this 

heptapeptide motif in necrotic activity [234, 354]. The impact of positively charged 

side chain histidine substitution with that of uncharged polar side chain asparagine in 

A. fabae and A. viciae-villosae need further studies to determine if it could abolish 

necrotic activities in A. fabae and A. viciae-villosae. 
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4.3.2  NLP2 is absent in closely related cereal pathogens 

  

The phylogenetic relatedness among 96 NLP sequences from fungi, bacteria and 

oomycetes were analysed using maximum likelihood methods that enabled us to 

distinguish subtype 1 NLP (NLP1 and NLP2) that exist in a wide array of dicot fungal 

pathogens. According to the phylogenetic analysis, the fungal pathogens from the 

Didymellaceae can be placed into two distinct groups. Group A contain NLP1 which 

are closely associated to pathogens of monocots including C. heterostrophus, P. tritici-

repentis and P. nodorum (Figure 15) The branching pattern of group A along the 

phylogenetic tree is congruent to species phylogeny. On the other hand, group B 

consists NLP2 which are closely related to most pathogens infecting dicotyledonous 

plants. The oomycetes (group C) are closely related to basidiomycete (M. perniciosa). 

Finally, group D consists of type II NLP from bacteria and fungi. Interestingly, three 

consecutive residues (‘NVA’ and their variants) were absent from NLP1 which could 

be used as a signature to distinguish the two NLPs (Supplementary Figure 1). No non-

phytotoxic type 1 NLPs from oomycetes contain these three residues in their protein 

sequences. 

 

Comparative genome analysis of P. pinodes against genomes of cereal pathogens (P. 

tritici-repentis, P. nodorum, M. graminicola, and C. heterostrophus) was performed 

to substantiate the phylogenetic distribution of NLP1 (closely related to monocot 

pathogens) and NLP2 (more associated to pathogens of dicots) based on hosts. The 

result reveals lack of sequence matches surrounding P. pinodes NLP2 (Ppdes_NLP2) 

loci in cereal pathogens. Further TBLASTn search of the aforementioned genomes 

using P. pinodes NLP2 (Ppdes_NLP2) as a query returned no significant hit. Protein 

clustering using Proteinortho showed absence of NLP2 orthologues in P. tritici-

repentis, P. nodorum, M. graminicola, and C. heterostrophus. In addition, there is no 

type I NLP2 paralogues was reported from fungal pathogens of cereals tested. Both 

phylogenetic and sequence analysis suggests NLP2 orthologous are absent from the 

tested fungal pathogens of cereals suggesting NLP2 confers an adaptive advantage to 

pathogens of dicot plants. 
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Figure 14 Amino acid sequence alignment of the necrosis- and ethylene-inducing peptide (Nep1-like protein, NLP) from 

Didymellaceae. 

 Sequences are highlighted according to amino acid percent similarity. Conserved cysteine and GHRHDWE motif is in black box.
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Figure 15 Phylogenetic distribution of Nep1-like proteins (NLPs). 

Node numbers indicate bootstrap values from 1,000 replication. The analysis involved 

96 amino acid sequences from oomycetes, bacteria and fungi. All positions with less 

than 95% site coverage were eliminated. Functionally characterized proteins were 

indicated in green (active) and red (inactive) font colours. 
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4.3.3 NLP resides in non-conserved loci of Didymellaceae genome 

 

The genomic region containing NLPs in pathogens from the Didymellaceae were 

compared through six frame translation using MUMmer (PROmer). The loci 

surrounding NLP1 and NLP2 surrounding loci in P. pinodes show differences in 

sequence conservation compared to other pathogens in Didymellaceae. However, 

macrosynteny is conserved in scaffolds that carry NLPs between closely related 

species such as P. pinodes and P. pinodella as shown by high sequence similarity 

matches (red >90%) drawn across diagonal line in the dot-plot (Figure 16). When P. 

pinodes sequences were compared to A. rabiei, A. lentis and A. fabae, a break of 

sequence co-linearity is observed at NLP loci. Absence of matching sequences are 

reflected in dot plots (particularly between 10 and 15 kb) comparison between P. 

pinodes Scaffold 73 against A. rabiei, A. lentis and A. fabae(Figure 16). Similar result 

is observed when genomic loci (Scaffold) containing NLP2 in A. rabiei (Scaffold_85) 

is compared against P. pinodes and P. pinodella.  

 

Given the limitations imposed by the fragmented nature of current genome assemblies, 

NLPs in Didymellaceae seems to reside in clade specific genomic regions within 

Didymellaceae. Existence of reminiscent retrotransposon (Gypsy 47 bp) and DNA 

transposon (Molley 57 bp) observed near NLP2 in P. pinodes might have contributed 

to sequence variation through RIP leakage. In F. oxysporum three of the NLP loci 

reside in lineage specific genomic regions rich in transposable elements [201]. 

Similarly, one NLP is also located on lineage specific chromosome in F. 

verticillioides.  
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Figure 16 Dot-plot comparison of genome loci containing Nep1-like proteins (NLPs) 

in P. pinodes and closely related species in Didymellaceae. 
Matching sequences were colour coded according to their similarity. Red broken box 

indicate position of NLPs on P. pinodes scaffold.   
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4.3.4 NLP is under purifying selection  

 

Tests for positive selection under random-site model was performed using CODEML 

for NLP1 and NLP2. A total of 21 and 20 full length amino acid coding sequences 

orthologous to NLP1 and NLP2, respectively, were used in the analysis. A ω value of 

0.183 in NLP1 and 0.107 in NLP2 is observed under M8 indicating that these genes 

are under purifying selection. The M2a model suggests 0.36% of the sites in NLP1 are 

under positive selection at ω =7.54 (Table 12). This corresponds to position 226A 

(based on alignment) at ≥95% posterior probability following Bayes Empirical Bayes 

(BEB) probabilities. This position is not polymorphic between the two NLPs within a 

species. There is no positively selected sites detected in NLP2 in this analysis 

indicating that it is under tight regulation. Previous studies indicated that NEP1 and 

NEP2 in Botrytis species showed a general trend of purifying selection with the 

exception of few amino acid residues under positive selection [293]. Amino acids 

under positive selection were also observed in NIP1 genes of R. secalis [277]. The 

results imply that host response that might have been developed in response to NLP in 

the Fabaceae do not interfere with NLP phytotoxicity. 

  

4.3.5 NLP is expressed during infection and disease development 

 

The expression pattern of both NLPs was determined for P. pinodes, P. pinodella and 

Ph. koolunga using in planta RNA sequencing. In P. pinodes, NLP2 is constitutively 

expressed during early to late stage of infection while NLP1 is expressed from mid to 

late stage of infection (Figure 18) indicating differential activation of these genes in 

response to host. In P. pinodella, NLP1 shows consistent expression from early to late 

stage of infection while NLP2 is expressed from mid to late stage of infection. 

Likewise, NLP2 showed high level of expression from early to late stage of infection 

in Ph. Koolunga (Figure 18). No expression of NLP1 is detected at early stage of 

infection in both P. pinodes and Ph. koolunga.  
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The in planta expression of NLPs in P. pinodes, P. pinodella and Ph. koolunga 

suggests that these genes may contribute to disease development by through eliciting 

host cell death in a manner typical of a necrotrophic fungal lifestyle. In P. pinodes and 

Ph. koolunga the high expression at early to mid-stage of infection is related to early 

onset and expansion of necrosis. Previous work has shown high expression of NLP 

during transition from biotrophy to necrotrophy in Phytophthora sojae, P. infestans 

and Colletotrichum higginsianum [155, 167, 252]. Similarly, B. cinerea Bcnep1 and 

Bcnep2 expression were detected at early hours after treatment and during onset of 

necrotic lesion/biomass build-up, respect [51, 53]. As opposed to this, HaNLP was 

expressed during early stage of infection in Hyaloperonospora arabidopsidis [34] and 

M. graminicola [222].  

 

4.3.6 Functional characterization of NLP 

 

Several studies have shown that the NLP gene family members from different 

microorganisms differ in their ability to induce necrosis in dicotyledonous plants [13, 

241, 253, 276, 293]. In order to test whether Didymellaceae NLPs have cell-death 

activity, the proteins were heterologously expressed in P. pastoris for Pdes_NLP1 and 

in E.coli for Ppdes_NLP2. Necrotic lesions on pea cultivar ‘Kaspa’ infiltrated with 

purified Pdes_NLP2 started to appear as early as 2 days post infiltration (dpi) and clear 

necrosis was observed 3 dpi (Figure 17). Infiltration of pea stipules with controls 

purified from cells containing the corresponding empty vector did not show any signs 

of necrotic lesions. On the other hand, infiltration of pea cultivar ‘Kaspa’ with the same 

concentration of purified Ppdes_NLP1 failed to induce necrosis. Ppdes_NLP2 did not 

elicit any response from barley cultivar ‘Flagship’ even after 10 dpi (Figure 17). 
Western blot analysis confirmed the presence of the proteins that were infiltrated into 

the stipules of pea ‘Kaspa’. Taken together, these data strongly suggest that 

Ppdes_NLP2 has a cell-death inducing activity only on dicots while Ppdes_NLP1 

lacks the ability to induce cell death under current experimental conditions. This 

finding is consistent with cell-death inducing activities of several NLPs in 

dicotyledonous plants but not against monocotyledonous plants [13, 241, 253, 276, 

293].  
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Figure 17 Ppdes_NLP2 and Ar_NLP2 induces cell death in pea and chickpea plants 

but not in barley. 

A) Western blot analysis of purified Ppdes_NLP1 and Ppdes_NLP2 after staining 

B) NLP from P. pinodes infiltrated on pea cultivar ‘Kaspa’ 

C) NLP1 and NLP2 from P. pinodes infiltrated on barley cultivar ‘Flagship’ 

NLP2 from P. pinodes and A. rabiei infiltrated on pea cultivar chickpea cultivar 

‘Moti’. Photographs were taken 3 days post infiltration (dpi) for pea and 7 days 

(dpi) for barley. Only Ppdes_NLP2 triggers necrosis in pea, while both 

Ppdes_NLP2 and Ppdes_NLP1 do not elicit response from barley under the 

current conditions.   
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To determine whether orthologues of Ppdes_NLP2 from A. rabiei, a member of 

Didymellaceae pathogen of chickpea, has the same cell-death –inducing activity, 

Ar_NLP2 was amplified using 5´-CATACATGTCTCCCACTGGGCTCGAGAA-3´ 

forward and 5´-CATGCGGCCGCGAAGTAAGCATCAGCAAGGT-3´ reverse 

sequences, expressed in E. coli. Infiltration of purified Ar_NLP2 into the leaflets of 

chickpea cultivar ‘Moti’ showed necrosis 3 dpi, while the control vector failed to 

induce necrosis (Figure 17). In addition, infiltration of Ar_NLP2 showed the same 

necrosis-inducing activity on pea cultivar ‘Kaspa’.  

 

Protein assay using SDS-PAGE revealed presence of exta band from Ppdes_NLP1 

expressed in P. pastori (Figure 17), which implied post translational modification of 

the expressed protein. The purified protein infiltrated on dicot plants did not induced 

necrosis. Speculatively, post-translational modification might have inactivated the 

necrotic activity of Ppdes_NLP1. This contradict with previous finding where post-

translational modification (glycosylation) is important for Slp1 effector protein 

stability and function. Similarly, glycosylation appear to enhance infection and 

subsequent disease development in C. albicans ([327]).  

 

We were unable to express Ppdes_NLP2 in P. pastori to observe similar result. 

However, Ppdes_NLP2 expressed in E. coli showed strong necrotic activity. The E. 

coli expression environment may minimize glycosylation of Ppdes_NLP2 and 

improved its subsequent cytotoxic activity against dicot plants since post translational 

modifications such as glycosylation is less common in bacteria [70].  

 

The difference in necrotic activities between NLP1 and NLP2 in Didymellaceae also 

suggests functional diversification between the two paralogues. Duplicate genes 

acquire new function via neofunctionalisation and sub-functionalisation as observed 

in yeast [33], M. grisea cutinase gene family [288], plant UbiA gene family [329]. In 

V. dahlia, VdNLP is involved in asexual reproduction, vegetative growth, as well as 

pathogenesis [272, 354]. It was also suggested that non-phytotoxic NLP may 



CHAPTER FOUR 

 

88 
 

contribute to disease development without necrotic effect [272]. The fact that both 

NLP expressed in vitro and in planta plausibly support the idea of additional role of 

NLP1 and NLP2 under various circumstances yet to be verified. 

 

4.4 Conclusion 
 

The eight fungal pathogens from Didymellaceae family contained a pair of similar 

NLP proteins sequences. The genomic loci of these two genes lack synteny 

conservation except in sister species. Both NLPs are actively expressed during pea 

infection by P. pinodes, P. pinodella and P. koolunga. However, only NLP2 possessed 

phytotoxicity against dicot plants. The potent necrosis inducing protein, NLP2, wasn’t 

detected at least in four pathogens infecting cereals suggesting niche adaptive 

evolution of Didymellaceae pathogens to dicotyledonous hosts. The evolution of NLP 

under purifying selection indicates lack of deleterious host defence response 

established to halt phytotoxic activities of NLP in Fabaceae. Identifying and studying 

the NLP interacting molecule in the host may help to develop novel pre-breeding 

techniques. Determining the contribution of NLP2 in disease development in ABPFP 

warrants further knockout/down studies. It is also important to clarify the impact of 

post-translational modification of Ppdes_NLP1 and Ppdes_NLP2 will influence 

disease development during host and pathogen interaction. 

 

  



CHAPTER FOUR 

 

89 
 

 

 

 

Figure 18 In planta expression pattern of necrosis - and ethylene inducing - peptide 

like proteins (NLPs) from P. pinodes, P. pinodella and Ph. koolunga. 

P. pinodes NLP = Ppdes_NLP1 & Ppds_NLP2; P. pinodella NLP = Pdlla_NLP1 & 

NLP2; Ph. koolunga NLP = Phkol_NLP1 & Phkol_NLP2A. Error bars indicate 

standard error of mean. 
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Table 12 Log likelihood values and parameter estimates under variable ω ratios for NLP1 and NLP2 

 
Model code lnL  

 
Parameter estimates Positive selected site 

NLP1 M0 -8364.14 
 

0.13487 Not allowed 

 
M1a -8236.35 

 
ω0=0.11019 (ω1= 1), p0 =0.76087(p1=0.23913) Not allowed 

 
M2a -8235.52 

 
ω0=0.11064(ω1=1), ω =7.54665, p0=0.7592, p1=0.2372, p2=0.00356 226 A  

 
M7 (b) -8123.28 

 
p = 0.60750  q = 2.96372 Not allowed 

 
M8 (beta & ω) -8120.46 

 
p0 =  0.99561(p1 = 0.00439)  p = 0.62470, q = 3.17086,  ω =  5.02143 226 A 

NLP2 M0 -7078.79 
 

0.08495 Not allowed 

 
M1a -6948.92 

 
ω =0.07358 (ω0=1) p0=   0.82129 (p1= 0.17871) Not allowed 

 
M2a -6948.92 

 
ω0=0.07358 (ω2=1), ω2=32.80982, p0=0.82129, p1=0.17871, p2=0.00 None 

 
M7 (b) -6857.35 

 
p =  0.57373  q =  4.62350 Not allowed 

 
M8 (beta & ω) -6854.5 

 
p0 = 0.97035(p1 = 0.02965),  p = 0.64319, q = 6.35815, ω =1.00 37A, 166T,198N 

Sign for positive selection was analysed using CODEML implemented in PAML. Model M2a is compared against model M21a and Model 

M8 is compared against M7 for detecting positive selection. Twenty one and twenty amino acid sequences were included in the analysis. 

Positively selected sites were identified at posterior probability cut-off value of p ≥ 95% is shown in bold. 

Note: NLP1: M2a suggest 0.00356*100 is under positive selection at ω =7.54. 

Note: NLP2: M2a suggest 0.00*100 sites are under positive selection at ω =32.80982. No site under positive selection 
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5. Known and Conserved Effector Candidate Genes Associated 

with Ascochyta Blight Pathogens of Field Pea 

 

5.1 Introduction 
 

Plant pathogenic fungi can be perceived by the host plant immune system and induce 

host defence responses, which are triggered by molecular epitopes referred to as 

pathogen-associated molecular patterns (PAMPs) [197]. Chitin oligosaccharides (N-

acetyl chito-oligosaccharides) are an example of common PAMPs that induce defence 

responses in various plant species [25, 283]. Recognition of chitin through membrane-

localized pattern recognition receptors leads to the induction of defence responses, 

called PAMP-triggered immunity (PTI) [146].  

 

Fungal pathogens have developed various mechanisms to avoid, overcome, suppress 

or detoxify pre-existing or induced host defence responses using a wide variety of 

“effector” molecules and other pathogenicity-related proteins. Many effectors remain 

unknown, however, several have been identified and characterised to varying degrees. 

