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Abstract

Magnetite breakdown during subduction of serpentinised ultramafic rocks

may produce oxidised fluids that oxidise the deep Earth and/or the sub-

arc mantle, either via direct transport of ferric iron, or via redox reactions

between ferric iron and other elements, such as sulfur. However, so far, there

is no consensus on the oxidation state of fluids released during subduction of

ultramafic rocks, or the factors that control this oxidation state.

Subducted samples from a magma-poor rifted margin and a supra-subduction

zone geodynamic setting were compared to examine evidence of changes in

opaque phase assemblage and ferric iron content as a consequence of subduc-

tion, and as a function of geodynamic setting. Thermodynamic calculations

in the system Fe-Ni-O-H-S and Fe-Ni-O-S at the pressures and temperatures

of interest were used to constrain oxygen activities and fluid compositions.

Samples from New Caledonia, which exemplify supra-subduction zone

mantle, contain awaruite (FeNi3) and equilibrated with hydrogen-bearing flu-
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ids at oxygen activity less than the FMQ (fayalite-magnetite-quartz) buffer.

In contrast, samples from the Zermatt Saas Zone ophiolite, Western Alps,

which are thought to represent mantle from a subducted magma-poor rifted

margin, contain magnetite plus sulfur-rich phases such as pyrite (FeS2), and

are inferred to have equilibrated with hydrogen-poor fluids at oxygen activ-

ity greater than FMQ. This major difference is independent of differences in

subduction pressure-temperature conditions, variation in peridotite protolith

composition, or the nature of adjacent units. We propose that the Zermatt

Saas Zone samples would have undergone more complete serpentinisation

prior to subduction than the supra-subduction zone (SSZ) New Caledonian

samples. This difference explains the different fluid compositions, because in-

completely serpentinised rocks containing olivine and brucite retain or evolve

awaruite-bearing assemblages that buffer fluid compositions to high hydrogen

activity (aH2).

Ultramafic rocks are associated with two distinctly different fluid com-

positions during pre-subduction and subduction serpentinisation. Initially,

while olivine is in equilibrium with infiltrating fluid, mineral assemblages

that include awaruite in the rocks buffer fluids to H2-bearing, low aO2 com-

positions. Deserpentinisation of incompletely serpentinised rocks in which

awaruite is present also produces H2-bearing fluids. Once awaruite is ex-

hausted, H2-poor, high aO2 fluids co-exist with awaruite-absent assemblages,

and deserpentinisation of such rocks would produce H2O-rich fluids.

Thus, deserpentinisation of ultramafic rocks could produce either hydrogen-

bearing fluids that could infiltrate and reduce the sub-arc mantle, or more

oxidised fluids, which could transfer redox budget to other geochemical reser-
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voirs such as the sub-arc mantle. Therefore, the redox contribution of sub-

ducted ultramafic rocks to the deep Earth and sub-arc mantle depends on

the extent of protolith serpentinisation. Pre-subduction settings that pro-

mote extensive serpentisation by oxidised fluids at high fluid:rock ratios in

open systems, such as slow and ultraslow spreading ridges, transform faults,

oceanic core complexes, and exhumed mantle at rifted continental margins,

may produce more oxidised fluids than those associated with less pervasive

serpentinisation and fluids that may be rock-buffered to a reduced state.

Keywords: redox, subduction, ultramafic, awaruite, sulfur, iron

1. Introduction

The oxidation state of sub-arc mantle is a first order control on the

composition and metal-carrying capacity of arc-derived magmas (Mungall,

2002). However, geochemical proxies for sub-arc mantle oxidation state in

arc magma samples produce inconsistent results (Lee et al., 2005; Kelley and5

Cottrell, 2009; Mallmann and O’Neill, 2009; Evans et al., 2012b; Parkinson

and Arculus, 1999). Changes in the concentrations of redox sensitive ele-

ments in subducted material record the redox state of fluids released from

these rocks, and provide an alternative way to assess the potential of subduc-

tion to modify sub-arc mantle oxidation state via changes to its redox budget.10

Redox budget is a quantitative compositional measure of the oxidizing ca-

pacity of a material (Evans, 2006), such that an increase in redox budget

indicates an increase in the concentration of elements oxidised relative to the

same elements in a reference state material.

