
©2006 IEEE. Personal use of this material is permitted. However, permission

to reprint/republish this material for advertising or promotional purposes or for

creating new collective works for resale or redistribution to servers or lists, or

to reuse any copyrighted component of this work in other works must be

obtained from the IEEE.

Razor: mining distance-constrained embedded subtrees

Henry Tan1, Tharam S. Dillon1, Fedja Hadzic1 and Elizabeth Chang2
1Faculty of Information Technology, University of Technology Sydney, Australia

E-mail: (henryws, tharam, fhadzic)@it.uts.edu.au
2School of Information Systems, Curtin University of Technology Perth, Australia

E-mail: Elizabeth.Chang@cbs.curtin.edu.au

Abstract

Our work is focused on the task of mining frequent

subtrees from a database of rooted ordered labeled
subtrees. Previously we have developed an efficient
algorithm, MB3 [12], for mining frequent embedded
subtrees from a database of rooted labeled and ordered
subtrees. The efficiency comes from the utilization of a
novel Embedding List representation for Tree Model
Guided (TMG) candidate generation. As an extension the
IMB3 [13] algorithm introduces the Level of Embedding
constraint. In this study we extend our past work by
developing an algorithm, Razor, for mining embedded
subtrees where the distance of nodes relative to the root of
the subtree needs to be considered. This notion of distance
constrained embedded tree mining will have important
applications in web information systems, conceptual model
analysis and more sophisticated ontology matching.
Domains representing their knowledge in a tree structured
form may require this additional distance information as it
commonly indicates the amount of specific knowledge
stored about a particular concept within the hierarchy.
The structure based approaches for schema matching
commonly take the distance among the concept nodes
within a sub-structure into account when evaluating the
concept similarity across different schemas. We present an
encoding strategy to efficiently enumerate candidate
subtrees taking the distance of nodes relative to the root of
the subtree into account. The algorithm is applied to both
synthetic and real-world datasets, and the experimental
results demonstrate the correctness and effectiveness of the
proposed technique.

Keywords
association mining, frequent subtree mining, mining with
constraints, embedded subtree, structure matching

1. Introduction

Tree mining has gained a considerable amount of
interest in areas such as Bioinformatics, XML mining, Web
mining, etc. In general, most of the formally represented
information in these domains is a tree structured form. The
problem of frequent subtree mining can be generally stated
as: given a tree database Tdb and minimum support
threshold (σ), find all subtrees that occur at least σ times in
Tdb. Many algorithms have been developed that mine
different types of tree patterns. PathJoin [14], uFreqt [8],
and HybridTreeMiner [3], mine induced, unordered trees.
FreeTreeMiner [10] extracts free trees in a graph database.
Treeminer [15] is an efficient algorithm for discovering all
frequent embedded subtrees in a forest using a data
structure called the vertical scope-list.

In [11], we introduced the Tree Model Guided (TMG)
candidate enumeration method which is a specialization of
the complete and non-redundant right most path extension
approach [1, 15]. TMG generates fewer candidates as
opposed to the commonly used join approach. In [12] we
have introduced a novel and unique Embedding List (EL)
which enables an efficient implementation of the TMG
candidate generation. It was accompanied with a
mathematical formula that indicates the number of
candidate subtrees that will be generated at each step.
Using the formula one could predict infeasible cases in
which the mining process needs to be constrained so that at
least some patterns could be discovered. This motivated us
to develop a strategy to tackle the complexity of mining
embedded subtrees by introducing Level of Embedding
constraint [13]. Thus, when it is too costly to mine all
frequent embedded subtrees, one can gradually decrease the
level of embedding constraint.

In this study we extend our past work by developing an
algorithm for mining embedded subtrees when the
distances of the nodes relative to the root of the subtree
need to be considered. The embedded subtrees extracted
using the traditional definition are incapable of being
further distinguished based upon the node distance within
that subtree. For certain applications the distance between
the nodes in a hierarchical structure could be considered

Sixth IEEE International Conference on Data Mining - Workshops (ICDMW'06)
0-7695-2702-7/06 $20.00 © 2006

important and two embedded subtrees with different
distance relationships among the nodes need to be
considered as separate entities. This notion of distance
constrained embedded tree mining will have important
applications in web information systems, conceptual model
analysis, knowledge merging and semantic matching. Our
aim in this paper is to obtain an efficient algorithm that will
extract all embedded subtrees with the additional node
distance information.