LysM effectors are widely conserved effector molecules that have been characterized 

in several economically important fungal pathogens. For instance, Ecp6 of 

Cladosporium fulvum, Slp1 of Magnaporthe oryzae, and Mg1LysM, Mg3LysM of 

Mycosphaerella graminicola are all LysM effectors. LysM effectors bind to 

extracellular fungal chitin and shield hyphae from plant derived hydrolytic enzymes 

[63, 210, 216] which bind to chitin and are thus able to suppress chitin-triggered PTI, 

which leads to a compatible interaction in their respective host [63, 210, 216]. Similar 

preventive mechanisms are employed by Mycosphaerella fijiensis (MfAvr4) and C. 

fulvum (Avr4), via Avr proteins that are able to subvert host defence mechanisms 

[296]. 

 

Many fungal pathogens are also able to detoxify induced antimicrobial compounds 

into nontoxic compounds. For example, fungal pathogens of crucifers such as 

Alternaria brassicola and Leptosphaeria maculans are able to detoxify the 



CHAPTER FIVE 

 

92 
 

antimicrobial compound camalexin into its non-toxic form [236, 237]. The 

detoxification of brassinin by A. brassicola is also able to suppress host defence 

responses [239]. 

 

Available literature has indicated that Peyronellaea pinodes produces small 

glycoprotein molecules (suppressors) that condition pea to become susceptible to 

fungal infection [284, 286]. The three ascochyta blight pathogens of field pea viz P. 

pinodes, Peyronellaea and Ascochyta pisi are able to detoxify pisatin, a phytoalexin 

produced by pea through a demethylation process similar to that of the wilt pathogen 

Nectria haematococca [71, 105]. Research finding show that pisatin is demethylated 

directly by a cytochrome P450 monooxygenase [105, 213].  

 

The corresponding genes governing demethylation have not yet been identified in 

Ascochtya Blight Pathogens of Field Pea (ABPFP), or even predicted prior to this 

analysis. The purpose of investigations in this chapter is to identify and compare 

putative known and well characterized effectors and other pathogenicity genes in the 

new genome resources of P. pinodes, P. pinodella, A. pisi and Phoma koolunga, such 

as LysM effectors and pisatin demethylase genes, for which prediction is likely to be 

relatively reliable.  

 

5.2  Materials and methods 

 

5.2.1 Protein sequence acquisition, annotation and phylogenetic analysis 

 

Whole proteome sequences of P. pinodes, P. pinodella, Ph. koolunga and A. pisi were 

obtained as described in Chapter 2. Conserved functional domains present in the whole 

protein sequences of P. pinodes, P. pinodella, Ph. koolunga and A. pisi were identified 

through  scanning versus the Pfam-A database [250] using HMMER3 (3.0, default 

parameters) [77]. Sequences with a significant hit (P < 0.01) to the Pfam record for 

the LysM conserved domain (PF01476) were retrieved from each genome annotation.  
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Likewise, protein sequences that were functionally assigned the annotation for 

cytochrome P450 pisatin demethylase (PDA, GO: 0005506) via BLAST2GO 

(go_201303-assocdb-data) [50] were retrieved from the whole genome sequences of 

P. pinodes, P. pinodella, A. pisi and Ph. koolunga. Protein orthology analysis using 

Proteinortho (version Proteinortho 5.1; parameters -singles -selfblast) [185] was used 

to find orthologous protein sequences from various fungal species including P. 

nodorum [128], C. heterostrophus  [229], L. maculans [266], Botrytis cinerea and 

Sclerotinia sclerotiorum [7], N. crassa [96], Pyrenophora tritici-repentis [204], N. 

haematococca [46], C. graminicola [227], Rhizoctonia sola [332], Fusarium 

graminearum [52], Verticillium dahliae [168], Magnaporthe grisea [67] and  

Fusarium verticillioides [200]. The sources of proteome data used in this study are 

indicated in the (Table 13). 

 

In addition, functionally characterized LysM - and PDA-encoding protein sequences 

were retrieved from NCBI database (Table 13). The secretion domain of each protein 

was predicted using SignalP 4.1b (-f short,  -k, -t euk) [243]. Linear structure of the 

protein illustration were generated using DOG 1.0 [257]. BLASTp (blastall version 

2.2.26, -p blastp, -m 8, -e 10-3) [6] analysis of P. pinodes and P. pinodella putative 

PDA against functionally characterized PDA genes of N. haematococca and F. 

oxysporum fsp pisi was also performed to determine the level of sequence identity.  

 

Full length protein sequences were aligned using CLUSTAL W with BLOSUM 

protein weight matrix (gap open penalty 10, gap extension penalty 0.2 in multiple 

alignment [180]. Although  orthologous protein sequences were detected through 

orthology analysis, only functionally characterized LysM and PDA containing protein 

sequences from non-Didymellaceae and putative LysM and PDA from ABPFP were 

included in the phylogenetic analysis. A phylogenetic tree was generated using the 

neighbour joining method [269, 331] implemented in MEGA6 [307]. Bootstrap branch 

support was obtained from 1,000 replications. Branches with less than 50% bootstrap 

support were collapsed and the consensus trees were edited using the online tool 

EvolView [348] (http://www.evolgenius.info/evolview) . 

http://www.evolgenius.info/evolview
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Table 13 Sources of characterized genes used in this study 

 

Organism Domain Gene name NCBI ID Reference 

Aspergillus niger LysM - EHA27166 Mentlak et al., 2012 

Aspergillus A niger LysM - XP_001402350 Mentlak et al., 2012 

Cladosporium fulvum  LysM Ecp6 4B9H_A de Jonge et al., 2010 

 Cladosporium  fulvum  CBM50 Avr4  CAA69643 Joosten et al., 1997 

Colletotrichum lindemuthianum LysM CIH1 CAA04765 Perfect et al., 1998 

Magnaporthe oryzae  70-15 LysM Slp2 XP_003716457 Mentlak et al., 2012; Gohari et al., 2015 

Mycosphaerella fijiensis LysM - XP_007929246 Ohm et al., 2012 

Mycosphaerella graminicola IPO323 LysM Mg2LysM XP_003850050 Marshall et al., 2011; Gohari et al., 2015 

Mycosphaerella graminicola IPO323 LysM Mg3LysM XP_003848663 Marshall et al., 2011 

Magnaporthe oryzae 70-15 LysM Slp1 XP_003717420 Mentlak et al., 2012 

Sclerotinia sclerotiorum LysM - XP_001595446 Mentlak et al., 2012* 

Fusarium oxysporum f.sp. pisi HDV247 PDA FoPDA1 AAR32716 Coleman et al., 2011 

Nectria haematococca mpVI PDA PDA6-1 P38364 Reimman and VanEtten, 1994 

Nectria haematococca mpVI PDA PDA1 XP_003044225 Coleman et al., 2009 

Nectria haematococca mpVI PDA PEP1 AAK11166.1|AF294788_1 Han et al., 2001 

Nectria haematococca mpVI PDA PEP2 AAK11167/AF294788_2 Han et al., 2001 

Nectria haematococca mpVI PDA PEP5 AAK16922.1|AF315315 Han et al., 2001 

LysM and PDA indicate lysine motif and pisatin demethylase, respectively.

https://en.wikipedia.org/wiki/Magnaporthe_grisea
http://www.ncbi.nlm.nih.gov/pubmed/21453427
http://www.ncbi.nlm.nih.gov/pubmed/21453427
http://www.ncbi.nlm.nih.gov/pubmed/21453427
https://en.wikipedia.org/wiki/Magnaporthe_grisea
https://en.wikipedia.org/wiki/Sclerotinia_sclerotiorum
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5.3 Results and discussion   

 

5.3.1 Conserved LysM might be involved in infection and disease 

development 

 

The availability of genome sequences for P. pinodes, P. pinodella, A. pisi and Ph. 

koolunga allowed the survey of their whole proteomes to identify conserved LysM 

domain containing protein sequences. As typically observed across a number of 

Ascomycetes species, all the four fungal pathogens contained LysM domain-

containing protein sequences. Forty-five LysM domain containing protein sequences 

were identified from the genome sequences of P. pinodes, P. pinodella, A. pisi and Ph. 

koolunga (Table 14). Over 88% of these predicted LysM proteins had molecular 

weights of 34 kDa or less. Of these, 60% were cysteine-rich (≥ 5 cysteines). Moreover, 

51% of these LysM domain-containing sequences from ABPFP were predicted for 

extracellular secretion (Table 14). These cysteine-rich secretory LysM containing 

proteins were predicted as effector candidates identified in ABPFP. 

 

Phylogenetic analysis grouped the LysM-containing protein sequences into four main 

groups, as indicated by coloured branches in Figure 19. These groups indicated with 

green and blue branches contained 1- 4 LysM domain with a signal sequence at the N-

terminus. Proteins with such domain configuration has been previously described as 

“LysM effectors” [62]), which were secreted and possess multiple LysM motifs 

without known catalytic domain [3]. Groups indicated with red branches were 

predicted to contain single or multiple LysM domain but lack a predicted signal 

peptide. According to the phylogenetic analysis, all functionally characterized LysM 

effectors such as Ecp6 from C. fulvum, Mg2LysM and Mg3LysM from M. graminicola, 

and Slp1 and Slp2 from M. oryzae were grouped together. The predicted LysM 

effectors from Pk. koolunga (Phkol_FT04040_9842, Phkol_FT04040_8631, 

Phkol_FT0713_10520, and Phkol_FT0713_2974) and A. pisi (Apisi_11254, 

Apisi_AP1_11254, Apisi_AP1_9426, Apisi_Georgia-7_4297, and Apisi_Georgia-
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12_5867) also grouped with the known LysM effectors with 98% bootstrap support 

(Figure 19).  

 

Various researches indicated that LysM-containing proteins function as virulence 

factor in plant pathogenic fungi. Over-expression of extracellularly secreted C. fulvum 

Ecp6 increased the virulence of Fusarium oxysporum on tomato (Bolton et al., 2008). 

Ecp6 facilitates virulence through prevention of chitin-triggered host immunity by 

sequestering fungal chitin fragments [63]. Similarly, Mg1LysM and Mg3LysM from 

M. graminicola are involved in protection of fungal hyphae against plant derived 

hydrolytic enzymes [210]. The genes are specifically expressed during symptomless 

infection stage. The Slp1 from M. oryzae, is also required for full virulence on rice and 

functionally similar to C. fulvum Ecp6. The close association of LysM domain 

containing proteins from Ph. koolunga and A. pisi are grouped together with known 

LysM effector, with similar domain architecture and presence of signal sequences at 

N terminus indicating their potential role during infection and subsequent disease 

development. A similar group of predicted LysM effectors from ABPFP (indicated in 

green branches in Figure 19 may also play similar role. 

  

Similar to LysM, cyanovirin-N homology domain (CVNH) is an 11-kDa sugar binding 

protein domain conserved in eukaryotes [242]. All the four ABPFPs contain a CVNH 

protein that includes a LysM domain [Pfam: PF01476] sandwiched between CVNH 

[Pfam: PF01476] domains as indicated in Figure 19. The N terminus of these protein 

sequences contain Rick-17kDa domain but lack a signal peptide, consistent with 

previous finding. Percudani et al. [242] indicated that CVNH is found as a non-

secretory domain in filamentous ascomycetes. It is CVNH is widely observed in 

bacteria, fungi and plants [242]. However, BLASTp analysis versus NCBI NR 

Proteins using P. pinodes CVNH as a query returned no significant hits in the 

Taphrinomycotina (Ascomycotina taxid:451866), Basidiomycota (Agaricomycotina, 

taxid:5032; Pucciniomycotina, taxid 29000; Ustilaginomycotina, taxid 452284 or 

Oomycetes (taxid 4762). Further sequence search was conducted in the reference 

proteome database using HMMER (http://www.ebi.ac.uk/Tools/hmmer/) at p-value of 

https://en.wikipedia.org/wiki/Taphrinomycotina
https://en.wikipedia.org/wiki/Basidiomycota
https://en.wikipedia.org/wiki/Agaricomycotina
https://en.wikipedia.org/wiki/Ustilaginomycotina
http://www.ebi.ac.uk/Tools/hmmer/
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0.001. This result corroborated the previous result from BLAST analysis –an absence 

of significant hits in fungi belong to Saccharomycotina, Taphrinomycotina and 

Oomycota. Furthermore, very few sequences with significant hits are observed across 

the Basidiomycota (Pleurotus ostreatus, Galerina marginata, Piriformospora indica, 

and Botryobasidium botryosum). Based on combined analysis of BLASTp and 

Phmmer, the data suggested that CVNH is discontinuously distributed across fungi. 

Percudani et al. [242] suggested that CVNH might have been more recently acquired 

by some organisms after the separation of the main evolutionary lineages. Further 

evolutionary studies may reveal the evolutionary history of CVNH across a wider 

taxonomic range. 

 

Only a little information is available with regards to contribution of the CVNH domain 

to fungal virulence. In M. oryzae, the CVNH domain protein MGG_03307 is localized 

to the appresorium and suggested to play crucial role in early stage of infection [169]. 

It would be interesting to functionally characterize CVNH homologs in ABPFP and 

related necrotrophs to determine its role in inducing rapid cell death in host plants.  

  

https://en.wikipedia.org/wiki/Saccharomycotina
https://en.wikipedia.org/wiki/Taphrinomycotina
http://www.uniprot.org/taxonomy/1137138
http://www.uniprot.org/taxonomy/685588
http://www.uniprot.org/taxonomy/1109443
http://www.uniprot.org/taxonomy/930990
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Table 14 Amino acid properties of proteins with LysM motif 

 

Organism 

Protein Id/ 

known 

effector 

Isolate 

Length 

Cysteine 

count 

(%) 

Molecular 

 weight 

Secreted 

P. pinodes Ppdes_24.2 M074 356 15(4.2) 29.32 Yes 

 
Ppdes_26.69 M074 342 3(0.9) 27.70 No 

 
Ppdes_5.67 M074 371 16(4.3) 32.61 Yes 

 
Ppdes_6.2 M074 275 14(5.1) 22.70 No 

 
Ppdes_10730 MP1 371 16(4.3) 32.61 Yes 

 
Ppdes_11617 MP1 275 14(5.1) 22.70 No 

 
Ppdes_11951 MP1 133 5(3.8) 10.30 No 

 
Ppdes_9992 MP1 301 13(4.3) 25.34 Yes 

P. pinodella Pdlla_3628 410/95 498 24(4.8) 43.53 Yes 

 
Pdlla_4301 410/95 877 27(3.1) 76.51 No 

 
Pdlla_8854 410/95 342 3(0.9) 27.67 No 

 
Pdlla_11090 AWPP4BI10 401 16(4) 33.65 Yes 

 
Pdlla_11222 AWPP4BI10 158 6(3.8) 12.71 No 

 
Pdlla_1717 AWPP4BI10 645 24(3.7) 56.64 No 

 
Pdlla_3029 AWPP4BI10 498 24(4.8) 43.53 Yes 

 
Pdlla_8336 AWPP4BI10 342 3(0.9) 27.67 No 

A. pisi A pisi_10786 AP1 391 19(4.9) 33.58 Yes 

 
Apisi_10788 AP1 257 11(4.3) 21.17 No 

 
Apisi_11254 AP1 217 8(3.7) 17.86 Yes 

 
Apisi_11282 AP1 139 6(4.3) 11.82 Yes 

 
Apisi_7926 AP1 364 3(0.8) 29.57 No 

 
Apisi_9426 AP1 120 2(1.7) 9.51 Yes 

 
Apisi_9612 AP1 340 13(3.8) 30.17 No 

 
Apisi_2488 Georgia-12 340 13(3.8) 30.13 Yes 

 
Apisi_ 4812 Georgia-12 347 2(0.6) 28.22 No 

 
Apisi_ 5867 Georgia-12 120 2(1.7) 9.51 Yes 

 Apisi_ 9529 Georgia-12 238 5(2.1) 20.49 Yes 
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Table 13 Continued… 

Organism 

Protein Id/ 

known 

effector 

Isolate 

Length 

Cysteine* 

count (%) 

Molecular 

 weight 

Secreted 

 Apisi_ 4297 Georgia-7 120 2(1.7) 9.51 Yes 

 Apisi_ 6618 Georgia-7 364 3(0.8) 29.60 No 

 Apisi_ 8916 Georgia-7 340 13(3.8) 30.17 Yes 

Ph. koolunga Phkol_ 4171 FT04040 343 3(0.9) 27.85 No 

 Phkol_8631 FT04040 120 2(1.7) 9.78 Yes 

 Phkol_9728 FT04040 365 16(4.4) 32.02 No 

 Phkol_9842 FT04040 199 7(3.5) 16.11 Yes 

 Phkol_10520 FT0713 216 9(4.2) 17.53 Yes 

 Phkol_11622 FT0713 185 3(1.6) 15.47 No 

 Phkol_2974 FT0713 120 2  (1.7) 9.78 Yes 

 Phkol_3309 FT0713 343 3  (0.9) 27.85 No 

 
Phkol_3738 FT0713 371 16  (4.3) 32.81 Yes 

 
Phkol_714 FT0713 264 10  (3.8) 22.17 No 

 
Phkol_8714 FT0713 321 5  (1.6) 28.45 No 

 
Phkol_9452 FT0713 365 16  (4.4) 32.02 No 

 
Phkol_9543 FT0713 580 29  (5) 49.17 No  

 
Phkol_9893 FT0713 319 15  (4.7) 27.45 Yes 

C. fulvum Ecp6 - 228 9  (3.9) 19.64 Yes 

 
avr4 - 135 8  (5.9) 12.13 No 

C. lindemuthianum  CIH1 - 230 6  (2.6) 20.39 Yes 

M. graminicola  Mg2LysM - 97 4  (4.1) 8.04 Yes 

 
Mg3LysM - 232 9  (3.9) 19.74 Yes 

M. fijiensis gi|145259376 - 413 8  (1.9) 32.23 Yes 

M. oryzae  Slp1 - 162 6  (3.7) 13.84 Yes 

 
Slp2 - 285 6  (2.1) 22.12 Yes 

S. sclerotiorum SS1G_03535 - 228 8  (3.5) 19.56 Yes 

A. niger gi|145259376 - 224 8  (3.6) 19.22 Yes 

 
gi|350638810 - 190  6 (3.2) 16.58 No 

*values in the bracket indicate percent cysteine content.  
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Figure 19 Phylogenetic relationship of LysM effectors from P. pinodes, P. pinodella 

(A) and Ph. koolunga and their domain organization (B) 

Colored branches indicate relatedness of protein domains as depicted in figure 19B. 