Some subducted mantle lithosphere is magnetite-rich as a result of serpen-15
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tinisation (Oufi et al., 2002; Evans, 2008; Klein et al., 2009; Andreani et al.,

2013; Frost et al., 2013), and therefore holds significant redox budget. It is

possible that this lithology is the largest contributor of redox budget to sub-

duction zones (Evans, 2012). However, the effects of subduction on opaque

phases, such as magnetite, in ultramafic rocks are almost unknown. Recently,20

attempts have been made to address this issue. Debret et al. (2014a) record

decreases in magnetite modes and in the ferric iron content of serpentine

with increasing pressure in high pressure - low temperature (HPLT) rocks,

and use these results to infer that the redox budget of subducted mantle

lithosphere decreases as pressure increases, and that this decrease in redox25

budget records the loss of oxidised fluids.

The observations of Debret et al. (2014a) are consistent with records from

iron isotopes, which have been interpreted to record loss of SO2-bearing flu-

ids from serpentinites during subduction (Debret et al., 2016). In contrast,

Peretti et al. (1992) use observations of hydrogen-rich fluid inclusions in30

HPLT rocks from Val Malenco in the Western Alps, to infer that fluids re-

leased by subducted mantle are hydrogen-rich and reducing. Loss of such

a hydrogen-rich fluid would act to increase the redox budget of the residual

subducted mantle lithosphere, and decrease the redox budget of the litholo-

gies that it infiltrated. The results of Peretti are consistent with preliminary35

results from thermodynamic models that predict loss of methane and H2S

during prograde HPLT metamorphism (Evans and Powell, 2015).

There are a number of possible reasons for these apparently contradic-

tory observations. Studies of exhumed mantle lithosphere involve a range

of possible protoliths that include, but are not limited to, variably serpen-40
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tinised abyssal peridotites from ridge environments, supra subduction zone

(SSZ) mantle, serpentinised peridotite from oceanic core complexes, and sub-

continental lithospheric mantle exposed at rifted margins. Samples from dif-

ferent geodynamic settings are likely to have undergone different styles of

fluid-rock interaction prior to subduction, so that the pre-subduction pro-45

tolith may have differing extents of serpentinisation and metasomatic alter-

ation. Thus it is necessary to consider the role of the geodynamic setting of

the ultramafic protolith in the evolution of serpentinite-derived redox bud-

get, and the implications for the evolving redox budget of the sub-arc mantle

and deep Earth.50

Inputs from units adjacent to lithospheric mantle may also contribute to

the evolution of redox budget during metamorphism. For example, sedimen-

tary units in the subducting slab evolve fluids that infiltrate, interact with,

and drive metamorphism within, ultramafic lithologies (Spandler et al., 2011;

Lafay et al., 2013; Deschamps et al., 2013; Scambelluri et al., 2014; Barnes55

et al., 2014; Cannao et al., 2015), so that samples close to contacts may

have had a fundamentally different metamorphic evolution compared to the

samples from larger ultramafic units.

In this study, opaque phase assemblages in HPLT ultramafic samples

from supra-subduction zone and magma-poor rifted margin settings are doc-60

umented and compared. The compositions of fluids in equlibrium with these

assemblages are calculated via thermodynamic calculations that quantita-

tively constrain the activities of O2 and S2 under HPLT conditions for the

first time. The results are used to assess the influences of geodynamic set-

ting, protolith, metasomatism, and prograde metamorphic reactions on the65
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evolving redox budget of ultramafic rocks. The results are discussed in the

context of current knowledge of these systems and the potential of serpen-

tinised ultramafic rocks to oxidise or reduce the sub-arc mantle and deep

Earth. Further, the redox budget of arc products from different geodynamic

settings is discussed in the context of the idea that geodynamic setting influ-70

ences redox changes within subduction and supra-subduction environments.