The rest of the paper is organized as follows. The
problem is described in section 2. Section 3 provides a
motivating example. The Razor algorithm is described in
section 4. The experiments on real world and synthetic data
are presented in section 5, and section 6 concludes the
paper.

2. Problem definitions

A tree can be denoted as T(r,V,L,E), where (1) r ∈ V is

the root node; (2) V is the set of vertices or nodes; (3) L is
the set of labels of vertices, for any vertex v∈ V, L(v) is the
label of v; and (4) E is the set of edges in the tree. Each
node v in the tree has only one parent, parent(v), which is
defined as the predecessor of node v. A node v can have
one or more children, children(v), which are defined as its
successors. If p is an ancestor of q and q is a descendant of
p, then there exists a path from p to q.. A path from vertex
vi to vj, is defined as a finite sequence of edges that
connects vi to vj. The length of a path p is the number of
edges in p. When referring to the distance between the two
nodes we simply refer to the length of the path connecting
those two nodes. Height of a node is the distance to its
furthest leaf, whereas the depth of a node is its distance to
the root. A node without any children is a leaf node;
otherwise, it is an internal node. If for each internal node,
all the children are ordered, then the tree is an ordered tree.
The rightmost path of T is defined as the path connecting
the rightmost leaf with the root node.

Figure 1. Example of induced subtrees (T1, T2,

T4, T6) and embedded subtrees (T3, T5) of tree T
Induced Subtree. A tree T’(r’, V’, L’, E’) is an ordered

induced subtree of a tree T (r, V, L, E) iff (1) V’⊆V, (2)
E’⊆E, (3) L’⊆L and L’(v)=L(v), (4) ∀v’∈V’, ∀v∈V and
v’ is not the root node, and v’ has a parent in T, then

parent(v’)=parent(v), (5) the left-to-right ordering among
the siblings in T’ is preserved. An induced subtree T’ of T
can be obtained by repeatedly removing leaf nodes or the
root node if their removal doesn’t create a forest in T.

Embedded Subtree. A tree T’(r’, V’, L’, E’) is an
ordered embedded subtree of a tree T(r, V, L, E) if and only
if it satisfies properties 1, 2, 3 and 5 of an induced subtree
and it generalizes property (4) such that ∀v’∈V’, ∀v∈V
and v’ is not the root node, the sets ancestor(v’) and
ancestor (v) form a non-empty intersection. Examples of
induced and embedded subtrees are given in Figure 1 (note
all induced subtrees are also embedded).

Level of Embedding (Φ). If T’(r’, V’, L’, E’) is an
embedded subtree of T, and there is a path between two
nodes p and q, the level of embedding (Φ) is defined as the
length of the shortest path between p and q, where p∈V’
and q∈V’, and p and q form an ancestor-descendant
relationship. In other words, given T andΦ, then any
embedded subtree to be generated will have the length of
the shortest path in T between any two ancestor-descendant
nodes from T’ equal or less than Φ. Hence, an induced
subtree T can be defined as an embedded subtree where the
maximum level of embedding in T is equal to 1.

Distance-Constrained Embedded Subtree. A tree
T’(r’, V’, L’, E’) is an ordered distance-constrained
embedded subtree of a tree T(r, V, L, E) if it satisfies all the
properties of an embedded subtrees (above), and ∀v’∈V’
there is an integer stored indicating the level of embedding
(Φ) in tree T between v’ and the root node of T’.

Transaction based vs occurrence match support. We
say that an embedded subtree t is supported by transaction
k ⊆ K in database of tree Tdb as t≺ k. If there are L
occurrences of t in k, a function g(t,k) denotes the number
of occurrences of t in transaction k. For transaction based
support, t≺ k=1 when there exists at least one occurrence
of t in k, i.e. g(t,k)≥1. For occurrence match support, t≺ k
corresponds to the number of all occurrences of t in k,
t≺ k=g(t,k). Suppose that there are N transactions k1 to kN
of tree in Tdb, the support of embedded subtree t in Tdb is
defined as:

∑
=

N

i
ikt

1
≺ (1)

Adding distance constraint. The distance between the
nodes needs to be used as an additional equality criterion to
group the enumerated candidates. Consider the example
tree shown in Figure 2. If the traditional mining technique
for embedded subtrees is used, a subtree ‘A C’ by
occurrence match support definition would have support
equal to 8. On the other hand if the distance equality
constraint is added we would need to distinguish this
candidate into three candidates depending on the varying
distance between the nodes. Hence the three ‘A C’ subtree
candidates would have varying distances of 1, 2 and 3 and
the support of 2, 4 and 2 respectively.

