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Abstract 
 
Our work is focused on the task of mining frequent 

subtrees from a database of rooted ordered labeled 
subtrees. Previously we have developed an efficient 
algorithm, MB3 [12], for mining frequent embedded 
subtrees from a database of rooted labeled and ordered 
subtrees. The efficiency comes from the utilization of a 
novel Embedding List representation for Tree Model 
Guided (TMG) candidate generation. As an extension the 
IMB3 [13] algorithm introduces the Level of Embedding 
constraint. In this study we extend our past work by 
developing an algorithm, Razor, for mining embedded 
subtrees where the distance of nodes relative to the root of 
the subtree needs to be considered. This notion of distance 
constrained embedded tree mining will have important 
applications in web information systems, conceptual model 
analysis and more sophisticated ontology matching. 
Domains representing their knowledge in a tree structured 
form may require this additional distance information as it 
commonly indicates the amount of specific knowledge 
stored about a particular concept within the hierarchy.  
The structure based approaches for schema matching 
commonly take the distance among the concept nodes 
within a sub-structure into account when evaluating the 
concept similarity across different schemas. We present an 
encoding strategy to efficiently enumerate candidate 
subtrees taking the distance of nodes relative to the root of 
the subtree into account. The algorithm is applied to both 
synthetic and real-world datasets, and the experimental 
results demonstrate the correctness and effectiveness of the 
proposed technique. 
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1. Introduction 
 

Tree mining has gained a considerable amount of 
interest in areas such as Bioinformatics, XML mining, Web 
mining, etc. In general, most of the formally represented 
information in these domains is a tree structured form. The 
problem of frequent subtree mining can be generally stated 
as: given a tree database Tdb and minimum support 
threshold (σ), find all subtrees that occur at least σ times in 
Tdb. Many algorithms have been developed that mine 
different types of tree patterns. PathJoin [14], uFreqt [8], 
and HybridTreeMiner [3], mine induced, unordered trees. 
FreeTreeMiner [10] extracts free trees in a graph database. 
Treeminer [15] is an efficient algorithm for discovering all 
frequent embedded subtrees in a forest using a data 
structure called the vertical scope-list.  

In [11], we introduced the Tree Model Guided (TMG) 
candidate enumeration method which is a specialization of 
the complete and non-redundant right most path extension 
approach [1, 15]. TMG generates fewer candidates as 
opposed to the commonly used join approach. In [12] we 
have introduced a novel and unique Embedding List (EL) 
which enables an efficient implementation of the TMG 
candidate generation. It was accompanied with a 
mathematical formula that indicates the number of 
candidate subtrees that will be generated at each step. 
Using the formula one could predict infeasible cases in 
which the mining process needs to be constrained so that at 
least some patterns could be discovered. This motivated us 
to develop a strategy to tackle the complexity of mining 
embedded subtrees by introducing Level of Embedding 
constraint [13]. Thus, when it is too costly to mine all 
frequent embedded subtrees, one can gradually decrease the 
level of embedding constraint.  

In this study we extend our past work by developing an 
algorithm for mining embedded subtrees when the 
distances of the nodes relative to the root of the subtree 
need to be considered. The embedded subtrees extracted 
using the traditional definition are incapable of being 
further distinguished based upon the node distance within 
that subtree. For certain applications the distance between 
the nodes in a hierarchical structure could be considered 
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important and two embedded subtrees with different 
distance relationships among the nodes need to be 
considered as separate entities. This notion of distance 
constrained embedded tree mining will have important 
applications in web information systems, conceptual model 
analysis, knowledge merging and semantic matching. Our 
aim in this paper is to obtain an efficient algorithm that will 
extract all embedded subtrees with the additional node 
distance information. 

The rest of the paper is organized as follows. The 
problem is described in section 2. Section 3 provides a 
motivating example. The Razor algorithm is described in 
section 4. The experiments on real world and synthetic data 
are presented in section 5, and section 6 concludes the 
paper. 
 