2. Geological Setting

2.1. New Caledonia

New Caledonia comprises terranes of Cretaceous to Paleogene age that

accreted to, or developed on, the north-eastern margin of a rifted fragment75

of the Australian plate (Aitchison et al., 1995) (Fig. 1a). The Massif du Sud

(NC09-01a) lies on the south eastern end of New Caledonia. This unit is a

relatively large ultramafic body, tens of km in lateral extent, but less than

2 km thick, that was obducted in the Eocene (Ghent et al., 1994; Aitchison

et al., 1995). Geochemical data and mineralogy suggest a supra-subduction80

zone setting for the ophiolite prior to obduction (Dupuy et al., 1981; Pi-

rard et al., 2013). The north east tip of New Caledonia hosts ultramafic

rocks within the HPLT Pouébo terrane. This terrane consists of eclogite

and transitional eclogite mafic, sedimentary, and ultramafic lithologies, and

is thought to have undergone peak metamorphic conditions of 1.8 GPa and85

590◦C (Clarke et al., 1997; Carson et al., 2000). Ultramafic exposures in the

Pouébo terrane occur mostly as metre-scale serpentinite pods included in

metabasic/and or metasedimentary rocks, and a talc-rich reaction zone often

separates the ultramafic unit from its host (Spandler et al., 2008). These
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ultramafic pods are thought to have become entrained in the high pressure90

terrain as a result of tectonic interaction between the mantle hangingwall

and the subducted slab (Fitzherbert et al., 2004; Spandler et al., 2008).

2.2. Zermatt Saas Zone ophiolite

Prior to Alpine orogenesis, the Alpine domain consisted of two plates, the

Adriatic/African plate to the south, and the European plate to the north,95

separated by an ocean basin, Alpine Tethys. The main part of this ocean

basin is known as the Piemonte-Ligurian, or South Penninic basin (Beltrando

et al., 2014). During Alpine orogenesis from the late Cretaceous onwards,

parts of the Tethyan ocean floor were incorporated into the Alpine nappe

stack as ophiolitic units. The Zermatt Saas Zone represents the high-pressure100

metamorphic component of the western Alpine Piemonte Ophiolite. The

Piemonte Ophiolite separates structurally lower basement rocks of European

affinity (Monte Rosa, Dora Maira, Gran Paradiso) from structurally higher

Austroalpine crust represented by the Sesia Zone and Dent Blanche Nappe

(e.g. Li et al., 2004; Rebay et al., 2012). Within the Piemonte Ophiolite the105

Zermatt Saas Zone lies structurally below lower metamorphic grade, green-

schist facies, rocks of the Combin Zone (Fig. 1b). The Zermatt Saas and

Combin Zones are separated, in places, by slivers of metasedimentary rocks,

the Pancherot-Cime Bianchi rocks (Beltrando et al., 2014). Sediments also

lie between the Zermatt Saas Zone and the structurally lower Monte Rosa110

rocks. These sediments include manganese-rich units such as the Gornergrat

zone, which is thought to be a sedimentary units deposited on the Monta

Rosa crystalline basement (Bearth and Schwandler, 1981) (Fig. 1b).

It has been proposed that the Zermatt Saas Zone was originally lo-
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cated within an OCT (ocean-continent transition) on the European mar-115

gin of Tethys that was subducted and exhumed during the Alpine orogeny

(e.g. Vitale Brovarone et al., 2014; Beltrando et al., 2014). Key diagnos-

tics of the OCT setting include: (1) continental crust that directly overlies

sub-continental lithosphere; (2) oceanic sediments such as radiolarian cherts

(Manatschal and Muntener, 2009) that directly overlie ultramafic rocks; (3)120

ophicarbonate breccias at the interface between ultramafic and sedimentary

or extrusive mafic rocks; (4) shallow detachment faults; and (5) a paucity

of intrusive or extrusive mafic rocks (Bernoulli et al., 2003). These diagnos-

tic features are well preserved in the Upper Platta and Malenco ophiolites,

and elsewhere, in the Western Alps (Trommsdorff et al., 1993; Muntener125

and Hermann, 1996; Manatschal and Muntener, 2009). However, it can be

difficult to distinguish OCT environments from ultra-slow spreading centres

in metamorphosed rocks, and indeed it has been proposed that there is a

continuum between the two geodynamic settings (Manatschal and Muntener,

2009). Subsets of these features have also been attributed to processes occur-130

ing within the subduction channel (Bousquet, 2008), or repeated re-activation

of the tectonic interface between the different units (e.g. Forster et al., 2004)

3. Methods

3.1. Sample Collection

Suites of ultramafic samples were collected from well characterised lo-135

calities in the New Caledonian Massif du Sud (n > 20), the high pressure

Pouébo terrain in New Caledonia (n = 7, from three sites in the Zermatt

Saas Zone ophiolite in the Western Alps: Pfulwe (Switzerland), n = 3; the
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Gressoney valley (Italy), n = 10; and the Upper Valtournenche in the Val

d’Aosta (Italy), n = 10, (Fig. 1, Table 1). These localities cover a range of140

peak pressures and temperatures, from no evidence of subduction in the Mas-

sif du Sud sample, to pressures up to 2.8 GPa for the Upper Valtournenche

locality.