Sixth IEEE International Conference on Data Mining - Workshops (ICDMW'06)
0-7695-2702-7/06 $20.00 © 2006

Figure 2. Example tree with labeled nodes

ordered in pre-order traversal
For subtrees with more nodes the stored distance for

each node will correspond to its distance to the root of that
particular subtree. It can be seen that this additional
constraint will add extra complexity to the traditional
frequent subtree mining problem. More candidate subtrees
will need to be enumerated and counted during the task.

Mining frequent embedded subtrees. Let Tdb be a tree
database consisting of N transactions of trees, KN. The task
of frequent embedded subtree mining from Tdb with given
minimum support (σ), is to find all the candidate embedded
subtrees that occur at least σ times in Tdb. Based on the
downward-closure lemma [2], every sub-pattern of a
frequent pattern must also be frequent.

3. Motivating example

Automatic detection of semantic matches among

ontology concepts has become the initial and most
challenging stage in most of ontology merging and
alignment tasks [5, 9]. The problem is analogous to schema
matching in databases. Current approaches commonly
utilize the schema information and the structure of the
conceptual models to form mappings [4, 6, 7].

The two conceptual hierarchies (CH1, CH2) in figure 3
represent a borrowing record from two different library
based applications. If the concepts at the top of the
hierarchies are known to correspond to a borrowing record,
the substructures containing those concepts would be
compared. One approach would be to detect the longest
subtree whose structure matches both of the representations
and then perform the similarity update among concepts
within that structure. If embedded subtrees are mined the
longest matching subtree would be of size 11 which
corresponds to the whole structure of CH1. The CH2 is a
more specific model and there are quite a few embedded
subtrees in CH2 that match the whole structure of CH1.
However, only one of those embedded subtrees is a true
match. Extracting the largest matching embedded subtree
could affect the similarity update in an undesirable way
since updates would not distinguish among the subtrees
where the distance among the nodes is different. This
information is needed for a more exact match of sub-
structures where the concept granularity is the same. At this
stage, where labels are unknown, we consider a subtree an
exact match of another subtree only if the structure and the
distance among the nodes is the same in both subtrees. The
embedded subtree definition relaxes this constraint and we

therefore felt that an additional distance constraint among
nodes is required to obtain the exact match among subtrees.

Consulting figure 3 again, if we mine distance-
constrained embedded subtrees, the largest matching
subtree has 7 nodes. It corresponds to the right hand side
of the CH1 plus the node in level 1, and is the largest exact
match between CH1 and CH2. The similarity update
among the neighboring nodes in this subtree can be
performed with high confidence. The unmatched subtrees
of the structures are known to differ in the amount of
specificity and the node distance information could prove
to be useful for additional reasoning over concept
similarity. Another option at this stage is to start mining the
embedded subtrees from the remaining unmatched
structure. This would relax the distance constraint and
similar structures which differ in concept granularity could
be detected.

Figure 3. Libraries borrowing record schemas

4. Razor algorithm

The necessary amendments for incorporating the

additional distance constraint occur in the way candidate
subtrees are enumerated during candidate enumeration and
(k-1)-subtree generation phase. Following, is a detailed
description of the algorithm with the required adjustments.

Database scanning. A tree database, Tdb, is scanned
once in order to generate a global sequence D in memory,
referred to as dictionary. The dictionary stores each node
from the Tdb following the pre-order traversal indexing.
Each dictionary item is defined as a tuple of position (pos),
label (l), right-most descendant position or scope (s), depth
(d), parent (p), {pos, l, s, p}. An item at index position i in
the dictionary is referred to as dictionary[i]. During
dictionary construction the complete set of frequent 1-
subtrees, F1, is enumerated.