2. Problem definitions 

 
A tree can be denoted as T(r,V,L,E), where (1) r ∈  V is 

the root node; (2) V is the set of vertices or nodes; (3) L is 
the set of labels of vertices, for any vertex v∈ V, L(v) is the 
label of v; and (4) E is the set of edges in the tree. Each 
node v in the tree has only one parent, parent(v), which is 
defined as the predecessor of node v.  A node v can have 
one or more children, children(v), which are defined as its 
successors. If p is an ancestor of q and q is a descendant of 
p, then there exists a path from p to q.. A path from vertex 
vi to vj, is defined as a finite sequence of edges that 
connects vi to vj. The length of a path p is the number of 
edges in p. When referring to the distance between the two 
nodes we simply refer to the length of the path connecting 
those two nodes. Height of a node is the distance to its 
furthest leaf, whereas the depth of a node is its distance to 
the root. A node without any children is a leaf node; 
otherwise, it is an internal node. If for each internal node, 
all the children are ordered, then the tree is an ordered tree. 
The rightmost path of T is defined as the path connecting 
the rightmost leaf with the root node.  

 
Figure 1. Example of induced subtrees (T1, T2, 

T4, T6) and embedded subtrees (T3, T5) of tree T 
Induced Subtree. A tree T’(r’, V’, L’, E’) is an ordered 

induced subtree of a tree T (r, V, L, E) iff (1) V’⊆V, (2) 
E’⊆E, (3) L’⊆L and L’(v)=L(v), (4) ∀v’∈V’, ∀v∈V and 
v’ is not the root node, and v’ has a parent in T, then 

parent(v’)=parent(v),  (5) the left-to-right ordering among 
the siblings in T’ is preserved. An induced subtree T’ of T 
can be obtained by repeatedly removing leaf nodes or the 
root node if their removal doesn’t create a forest in T. 

Embedded Subtree. A tree T’(r’, V’, L’, E’) is an 
ordered embedded subtree of a tree T(r, V, L, E) if and only 
if it satisfies properties 1, 2, 3 and 5 of an induced subtree 
and it generalizes property (4) such that ∀v’∈V’, ∀v∈V 
and v’ is not the root node, the sets ancestor(v’) and 
ancestor (v) form a non-empty intersection. Examples of 
induced and embedded subtrees are given in Figure 1 (note 
all induced subtrees are also embedded). 

Level of Embedding (Φ). If T’(r’, V’, L’, E’) is an 
embedded subtree of T, and there is a path between two 
nodes p and q, the level of embedding (Φ) is defined as the 
length of the shortest path between p and q, where p∈V’ 
and q∈V’, and p and q form an ancestor-descendant 
relationship. In other words, given T andΦ, then any 
embedded subtree to be generated will have the length of 
the shortest path in T between any two ancestor-descendant 
nodes from T’ equal or less than Φ. Hence, an induced 
subtree T can be defined as an embedded subtree where the 
maximum level of embedding in T is equal to 1. 

Distance-Constrained Embedded Subtree. A tree 
T’(r’, V’, L’, E’) is an ordered distance-constrained 
embedded subtree of a tree T(r, V, L, E) if it satisfies all the 
properties of an embedded subtrees (above), and ∀v’∈V’ 
there is an integer stored indicating the level of embedding 
(Φ) in tree T between v’ and the root node of T’.  

Transaction based vs occurrence match support. We 
say that an embedded subtree t is supported by transaction 
k ⊆ K in database of tree Tdb as t≺ k. If there are L 
occurrences of t in k, a function g(t,k) denotes the number 
of occurrences of t in transaction k. For transaction based 
support, t≺ k=1 when there exists at least one occurrence 
of t in k, i.e. g(t,k)≥1. For occurrence match support, t≺ k 
corresponds to the number of all occurrences of t in k, 
t≺ k=g(t,k). Suppose that there are N transactions k1 to kN 
of tree in Tdb, the support of embedded subtree t in Tdb is 
defined as: 

∑
=

N

i
ikt

1
≺ (1)

Adding distance constraint. The distance between the 
nodes needs to be used as an additional equality criterion to 
group the enumerated candidates. Consider the example 
tree shown in Figure 2. If the traditional mining technique 
for embedded subtrees is used, a subtree ‘A C’ by 
occurrence match support definition would have support 
equal to 8. On the other hand if the distance equality 
constraint is added we would need to distinguish this 
candidate into three candidates depending on the varying 
distance between the nodes. Hence the three ‘A C’ subtree 
candidates would have varying distances of 1, 2 and 3 and 
the support of 2, 4 and 2 respectively.   
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Figure 2. Example tree with labeled nodes 

ordered in pre-order traversal 
For subtrees with more nodes the stored distance for 

each node will correspond to its distance to the root of that 
particular subtree. It can be seen that this additional 
constraint will add extra complexity to the traditional 
frequent subtree mining problem. More candidate subtrees 
will need to be enumerated and counted during the task. 