Detailed descriptions of the silicate petrology, geodynamic setting, and

inferred pressures and temperatures for the five sites are presented by Frost145

et al. (2013) and Pirard et al. (2013) for the Massif du Sud, by Fitzherbert

et al. (2004) for the Pouébo terrain, by Barnicoat and Fry (1986); Fry and

Barnicoat (1987) and Dale et al. (2009) for Pfulwe, by Reddy et al. (1999)

and Gasco et al. (2013) for Gressoney, and Groppo et al. (2009) for the Upper

Valtournenche. Inferred peak pressures and temperatures are summarised in150

Table 1.

3.2. Bulk composition analysis

Approximately 30 grams of each sample was crushed to a fine powder

using a TEMA mill, and analysed for major, minor, selected trace elements,

C, S and FeO by the analytical facilities at Intertek Genalysis, Maddington,155

Perth, Australia. Major and trace element analyses were analysed by induc-

tively coupled plasma optical emission spectrometry (ICP-OES) for major el-

ement analysis and Cr, Sc and V, and inductively coupled mass spectrometry

(ICP-MS) for Ba, Cs, Ga, Rb, Sn and Sr analysis, after lithium borate fusion

and sample dissolution. FeO content was determined by titration against160

ceric sulfate, and C and S contents were measured using a CS analyser.
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3.3. Microanalysis

Polished sections were made, without water in most cases, of samples

from all localities. All samples were examined in reflected and transmitted

light to determine the silicate and opaque phase assemblages and textural165

relationships, and a representative sample from each locality was chosen for

this study on the basis that the sample exhibited a typical silicate and ob-

served opaque phase mineralogy. Opaque phases in serpentinites are often

only a few microns in diameter, and are present in low modes, so an auto-

mated mapping technique was used to speed up data collection, effectively170

eliminate the possibility that small rare phases would be missed, and ensure

that results from the samples investigated could be compared in a robust

way.

Old carbon coats were removed and the sections were repolished with

1 micron diamond paste before sonication for 10 minutes in ethanol and re-175

coating with carbon. After reflected and transmitted light optical microscopy,

the opaque mineral assemblage was determined using the Oxford Instruments

Feature Mapping facility on the MIRA TESCAN Field Emission Gun Scan-

ning Electron Microscope (FEG-SEM) at the Microscopy and Microanalysis

Facility (MMF) at Curtin University. Feature mapping utilises an auto-180

mated search for grains with a BSE brightness higher than a user-defined

value. The accelerating voltage was either 20 or 25 kV. The minimum size of

feature recognised was 0.5 microns in the longest dimension. Contrast was

adjusted such that Cr-poor magnetite had a brightness of about 170, on a

scale of 1 to 255. Then, the lower threshold for feature recognition was set185

to a brightness slightly higher than that of Cr-poor magnetite. The total
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analysis time was 3 to 12 hours per sample, depending on the number of

features recognised.

The detector was optimised on copper tape prior to each run, and the

precision and accuracy of EDX analyses were checked by repeat analyses of190

secondary standards from an Astimex standard block. The EDX results are

semi-quantitative because of the short analysis times, but element ratios are

considered robust. The factory calibration was found to be satisfactory for

most elements, but O and S calibrations were replaced by those made at

Curtin on garnet, for oxygen, and on pyrite, for sulfur. Brief EDX analyses195

were made on each feature, and these were sufficient to allow identification of

the mineral comprising the feature. Minerals that had not been recognised

during preliminary inspection with reflected or transmitted light microscopy

were inspected after the feature mapping was completed. This enabled arte-

facts such as stray fragments of copper tape, or other contamination, to be200

recognised and removed from the dataset.