SP: Signal peptide, LysM: Lysin motif, CVNH cyanovirin-N homology. Functionally 

characterized LysM are indicated by  
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5.3.2 Pathogenicity related LysM genes exist in cluster in ascochyta blight 

 pathogens of field pea   

 

LysM-domain proteins of ascochyta blight pathogens of field (ABPFP) also frequently 

contain other domains including F-box protein, GH18 and lipase is P. pinodes and P. 

pinodella.  Lipase was substituted with MFS and Py-redox in A. pisi and Ph. koolunga, 

respectively (Figure 19). The organization of these domains might have a role in 

disease development. Previous research in a number of plant pathogenic fungi 

including F. oxysporum [76]; Fusarium oxysporum [217], Fusarium graminearum 

(Fbp1) (Jonkers et al., 2011), M. oryzae (Pth1) [303] indicated that the F-box domain, 

while involved in a broad range of biological functions, can in some cases be important 

for fungal virulence on their respective host.  

 

The outermost plant surface is the first line of defence against fungal invaders. The 

epicuticular layer of pea leaves contain 74 - 83% total wax on leaf surfaces [108]. This 

may indicate that pathogens which infect pea are likely able to degrade these lipids on 

the leaf surface. In fungal pathogen B. cinerea and A. brassicola, lipase helps the 

fungus to penetrate the host or adhesion to host surface, respectively [20, 256]. 

Similarly, lipase act as a virulence factor and contribute to infection and disease 

development in F. graminearum [326]. 

 

Many fungi encode chitinase proteins of the GH18 CAZyme family [278]. Fungal 

chitinases are involved in decomposition of exogenous chitin as well as fungal cell 

wall degradation and remodelling [130]. Since perception of fungal chitin by plant 

leads to activation of host defence signalling pathway [152, 328], sequestering of 

fungal fragments is likely to be important to reduce host recognition of PAMPs. In 

ABPFP, since the LysM domain containing protein sequence lack catalytic domain, 

co-regulation of LysM and chitinase (GH18) are essential to subvert host recognition 

through chitin binding and breakdown, respectively.  

 



CHAPTER FIVE 

 

102 
 

 

 

Figure 20 Organization of cluster of genes surrounding LysM in Ascochyta blight 

Pathogens of field pea. 

DUF=domain of unknown function. Boxes with same colour indicate putative 

homologous genes in each species.  

 

5.3.3 Cytochrome P450 pisatin demethylase may contribute to ascochyta 

blight disease development 

 

 Pisatin is an important disease resistance mechanism in pea [337]. Proteomes 

predicted from 25 fungal genomes were analysed and compared using Proteinortho 

and proteins that were orthologous to a putative pisatin demethylase P450 from P. 

pinodes M074 (Ppdes_58.12) were extracted. Peyronellaea pinodes, P. pinodella and 

N. haematococca had high numbers of P450 domain-containing proteins (10 – 12), 

compared to A. pisi (3) and Ph. koolunga (3). No orthologs were observed in the wheat-

infecting and distantly related species F. graminearum and R. solani (Figure 21). This 

may imply an expansion of the pisatin-specific P450 protein in P. pinodes, P. pinodella 

and N. haematococca, due to a requirement to overcome pea phytoalexin (pisatin) via 

demethylation.  
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Figure 21 Comparison of P450 pisatin demethylase orthologues in various fungal 

pathogens 
Orthologous proteins with the predicted pisatin-specific P450 of P. pinodes were 
identified via Proteinortho and gene counts were compared across  species. 

 

The genes responsible for detoxification of pisatin were determined as pisatin 

demethylase (PDA) [104, 105]. One of the gene named PDA1 reside on a 1.6 Mbp 

accessory chromosome [124] and clustered with other pea pathogenicity genes (PEP1, 

PEP2, PEP5) where disruption of either of these genes resulted in decreased virulence 

[124]. Interestingly, these chromosomes on which the N. haematococca PDA cluster 

resides can be transferred into F. oxysporum, conferring a virulent pisatin 

demethylation phenotype [201, 218]. In contrast to N. haematococca, none of the 

putative PDA genes in ABPFP were observed to be clustered in the draft genome 

sequences, although it could be possible that some of the genes are located on short 
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scaffolds (e.g. Ppdes_99.2 on Scaffold_99 which are less than 10kb). Further 

improvement of the genome assemblies will confirm the relative locations of PDA 

genes in the ABPFP genomes.  

 

Putative PDA sequences from P. pinodes and P. pinodella were analysed against 

functionally characterized genes from N. haematococca (PDA1, PDA6-1) and F. 

oxysporum f.sp pisi (FoPDA1). Result indicated that putative PDA from P. pinodes 

and P. pinodella are 41 – 44% identity with over 94% sequence coverage (Table 15). 

Multiple sequence alignment comparison also indicated that a number of residues were 

conserved (Supplementary Figure 2). In addition to the P450 signature residue 

FGAGSRSCIG, there is a highly conserved motif (AGSDTTA) observed upstream of 

P450 signature, which may specify P450 pisatin (Supplementary Figure 2). This 

information could be utilized in comparative analysis to fish out more specific PDA 

related genes across genomes of various fungal pathogens deemed to undertake pisatin 

detoxification. Amino acid sequence composition of the two characterized PDA 

(PDA1 and FoPDA1) indicated that the protein is rich in leucine as shown in 

Supplementary Figure 3). 

 

Phylogenetic analysis was conducted to better understand the evolutionary relationship 

among the PDA genes. The analysis indicated that one protein sequence from P. 

pinodes (Ppdes_58.12), and two sequences from P. pinodella (Pdlla_410/95_10685 

and Pdlla_AWPP4BI10_9093) were closely related to the characterized PDA from N. 

haematoccoca (PDA1) and FoPDA1 (Figure 22). The three sequences shared 35 – 45% 

and 45 – 50 % identical sites with the PDA1 and FoPDA1, respectively.  

 

Previous studies indicated that pisatin is induced by PDA in P. pinodes, P. pinodella 

and A. pisi [71, 105]. However, because of lack of DNA hybridization between the 

PDA from N. haematococca and P. pinodes, P. pinodella and A. pisi, the gene was not 

identified [71]. The authors showed the existence of PDA in F. oxysporum f.sp pisi 

using the same techniques. In current studies, at least two PDA genes from N. 

haematococca and F. oxysporum f.sp pisi were highly similar to predicted PDA genes 
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from P. pinodes (Ppdes_58.12) and P. pinodella (Pdlla_410/95_10685 and 

Pdlla_WPP4BI10_9093) at the amino acid level. Given the high specificity for pisatin 

induction of PDA1 and FoPDA1 [47, 105] and their close relationship with predicted 

genes from P. pinodes and P. pinodella, it is likely that they contribute to virulence of 

ABPFP. On the other hand, the three pea pathogenicity genes (PEP1, PEP2, and 

PEP5) from N. haematococca formed monophyletic groups. 

 

Table 15 BLASTp analysis of P. pinodes and P. pinodella putative pisatin 

 demethylase with functionally characterized genes from N. haematococca 

 and F. oxysporum f.sp pisi 

 

  Gene name*  

Identical site 

(%) Query coverage (%) 

Ppdes_M074_58.12 PDA6-1 44.1 94.5 

  PDA1 43.4 97.3 

  FoPDA1 44.4 94.9 

Pdlla_41095_10685 PDA6-1 41.3 94.9 

  PDA1 40.9 96.9 

  FoPDA1 41.5 95.8 

Pdlla_AWPP4BI10-9093 PDA6-1 44.1 94.5 

  PDA1 42.8 97.3 

  FoPDA1 43.9 94.9 

*N. haematococca PDA (PDA1, PDA6-1); F. oxysporum f.sp pisi PDA (FoPDA1). 
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Figure 22 Phylogenetic relationships of putative pisatin demethylase inferred from 

Neighbor-joining consensus tree constructed from 1000 replicates using Poisson 

correction model 
Characterized protein sequences from N. haematococca and F. oxysporum f.sp pisi 

were indicated in red font. Branches with less than 50% bootstrap support were 

collapsed. The phylogenetic was constructed from 56 amino acid sequences following 

the Poisson correction model implemented in MEGA6 after removal of all ambiguous 

positions from each sequence pair. 
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5.4 Conclusion 

 

Great effort across the discipline of plant pathology has been made to identify and 

elucidate the possible roles of conserved protein domains related to fungal virulence. 

The conserved LysM domain is widespread across the Ascomycetes [3, 32, 62].  Some 

LysM domain proteins were demonstrated to act as fungal effectors and contribute to 

virulence via different mechanisms [26, 63, 144, 216, 219]. The occurrence of 4 

conserved LysM effector-like protein sequences and a single CVNH domain 

sandwiched between the LysM domains were identified in the genomes of the 

ascochyta pathogens of field pea (ABPFP). Comparative sequence and phylogenetic 

analyses presented here will contribute to the potentially increased importance of 

LysM effectors in ABPFP disease development in pea.   

 

Genomic regions containing LysM revealed the presence of other clustered genes 

nearby. The putative functional domains of these genes included F-box, GH18 and 

major facilitator superfamily and/or domain of unknown function. It is likely that at 

least the LysM motif, F-box, GH18 and lipase could potentially contribute to ABPFP 

virulence, and their collinearity may suggest transcriptional co-regulation with the 

LysM-containing proteins. All of these genes are biologically relevant to fungal 

pathogens at early to late stages of infection. It would be interesting to validate the 

contribution of these individual genes during infection and disease development.  

 

Plant phytoalexin detoxification is considered to play an important role in plant 

pathogen infection and subsequent disease development in several phytopathogens 

[47, 105, 236, 237]. Through comparative and phylogenetic analysis, I identified and 

narrowed down the gene likely responsible for pisatin detoxification in ascochyta 

blight pathogens of field pea. The analysis may also imply that pathogens infecting 

field pea (N. haematococca, P. pinodes, P. pinodella and A. pisi) have adapted to their 

niche through evolution of phytoalexin detoxification. Further functional studies are 

required to confirm the role of potential PDA identified in this study to develop pre-

breeding tools in the complex pea improvement program.
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6. In planta Transcriptome and Secretome Analysis of Ascochyta 

Blight Pathogens of Field Pea 

 

6.1 Introduction  

 

The ease of sequencing a wide range of phytopathogens at relatively low cost and 

continuous improvements in bioinformatics have accelerated pathogenomic studies 

investigating the molecular basis of interaction between the pathogen and their host.  

Peyronellaea pinodes, Peyronellaea pinodella and Phoma koolunga are destructive 

necrotrophic fungal pathogens of field pea. Necrotrophic fungi such as these secrete 

effectors to breach host-defence responses ahead of colonization [41, 93, 308]. 

Effectors are proteins or small metabolites that promote disease through altering host 

cells structure or and function [137, 154]. This chapter focusses on proteinaceous 

effectors, as these are the most amenable to bioinformatic prediction. 

 

According to Lo Presti et al. [197], effectors can either promote the virulence of fungi 

or allow symbiotic-association with the plant. In Pyrenophora tritici-repentis, 

Parastagonospora nodorum, Cochliobolus victoriae, host-selective toxins are often 

essential to infect their respective hosts [43, 91, 320]. On the other hand, some 

necrotrophic pathogens with broader host-ranges like Botrytis cinerea and Sclerotinia 

sclerotiorum, Colletotrichum coccodes, Abutilon theophrasti, and Rynchosporium 

commune and  Alternaria alternata, [9, 83, 165, 322], kill their hosts by secreting toxic 

metabolites and proteins with activity across multiple plant hosts.   

 

Plant pathogenic fungal effectors are often under selection pressure to diversify their 

sequence or structure due to avoid potential recognition by host defences, yet despite 

their diversity share some common characteristics. The current repertoire of known 

fungal effectors has been previously reviewed [61, 65, 197, 267, 290, 295, 324]. Some 

fungal effectors may undergo enhanced rates of mutation [231], exhibit dynamic 

structural evolution [197, 229, 266, 305], or  exhibit mutations that indicate under 
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diversifying selection [292]. They may also be horizontally-transferred between 

pathogens [259, 271, 301]. Regardless, most of the known proteinaceous effectors 

share common characteristics of being secreted, cysteine-rich and low molecular 

weight and often lacking sequence similarity to any other known proteins [61, 65, 258, 

295]. 

 

The bioinformatics prediction of effectors varies slightly between studies, but often 

shares common parameters. Generally, it has been common practice to filter the 

complete set of proteins for those that are cysteine-rich (e.g. >2 cysteines), predicted 

to be secreted, and of less than 300 amino acids in length should be considered strong 

effector candidates [119, 274, 290, 305]. Optionally this set of proteins may be filtered 

for those without detectable orthologous beyond the genus under investigation or often 

lacking conserved domains (i.e. no Pfam matches). However a recent review [197] 

proposed that some effectors may also be larger than 300 amino acids and could also 

contain functionally conserved protein domains; thus they considered all secreted 

proteins as potential candidates, or used multiple and flexible criteria that allowed 

some conditions not to be met [126]. Sperschneider et al. [290] also indicated that 

many cysteine rich, small, secreted proteins are not effectors, suggesting 

discrimination through further integration of several lines of evidence including in 

planta expression, diversifying selection and deeper analysis of the taxonomic range 

of homologs.  

 

Regardless of the various challenges and unknowns in effector prediction, the 

prediction and characterisation of effector candidate genes plays pivotal role in 

molecular plant breeding. Unbiased prediction and characterisation of effector genes 

can lead to rapid and effective genotype screening and disease monitoring using either 

detection of effector gene sequences or assay of responses to effector protein 

infiltration as molecular markers [103, 324],  For instance, semi purified ToxA protein 

from Pyrenophora tritici-repentis is being delivered to breeders as a functional assay 

to screen commercial cultivars in Australian breeding programs [324]. Knowledge of 

the sequences of Avr effectors in Leptosphaeria maculans is also being employed for 

pathogen monitoring and cultivar selection in Australia [324]. There are also prospects 
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to apply similar methods to for crops where resistance is only partial, as in the field 

pea-ABPFP interaction. Reliable identification of effectors and their cognate host-

interactome will help breeders to specifically exploit partial resistance.  

 

As a first step in the exploration of the effector  content of P. pinodes, Kessie [158] 

predicted 16 potential small-secreted proteins identified from culture filtrate through a 

proteomic approaches.  Two of the proteins (DPIT_05229 and DPIT_10135) identified 

from culture filtrate that induced necrosis on pea were reported promising effector 

candidates.  Kessie [158] also predicted a number of additional small-secreted protein 

sequences through in silico analysis of a preliminary draft genome sequence of P. 

pinodes draft genome sequence. However, the expression of these predicted putative 

effectors during infection and disease development is not known. Since then, the 

genome assembly of P. pinodes has been significantly improved, through the 

incorporation of new data from multiple fragment-length libraries (chapter 3). In this 

study, we have also employed in planta RNA sequencing approach to identify an 

updated catalogue of effector candidate genes from an improved version of P. pinodes 

genome assembly, as well as new catalogues of effector candidates for the new and 

draft genome assemblies of P. pinodella and Ph. koolunga.  

 

6.2 Materials and Methods 

 

6.2.1 Infection assay  and sample collection 

 

 

The seeds of pea cultivar KASPA, which is commonly grown in Australia and 

susceptible to P. pinodes, were used in disease infection assays. The seeds were surface 

sterilised prior to infection in 3% bleach for three minutes, rinsed three times in sterile 

water (autoclaved) to remove the bleach. Seeds were transferred to damp petri dishes 

lined with tissue paper and incubated at room temperature for two days. Uniformly 

germinated seeds were planted in sterile vermiculite and perlite mix (3:1) (autoclaved) 

filled in a porous plastic boxes. The mixes were moistened with water and autoclaved 
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before use. The plants were regularly watered to keep the growth mixtures moist. Grow 

A and B fertilizers were supplemented to the irrigation water at a rate of 20 ml of each 

fertilizer mixed in 5 litre of water twice a week throughout the experimental period. 