Mining frequent embedded subtrees. Let Tdb be a tree 
database consisting of N transactions of trees, KN. The task 
of frequent embedded subtree mining from Tdb with given 
minimum support (σ), is to find all the candidate embedded 
subtrees that occur at least σ times in Tdb. Based on the 
downward-closure lemma [2], every sub-pattern of a 
frequent pattern must also be frequent.  

 
3. Motivating example 

 
Automatic detection of semantic matches among 

ontology concepts has become the initial and most 
challenging stage in most of ontology merging and 
alignment tasks [5, 9]. The problem is analogous to schema 
matching in databases. Current approaches commonly 
utilize the schema information and the structure of the 
conceptual models to form mappings [4, 6, 7].  

The two conceptual hierarchies (CH1, CH2) in figure 3 
represent a borrowing record from two different library 
based applications. If the concepts at the top of the 
hierarchies are known to correspond to a borrowing record, 
the substructures containing those concepts would be 
compared. One approach would be to detect the longest 
subtree whose structure matches both of the representations 
and then perform the similarity update among concepts 
within that structure. If embedded subtrees are mined the 
longest matching subtree would be of size 11 which 
corresponds to the whole structure of CH1. The CH2 is a 
more specific model and there are quite a few embedded 
subtrees in CH2 that match the whole structure of CH1. 
However, only one of those embedded subtrees is a true 
match. Extracting the largest matching embedded subtree 
could affect the similarity update in an undesirable way 
since updates would not distinguish among the subtrees 
where the distance among the nodes is different. This 
information is needed for a more exact match of sub-
structures where the concept granularity is the same. At this 
stage, where labels are unknown, we consider a subtree an 
exact match of another subtree only if the structure and the 
distance among the nodes is the same in both subtrees. The 
embedded subtree definition relaxes this constraint and we 

therefore felt that an additional distance constraint among 
nodes is required to obtain the exact match among subtrees. 

Consulting figure 3 again, if we mine distance-
constrained embedded subtrees, the largest matching 
subtree has 7 nodes.  It corresponds to the right hand side 
of the CH1 plus the node in level 1, and is the largest exact 
match between CH1 and CH2. The similarity update 
among the neighboring nodes in this subtree can be 
performed with high confidence. The unmatched subtrees 
of the structures are known to differ in the amount of 
specificity and the node distance information could prove 
to be useful for additional reasoning over concept 
similarity. Another option at this stage is to start mining the 
embedded subtrees from the remaining unmatched 
structure. This would relax the distance constraint and 
similar structures which differ in concept granularity could 
be detected. 

 
Figure 3. Libraries borrowing record schemas  
 

4. Razor algorithm 
 
The necessary amendments for incorporating the 

additional distance constraint occur in the way candidate 
subtrees are enumerated during candidate enumeration and 
(k-1)-subtree generation phase. Following, is a detailed 
description of the algorithm with the required adjustments. 

Database scanning. A tree database, Tdb, is scanned 
once in order to generate a global sequence D in memory, 
referred to as dictionary. The dictionary stores each node 
from the Tdb following the pre-order traversal indexing. 
Each dictionary item is defined as a tuple of position (pos), 
label (l), right-most descendant position or scope (s), depth 
(d), parent (p), {pos, l, s, p}. An item at index position i in 
the dictionary is referred to as dictionary[i]. During 
dictionary construction the complete set of frequent 1-
subtrees, F1, is enumerated.  

String encoding (φ). The encoding of a subtree is 
obtained by reading the nodes in the pre-order traversal and 
for each node storing the distance to the root of the subtree 
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(node depth). The distance to the root is worked out from 
the node depths stored in the dictionary, where the root of 
the subtree is assigned the depth of 0 and all other nodes 
are assigned the difference between their depth and the 
original depth of the new subtree root. Further modification 
of the encoding consists in storing a number next to each 
backtrack ‘/’ symbol indicating the number of backtracks in 
the subtree, as opposed to storing each of those backtracks 
as a separate symbol. This representation allows for easier 
string manipulation due to uniform block size. We denote 
encoding of a subtree T as φ(T). For each node in T (figure 
1), its label is shown as a single-quoted symbol inside the 
circle whereas its pre-order position is shown as indexes at 
the left/right side of the circle. From figure 1, φ(T1):‘b0 c1 
/1 b1 e2 /2’; φ(T3):‘b0 e1 /1 c1 /1’; φ(T6): ‘b0 e1 c1 /2 c1 
/1’, etc. The backtrack symbol could be omitted after the 
last node, i.e. φ(T1):‘b0 c1 /1 b1 e2’. The number next to 
each node label corresponds to the depth of that node.  We 
refer to a group of subtrees with the same encoding L as 
candidate subtree CL. A subtree with k number of nodes is 
denoted as k-subtree, while ‘+’ denotes an operation that 
appends tree encodings and computes backtrack positions.  