Mineral compositions of mineral grains large enough to permit analysis

(> 10 microns) were obtained by either WDS (Wavelength Dispersive Spec-

troscopy) or EDS (Energy Dispersive Spectroscopy). WDS analysis was un-

dertaken on the JEOL Hyperprobe at the Centre for Microscopy, Character-205

isation and Analysis at the University of Western Australia. The instrument

was operated with an accelerating voltage of 15 KeV, beam current of 20 nA

and with the beam was defocussed to 4 microns for the analysis of hydrous

minerals. Standards used for calibration were wollastonite (Si, Ca), spessar-

tine (Al, Mn; Fe in silicates), jadeite (Na), pyrope (Mg), rutile (Ti), sanidine210

(K), magnetite (Fe in oxides), willemite (for Zn and to correct for Mn inter-
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ference on Fe), Cr2O3, Ni and V. Off-peak background corrections were used

throughout with an on-peak counting time of 20 seconds per element. Data

reduction was performed using the Probe for EPMA software package. WDS

results are considered to be accurate to better than 1% relative. EDS analysis215

was performed on the MIRA TESCAN FEG-SEM at Curtin University. The

instrument was operated with an accelerating volatage of 20 KeV, a working

distance of 15 mm and a beam intensity of 14. Analyses were continued until

500,000 counts were obtained. Beam current was set prior to each analytical

session by calibration on a cobalt standard set into the mount that holds the220

thin section, so that the same working distance and beam conditions could

be used for both calibration and analysis. Element and oxide concentrations

were calculated by the Oxford Instruments software, using factory calibra-

tion, which produced good results for the phases of interest in an Astimex

standard block. The quality of the EDS analyses was tested by comparison225

with WDS analyses of the same phases using the JEOL hyperprobe and the

repeatability and accuracy was found to be good, with a greater variation

found within samples as a consequence of natural heterogeneity rather than

between analysis methods.

3.4. Thermodynamic Modelling230

aO2 –
∑

S or aO2 – H2S activity diagrams for the Fe-Ni-O-S and Fe-Ni-

O-H-S systems at specified temperatures and pressures less than 0.2 GPa

have been produced by Frost (1985); Klein et al. (2009) and Foustoukos

et al. (2015). The underlying topology of these diagrams is relatively insen-

sitive to temperature over the range of serpentine stability, although abso-235

lute values of aO2 and aH2S, and activity relative to buffers such as FMQ
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(fayalite-magnetite-quartz) and PPM (pyrite-pyrrhotite-magnetite), change

with pressure and temperature.

Pressures in subduction zones at the temperatures of interest are well

above the 0.2 GPa investigated by previous workers and existing dataset-240

software combinations do not have the capacity for pressure-sensitive calcu-

lations, so it was necessary to compile a new dataset for phases in Fe-Ni-O-

S-H. This dataset is mostly based on that of Klein et al. (2009), but includes

additional parameters to account for the effects of pressure via the inclusion

of thermal expansion and compressibility.245

Chemical potentials of pure phases were calculated using the expressions

in Holland and Powell (1998) and Evans et al. (2010). Thermal expansion

and compressibility effects on volume of the solid phases were accommodated

as described in Holland and Powell (1998, p311–312) and Evans et al. (2010).

Heat capacity expressions from the literature were refit to the Maier-Kelley250

expression used by Holland and Powell (1998, p312). Phase transitions for

pyrrhotite and heazlewoodite were neglected, although these transitions will

be incorporated into further developments of this dataset. Sources of data

for the new dataset are provided in Table 2, and the data are presented in

supplementary data tables S1 and S2.255

Equations of state for the fluids were those of Holland and Powell (1998,

p312), which employs the CORK equations of Holland and Powell (1991),

which describe a modified Redlich-Kwong equation of state with the con-

stants for the virial terms modified as described in Holland and Powell (1998).

The standard state for fluid end-members is the pure fluid at the pressure260

and temperature of interest, so, for example, the activity of O2 in a pure
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oxygen fluid is 1 at the pressure and temperature of interest. Note that here

we are mostly using the term activity, rather than the more commonly used

fugacity. The relationship between fugacity and activity is

log10fi =
1

2.303RT

(
µ	
PT − µ	

1bar,T

)
+ log10ai.