String encoding (φ). The encoding of a subtree is
obtained by reading the nodes in the pre-order traversal and
for each node storing the distance to the root of the subtree

Sixth IEEE International Conference on Data Mining - Workshops (ICDMW'06)
0-7695-2702-7/06 $20.00 © 2006

(node depth). The distance to the root is worked out from
the node depths stored in the dictionary, where the root of
the subtree is assigned the depth of 0 and all other nodes
are assigned the difference between their depth and the
original depth of the new subtree root. Further modification
of the encoding consists in storing a number next to each
backtrack ‘/’ symbol indicating the number of backtracks in
the subtree, as opposed to storing each of those backtracks
as a separate symbol. This representation allows for easier
string manipulation due to uniform block size. We denote
encoding of a subtree T as φ(T). For each node in T (figure
1), its label is shown as a single-quoted symbol inside the
circle whereas its pre-order position is shown as indexes at
the left/right side of the circle. From figure 1, φ(T1):‘b0 c1
/1 b1 e2 /2’; φ(T3):‘b0 e1 /1 c1 /1’; φ(T6): ‘b0 e1 c1 /2 c1
/1’, etc. The backtrack symbol could be omitted after the
last node, i.e. φ(T1):‘b0 c1 /1 b1 e2’. The number next to
each node label corresponds to the depth of that node. We
refer to a group of subtrees with the same encoding L as
candidate subtree CL. A subtree with k number of nodes is
denoted as k-subtree, while ‘+’ denotes an operation that
appends tree encodings and computes backtrack positions.

Embedding List (EL) construction. For each frequent
internal node in F1, a list is generated which stores its
descendant nodes’ positions (from dictionary) in pre-order
traversal ordering such that the embedding relationships
between nodes are preserved. For a given internal node at
position i, such ordering reflects the enumeration sequence
of generating 2-subtree candidates rooted at i (figure 4). We
use notation i-EL to refer to an embedded list of node at
position i.; The position of an item in EL is referred to as
slot. Thus, i-EL[n] refers to the (n-1)th item in the list at
slot n with zero-based indexing, and |i-EL| refers to the size
of the embedded list rooted of node at position i. Figure 4
illustrates an example of the EL representation of tree T
(figure 1). In fig 4, 0-EL for example refers to the list:
0:[1,2,3,4,5,6,7,8] and , 0-EL[0] = 1 and; 0-EL[4] = 5; 0-
EL[6] = 7.

Figure 4. The EL representation of T in figure 1

Figure 4 illustrates an example of the EL representation
of subtree T (figure 1). For each node in T, its label is
shown as a single-quoted symbol inside the circle whereas
its position is shown as indexes at the left side of the circle.

Occurrence Coordinate (OC). Each occurrence of k-
subtree in Tdb is encoded as OC r:[e1,…ek-1]; where r refers
to the k-subtree root position in the dictionary D and
e1,…,ek-1 are refer to the indexes of slots in r-EL. Each ei
corresponds to node (i+1) in the k-subtree and in r; e1 < ek-1.
We refer to ek-1 as tail slot. From figure 1 & 4, the OC of a

3-subtree (T2) with encoding ‘b0 b1 e2’ is encoded as
0:[6,7]; 4-subtrees T1 with encoding ‘b0 c1 /1 b1 e2’ are
encoded as 0:[5,6,7], and so on. Each OC of a subtree
describes an instance of that subtree in Tdb, and hence each
candidate subtree has at least one OC associated with it

TMG enumeration formulation. To enumerate all
embedded k-subtrees from a (k-1)-subtree, TMG
enumeration approach extends one node at the time to the
right most path of (k-1)-subtree. We refer to each node in
the right most path as extension point (figure 5). One
important property of EL is that the positions of nodes are
stored in pre-order manner. The scope of extension of a
node denotes the range of nodes that can be appended to
that node for the formation of new candidate subtrees.
Hence, given a (k-1)-subtree with known tail slot, the
subsequent slots in EL will form the scope of extension
from i to j. All embedded k-subtree are generated by
attaching a node at position i to j to the (k-1)-subtree.
Suppose l(i) denotes a labeling function of node with at
position dictionary coordinate i. Given frequent (k-1)-
subtree tk-1 with φ(tk-1):L, the root position r, tail position t,
encoding L and occurrence coordinate r:[m,…,n], k-
subtrees are generated by extending tk-1 with j∈ r-EL such
that t < j ≤ |r-EL|-1. Thus its occurrence coordinate
becomes r:[m,…,n,j] and its encoding becomes L’:L+l(i)
where i=r-EL[j] and m<n<j. Razor algorithm was
implemented with the capability to restrict the level of
embedding. Extension occurs only when the level of
embedding of a node at position j to its extension point is
less than Φ.