Embedding List (EL) construction. For each frequent 
internal node in F1, a list is generated which stores its 
descendant nodes’ positions (from dictionary) in pre-order 
traversal ordering such that the embedding relationships 
between nodes are preserved. For a given internal node at 
position i, such ordering reflects the enumeration sequence 
of generating 2-subtree candidates rooted at i (figure 4). We 
use notation i-EL to refer to an embedded list of node at 
position i.; The position of an item in EL is referred to as 
slot. Thus, i-EL[n] refers to the (n-1)th item in the list at 
slot n with zero-based indexing, and |i-EL| refers to the size 
of the embedded list rooted of node at position i. Figure 4 
illustrates an example of the EL representation of tree T 
(figure 1). In fig 4, 0-EL for example refers to the list: 
0:[1,2,3,4,5,6,7,8] and , 0-EL[0] = 1 and; 0-EL[4] = 5; 0-
EL[6] = 7.  

 
Figure 4. The EL representation of T in figure 1 

Figure 4 illustrates an example of the EL representation 
of subtree T (figure 1). For each node in T, its label is 
shown as a single-quoted symbol inside the circle whereas 
its position is shown as indexes at the left side of the circle.  

Occurrence Coordinate (OC). Each occurrence of k-
subtree in Tdb is encoded as OC r:[e1,…ek-1]; where r refers 
to the k-subtree root position in the dictionary D and 
e1,…,ek-1 are refer to the indexes of slots in r-EL. Each ei 
corresponds to node (i+1) in the k-subtree and in r; e1 < ek-1. 
We refer to ek-1 as tail slot. From figure 1 & 4, the OC of a 

3-subtree (T2) with encoding ‘b0 b1 e2’ is encoded as 
0:[6,7]; 4-subtrees T1 with encoding ‘b0 c1 /1 b1 e2’ are 
encoded as 0:[5,6,7], and so on. Each OC of a subtree 
describes an instance of that subtree in Tdb, and hence each 
candidate subtree has at least one OC associated with it 

TMG enumeration formulation. To enumerate all 
embedded k-subtrees from a (k-1)-subtree, TMG 
enumeration approach extends one node at the time to the 
right most path of (k-1)-subtree. We refer to each node in 
the right most path as extension point (figure 5). One 
important property of EL is that the positions of nodes are 
stored in pre-order manner. The scope of extension of a 
node denotes the range of nodes that can be appended to 
that node for the formation of new candidate subtrees. 
Hence, given a (k-1)-subtree with known tail slot, the 
subsequent slots in EL will form the scope of extension 
from i to j. All embedded k-subtree are generated by 
attaching a node at position i to j to the (k-1)-subtree. 
Suppose l(i) denotes a labeling function of node with at 
position dictionary coordinate i. Given frequent (k-1)-
subtree tk-1 with φ(tk-1):L, the root position r, tail position t, 
encoding L and occurrence coordinate r:[m,…,n], k-
subtrees are generated by extending tk-1 with j∈ r-EL such 
that t < j ≤ |r-EL|-1. Thus its occurrence coordinate 
becomes r:[m,…,n,j] and its encoding becomes L’:L+l(i) 
where i=r-EL[j] and m<n<j. Razor algorithm was 
implemented with the capability to restrict the level of 
embedding. Extension occurs only when the level of 
embedding of a node at position j to its extension point is 
less than Φ.  

 
Figure 5. TMG enumeration: extending (k-1)-

subtree tk-1 where (tk-1):‘a b / b c’  
From fig 5, suppose that Φ is set to 1, when we extend a 

subtree with OC 0:[0,3,4] with node at position 6, 7, and 9 
(0:[5], 0:[6], 0:[8]), the level of embedding between nodes 
at position 6, 7, and 9 to their extension point equals to 1 
(≤Φ), and thus should not be pruned. However when it is 
extended with node at position 8 and 10 (0:[7], 0:[9]) the 
level of embedding between node at position 8 and 10 to 
their extension points is>2 (≥ Φ), and it should be pruned. 

k-1 full pruning implies that at most (k-1) numbers of 
(k-1)-subtrees need to be generated from the currently 
expanding k-subtrees. The rationale of this has been 
discussed in [12, 15].  The expanding k-subtree is pruned 
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when at least one (k-1)-subtree is infrequent, otherwise it is 
added to the frequent k-subtree set. 