 

A spore suspension was prepared from 10 days old culture grown on 50% potato 

dextrose agar (18.5 gram of potato dextrose, 15 gram of agar mixed in 1 litre of 

molecular water) by flooding with 3-5 ml sterile water followed by gentle scraping 

using a glass rod to detach the pycnidiospores. The suspension was filtered by passing 

through a sterile cotton plug fitted into a 50 ml syringe to remove any mycelial 

fragments. The spore concentration was determined using haemocytometer and 

adjusted to a concentration of 5x105 spore/ml. Tween 20 was added to the spore 

suspension at a rate of approximately 2% prior to inoculating the plants.  

 

Four weeks old plants were inoculated by spraying the spore suspension until “run 

off”, sprayed manually by hand. The inoculated plants were immediately covered with 

black plastic sleeves, misted with water and transferred to a controlled growth chamber 

‘Conviron’ (Argus Control System Ltd, Canada) adjusted to 200 C ± 2 and relative 

humidity of 60%. The temperature and RH within the plastic sleeves were monitored 

using a hygrometer sensor. The inoculated plants were uncovered 24 hours post 

inoculation and retained in the ‘Conviron’ with but sprayed with sterile water to 

increase leaf surface wetness. An initial experiment consisted of P. pinodes infection 

assay with three replication and nine time points. The second and third experiment 

consisted of P. pinodes, P. pinodella and Ph. koolunga with three replications and nine 

time points. Mock-inoculated plants were included in all the experiments as negative 

control in all experiments. The experimental setup is shown in Table 16. 

 

Samples were collected immediately after inoculum spraying (0 HPI), as well as 3, 6, 

9, 21, 33, 48, 72 and 96 HPI post inoculation and again at 4 days post infection for 

both microscopic examination and RNA extraction. For RNA extraction, the first two 

nodes of each plant with stipules were cut with sterile scissors, wrapped in aluminium 

foil, immediately dried in liquid nitrogen and stored at -800C until RNA extraction. 
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6.2.2 RNA extraction, processing and sequencing  

 

Total RNA was extracted as per the Trizol extraction protocol [260]. Collected plant 

tissues were ground using an oven-baked (1500C, 2 hours) RNase-free mortar and 

pestle under liquid nitrogen. About 100 – 150 mg of each ground tissue was transferred 

to 1.5 ml pre-cooled Eppendorf tubes and 1 ml of Trizol was immediately added, 

vortexed 3 times and incubated at room temperature (RT) for 15 minutes. The samples 

were then centrifuged for 10 minutes at 12000 revolutions per minute (rpm). After 

transferring the upper liquid phase to new 1.5 ml tubes, 200 µl cold chloroform was 

added and gently mixed for 15 seconds followed by incubation for 5 minutes at RT 

and then centrifuged for 15 minutes at 12000 rpm. The upper phase was transferred to 

a new 1.5 ml tube and RNA was precipitated by adding 300 µl of 1.2M NaCl and 300 

µl isopropanol incubated at RT for 10 minutes and subsequently centrifuged for 10 

minutes at 12000 rpm. Finally, the upper liquid phase was decanted and the RNA pellet 

washed twice in 75% ethanol. After the ethanol wash, excess ethanol was allowed to 

evaporate from the pellet allowed for 5 minutes at RT, resuspended in 50 µl 

diethylpyrocarbonate (DEPC) treated water and incubated at 60 0C for 10 minutes to 

dissolve the RNA. The integrity and quality of the RNA was analysed on 1% agarose 

gel electrophoresis after CYBR Safe staining. Each of the samples were treated with 

DNase to remove plant DNA contaminants from extracted RNA samples and checked 

by running a polymerase chain reaction (PCR) using primer that amplified  elongation 

factor 1-α  (EF1-α)  of Pisum sativum  with  5’- 

CGACTCTGGAAAATCAACAACAACTGG-3’ and 5’-

GTCCATCCTTAGAGATACCAGCTTCAA-3' forward and reverse primers, 

respectively[318]. 

 

Based on biological observation of fungal development during infection and disease 

establishment (Supplementary Figure 4), cleaned RNA samples from 0, 3, and 6 HPI 

(including three replications each) were pooled to represent “early stage infection”. 

Similarly, RNA samples from 9, 21, 33 HPI and 48HPI were pooled to represent 

“medium stage infection”, and 48, 72 and 96 HPI infection were pooled to represent 

“late infection” (Table 17). The RNA pooling was repeated for the three experiment 
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and the three replications. Final samples consisted of nine libraries for P. pinodes six 

libraries for each P. pinodella and Pho ma koolunga and (Table 17, Figure 23).  

 

 

Figure 23 RNA sample preparation procedures employed for in planta transcriptome 

sequencing. 

Green, red and black colours indicate early, medium and late time points, respectively.   
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Table 16 Experimental setup of in planta infection assay of P. pinodes, P. pinodella 

and Ph. koolunga  

 

 

P.pinodes* 
P. 

pinodella 

Ph. 

koolunga  
Mock* 

Number of experiments 3 2 2 3 

Number of replication per 

experiment 
3 3 3 3 

Spore concentration 5x105 5x105 5x105 - 

Number of initial time points for 

infected leaf collection 
9 9 9 9 

Total samples collected 81 54 54 81 

Total samples after pooling for 

RNA-seq 
9 6 6 9 

*The first experiment included only P. pinodes and mock 

 

RNA of in planta libraries sequencing was performed at the Australian Genome and 

Research Facility (AGRF) in Melbourne, Australia using an Illumina HiSeq 2500 with 

100 bp read length. Illumina TruSeq Stranded mRNA sample preparation was 

performed at AGRF as part of their sequencing services. In vitro RNA library 

preparation was undertaken following Illumina TruSeq unstranded RNA sequencing 

protocol. Transcriptome sequencing conditions were summarized in Table 16.  

 

The RNA sequence quality assessment was carried out as described in Chapter 2 

section 2.2.1. Reads were mapped to the reference genome and splice sites were 

predicted using TopHat2 v2.0.9 [161] (parameters: minimum intron length 20, 

maximum intron length 5000, no coverage search, splice mismatches 2, very sensitive, 

read mismatches 2, segment mismatches 2, maximum insertion length 3, maximum 

deletion length 3, report secondary alignments, library-type first-strand). Differential 

expression analysis was performed using Cuffdiff (Cufflinks version 2.1.1) [319] with 

minimum alignment count of 5 reads and multi read correction settings. Comparisons 
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between in planta gene expression libraries only were time dependent and considered 

as time series in Cuffdiff analysis. The data from each pooled time points (early, 

medium and late) was also re-analysed via Cuffdiff as an independent experimental 

conditions for effector candidate gene prediction, in which in vitro libraries were also 

included.  

 

Table 17 Transcriptome sequencing conditions and library type used in this study 

 

In vitro Library Condition Library type* Organism 

F2-3D Fries 2  media 2 days 
old U, paired, 100 bp P. pinodes 

F3-3D Fries 3 media 3 days 
old U, paired, 100 bp P. pinodes 

F2-W4 Fries 2 media 4 weeks 
old U, paired, 100 bp P. pinodes 

F3-W4 Fries 3 media 4 weeks 
old U, paired, 100 bp P. pinodes 

In planta conditions 

Early  0, 3 and 6 (HPI) TruSeq, S, paired, 100 
bp 

P. pinodes, P. 
pinodella, Ph. koolunga  

Medium  9, 21, 33 HPI TruSeq, S, paired, 100 
bp 

P. pinodes, P. 
pinodella, Ph. koolunga  

Late 48, 72, 96 HPI TruSeq, S, paired, 100 
bp 

P. pinodes, P. 
pinodella, Ph. koolunga  

*S= stranded, U= Unstranded. HPI= Hour Post Inoculation 

 

6.2.3 Effector candidate gene prediction 

 

Genes were filtered and ranked based on their likelihood of encoding a proteinaceous 

effector, which was predicted based on multiple factors.  In the effector candidate gene 

prediction, the translated protein sequence was assumed to be secreted if it was 

predicted as such by either, SignalP4.1 [243], Phobius 1.01 [153] or WOLFPsort 0.2 

[139]  and also requiring at most one transmembrane domain predicted by TMHMM 

2.0 [172]. Predicted secreted proteins were then ranked according to various predicted 

properties, including: molecular mass of 50 kDa or less, lack of known conserved 

domains at Pfam database [250] analysed through HMMER3 [77], either diversifying 

(dN/dS ≥ 1.2) or purifying (dN/dS ≤ 0.8) selection, species and isolate specificity, 
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when comparing whole-genome alignments of multiple isolates of the same species 

(Chapter 2). All of the above properties were assigned a score of 2. Similarly, proteins 

with 2 - 4 cysteines, or greater than 4 cysteines were scored 1 and 2, respectively. 

Significantly upregulated genes at early or medium time points were assigned a score 

of 3, and expressed genes with no significant in planta expression were assigned a 

score of one. In the case of P. pinodes, where there were also 4 in vitro and three in 

planta conditions, additional scores relating to genes that were upregulated in planta 

relative to each of the in vitro conditions were also scored 3, or were scored 1 if 

expressed in planta but not significantly up-regulated relative to the in vitro libraries. 

 

6.3 Results and Discussion 

 

6.3.1 The genome ABPFPs contain similar level of secretome  

 

For predicting a set of candidate effector genes from the predicted proteome in P. 

pinodes, P. pinodella and Ph. koolunga and stringent parameters were applied. 

Secreted protein prediction (see methods) indicated that a total of 1681, 1451 and 1518 

protein sequences were secreted in P. pinodes, P. pinodella and Ph. koolunga, 

respectively. Further ranking based on multiple predictors, including: in planta 

expression, presence/absence of known domains, species/isolate specificity, protein 

size, cysteine content and purifying/diversifying selection pressure were applied in the 

effector selection, with each property assigned a score and each protein ranked on the 

sum of these scores. A plot of total scores indicated that a high-priority candidate 

effector-like gene dataset of reasonable size (feasible for future experimental 

validation) could be obtained by applying scoring cut-off values of 8 in P. pinodes, 12 

in P. pinodella and 11 in Phoma koolunga (Figure 24). These thresholds resulted in 

the short-listing of high priority 223 effector like candidates in P. pinodes, 226 in P. 

pinodella and 140 proteins in Ph. koolunga (Table 18 ). 

 

Protein domain analysis using the Pfam database [250] through HMMER3 [77] 

showed that approximately 60%, 34% and 80% of the effector like sequences in the 
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respective species had either no known Pfam domains, matched uncharacterized 

proteins or corresponded to conserved protein domains of unknown function (Table 

18 , Supplementary Table 8). Furthermore, 8.9 % (21) of shortlisted candidates in P. 

pinodes, 3.7% (8) in P. pinodella and 47% (67) in Ph. koolunga were species-specific 

effector like proteins, as previously identified by cross-species orthology analysis 

(Chapter 2).  

 

Table 18 Secreted effector like candidate proteins of P. pinodes, P. pinodella and Ph. 

koolunga  

 

 P. pinodes P. 

pinodella 

Ph.  

koolunga  

Total genes/protein annotations 11,352 11,058 10,084 

Predicted secreted proteins 1,681 1,451 1,518 

Percent of proteome predicted as secreted (%) 14.8 13.1 15.1 

Predicted candidate effector like proteins 

(CELPs) 

223 212 140 

Species-specific CELPs 21 8 67 

CELPs with unknown function/domain 136 78 113 

Percent of CELPs with unknown 

function/domain (%) 

60 36.7 80 



CHAPTER SIX 

 

118 
 

 

Figure 24 Graph showing the distribution of effector like candidate genes in P. pinodes, P. pinodella and Ph. koolunga. 

The ranked score date was plotted as geometric distribution of occurrence of rare events. Vertical axis is scoring scale, horizontal axis is 

number of genes.

P. pinodes P. pinodella Ph. koolunga 
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Effector-like gene prediction using two methods: 1) evidence-based ranking of 

cumulative scores derived from the presence or absence of a combination of previously 

known effector characteristics and 2) using a recently developed probabilistic effector 

prediction tool, EffectorP [291]. The analysis showed a low level of agreement 

between the two techniques (Figure 25). However, in P. pinodes, a comparison 

between cumulative ranking and EffectorP probability showed that the higher the 

cumulative ranking score, the more likely proteins would also be predicted as an 

effector by EffectorP (Figure 26). This trend is similar but relatively weaker in P. 

pinodella and Ph. koolunga, which lack in vitro RNA-seq data and notably consisted 

of low coverage in planta RNA-seq data.  This may indicate the importance of RNA-

seq data generated under different conditions to improve the accuracy of initial gene 

predictions in in P. pinodella and Ph. koolunga, which in turn would improve effector 

prediction accuracy. EffectorP could be useful in predicting effector-like candidate 

genes spanning average length of about 400 amino acids as employed in training the 

program [291]. Notably, EffectorP was effective in distinguishing the necrosis-

inducing proteins from non-cytotoxic paralogues genes in P. pinodes and P. pinodella. 

However, because late-expressed genes were given a lower priority score relative to 

other time points in the evidence-based ranking method, known domains like NPP1 

that are associated with necrosis-inducing proteins were not picked up.  
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Figure 25 Venn diagram representing effectors predicted using two methods 1) 

evidence-based rankings and 2) EffectorP.
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Figure 26 Scatterplot showing the level of agreement between effectors predicted using evidence-based cumulative ranking and 

EffectorP.  

From left to right   P. pinodes, P. pinodella and Ph. koolunga, respectively.



CHAPTER SIX 

 

122 
 

6.3.2 In planta expression pattern of effector like candidate genes in P. 

pinodes 

 

Among the 223 candidate effector-like proteins (CELPs) in P. pinodes, the 

corresponding gene expression of 44 (20%) were significantly up-regulated at early 

time points in planta relative to at least one in vitro conditions. The diverse range of 

expression patterns under different conditions for the 100 top ranked candidates 

predicted by the scoring method are a colour-coded heat map generated from the 

normalised fragments per kilo base of exon per million fragments mapped (FPKM) 

values (Figure 27). A group of genes including Ppdes_16.9, Ppdes_32.5 and 

Ppdes_56.67 showed a consistently high level of expression from early to late 

infection. Likewise, a cluster of genes consisted of Ppdes_5.48, Ppdes_1.96, 

Ppdes_1.220, Ppdes_5.53, Ppdes_38.47 and Ppdes_2.193 showed highest expression 

at early infection stages (Figure 27, Table 19, and Supplementary Table 8). One gene 

(Ppdes_1.220) was significantly upregulated (P > 0.05) at early time points relative to 

all four in vitro conditions. Protein domain analysis indicated that Ppdes_1.220 

encodes a FAD binding domain [Pfam: PF00890], which is related to succinate 

dehydrogenase. Succinate dehydrogenase plays central role in mitochondrial 

metabolism and targeted for crop fungal disease management through fungicide 

development [191]. Fungicides targeting succinate dehydrogenase were directed to 

block tricarboxylic acid cycle (TCA) cycle at early stage of succinate oxidation to 

fumarate, which subsequently halt respiration. On the other hand, it could be possible 

that succinate dehydrogenase activity may assist ABPFP to survive under oxidative 

stress. This scenario has been proposed for the human pathogenic prokaryote 

Mycobacterium tuberculosis [131]. 