Figure 5. TMG enumeration: extending (k-1)-

subtree tk-1 where (tk-1):‘a b / b c’
From fig 5, suppose that Φ is set to 1, when we extend a

subtree with OC 0:[0,3,4] with node at position 6, 7, and 9
(0:[5], 0:[6], 0:[8]), the level of embedding between nodes
at position 6, 7, and 9 to their extension point equals to 1
(≤Φ), and thus should not be pruned. However when it is
extended with node at position 8 and 10 (0:[7], 0:[9]) the
level of embedding between node at position 8 and 10 to
their extension points is>2 (≥ Φ), and it should be pruned.

k-1 full pruning implies that at most (k-1) numbers of
(k-1)-subtrees need to be generated from the currently
expanding k-subtrees. The rationale of this has been
discussed in [12, 15]. The expanding k-subtree is pruned

Sixth IEEE International Conference on Data Mining - Workshops (ICDMW'06)
0-7695-2702-7/06 $20.00 © 2006

when at least one (k-1)-subtree is infrequent, otherwise it is
added to the frequent k-subtree set.

Vertical Occurrence List (VOL). VOL stores the OCs
of a candidate subtree whose frequency is then determined
from the VOL size. VOL(L) notation refers to the vertical
occurrence list of a subtree with encoding L, and the
frequency is denoted as |VOL(L)|. For transaction based
support the occurrence of each subtree is grouped by its
transaction id and the support count corresponds to the
number of unique transactions in the VOL. The pseudo-
code for the Razor algorithm is given in Figure 6.

Figure 6. Razor algorithm pseudo code

5. Experimental results

In this section we present some of the tests performed on

the Razor algorithm. Firstly we show the scalability of the
approach followed by the comparisons with the MB3 [12]
and IMB3 [13] algorithms on the grounds of the number of
frequent subtrees generated for varying support and level of
embedding thresholds. For the problem of mining frequent
subtrees most of the time and space complexity comes from
the candidate enumeration and counting phase. The
distance-constrained subtrees are much larger in number
then induced or embedded subtrees and in general an
algorithm for this task would require more space and run-
time. This makes our approach incompatible to other
methods as to our knowledge there is currently no
algorithm that mines distance constrained embedded
subtrees. Note that the occurrence match support definition
is used in all the experiments. The minimum support σ is
denoted as (sxx), where xx is the minimum frequency.
Experiments were run on 3Ghz (Intel-CPU), 2Gb RAM,
Mandrake 10.2 Linux machine and compilation was

performed using GNU g++ (3.4.3) with the –g and –O3
parameters.

Figure 7. Scalability test - time performance /

number of transactions

5.1. Scalability test

This experiment tests whether the algorithm is well
scalable with respect to the increasing number of
transactions present in a database. An artificial database
was created, where the size of the transactions (# of nodes)
for each test is varied from 100,000, 500,000 to 1 million
with minimum support 50, 250, and 500 respectively.
Figure 7 shows that the time to complete the operation
scales linearly with the increase in transaction size.

Figure 8. Number of frequent subtrees detected

for varying support thresholds

 5.2. Frequent subtrees over different support

For this experiment we have used a reduction of the

CSLogs data set [12] previously used by Zaki [15]. IMB3
and Razor were set with the Φ constraint set to 5. The
comparison of the number of frequent subtrees generated
among the MB3, IMB3 and Razor algorithms, for varying
support thresholds is presented in figure 8. We can see that
the number of frequent subtrees detected by the Razor
algorithm increases significantly when the support is
lowered. With lowers support more subtrees become
frequent and more variations of those subtrees with respect
to the distance among the nodes also become frequent.

Sixth IEEE International Conference on Data Mining - Workshops (ICDMW'06)
0-7695-2702-7/06 $20.00 © 2006

6.2. Varying the level of embedding

A data set characterizing a deep tree with the maximum
depth equal to 17, was artificially made up of 10,000
transactions with a total of 273,090 nodes. The support
threshold was set to 100. In figure 9 we compare the
number of frequent subtrees detected for varying Φ
thresholds. When the Φ threshold is increased Razor
algorithm detects more frequent subtrees than IMB3.
However, when the Φ threshold was increased to 15, IMB3
algorithm detected more subtrees as frequent. When such
high level of embedding is allowed many embedded
subtrees previously infrequent will become frequent as
there is more chance for their re-occurrence. On the other
hand, the Razor algorithm may further distinguish each of
those subtrees based upon the distance of nodes relative to
the root, and the frequency of the new candidate subtrees
may not reach the support threshold.