Vertical Occurrence List (VOL). VOL stores the OCs 
of a candidate subtree whose frequency is then determined 
from the VOL size. VOL(L) notation refers to the vertical 
occurrence list of a subtree with encoding L, and the 
frequency is denoted as |VOL(L)|. For transaction based 
support the occurrence of each subtree is grouped by its 
transaction id and the support count corresponds to the 
number of unique transactions in the VOL. The pseudo-
code for the Razor algorithm is given in Figure 6. 

 
Figure 6. Razor algorithm pseudo code 

 

5. Experimental results 
 
In this section we present some of the tests performed on 

the Razor algorithm. Firstly we show the scalability of the 
approach followed by the comparisons with the MB3 [12] 
and IMB3 [13] algorithms on the grounds of the number of 
frequent subtrees generated for varying support and level of 
embedding thresholds. For the problem of mining frequent 
subtrees most of the time and space complexity comes from 
the candidate enumeration and counting phase. The 
distance-constrained subtrees are much larger in number 
then induced or embedded subtrees and in general an 
algorithm for this task would require more space and run-
time. This makes our approach incompatible to other 
methods as to our knowledge there is currently no 
algorithm that mines distance constrained embedded 
subtrees. Note that the occurrence match support definition 
is used in all the experiments. The minimum support σ is 
denoted as (sxx), where xx is the minimum frequency.  
Experiments were run on 3Ghz (Intel-CPU), 2Gb RAM, 
Mandrake 10.2 Linux machine and compilation was 

performed using GNU g++ (3.4.3) with the –g and –O3 
parameters.  

 
Figure 7. Scalability test - time performance / 

number of transactions 
 

5.1. Scalability test 
 

This experiment tests whether the algorithm is well 
scalable with respect to the increasing number of 
transactions present in a database. An artificial database 
was created, where the size of the transactions (# of nodes) 
for each test is varied from 100,000, 500,000 to 1 million 
with minimum support 50, 250, and 500 respectively. 
Figure 7 shows that the time to complete the operation 
scales linearly with the increase in transaction size. 

 
Figure 8. Number of frequent subtrees detected 

for varying support thresholds 
 
  5.2. Frequent subtrees over different support 

 
For this experiment we have used a reduction of the 

CSLogs data set [12] previously used by Zaki [15]. IMB3 
and Razor were set with the Φ constraint set to 5. The 
comparison of the number of frequent subtrees generated 
among the MB3, IMB3 and Razor algorithms, for varying 
support thresholds is presented in figure 8. We can see that 
the number of frequent subtrees detected by the Razor 
algorithm increases significantly when the support is 
lowered. With lowers support more subtrees become 
frequent and more variations of those subtrees with respect 
to the distance among the nodes also become frequent. 
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6.2.  Varying the level of embedding  

 
A data set characterizing a deep tree with the maximum 
depth equal to 17, was artificially made up of 10,000 
transactions with a total of 273,090 nodes. The support 
threshold was set to 100. In figure 9 we compare the 
number of frequent subtrees detected for varying Φ 
thresholds. When the Φ threshold is increased Razor 
algorithm detects more frequent subtrees than IMB3. 
However, when the Φ threshold was increased to 15, IMB3 
algorithm detected more subtrees as frequent. When such 
high level of embedding is allowed many embedded 
subtrees previously infrequent will become frequent as 
there is more chance for their re-occurrence. On the other 
hand, the Razor algorithm may further distinguish each of 
those subtrees based upon the distance of nodes relative to 
the root, and the frequency of the new candidate subtrees 
may not reach the support threshold.  

 
Figure 9. Varying the level of embedding 

 
6. Conclusion 
 
In this work we have extended the traditional definition 

of embedded subtrees in order to take the distance amongst 
the nodes into account. The distance between the nodes in a 
hierarchical structure could indicate the amount of specific 
information stored about that concept, which would be 
considered important especially for applications in web 
information systems and conceptual model analysis. We 
have presented the Razor algorithm which groups candidate 
subtrees based upon the node labels, node structure, and the 
depth of the nodes within that structure. The correctness 
and implications of the approach were demonstrated with 
experiments using real world and synthetic data.  
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