 

Similarly, Ppdes_2.193 showed significant up-regulation under all conditions except 

in F3-W4. In addition, 9 genes showed significant up-regulation at early time points 

relative to at least two in vitro conditions while the remaining 33 genes showed up-

regulation in only one of the in vitro conditions. Most of those in planta upregulated 

genes generally belong to the families of CAZymes pectate lyase [Pfam: PF00544, 
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PF03211], glycoside hydrolase (GH) 61 [Pfam: PF03443], GH28 [Pfam: PF00295]), 

GH5 (cellulase) [Pfam: PF00150] and GH43 [Pfam: PF04616]. Esterase, tannase and 

feruloyl esterase [Pfam: PF07519], carboxylesterase [Pfam: PF00135], protease 

(subtilase [Pfam: PF00082], peptidase [Pfam: PF01828], eukaryotic aspartyl protease 

[Pfam: PF00026), ribosomal biogenesis (ADP-ribosylation factor family [Pfam: 

PF00025], ribosomal L29 protein [Pfam: PF00831]), FAD binding [Pfam: PF01494], 

cytochrome P450 (pisatin demethylase, cytochrome alkane) [Pfam : PF00067], fungal 

specific extracellular membrane proteins (CFEM domain, Pfam: PF05730) and protein 

domains involved in protein–protein interaction (PAN domain, Pfam: PF14295) were 

also included in putative effectors. 
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Figure 27 Heat map of relative expression levels of candidate effector-like genes in 

P. pinodes isolate M074. 

Early = 0 – 9 hour post infection (HPI); Medium = 9 – 33 HPI; HPI; 48 - 96 HPI. F2-

3D, F3-3D, F2W4 and F3W4 indicate Fries 2 media 2 days, Fries 3 media 2 days, Fries 

2 media 3 weeks and Fries 3 media 3 weeks old, respective
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Table 19 Top 60 effector-like candidate genes in P. pinodes isolate M074 as predicted by the evidence-based ranked score method and 

their associated supporting data. 
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Ppdes_2.193 88 427 70 142 1614 114 487 457 17 48 23 N -  cnd3 protein 
Ppdes_60.14 0 0 0 0 0 15 36 634 10 69 23 N -  saponin hydrolase precursor 
Ppdes_95.2 0 1 0 0 172 1702 1401 130 6 14 22 E PF08881 CVNH domain        hypothetical protein H072_1743 
Ppdes_1.220 36 26 99 119 1061 245 302 638 4 69 21 N PF00890 FAD binding domain       fumarate reductase 
Ppdes_4.18 2 11 2 0 739 137 937 264 12 27 20 E PF03211 Pectate lyase        pectate lyase 
Ppdes_5.330 0 0 2 0 0 136 55 240 10 25 20 E PF03211 Pectate lyase        pectate lyase 
Ppdes_10.61 0 0 0 0 0 138 10 295 10 32 19 N PF00067 Cytochrome P450        cytochrome p450 monooxygenase 
Ppdes_101.2 93 96 0 1 972 82 267 115 6 12 19 E - - hypothetical protein  
Ppdes_32.5 617 645 84 266 1689 2421 2381 178 0 20 19 N PF00831 Ribosomal L29 protein       60s ribosomal protein l35 
Ppdes_56.7 282 285 2160 608 460 4692 5040 158 0 16 19 N -  signal peptide-containing protein 
Ppdes_44.19 0 0 0 0 0 89 42 487 7 55 18 N PF00067 Cytochrome P450        cytochrome p450 family protein 
Ppdes_6.398 0 0 0 0 13 129 280 432 4 49 18 N PF00150 Cellulase  glycoside hydrolase family 5  
Ppdes_19.91 176 266 212 624 28 1989 1524 346 2 35 17 N PF03443 Glycosyl hydrolase family 61      glycosyl hydrolase family 61 
Ppdes_40.62 0 0 12 0 60 0 1 148 0 16 17 E PF06864 Pilin accessory protein (PilO)      Nohit 
Ppdes_11.289 0 1 0 0 0 24 28 283 5 30 16 N PF00657 GDSL-like Lipase/Acylhydrolase        rhamnogalacturonan acetylesterase 
Ppdes_38.47 133 171 65 47 1854 162 296 186 1 21 16 E PF00025 ADP-ribosylation factor family       adp-ribosylation factor 6 
Ppdes_44.11 6 7 0 1 120 31 251 394 9 40 16 N PF00295 Glycosyl hydrolases family 28      glycoside hydrolase family 28  
Ppdes_48.37 1 6 0 0 0 39 101 307 6 33 16 N PF10503 Esterase PHB depolymerase       esterase lipase 
Ppdes_6.215 4 2 8 4 260 4 39 1592 35 169 16 N PF14295 PAN domain        apple protein 
Ppdes_8.287 142 1 0 0 0 27 159 230 6 24 16 N PF03443 Glycosyl hydrolase family 61      glycoside hydrolase family 61  
Ppdes_9.319 0 0 0 0 0 368 342 373 6 38 16 N PF00089 Trypsin         serine protease 
Ppdes_26.56 0 1 0 4 57 618 420 309 5 34 15 N PF13583 Metallo-peptidase family M12B  cellulose-binding family ii  
Ppdes_42.20 1 2 0 1 194 10 19 228 17 24 15 N PF09792 Ubiquitin 3 binding protein But2  gpi anchored cell wall protein 
Ppdes_19.14 0 0 0 0 0 72 50 554 7 58 14 N PF02065 Melibiase         carbohydrate-binding module 35 
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Table 19 continued 

Gene ID 
 In vitro FPKM In planta FPKM 
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Ppdes_24.32 61 83 58 136 19 317 315 874 8 95 14 N PF00933 Glycosyl hydrolase family 3  beta-glucosidase 
Ppdes_3.124 1 1 0 0 52 0 0 240 4 26 14 N PF08657 DASH complex subunit Spc34      hypothetical protein SNOG_10148 

Ppdes_3.78 0 0 0 0 0 39 58 287 4 29 14 N PF00080 
Copper/zinc superoxide 
dismutase      cytosolic cu zn superoxide dismutase 

Ppdes_33.124 0 2 0 0 0 18 62 227 4 24 14 N PF03443 Glycosyl hydrolase family 61      glycoside hydrolase family 61  

Ppdes_33.72 31 23 236 96 123 665 568 454 4 49 14 N PF03198 Glucanosyltransferase         
glycoside hydrolase family 72 
protein 

Ppdes_5.21 144 117 799 2266 52 1512 2019 392 0 39 14 N PF02469 Fasciclin domain        beta-ig-h3 fasciclin 
Ppdes_14.93 400 164 3646 1012 0 1112 1489 197 5 21 13 E - - cell wall protein 

Ppdes_16.9 5343 1082 67 62 369 572 477 373 4 39 13 N PF01849 NAC domain        
Nascent polypeptide-associated 
complex subunit beta 

Ppdes_20.109 64 100 0 5 168 120 144 369 0 38 13 E - - - 
Ppdes_3.221 2 1 0 0 40 109 192 142 4 15 13 N PF00545 ribonuclease         guanyl-specific ribonuclease f1 
Ppdes_32.80 31 77 16193 7266 2635 1902 1424 209 8 19 13 N PF05730 CFEM domain        proline-rich antigen 
Ppdes_36.69 398 575 8744 5554 750 239 622 405 8 45 13 N PF00264 central domain of tyrosinase     tyrosinase 
Ppdes_4.171 454 681 14820 6784 166 3005 3427 161 6 17 13 E - - major allergen alt 

Ppdes_5.53 76 155 137 137 648 165 163 188 8 17 13 N PF05730 CFEM domain        
mediator of rna polymerase ii 
transcription subunit  

Ppdes_58.19 9 12 0 5 16 20 11 439 6 49 13 N PF07519 Tannase and feruloyl esterase      feruloyl esterase b 
Ppdes_1.160 1 2 0 2 0 15 15 393 8 40 12 N PF00544 Pectate lyase        pectin lyase 
Ppdes_1.265 27 7 0 6 35 29 8 268 3 29 12 N PF01828 Peptidase A4 family       peptidase a4 family protein 
Ppdes_1.505 1 3 0 0 26 4 2 254 2 28 12 N - - predicted protein 
Ppdes_11.16 214 122 1920 2652 614 134 168 260 1 29 12 N - - hypothetical protein  
Ppdes_12.78 0 0 120 24 33 0 0 333 28 35 12 E - - hypothetical protein W97_01096 
Ppdes_2.456 1 9 0 5 115 10 8 135 2 12 12 N PF07174 Fibronectin-attachment protein hypothetical protein SNOG_09735 
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Table 19 continued… 
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Ppdes_4.286 258 465 275 703 160 23 22 1058 10 110 12 N 1.0 - - 
glycoside hydrolase 
family 18 

Ppdes_4.379 8 7 204 69 75 1069 492 305 4 32 12 N 1.0 PF00194 
Eukaryotic-type 
carbonic anhydrase carbonic anhydrase 

Ppdes_43.45 4 4 0 3 0 113 109 447 10 48 12 N 1.0 PF00295 
Glycosyl hydrolases 
family 28 

glycoside hydrolase 
family 28 

Ppdes_6.421 0 0 0 0 0 22 33 238 16 25 12 E 1.0 PF03211 Pectate lyase pectate lyase 

Ppdes_6.425 0 1 0 0 18 1 1 398 3 40 12 N 1.0 PF00082 Subtilase family 
subtilisin-like protease 
pr1a 

Ppdes_63.22 1 1 1 0 53 17 19 570 6 60 12 N 1.0 PF00135 Carboxylesterase family para-nitrobenzyl esterase 
Ppdes_7.101 0 1 0 1 19 360 289 316 4 33 12 N 1.0 PF00544 Pectate lyase pectate lyase b 

Ppdes_1.4 58 10 6 12 18 1382 1238 505 6 56 11 N 1.0 -  
hypothetical protein 
SNOG_04543 

Ppdes_1.96 26 46 50 59 424 52 120 328 10 37 11 N 1.0 PF00445 Ribonuclease T2 family ribonuclease t2 

Ppdes_2.263 4 2 0 0 0 47 72 262 0 29 11 N 1.0 
- - carbohydrate-binding 

module family 1 protein 
Ppdes_2.322 7 5 0 9 0 21 11 239 6 26 11 N 0.7 - - protein 

Ppdes_20.44 5 3 4 3 1517 50 595 207 4 22 11 N 1.0 PF07510 
Protein of unknown 
function (DUF1524) secreted protein 

Ppdes_3.450 10 41 6 5 106 25 24 756 10 83 11 N 1.0 PF00266 
Aminotransferase class-
V 

aminotransferase family 
protein 

Ppdes_30.91 95 80 77 76 181 16 4 274 4 30 11 N 0.7 PF13460 NADH(P)-binding 
hypothetical protein 
W97_08467 

Ppdes_33.35 9 11 0 34 0 23 28 288 3 31 11 N 0.8 PF00106 
short chain 
dehydrogenase 

polysaccharide 
deacetylase family 

EffectorP is a machine-learning tool developed to predict effectors in fungi.  a E and N indicate genes predicted as effector and non-
effector by EffectorP, respectively.  b indicate top blast result at NCBI (nr).  FPKM = Fragments Per Kilobase of transcript per Million 
mapped reads
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6.3.3 In planta expression pattern of effector like candidate genes in P. 

pinodella 

Twenty-two of the effector like candidate genes showed ≥ 2 fold change when early 

time is compared to mid time points. Sixteen of the genes expressed only at early time 

points indicating differential activation of effector like genes during infection and 

disease development. Some of these genes include Pdlla_10646 (Alpha/beta hydrolase 

family [Pfam: PF12697], Pdlla_10746 (pectinesterase [Pfam: PF01095]), Pdlla_124 

(FAD dependent oxidoreductase [Pfam: PF01266]), Pdlla_1302 (asparaginase [Pfam: 

PF00710]), Pdlla_1430 (arginase [Pfam: PF00491]), Pdlla_3572 (GlcNAc-PI de-N-

acetylase [Pfam: PF02585]), Pdlla_771 (thioesterase-like superfamily[Pfam: 

PF13279) and Pdlla_9106 (short chain dehydrogenase[Pfam: PF00106]). Putative 

genes encoding asparaginase and arginase showed highest expression among all the 

candidate genes at earliest time points.  

 

Likewise, 66 candidate genes were induced in response to host at mid-time point post 

infection. Thirty-two of these genes significantly up-regulated compared to early 

infection. Most genes induced at mid-stage of infection are associated to CAZymes 

such as GH43 [Pfam: PF04616], GH10 [Pfam: PF00331], GH61 [Pfam: PF03443], 

GH88 [Pfam: PF07470], chitin binding domain [Pfam: PF03067 and pectate lyase 

[Pfam: PF00544]. Cutinase [Pfam: PF01083], FAD binding domain [Pfam: PF01494] 

and protease (putative peptidase family [Pfam: PF13933], trypsin [Pfam: PF00089] 

and eukaryotic aspartyl protease [Pfam: PF00026] were also induced at mid-stage 

infection (Figure 28, Table 20 , and Supplementary Table 10).  

 

About 18 genes were constitutively expressed from early to late stage of infection with 

fold change varying from -0.8 to 0.9 (excluding 0). Some of the proteins include 

Pdlla_1196, Pdlla_1551, Pdlla_2835, Pdlla_3392, Pdlla_340/Pdlla_9039 and 

Pdlla_9293 which belong to FAD binding [Pfam: PF01494], NPP1 [Pfam: PF05630], 

GH76 [Pfam: PF03663], GH16 [Pfam: PF00722], chitin binding [Pfam: PF03067] and 

cutinase [Pfam: PF01083] protein families, respectively. Heat map and two way 

clustering of expression levels of the first top 100 genes are indicated in Figure 28.  
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Figure 28 Heat map of relative expression levels of candidate effector-like genes in P. 

pinodella isolate 410/95. 

Early = 0 – 9 hour post infection (HPI); Medium = 9 – 33 HPI; HPI; 48 - 96 HPI.
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Table 20 Top 60 effector-like candidate genes in P. pinodella isolate 41095 as predicted by the evidence-based ranked score method and their associated supporting 

data. 
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Pdlla_1356 0 402 255 + 0.00 + 0.00 -0.7 0.75 326 9 35.8 15 N PF04616 Glycosyl hydrolases 43       hypothetical protein  
Pdlla_8709 0 277 178 + 0.01 + 0.04 -0.6 0.80 257 5 26.6 15 N PF00331 Glycosyl hydrolase 10       
Pdlla_1186 0 183 53 + 0.00 + 1.00 -1.8 0.60 450 7 47.5 13 N PF03663 Glycosyl hydrolase 76       hypothetical protein  

Pdlla_2072 0 225 20 + 0.02 + 1.00 -3.5 0.60 279 6 27.4 13 N PF11327 
Protein of unknown 
function (DUF3129)      hypothetical protein 

Pdlla_2645 0 309 386 + 0.00 + 0.00 0.3 0.88 391 6 41.1 13 N PF00544 Pectate lyase        - 

Pdlla_7642 0 176 42 + 0.00 + 1.00 -2.1 0.60 443 3 47.2 13 N PF01565 FAD binding domain       
 similar to FAD linked oxidase 
domain protein  

Pdlla_7943 0 204 96 + 0.00 + 1.00 -1.1 0.64 389 7 43.2 13 N PF01494 FAD binding domain        similar to salicylate hydroxylase  
Pdlla_7944 0 382 517 + 0.00 + 0.00 0.4 0.84 226 6 22.2 13 N PF01083 Cutinase          hypothetical protein  

Pdlla_8858 0 3686 1271 + 0.00 + 0.00 -1.5 0.57 106 6 11.1 13 E PF10083 

Uncharacterized protein 
conserved in bacteria 
(DUF2321)     hypothetical protein 

Pdlla_9457 0 400 511 + 0.00 + 0.00 0.4 0.87 305 6 31.3 13 N PF03067 Chitin binding domain        hypothetical protein 
Pdlla_951 0 308 598 + 0.00 + 0.00 1.0 0.63 305 6 31.2 13 N PF03443 Glycosyl hydrolase 61       similar to endoglucanase II  

Pdlla_9978 0 269 218 + 0.00 + 0.00 -0.3 0.90 327 9 34.2 13 N PF13933 Putative peptidase family        hypothetical protein  
Pdlla_10001 0 0 0 0.0 1.00 0.0 1.00 0.0 1.00 254 12 27.1 12 E - - - 

Pdlla_1028 0 0 0 0.0 1.00 0.0 1.00 0.0 1.00 197 14 21.6 12 E - - - 

Pdlla_10323 111 283 372 1.4 0.63 1.7 0.60 0.4 0.86 316 17 32.7 12 N - - hypothetical protein 
Pdlla_10428 0 0 3 0.0 1.00 + 1.00 + 1.00 346 9 38.3 12 N - - - 

Pdlla_10510 0 0 7 0.0 1.00 + 1.00 + 1.00 113 7 11.6 12 E - - - 
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Pdlla_10865 0 410 626 + 0.00 + 0.00 0.6 0.70 533 14 57.8 0.8 12 N PF00172 
Fungal Zn(2)-Cys(6) 
binuclear cluster domain     hypothetical protein  

Pdlla_10877 0 0 0 0.0 1.00 0.0 1.00 0.0 1.00 253 6 27.2 0.0 12 E - - - 
Pdlla_11019 29 0 3 - 1.00 -3.3 1.00 + 1.00 448 6 48.3 0.0 12 N - - hypothetical protein 
Pdlla_1267 0 23 3 + 1.00 + 1.00 -2.9 1.00 289 9 32.2 0.0 12 N - - - 
Pdlla_141 0 565 1714 + 0.03 + 0.00 1.6 0.60 157 5 16.8  12 E - - predicted protein 
Pdlla_198 0 12 19 + 1.00 + 1.00 0.6 1.00 288 21 30.2 0.4 12 E - - - 
Pdlla_2470 97 48 9 -1.0 1.00 -3.4 1.00 -2.3 1.00 176 6 19.2 0.0 12 E - - hypothetical protein 
Pdlla_2697 0 304 460 + 0.00 + 0.00 0.6 0.77 374 0 38.4 0.5 12 N - - hypothetical protein  
Pdlla_3327 0 59 6 + 1.00 + 1.00 -3.3 1.00 313 7 34.9 4.0 12 N - - hypothetical protein  
Pdlla_3605 0 0 0 0.0 1.00 0.0 1.00 0.0 1.00 270 9 29.2 0.0 12 N - - hypothetical protein  
Pdlla_4302 0 0 8 0.0 1.00 + 1.00 + 1.00 370 8 42.2 0.0 12 N - - predicted protein 
Pdlla_4743 149 17 15 -3.2 1.00 -3.3 1.00 -0.1 1.00 231 3 25.4 0.0 12 N - - hypothetical protein 
Pdlla_4787 257 395 984 0.6 0.83 1.9 0.57 1.3 0.60 197 5 20.8 0.0 12 N - - hypothetical protein  
Pdlla_4872 0 0 0 0.0 1.00 0.0 1.00 0.0 1.00 144 12 14.9 2.0 12 E - - - 
Pdlla_495 31 93 15 1.6 1.00 -1.0 1.00 -2.6 1.00 381 10 42.3 0.0 12 N - - hypothetical protein  
Pdlla_4994 394 264 44 -0.6 0.79 -3.2 0.60 -2.6 0.60 275 16 26.5 0.0 12 N - - - 