Figure 9. Varying the level of embedding

6. Conclusion

In this work we have extended the traditional definition

of embedded subtrees in order to take the distance amongst
the nodes into account. The distance between the nodes in a
hierarchical structure could indicate the amount of specific
information stored about that concept, which would be
considered important especially for applications in web
information systems and conceptual model analysis. We
have presented the Razor algorithm which groups candidate
subtrees based upon the node labels, node structure, and the
depth of the nodes within that structure. The correctness
and implications of the approach were demonstrated with
experiments using real world and synthetic data.

7. References

[1] K. Abe, S. Kawasoe, T. Asai, H. Arimura, and S. Arikawa,
“Optimized substructure discovery for semistructured data”, In
Proc. of the 6th European Conference on Principles of Data
Mining and Knowledge Discovery, Helsinki, Finland, 2002, pp. 1–
14.
[2] R. Agrawal, and R. Srikant, “Fast Algorithm for Mining
Association Rules”, Proc. of the 20th VLDB’94, 1994, 487–499.
[3] Y. Chi, Y. Yang, and R.R. Muntz, “HybridTreeMiner: An
efficient algorihtm for mining frequent rooted trees and free trees
using canonical forms”, In Proc. of the 16th International
Conference on Scientific and Statistical Database Management,
Santorini Island, Greece, 2004.
[4] F. Giunchiglia, and P. Shvaiko, “Semantic matching”,
Ontologies and Distributed Systems workshop, IJCAI (2003).
[5] Gómez-Pérez, A., Fernández-López, M. and Corcho, O.
Ontological engineering: with examples from the areas of
knowledge management, e-commerce and the semantic Web.
Springer-Verlag, London, 2003.
[6] J. Madhavan, P.A. Bernstein, and E. Rahm, “Generic
Schema Matching with Cupid”, In Proceedings of the
International Conference on very Large Data Bases (VDLB),
Rome, Italy, 2001, pp. 49 – 58.
[7] S. Melnik, H. Molina-Garcia, and E. Rahm, “Similarity
flooding: a versatile graph matching algorithm”, In Proc. of
ICDE-02, 2002.
[8] S. Nijssen, J.N. Kok, “Efficient discovery of frequent
unordered trees”, In Proc. of the 1st International Workshop
Mining Graphs, Trees, and Sequences (MGTS-2003), Dubrovnik,
Croatia, 2003.
[9] N.F. Noy, and M. Musen, “An Algorithm for Merging and
Aligning Ontologies: Automation and Tool Support”, In
Proceedings of the Sixteenth National Conference on Artificial
Intelligence (AAAI99), Workshop on Ontology Management,
Orlando, FL, 1999.
[10] U. Ruckert, and S. Kramer, “Frequent free tree discovery in
graph data”, In Proc. of the 2004 ACM symposium on Applied
computing, Nicosia, Cyprus, 2004, pp. 564 – 570.
[11] H. Tan, T.S. Dillon, L. Feng, E. Chang, and F. Hadzic, “X3
Miner: mining patterns from XML Database”, In Proc. of Data
Mining '05, Skiathos, Greece, 2005.
[12] H. Tan, T.S. Dillon, F. Hadzic, E. Chang, and L. Feng, “MB3
Miner: mining eMBedded sub-TREEs using Tree Model Guided
candidate generation”, In Proc. of the 1st International Workshop
on Mining Complex Data, held in conjunction with ICDM’05,
Houston, Texas, USA, 2005.
[13] H. Tan, T.S. Dillon, F. Hadzic, L. Feng, and E. Chang,
“IMB3 Miner: Mining Induced/Embedded Subtrees by
Constraining the Level of Embedding”, In Proc. of PAKDD'06,
Singapore, 2006.
[14] Y. Xiao, J.-F. Yao, Z. Li, and M.H. Dunham, “Efficient data
mining for maximal frequent subtrees”, In Proc. of the 3rd IEEE
International Conference on Data Mining (ICDM 2003),
Melbourne, Florida, USA, 2003, pp. 379-386.
[15] M.J. Zaki, “Efficiently Mining Frequent Trees in a Forest:
Algorithms and Applications”, In IEEE Transaction on
Knowledge and Data Engineering, 17, 8, 2005, pp. 1021-1035.

Sixth IEEE International Conference on Data Mining - Workshops (ICDMW'06)
0-7695-2702-7/06 $20.00 © 2006