Pdlla_5152 0 0 35 0.0 1.00 + 1.00 + 1.00 168 6 17.9 3.0 12 E - - - 

Pdlla_5333 0 0 0 0.0 1.00 0.0 1.00 0.0 1.00 431 3 47.6 1.5 12 N - - hypothetical protein  
Pdlla_5397 0 0 4 0.0 1.00 + 1.00 + 1.00 300 3 31.2 0.5 12 N - - predicted protein 
Pdlla_5667 0 229 233 + 0.00 + 0.01 0.0 0.97 301 0 29.6 0.0 12 N - - - 
Pdlla_5809 0 0 0 0.0 1.00 0.0 1.00 0.0 1.00 213 16 23.0 0.0 12 E - - predicted protein 
Pdlla_6020 0 0 0 0.0 1.00 0.0 1.00 0.0 1.00 333 28 34.9 0.5 12 E - - - 
Pdlla_6152 0 13 0 + 1.00 0.0 1.00 - 1.00 258 6 27.6 0.0 12 E - - hypothetical protein  
Pdlla_6222 0 0 0 0.0 1.00 0.0 1.00 0.0 1.00 160 8 17.3 0.0 12 N - - - 

 
 



CHAPTER SIX 

 

132 
 

 
 
 
Table 20 continued … 
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Pdlla_10865 0 410 626 + 0.00 + 0.00 0.6 0.70 533 14 57.8 0.8 12 N PF00172 
Fungal Zn(2)-Cys(6) 
binuclear cluster domain      hypothetical protein  

Pdlla_713 0 0 4 0.0 1.00 + 1.00 + 1.00 159 5 16.7 0.0 12 N - - hypothetical protein  
Pdlla_7950 0 0 1 0.0 1.00 + 1.00 + 1.00 384 7 41.8 1.3 12 N - -  
Pdlla_8371 0 347 463 + 0.01 + 0.00 0.4 0.86 212 5 21.3  12 N - - hypothetical protein  
Pdlla_9023 0 0 0 0.0 1.00 0.0 1.00 0.0 1.00 192 7 21.5 3.0 12 E - -  
Pdlla_9025 0 0 46 0.0 1.00 + 1.00 + 1.00 157 5 15.2 0.0 12 E - - predicted protein 
Pdlla_954 0 0 2 0.0 1.00 + 1.00 + 1.00 275 8 30.2 3.0 12 N - - hypothetical protein  
Pdlla_958 0 0 0 0.0 1.00 0.0 1.00 0.0 1.00 419 3 41.2 0.7 12 N - -  
Pdlla_9649 34 0 0 - 1.00 - 1.00 0.0 1.00 364 3 40.0 0.0 12 N - - hypothetical protein 
Pdlla_9745 0 0 0 0.0 1.00 0.0 1.00 0.0 1.00 207 6 23.2 1.3 12 E - -  
Pdlla_9757 0 0 1 0.0 1.00 + 1.00 + 1.00 427 8 40.5 0.0 12 N - -  
Pdlla_9847 0 0 0 0.0 1.00 0.0 1.00 0.0 1.00 138 6 15.5 0.0 12 E - - hypothetical protein  
Pdlla_992 0 10 1 + 1.00 + 1.00 -2.9 1.00 321 6 35.0 0.0 12 N - - predicted protein 
Pdlla_1003 0 0 141 0.0 1.00 + 1.00 + 1.00 224 5 23.4 0.5 11 N PF03443 Glycosyl hydrolase 61 hypothetical protein 
Pdlla_10051 0 0 0 0.0 1.00 0.0 1.00 0.0 1.00 202 19 21.6 2.5 11 E PF00879 Defensin propeptide hypothetical protein  

Pdlla_10253 14 0 3 - 1.00 -2.4 1.00 + 1.00 426 16 46.7 0.8 11 N PF09362 
Domain of unknown 
function (DUF1996) hypothetical protein  

Pdlla_10339 0 0 0 0.0 1.00 0.0 1.00 0.0 1.00 384 9 38.8 0.3 11 N PF00295 Glycosyl hydrolases 28 endopolygalacturonase  
Pdlla_10419 0 933 3040 + 0.00 + 0.00 1.7 0.37 373 6 37.7  11 N PF00089 Trypsin hypothetical protein  
Pdlla_10449 0 0 2 0.0 1.00 + 1.00 + 1.00 665 12 73.9 2.7 11 N - - hypothetical protein  

a  E and N indicate genes predicted as effector and non-effector by EffectorP, respectively.  b indicate top blast result at NCBI (nr) database 
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6.3.4 In planta expression pattern of effector like candidate genes in Ph. 

koolunga  

 

There were no significant differences observed among the three-time point considered 

in levels of gene expressed during Ph. koolunga infection and disease development. 

However, about 34 genes showed high expression of greater than 1.5 fold changes 

compared to medium time post infection (Figure 29, Table 21, and Supplementary 

Table 10). Among 34 genes, only one gene (Phkol_189) is associated to protein of 

known domain, tannase and feruloyl esterase [Pfam: PF07519]. Not all the rest contain 

functionally characterized protein domain. On the other hand, 20 genes showed greater 

than 2 fold change in medium stage of infection relative to early time point. Four of 

these genes viz Phkol_1305, Phkol_2036, Phkol_2123, and Phkol_2127 contain 

CFEM domain [PF05730], NADP oxidoreductase coenzyme F420-dependen 

[PF03807], and Alpha/beta hydrolase family [PF12697] of protein domains, 

respectively. 

 

Twenty-six of the effector like candidate genes showed consistent expression pattern 

with log2 fold change values between -1 and +1 when early and medium time points 

were compared. Only seven of the genes Phkol_2412, Phkol_9859, Phkol_1368, 

Phkol_3432, Phkol_4205, Phkol_8300 and Phkol_9447 contain GH18 [Pfam: 

PF00704], pectinesterase [Pfam: PF01095], aldose 1-epimerase [Pfam: PF01263], 

germination protease [Pfam: PF03418], NAD(P)-binding rossmann-like domain 

[Pfam: PF13450], CFEM [Pfam: PF05730], and peroxisomal membrane anchor 

protein [Pfam: PF04695], respectively (Figure 20, Table 21, Supplementary Table 10). 

Some of the predicted candidate genes were not expressed during in planta infection 

and disease development. This may not rule out their contribution to infection and 

disease development, but may not be induced under current experimental condition. 
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Figure 29 Heat map of relative expression levels of candidate effector-like genes in 

Ph. koolunga isolate FT04040. 
Early = 0 – 9 hour post infection (HPI); Medium = 9 – 33 HPI; HPI; 48 - 96 HPI.  
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Table 21 Top 60 effector-like candidate genes in Ph koolunga isolate FT04040 as predicted by the evidence-based ranked score method 

and their associated supporting data. 
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Phkol_10026 45.8 430.5 140.8 3.2 1.0 1.6 1.0 -1.6 1.0 176 10 18.83 11 E 1.0 - - hypothetical protein 9 
Phkol_10133 0.0 0.0 0.0 0.0 1.0 0.0 1.0 0.0 1.0 60 2 6.7 11 N 0.9 - - 

 

Phkol_10211 0.0 0.0 0.0 0.0 1.0 0.0 1.0 0.0 1.0 75 0 8.39 12 N 1.0 - - hypothetical protein 
Phkol_10330 0.0 0.0 0.0 0.0 1.0 0.0 1.0 0.0 1.0 69 0 7.4 12 E 0.7 - - 

 

Phkol_10406 0.0 0.0 0.0 0.0 1.0 0.0 1.0 0.0 1.0 86 2 9.51 11 E 1.0 - - 
 

Phkol_10790 0.0 0.0 0.0 0.0 1.0 0.0 1.0 0.0 1.0 161 9 17.17 13 E 1.0 - - telomere silencing protein 

Phkol_11025 16.6 0.0 0.0 - 1.0 - 1.0 0.0 1.0 69 0 7.36 12 N 1.0 - - 
 

Phkol_1103 0.0 0.0 0.0 0.0 1.0 0.0 1.0 0.0 1.0 321 10 35.51 11 N 0.9 - - hypothetical protein  

Phkol_11212 7.6 0.0 0.0 - 1.0 - 1.0 0.0 1.0 83 0 8.57 11 N 0.9 - - 
 

Phkol_1219 208.1 99.9 185.4 -1.1 1.0 -0.2 1.0 0.9 1.0 237 1 25.55 12 N 0.5 - - plasma membrane  
fusion protein prm1 

Phkol_1305 54.1 612.2 665.5 3.5 1.0 3.6 1.0 0.1 1.0 198 10 18.03 11 N 1.0 PF05730 CFEM domain        cfem domain 
Phkol_1315 12.4 29.5 7.8 1.3 1.0 -0.7 1.0 -1.9 1.0 202 5 21.37 12 N 1.0 

   

Phkol_1368 72.9 118.9 59.1 0.7 1.0 -0.3 1.0 -1.0 1.0 396 5 43.37 11 N 1.0 PF01263 Aldose 1-
epimerase        

aldose 1-epimerase 

Phkol_1394 7.9 49.0 130.2 2.6 1.0 4.0 1.0 1.4 1.0 233 6 23.62 11 N 0.9 - - hypothetical protein  
Phkol_1453 0.0 0.0 0.0 0.0 1.0 0.0 1.0 0.0 1.0 312 9 34.2 11 N 1.0 - - hypothetical protein  

Phkol_1512 4.7 11.1 0.0 1.2 1.0 - 1.0 - 1.0 279 6 28.31 11 N 1.0 - - - 
Phkol_1550 4.6 0.0 27.9 - 1.0 2.6 1.0 + 1.0 177 7 18.82 11 E 1.0 - - hypothetical protein  
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Table 21 continued … 
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Phkol_1604 0.0 0.0 2.3 0.0 1.0 + 1.0 + 1.0 300 9 30.99 12 N 1.0 - - - 
Phkol_1726 0.0 0.0 0.0 0.0 1.0 0.0 1.0 0.0 1.0 107 3 12.29 12 N 1.0 PF08432 AAA-ATPase 

Vps4-associated 
protein  

 

Phkol_1819 125.5 127.3 16.9 0.0 1.0 -2.9 1.0 -2.9 1.0 121 6 12.57 11 E 1.0 - - hypothetical protein  
Phkol_189 1.1 0.0 0.0 - 1.0 - 1.0 0.0 1.0 293 9 31.46 11 N 1.0 PF07519 Tannase and 

feruloyl esterase      
feruloyl esterase b  
precursor protein 

Phkol_2013 3.4 0.0 0.0 - 1 - 1 0 1 237 5 24.92 14 N 1.0 
 

- - 

Phkol_2036 42.2 294.0 69.7 2.8 1.0 0.7 1.0 -2.1 1.0 119 2 12.55 11 E 1.0 PF03807 NADP 
oxidoreductase 
coenzyme      

pyrroline-5-
carboxylate reductase 

Phkol_2043 286.7 932.5 740.1 1.7 1.0 1.4 1.0 -0.3 1.0 206 5 22.61 11 E 0.9 - - hypothetical protein  

Phkol_2123 5.6 25.1 0.0 2.2 1.0 - 1.0 - 1.0 416 6 45.36 11 N 1.0 PF12697 Alpha/beta 
hydrolase family       

abhydrolase domain- 
containing protein 
12b 

Phkol_2127 13.4 57.7 26.4 2.1 1.0 1.0 1.0 -1.1 1.0 360 7 40.34 11 N 1.0 PF00856 SET domain        set domain-
containing  
protein 5 

Phkol_2147 24.1 30.6 16.6 0.3 1.0 -0.5 1.0 -0.9 1.0 438 6 49.46 11 N 1.0 - - glycosyltransferase 
25  

Phkol_2153 0.0 0.0 0.0 0.0 1.0 0.0 1.0 0.0 1.0 89 10 9.82 11 E 1.0 - - - 
Phkol_2154 0.0 0.0 0.0 0.0 1.0 0.0 1.0 0.0 1.0 94 10 10.3 11 E 1.0 - - - 

Phkol_2313 33.0 162.5 36.1 2.3 1.0 0.1 1.0 -2.2 1.0 213 0 23.13 11 N 1.0 PF10177 Uncharacterised 
(DUF2371)      

predicted protein 
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Table 21 continued … 
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Phkol_233 0.0 0.0 0.0 0.0 1.0 0.0 1.0 0.0 1.0 196 8 21.12 11 E 1.0 - - hypersensitive response 
inducing protein 1 

Phkol_2337 9.0 11.7 59.7 0.4 1.0 2.7 1.0 2.4 1.0 433 16 46.45 11 N 1.0 - - gpi transamidase component 
pig- 

Phkol_2349 114.7 271.7 328.0 1.2 1.0 1.5 1.0 0.3 1.0 380 6 39.78 11 N 1.0 PF00544 Pectate lyase        pectin lyase a precursor 
Phkol_2353 9.8 14.6 0.0 0.6 1.0 - 1.0 - 1.0 208 5 22.26 11 N 0.9 - - related to heatshock protein 

hsp150 
Phkol_2358 57.0 141.0 61.6 1.3 1.0 0.1 1.0 -1.2 1.0 203 5 20.36 11 N 1.0 - - - 
Phkol_2377 4.5 26.5 0.0 2.6 1.0 - 1.0 - 1.0 219 6 24.37 11 E 0.8 - - hypothetical protein  

Phkol_2409 8.0 46.9 26.0 2.5 1.0 1.7 1.0 -0.8 1.0 253 7 28.05 11 N 0.7 - - hypothetical protein 
SETTUDRAFT_44298 

Phkol_2412 95.8 60.0 61.6 -0.7 1.0 -0.6 1.0 0.0 1.0 1792 11 192.44 12 N 1.0 PF00704 Glycosyl 
hydrolases 18      

glycoside hydrolase 18  

Phkol_2522 0.0 0.0 0.0 0.0 1.0 0.0 1.0 0.0 1.0 120 11 12.64 11 E 1.0 - - - 
Phkol_2718 8.9 0.0 4.4 - 1.0 -1.0 1.0 + 1.0 315 7 34.65 11 N 1.0 - - tat pathway signal sequence 

Phkol_2783 0.0 0.0 0.0 0.0 1.0 0.0 1.0 0.0 1.0 200 9 21.72 11 E 0.7 - - hypothetical protein  
Phkol_2855 143.2 88.1 478.1 -0.7 1.0 1.7 1.0 2.4 1.0 113 8 11.37 11 E 0.5 - - endo- -beta-xylanase d precursor 

Phkol_294 7.7 0.0 17.4 - 1.0 1.2 1.0 + 1.0 119 6 12.22 11 N 1.0 - - hypothetical protein  
Phkol_2986 20.4 0.0 23.0 - 1.0 0.2 1.0 + 1.0 355 6 37.9 11 N 1.0 - - hypothetical protein  

Phkol_3006 0.0 0.0 0.0 0.0 1.0 0.0 1.0 0.0 1.0 170 1 21.51 12 N 1.0 - - - 
Phkol_3030 0.0 218.7 46.2 + 1.0 + 1.0 -2.2 1.0 76 0 7.2 12 E 1.0 - - - 

Phkol_315 0.0 0.0 0.0 0.0 1.0 0.0 1.0 0.0 1.0 307 7 32.6 11 N 1.0 - - endo- -beta- 

 

 



CHAPTER SIX 

 

138 
 

Table 21 continued … 
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Phkol_233 0.0 0.0 0.0 0.0 1.0 0.0 1.0 0.0 1.0 196 8 21.12 11 E 1.0 - - hypersensitive response 
inducing protein 1 

Phkol_3254 2.4 0.0 4.0 - 1.0 0.8 1.0 + 1.0 344 7 39.34 11 N 1.0 - - hypothetical protein 

Phkol_3261 1.5 6.7 62.0 2.2 1.0 5.4 1.0 3.2 1.0 407 7 44.32 11 N 1.0 - - c2h2 transcription 
Phkol_3432 4.1 6.2 2.8 0.6 1.0 -0.5 1.0 -1.1 1.0 462 2 47.65 11 N 1.0 PF03418 Germination 

protease 

 

Phkol_3445 1023.0 0.0 507.6 - 0.6 -1.0 1.0 + 0.9 185 13 19.55 12 E 1.0 
  

cell wall glycoprotein 
Phkol_3675 0.0 0.0 0.0 0.0 1.0 0.0 1.0 0.0 1.0 276 0 29.06 11 N 1.0 PF11972 HTH DNA 

binding domain 

 

Phkol_3714 16.6 15.6 13.8 -0.1 1.0 -0.3 1.0 -0.2 1.0 473 5 49.9 14 N 1.0 - - ribosomal protein s17 protein 

Phkol_3730 0.0 0.0 0.0 0.0 1.0 0.0 1.0 0.0 1.0 135 7 14.85 12 E 1.0 - - 
 

Phkol_3907 0.0 0.0 0.0 0.0 1.0 0.0 1.0 0.0 1.0 191 7 20.33 11 E 0.9 - - hypothetical protein 

Phkol_391 0.0 0.0 0.0 0.0 1.0 0.0 1.0 0.0 1.0 81 3 8.82 12 E 0.8 PF07632 Unknown domain 
(DUF1593) 

cellulose-binding protein 

Phkol_3971 0.0 0.0 0.0 0.0 1.0 0.0 1.0 0.0 1.0 164 5 18.8 12 N 1.0 - - 
 

Phkol_4020 10.9 0.0 77.9 - 1.0 2.8 1.0 + 1.0 366 6 40.13 11 N 1.0 - - glycosyltransferase 25 protein 
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Results of effector prediction across the three fungal pathogens of field pea indicate 

that parts of effector like genes activated during infection and disease development 

were CAZymes directed towards depolymerzation of plant cell wall integrity. 

According to Pfam domain analysis, GH3, GH5, GH18, GH28 and GH61 in P. 

pinodes, GH43, GH10, GH76 and GH61 in P. pinodella, and, GH18 in Ph. koolunga 

were predicted as putative effector like proteins. The GH5 (cellulase) and GH61 act 

on plant cellulose while GH43 and GH10 are active against hemicellulose degradation. 

The GH88 (d-4, 5-unsaturated β-glucuronyl hydrolase) are involved in the breakdown 

of the products from pectate lyases. Proteins containing tannase and feruloyl esterase 

in Aspergillus are involved in degradation of pectin and xylan [64].  Gene encoding 

alpha/beta hydrolase family observed in all the three pathogens function as hydrolases, 

lyases, transferases, hormone precursors or transporters, chaperones or routers of other 

proteins [187, 188]. 

 

On the other hand, GH18 is directed towards fungal cell wall degradation mainly 

chitin. It seems that sequestering of fungal fragments is important to lessen fungal 

recognition by host. Perception of fungal chitin by plant leads to activation of host 

defense signaling pathway [152, 328]. Alternatively, P. pinodes, P. pinodella and Ph. 

koolunga may also produce chitinases to overcome competition for niche and 

resources against each other and possibly other pathogens adapted to same host or 

against saprophytic organism. Davidson et al. [58] observed existence of antagonism 

among P. pinodes, P. pinodella and Ph. koolunga using paired co-inoculation 

techniques. Further experimental evidence would be required to determine mechanism 

of antagonism. Langner and Gohre [178] reviewed fungal chitinase and suggested the 

possibilities that it could contribute to overall pathogen fitness in intricate conditions. 

 

The number of predicted effector like PLs were high in P. pinodes (5) while only one 

PL families predicted as putative effector candidate in P. pinodella and Ph. koolunga 

, all of which were expressed during infection. Pectate lyases are secreted proteins 

involved in maceration and soft rotting of plant tissue [344]. Pectinesterase is also 

involved in alteration of plant cell wall integrity [89]. This suggest that P. pinodes, P. 

pinodella and Ph. koolunga could use PLs families that portray different mechanism 
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of pectin digestion. Rapid disease development observed in P. pinodes compared to 

Ph. koolunga and P. pinodella could be associated to the higher number of secreted 

PLs involved in P. pinodes (dose dependent) instead of functional redundancy.  

 

6.3.5 Function of some predicted candidate effector–like genes are similar 

in three pathogens   

 

Interestingly, putative cytochrome P450 pisatin demethylase (Ppdes_5.300: GO: 

0005506) and cytochrome P450 alkane (Ppdes_5.48; GO: 0005506) were also 

predicted as putative effector like candidate P. pinodes. Prediction of the P450 pisatin 

demethylase and P450 alkane as putative effector candidate are imperative in 

ascochyta blight pathogens of field pea (ABPFP) as both likely related to 

pathogenicity. Previous work has shown that cytochrome P450 monooxygenase is 

involved in pisatin detoxification process in N. haematococca and suggested to play 

similar role in P. pinodes, P. pinodella and A. pisi [71, 105]. Nevertheless, cytochrome 

P450 genes are numerous, highly divergent in filamentous ascomycetes [72] and have 

broad roles across various cellular activities. On the other hand, fungal P450 alkane 

belong to CYP52 are useful for utilization of hydrocarbons as nutrition [194]. In 

addition to satisfying nutritional demand, P450 alkane might have also contribute to 

fungal pathogenicity by facilitating attachment and penetration of the hydrophobic pea 

leaf surface that contain high levels of alkanes.   

 

Likewise, necrosis inducing protein (NPP1, Pfam: PF05630) also known as necrosis- 

and ethylene - inducing peptide – like protein (NLPs) was predicted as potential 

effector-like candidates in P. pinodella Pdlla_1551. Although not predicted as an 

effector, homologs of the protein containing NLP exist in all the three pathogens (P. 

pinodes, P. pinodella, Ph. koolunga). The NLPs contribute to disease development via 

induction of cell cytotoxicity in a number of fungal pathogens including C. coccodes, 

A. theophrasti, and R. commune [9, 83, 165]. As observed in other pathosystem and 

discussed in Chapter 3, NLPs were conserved in ABPFP and demonstrated to induce 
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necrosis when purified NLP from P. pinodes was infiltrated on intact pea and other 

dicot plants.  

 

Cyanovirin-N (CVNH) [Pfam: PF08881] and LysM [Pfam: PF01476] domain 

(Ppdes_95.2) was predicted as putative candidate effector-like protein in P. pinodes. 

As opposed to NLP, secreted fungal LysM domain-containing proteins protect the 

invasive fungal hyphae and prevent chitin-triggered immunity to enhance 

establishment of infection and subsequent disease development. The genes 

Ecp6 Cladosporium fulvum (de Jonge et al, 2010), Mg3LysM from M. graminicola 

(Marshall et al. 2011) and Slp1 from M. oryzae (Mentlak et al. 2012) encode similar 

chitin-binding effector molecules that enhance virulence by protecting the fungal cell 

exterior from host-defences.   

 

The early expression preference of the pathogenesis related genes such as cutinase may 

suggest its contribution to infection and disease development. In M. grisea, a cutinase 

(CUT2) is required for full virulence [289]. Similarly, cutinases have been shown to 

contribute to  pathogenicity of Pyrenopeziza brassicae on Brassica napus [59]. 

 

Protein sequences represented by PF05730 in the Pfam database were reported as 

cysteine rich fungal-specific extracellular membrane proteins (CFEM) [173] [353]. In 

M. grisea, CFEM contribute to diseases development through activation of 

appressorium differentiation in response to host surfaces [73]. Similarly, one of the 

CFEM genes (CFEM1) identified from F. graminearum showed expression in planta 

during wheat infection and is compulsory for full virulence on wheat coleoptiles [352]. 

Microscopic observation indicated that ABPFP can penetrate their host either through 

natural opening or penetrate the cuticle directly through appressorium formation 

(Supporting Figure 4). Therefore, the in planta expression of putative CFEM in three 

of the ABPFP may reflect its importance during infection and disease development. 
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A number of genes involved in protein metabolism were also predicted as putative 

effector candidate genes in ABPFP. These include subtilase, peptidase, aspartyl 

protease, amidase and trypsin in P. pinodes, peptidase, asparaginase, arginase, 

peroxidase and tripsin were identified in P. pinodella while only germination protease 

(aspartyl protease) was predicted in Ph. koolunga.   

 

Subtilisin-like secreted proteases have been shown to increase the virulence of the 

entomopathogenic fungus Beauveria bassiana [80]. Similarly, a serine protease from 

P. infestans  is one of the cytoplasmic effectors which inhibit tomato-pathogenesis 

related proteins (PR)  during infection [312]. On the other hand, a gene encoding 

subtilase (prt1) in F. oxysporum f.sp. lycopersici has no impact on its virulence [244]. 

 

A gene related to aspartyl protease is commonly expressed in three of the ABPFP. It 

was also expressed in planta in necrotrophic fungal pathogens B. cinerea and S. 

sclerotiorum while its role in disease development remains to be resolved [247, 310]. 

However, aspartyl protease reported to contribute to infection process by degrading 

host surface molecules in human pathogen, Candida albicans [281]. Recent 

investigation indicated that F. oxysporum f.sp lycopersici metalloprotease and serine 

protease can break chitin binding tomato chitinase [143]. 

 

Asparaginase is secreted protein reported from various organisms and used in blood 

cancer chemotherapy to treat lymphoblastic leukemia as well as food processing 

industries [18]. According to recent review by Batool et al. [18], only 9 (5 of them 

from Aspergillus) fungal species were reported to produce asparaginase while there 

were a number of bacterial species reported to produce it. The contribution of 

asparaginase to disease development is not known, test for production potential of 

asparaginase by ABPFP would be useful as alternative source of asparaginase 

production and commercialisation. Since its production was suggested to be regulated 

by nitrogen [273], possibilities would exist for mass production using pea plants as 

substrates for chemotherapy.  
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6.3.6 Some effector like candidate genes are under positive selection 

 

Large numbers of predicted effector like candidate genes in ABPFP were observed to 

be under purifying selection (dN/dS <1), however only a few genes showed signs of 

positive selection (Figure 29). In P. pinodes, only two genes (Ppdes_6.215 and 

Ppdes_26.38) showed dN/dS values of greater than ≥ 2. The former belonged to the 

PAN domain protein family [Pfam: PF14295] while the latter had no predicted protein 

domains. In contrast to P. pinodes, 24 of predicted effector like candidate genes 

showed sign of positive selection (dN/dS ≥ 2) in P. pinodella (Figure 30). Some of 

these genes include pathogenicity related genes such as cutinase (Pdlla_7944, 

Pdlla_9293; Pfam: PF01083), cellulase (GH5) (Pdlla_572; Pfam: PF00150) and FAD 

binding domain (Pdlla_986; Pfam: PF01494) while all the rest were under purifying 

selection (conserved). Although Ph. koolunga secreted proteome consisted of 1518 

protein sequences, none of the predicted effector-like candidate genes exhibited 

positive selection (dN/dS >1). These results suggest that most of the effector-like 

protein sequences are evolving under purifying selection pressure in P. pinodes and 

Ph. koolunga than P. pinodella.  
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Figure 30 Distribution of dN/dS values of the secretome of P. pinodes, P. pinodella 

and Ph. koolunga. 
 

Ph. koolunga 

P. pinodes 

P. pinodella 
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Analysis of BLASTP reciprocal best BLAST hits (RBH) of the proteins sequences 

from P. pinodes, P. pinodella and Ph. koolunga  against 2296 protein sequences 

obtained from the Pathogen Host Interaction Database [334] (PHI-base version 3.4 

proteins) were locally performed. The result indicated that only 2 genes from P. 

pinodes, 2 genes from Ph. koolunga  and 7 genes from P. pinodella which were 

predicted as effector-like candidate genes had RBH to functionally characterized 

proteins in PHI-base database (Table 22).  Peyronellaea pinodes gene Ppdes_6.421 

and P. pinodella gene Pdlla_352 shared highest similarity with their RBH, which was 

74% to the N. haematococca gene PELD (PHI-base: PHI: 180) and 73% to M. oryzae 

endo-1, 4-beta-xylanase (PHI-base: PHI: 2204), respectively. Previous experimental 

gene disruption of N. haematococca PelD revealed its importance as a virulence factor 

on pea [263]. Knock-down analysis of multiple genes coding for xylanase using RNAi 

severely reduced pathogenicity of M. oryzae on wheat [226]. The P. pinodella 

Pdlla_2072 gene has also 70% similarity to the M. oryzae GAS1 gene, a secreted 

protein belong to the mitogen-activated kinase group. Deletion of GAS1 from M. 

oryzae severely compromised its virulence. Except Pdlla_2072, all were conserved 

across the three species suggesting a common origin for these effector-like genes in 

closely related pathogens adapted to the same or similar hosts. 
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Table 22 Predicted effector candidate genes with reciprocal blast hit to pathogen host interaction database (PHI-base) 

 

Gene Id PHI accession PHI-base Gene name PHI-base Species PHI-base KO Phenotype Identity (%) Similarity E-value  

Ppdes_6.421  PHI:180 PELD N. haematococca Reduced virulence 62 74 2e-96 ++ 

Ppdes_1.96 PHI:811 MGG_10510 M. oryzae Reduced virulence 55.8 68 1e-115 ++ 

Pdlla_4025 PHI:201 AVR-Pita M. oryzae Plant avirulence determinant 32.45 50 8E-21 ++ 

Pdlla_352 PHI:2204 endo-1,4-beta-xylanase  M. oryzae  Reduced virulence 64.74 73 1E-142 ++ 

Pdlla_10419 PHI:2384 Ust1 Ustilago maydis Reduced virulence 41.79 52 4.4E-2 ++ 

Pdlla_4447 PHI:2412 lipA Xanthomonas campestris Reduced virulence 27.85 43 2E-04 ++ 

Pdlla_2072 PHI:256 GAS1 M. oryzae Reduced virulence 55.72 70 9E-73 +- 

Pdlla_1744 PHI:653 GIP2 Phytophthora sojae Plant avirulence determinant 27.27 41 9E-15 ++ 

Phkol_3132 PHI:320 SSN6 Candida albicans Reduced virulence 57.6 69 6E-138 ++ 

Phkol_8405 PHI:364 MIT1 Candida albicans Reduced virulence 55 67 4E-90 ++ 

++ Orthologous in three of the species, +- no orthologues in Ph. koolunga  



CHAPTER SIX 

 

147 
 

6.4 Conclusion  

 

The diverse virulence related genes of three necrotrophic fungal pathogen P. pinodes, 

P. pinodella and Ph. koolunga have been systematically explored. Both computational 

and in planta expression analysis were employed to identify and shortlist key 

pathogenicity-related candidate genes expressed during infection and disease 

development. Subsequently, 1681, 1451, and 1518 genes were predicted to be secreted 

in P. pinodes, P. pinodella and Ph. koolunga, respectively. Among these 223 genes in 

P. pinodes,  212 in P. pinodella and 140 genes in Ph. koolunga  predicted as putative 

effector like candidate  proteins (CELPs). All the information can be found at Curtin 

University, Centre of Crop and Disease Management (CCDM), Pulse pathology and 

genetics research group.  

 

Peyronellaea pinodes showed the highest number of proteins in its predicted 

secretome as well as CELPs lacking functional annotations, relative to P. pinodella 

and Ph. koolunga. Species-specific CELPs are higher in Ph. koolunga than both 

Peyronellaea species. Bioinformatics analysis of functional annotations indicated the 

potential involvement of numerous cell wall degrading enzymes and secreted proteins 

involved in the interaction between ascochyta blight pathogens of field pea (ABPFP) 

and Pisum sativum. The discovery of functionally active necrosis and ethylene 

inducing peptide like proteins (NLPs) that cause necrosis on pea and other dicot plants 

(see chapter 3)  can be used as a positive control in further fishing effector discovery 

experiments for ABPFP.  

 

To further improve the ABPFP pathogenomic resources moving forward, further 

functional analysis using gene knockout or via gene silencing among CELPs will be 

invaluable to determine their role during infection and disease development. Targeting 

single-copy candidate genes could be invaluable with this regard to eliminate the 

potential of functional redundancy in genes that could exist in multiple copy. Further 

validation of the CELPs help in the development of novel screening techniques for 

disease resistance as well as development of targeted breeding techniques. Knowledge 
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of effectors can be useful to exploit disease susceptibility gene in host given these 

effectors trigger diseases susceptibility [103, 196, 324].  

 

Recently, an International Consortium for the Pea Genome Sequencing (ICPG) has 

been established with the aim to of providing quality reference pea genome to the 

broader community. Progress of this project indicated that first draft assembly of the 

genome has been completed 

(https://pag.confex.com/pag/xxiii/webprogram/Paper14072.html). As Curtin 

University is one of the collaborator of ICPG, we have provided the generated 

transcriptomic data to the consortium. These in planta transcriptomics data are 

significant contribution to ICPG, which help in correcting gene calling when included 

in evidence-based annotation. Further analysis of the generated in planta 

transcriptomic data will help us to pea defence responses  and map metabolic pathways 

involved in pea defence reactions in response to infection by P. pinodes, P. pinodella 

and Ph. koolunga . This will contribute to the improvement and development of pea 

genotypes to rescue pea production and subsequently enhance natural resource 

management through pea integration into crop rotation. 

 

https://pag.confex.com/pag/xxiii/webprogram/Paper14072.html
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7. General Discussion and Conclusion 

 

7.1 General discussion 

 

Ascochyta blight of field pea caused by fungal pathogens including Peyronellaea 

pinodes, Peyronellaea pinodella, Ascochyta pisi and Phoma koolunga [31, 57, 240], 

continues to be a prime pea production constraint worldwide. Limited availability of 

molecular data in public sequence databases is one of the major bottlenecks towards 

the advancement of molecular studies in the interaction of Ascochyta Blight Pathogens 

of Field Pea (ABPFP) with their host - pea. Prior to this thesis project, there no 

published genome sequence has been available for the pathogen species in 

Didymellaceae family. In this thesis, whole genome and in planta transcriptome 

sequencing were employed to expand our understanding of ABPFP – pea interaction 

at molecular level. The project tackled the assembly, annotation and comparative 

evaluation of the genomes of P. pinodes, P. pinodella, Ph. koolunga and A. pisi 

(Chapter 2), identified conserved pathogenicity related genes (Chapter 3 and 4), and 

predicted effector-like candidate genes in ABPFP via comparative analysis of in planta 

expressed genes in these pathogens (Chapter 5). 

 

The first draft de novo genome assembly of P. pinodes was generated from short read 

(75 bp) by the Illumina Solexa sequencing platform in 2012 [158]. This fragmented 

genome was used to generate peptide databases, which allowed for the proteomics-

based prediction of 16 strong potential candidate effector-like genes in P. pinodes 

[158]. In the current project, substantial improvements to the genome assembly of P. 

pinodes (M074) was achieved through the sequencing of multiple libraries of different 

insert size and re-assembling these sequences using various updated techniques 

(Chapter 2). 

 

One of the main challenges of this PhD project was a lack of reference genome 

sequence data from closely related species. The sequencing and assembly strategies 

employed in this project allowed us to generate a good quality P. pinodes (M074) 
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reference genome assembly, which will serve as a reference for the pathogens in the 

Didymellaceae. This reference species was assembled to 33.3 mega base pairs (Mbp) 

with N50 and L50 of 15 and 817 kb, respectively. The genome sequences of  P. 

pinodella, A. pisi, Ph. koolunga   and another P. pinodes isolates were assembled to 

equivalent size varying between 29.4 – 34 Mbp. Equilibrated GC content of between 

51 -53 %GC was observed in these species. The average total length of repetitive DNA 

regions, which comprise the majority of non-equilibrated (AT-rich) GC content, varied 

between 2.3% in Ph. koolunga (FT04040) to 3% in P. pinodes (M074). The total 

number of predicted open reading frames (ORFs) of ≥ 50 amino acids in length varied 

from 9, 679 in A. pisi ( Georgia-12) to 12, 482 in P. pinodes (MP1).  The availability 

of new genome data contributes to previously scarce molecular data available for 

studying the host – ABPFP interaction. It now represents the majority of sequenced 

species of necrotrophic pathogens of legume crops in the Didymellaceae family.  The 

data will also indirectly aid the discovery and characterization of novel pathogenicity 

related genes in other species through comparative genomics. 

 

In this thesis, the genome sequences have aided further comparative genome analysis, 

including: repeat induced point mutation analysis, global genome alignment and 

synteny analyses, and large scale orthology analysis (Chapter 2). RIP-like mutation 

analysis indicated a bias towards more frequent mutation of CpT ↔ TpT and CpA ↔ 

TpA in both long terminal repeat (LTR) and DNA transposons. RIP-like activities 

were stronger in P. pinodella and Ph. koolunga than in P. pinodes and A. pisi, 

indicating the former 2 species possess better genome defenses against repeat invasion. 

Unusually high RIP-like mutations was observed in DNA transposons of P. pinodes 

(MP1), Ph. koolunga  and A. pisi (Georgia-7 and Georgia-12) which is likely related 

to their relatively high proportion of DNA transposons.  

 

The synteny relationship between P. pinodes and closely related pathogens from 

Didymellaceae family, Dothideomycetes and Sordariomycetes is congruent to the 

established evolutionary relationship of the fungal pathogens used in this study. Very 

closely related pathogens showed macrosynteny, more distantly related species 

showed a gradual breakdown of macrosynteny through large-scale rearrangements, 

http://en.wikipedia.org/wiki/Sordariomycetes
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frequently inversions of the same sequence (mesosynteny). Comparison between 

closely related species, P. pinodes and P. pinodella indicated that about 91- 94 % of 

P. pinodella genome could be aligned to the P. pinodes (M074) genome. Moreover, 

about 71 - 80% of the unassembled reads from P. pinodella could be mapped to the P. 

pinodes reference isolate M074. The data suggested that only a small fraction (<10%) 

of the genome accounted for the observed sequence differences between P. pinodes 

and P. pinodella. These fractions were classified as ‘species-specific regions’ and were 

also found to harbor isolate-specific genes. Most of the sequences present in one 

species and absent the other are short, which is likely due to a proximity to flanking 

repetitive DNA that hampers un-fragmented genome assembly in these regions. These 

isolate/species-specific regions could be exploited as targets for designing species-

specific markers to aid rapid discrimination between P. pinodes and P. pinodella in 

species complexes infecting field pea.  

 

The new genome sequences also allowed us to identify ABPFP-specific protein 

families via orthology analysis. Among 297, 042 proteome sequences from 24 fungal 

genomes classified into 86,702 protein families, 4,555 protein families were found 

core proteins of P. pinodes, P. pinodella, Ph. koolunga and A. pisi while 109 protein 

families were found only in ABPFP. Most of those proteins with known functional 

domains are associated to oxidoreductases, hydrolases, transferases, peptidases, 

kinases, transcription factors, toxin biosynthesis or had conserved protein domains of 

unknown function. These proteins common to AB pathogens may determine 

characteristics that are common to their niche adaptation on field pea, while those 

proteins specific to either of P. pinodes, P. pinodella, Ph. koolunga or A. pisi may have 

roles in determining host/cultivar specificity. 

 

Genome analysis also shed light on the possibilities of ABPFP being able to produce 

secondary metabolites that are encoded by a cluster of genes (Chapter 2). A number of 

putative type I polyketide synthase gene cluster (PKS) and non-ribosomal peptide 

synthase (NRPS) were predicted form the genome assemblies. The product of these 
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genes (and their flanking genes within the cluster) and their possible roles in ABPFP 

remains to be determined.  

 

Genome sequencing and comparative analysis also uncovered common strategies of 

cell wall de-polymerization to breach the physical defences and structure of the host 

cell. The P. pinodes, P. pinodella, Ph. koolunga and A. pisi contained 562 – 581, 592 

– 600, 511– 520 and 503 – 509 carbohydrate active enzymes (CAZyme), respectively 

(Chapter 5). Pea-infecting species had exceptionally high proportions of pectin 

degrading enzymes (≥31), including the non-ABPFP species Nectria haematococca 

(34), compared to other pathogens of other dicot plants such as Alternaria brassicicola 

(23), Leptosphaeria maculans (18) and Botrytis cinerea (11). High pectinase gene 

content in dicot-infecting species appears to be correlated with the high pectin content 

of dicot plants, with Pea pathogens exhibiting the highest frequencies. Pectinase was 

implicated as virulence factor in pea pathogen N. haematococca [263], Colletotrichum 

gloesporioides [341] and Colletotrichum lindemuthianum [179].  

 

One of the major achievements of this PhD thesis project was the identification of a 

well-defined class of pathogenicity genes, the necrosis- and ethylene-inducing peptide 

like proteins (NLPs). NLP1 and NLP2 are effector genes identified from the whole 

genome sequence, employing comparative and phylogenetic analysis. In collaboration 

with other researchers, we have demonstrated the necrotic activities of NLP2 on pea 

and other dicot plants (Chapter 3). The NLP1 and NLP2 are likely duplicated genes, 

but only NLP2 has activity to induce necrosis. Interestingly, NLP2 was not detected 

in at least in four pathogens infecting cereals, suggesting niche adaptive evolution of 

Didymellaceae pathogens to dicotyledonous hosts. Because NLP1 is expressed during 

infection and did not show any necrotic activity, NLP1 may have a role other than 

cytolysis such as triggering host immunity leading to programmed cell death and 

nutrient release.  

 

Beyond the NLPs, additional functionally conserved pathogenicity genes could be 

predicted using motif signature searches complemented with evolutionary analysis. 

There were three main lysine motif domain-containing proteins (LysM) identified in 

P. pinodes, P. pinodella, Ph. koolunga, A. pisi. The first is a repeat of LysM domain 

https://en.wikipedia.org/wiki/Colletotrichum_lindemuthianum
https://en.wikipedia.org/wiki/Colletotrichum_lindemuthianum
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with signal peptide. The second group consisted of LysM repeats without signal 

peptide. The third group consisted of LysM domain with a Cyanovirin-N homology 

(CVNH) sandwiched within LysM (Chapter 4). In addition, a number of putative 

pisatin demethylase (PDA) encoding genes (3 in each Ph. koolunga and A. pisi and 10 

– 12 in P. pinodes and P. pinodella) were predicted in ABPFP. No known report 

available for the existence and functional relevance of LysM in ABPFP. Available 

literature indicates the broad relevance of LysM as a virulence factor in a number of 

fungal pathogens [62, 63, 210, 216, 219]. These functionally known LysM domain 

containing proteins often share common characteristics, such as extracellular secretion 

signals and repeats of the LysM domain within the sequence. Similarly, some report 

suggested the potential role of PDA in P. pinodes, P. pinodella and A. pisi.  

 

In addition to the conserved effector genes detected in ABPFP, genome sequences of 

P. pinodes, P. pinodella and A. pisi also allowed us to predict novel candidate effector-

like genes (Chapter 5). To this end, 1681, 1451 and 1518 protein sequences were 

predicted to have extracellular secretion signals in P. pinodes, P. pinodella and Ph. 

koolunga, respectively (Chapter 5). Among these, 223 in P. pinodes, 226 in P. 

pinodella and 140 in Ph. koolunga of the secreted proteins were designated as putative 

effector candidate genes. Furthermore, 8.9 % (21) of these shortlisted candidates in P. 

pinodes, 3.7% (8) in P. pinodella and 47% (67) in Ph. koolunga  were also observed 

to be species-specific, as identified by the previous cross-species orthology analysis 

(Chapter 2, Chapter 5). 

 

Effectors genes that are likely to be expressed during host infection have been at the 

forefront of many host-pathogen interaction studies [167, 228, 352]. Expression 

analysis of RNA-seq sequence indicated that 20% of predicted effectors in P. pinodes 

were significantly upregulated at early time points in planta relative to at least one in 

vitro condition (Chapter 5). Similarly, the expression of 16 and 34 of the effector like 

candidate genes was high at early time points in P. pinodella and Ph. koolunga, 

respectively. The early activation of these effector like candidate genes could support 

their possible role during infection and disease development in ABPFP. 
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Combining various types of supporting evidence, an overall ranking of effector 

candidates from most to least probable was performed (Chapter 5). A recent software 

tool for the de novo effector prediction of effectors – EffectorP [291] was also applied 

to the candidates. These bioinformatics techniques complemented the previous 

analysis of known protein domains (and sequence comparison) (Chapter 3 and Chapter 

4) which had enabled the identification of common effector like candidate genes with 

high confidence. For instance, the necrosis- and ethylene inducing - peptide like 

protein (NLPs, Pfam: PF05630), CyanoVirin-N (CVNH) [Pfam: PF08881] and LysM 

[Pfam: PF01476] domain containing protein and putative cytochrome P450 pisatin 

demethylase (Ppdes_5.300: GO: 0005506) was predicted as putative candidate 

effector-like protein in at least one of the ABPFP using either the ranking method or 

EffectorP.  In addition, the de novo effector prediction in ABPFP reported genes of 

similar function across the three pathogens. Genes encoding cellulase, hemicellulase, 

pectinase, cutinase, and fungal-specific extracellular membrane proteins (CFEM, 

Pfam: PF05730) were part of a common set of highly ranked pathogenesis-related 

genes that were expressed at early infection stage. This may suggest their possible role 

during infection and disease development (Chapter 5). 

 

A number of genes involved in protein metabolism were common to the three fungal 

pathogens and predicted as putative effector candidate genes. These include subtilisin-

like protein, an aspartyl protease, and an asparaginase. While subtilisin and aspartyl 

protease are reported in past studies as associated with fungal pathogenicity [282] 

asparaginase is commonly reported as a chemotherapy agent used to treat blood cancer 

in humans [18]. According to Batool et al. [18], only 9 (5 of them are Aspergillus) 

fungal species have previously been reported to produce asparaginase. 

 

7.2 Conclusion and future direction 

 

This research project has laid foundations for pea-pathogen interaction studies at a 

molecular level through the generation of whole genome and in planta transcriptome 

sequence resources. High quality reference genome (P. pinodes isolate M074) for the 

pathogens in the class Didymellaceae has been established. With that in mind, the 
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genome assemblies of P. pinodella, Ph. koolunga and A. pisi were generated from 

short read Illumina sequencing platform, and more advanced long-read platforms are 

now readily available. Continuous improvement of the genome sequences through 

additional sequencing and re-assembly and/or the inclusion of transcriptomic data for 

the correction of gene annotations are elements that could be considered in the near 

future. Meanwhile, release of currently available genomic data would enhance 

scientific community engagement and their contribution toward tackling these 

economically devastating pathogens. 

 

Pea cell wall de-polymerization is likely a common strategies employed by ABPFP to 

breach physical host defences and cell structure. Consistent with dicot plant cell wall 

composition, CAZymes targeting pectin degradation were expanded in the ABPFP 

indicating metabolic adaptation to their common host. With this regard, in planta 

expressed pectin related genes in P. pinodes, P. pinodella or Ph. koolunga would be a 

good candidate for further functional analysis and determination of their possible role 

in pathogenesis. 

 

Comparative sequence and phylogenetic analysis are powerful techniques to 

effectively predict functionally active effector candidate genes. Further analysis 

revealed that NLP1 is closely related to pathogens from monocot and NLP2 is more 

closely related to pathogens from dicot and absent from three pathogens infecting 

monocot. Purified protein infiltration assay on field pea stipules and other dicot plants 

proved that only NLP2 induce necrosis when purified proteins were infiltrated. The 

identification of NLP2 is important as it can be used as positive control in future 

functional studies of effector candidate genes in ABPFP. The lack of necrosis activities 

in NLP1 would simplify determination of NLP2 contribution to virulence via gene 

knockout/knockdown.  Further studies would also be important to uncover the role of 

expressed NLP1 in ABPFP. 

 

Conserved fungal effectors like LysM and pisatin demethylase (PDA) were also 

predicted in the project and presumed to play role during disease development. Many 

novel effector like candidate genes were predicted from these genomic resources. A 
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total of 223 genes in P. pinodes, 212 in P. pinodella and 140 genes in Ph. koolunga 

were predicted as putative effector like candidate proteins. These early expressed 

candidate genes are likely to be putative effector candidate genes. Further functional 

analysis using gene knock-out or gene silencing could help to determine the role of 

predicted effectors during infection and disease development. Validation of the CELPs 

will ultimately help the development of rapid screening techniques for disease 

resistance across pea cultivars, as well as in the development of targeted breeding 

techniques. Knowledge of effectors can be useful to exploit disease susceptibility gene 

in host given these effectors trigger disease susceptibility [103, 196, 324]. This may 

be promising in future improvements to commercial pea cultivars, as there is currently 

no resistance available within the commercial pea germplasm. 

 

The availability of new genome data contributes to previously scarce molecular data 

available for studying the host – ABPFP interaction. It now represents the majority of 

sequenced species of necrotrophic pathogens of legume crops in the Didymellaceae 

family. These resources are a valuable tool for the development of markers for the 

study of pathogen population structure and for genotyping, as well as for the prediction 

of candidate effector genes and advancing the understanding of pathogenicity 

mechanisms in ABPFP. The data will also indirectly aid the discovery and 

characterization of novel pathogenicity related genes in other species through 

comparative genomics. 

 

The recently established of International Consortium for the Pea Genome Sequencing 

(ICPG) (https://pag.confex.com/pag/xxiii/webprogram/Paper14072.html) has been 

encouraging pathologists and breeders to collaborate on field pea research projects. 

The in planta transcriptomic data generated during this thesis project is also major 

contribution towards the pea genome sequencing initiatives. These transcriptomic data 

will be further used to study pea defence response mechanisms and to map metabolic 

the pathways involved in pea defence reactions in response to infection by P. pinodes, 

P. pinodella and Ph. koolunga. This gives complete understanding of the interplay 

among ABPFP and Pisum sativum at molecular level. This will lead to the 

improvement and development of pea genotypes through establishment of novel 

https://pag.confex.com/pag/xxiii/webprogram/Paper14072.html
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breeding techniques. Development and use of improved germplasm will increase 

production and productivity leading to increased supply of pea for food/feed at either 

at individual or industry level. It also enhance natural resource management through 

pea integration into crop rotation.  

To sum up, concerted effort has been made to expand our level of understand why 

ABPFP continues to be threat to pea production worldwide. Sequencing and analysis 

of the genomes of fungal pathogens P. pinodes, P. pinodella, Ph. koolunga and A. pisi 

has highlighted the genome features of each species. First, comparative analysis of the 

genome sequences indicated expansion of some CAZyme families in these four fungal 

pathogens. Secondly, sequencing uncovered the presence of conserved pathogenicity 

related genes such as NLPs, LysM and PDA. Thirdly, genome sequencing has revealed 

the potential of ABPFP pathogens to produce secondary metabolites by a cluster of 

genes. Fourth, diverse putative effector like candidate genes have been predicted, 

which might play a decisive role in disease development and will inform future 

experimental validations. Finally, incorporation of in planta transcriptomic data has 

greatly increased the reliability of genes and effector – like candidate genes predictions 

made in these studies, and will have flow-on benefits to the genome project for the pea 

host. 

 

Release of the new genome data to the public will serve to aid further discovery and 

characterization of novel pathogenicity related genes in ABPFP and other species by 

the wider scientific community. Once the pea genome available, it is perceived that 

genomic and previous pea genetic (such as quantitative trait loci) and single nucleotide 

polymorphism) data [75, 156, 287, 313, 314] would be integrated and able to display 

the interactome at molecule level. This will lead to the improvement and development 

of pea genotypes and rescue pea production currently under threat. Use of improved 

varieties increase production leading to increased pea supply for both human food and 

animal feed. Furthermore, improved Pea production is of broad benefit to agriculture 

as it can enhance the management of natural soil fertility in cereal based farming 

system and boost subsequent cereal crop production. 
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