Here fi is the fugacity of species i, µ	
PT is the chemical potential of the265

pure species at the P and T of interest, µ	
1bar,T is the chemical of the pure

species at the T of interest and 1 bar, and ai is the activity of the species of

interest. Activity is preferred here because it does not include the pressure,

and is therefore easier than fugacity to compare between different pressure-

temperature conditions.270

The equations of state for solids and fluids are stated to be valid to 10 GPa

(Holland and Powell, 1998). However, caution is required because volumes of

the fluid end-members have not been measured, other than for water, at pres-

sures greater than a few tenths of a GPa, so the equations of state for fluid

members other than H2O are extrapolated beyond the pressures at which275

they have been tested. However, the form of the corresponding states equa-

tion is suggested by Plyasunov (2015) to be valid to water densities around

1000 kg m−3, i.e. to pressures of 2 GPa on subduction geotherms, and cal-

culated fugacity coefficients are broadly consistent with those presented by

Plyasunov (2015). The EOS are therefore considered semi-quantitative or280

better at the conditions of interest. Further uncertainty derives from a num-

ber of simplifications used in the calculations. These simplifications include

the use of the ideal fluid-mixing assumption, the use of pure end-member

phases and a consequent lack of consideration of compositional variability,
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the lack of consideration of multiphase fluids and the omission of oxidised285

sulfur species such as SO2. These limitations are common in calculations

of this type, (e.g. Klein et al., 2009; Foustoukos et al., 2015), but overall,

its probably best to consider the relative positions of the low variance as-

semblages and phase boundaries as robust, but to treat absolute values of

activity, fugacity, and fluid composition with caution.290

The applicability of the newly compiled dataset was tested by producing

a replication of selected figures from Klein et al. (2009). Both relative and

absolute positions of phase boundaries, and the compositions of fluids, are

consistent with the Klein et al. (2009) results at the pressures investigated

by Klein et al. (2009).295

Calculations were performed using a custom-written code written in MathematicaTM.

Sets of independent reactions were derived for each divariant assemblage in

the system Fe-Ni-O-S. These four phase assemblages project as points on

activity-activity diagrams at fixed pressure and temperature. For this study,

the activities of O2 and S2 were chosen as monitors for redox and sulfur activ-300

ity in the system. The activities for the fluid species of interest within the di-

variant assemblage at the pressure and temperature of interest were then cal-

culated by solving the expression for equilibrium (∆G = 0 = ∆G	+RT lnK)

for the independent reactions, where ∆G is the Gibbs free energy of reaction,

∆G	 is the Gibbs free energy of the reaction if all end-members were present305

in their standard state, R is the universal gas constant, T is temperature

in Kelvin, and K is the equilibrium constant. Schreinemaker’s analysis was

then used to determine the geometry of the phase diagram. The slopes of

lines were calculated, where necessary, using the stoichiometry of the reac-
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tions represented by the lines. Constraints on the activities of O2 and S2310

during metamorphism were obtained by comparison of the inferred stable

opaque phase assemblages with calculated aO2 – aS2 diagrams. Deviation of

aO2 from FMQ (∆FMQ = log aO2 - log aO2,FMQ) was also calculated.

An additional constraint is necessary to calculate the position of four

phase assemblages in the system Fe-Ni-O-H-S, because the four phase as-315

semblages that are common in the rocks are trivariant in this system so the

activities of fluid species are not uniquely constrained simply by specification

of pressure and temperature. Fluid compositions in this system were there-

fore calculated for a specified total concentration of sulfur species, assuming

that
∑
iX(Si) = 1 −X(H2O) −X(H2), where

∑
iX(Si) is the sum of sulfur-320

bearing species H2S and S2. For these preliminary calculations, activities

were assumed to be equal to mole fractions, that is, the fluids were assumed

to mix ideally. The effects of this assumption are addressed below. For-

tunately sulfur has very limited solubility so plausible values of X(H2O) +

X(H2) range from 0.95 to 1. Using this additional compositional constraint,325

the fluid composition can be calculated by solution of a system of non-linear

equations that describe a set of independent reactions, as for the Fe-Ni-O-S

system.

4. Results

4.1. Bulk composition330

Bulk compositions of the New Caledonia peridotites are typical of hy-

drated harzburgite from New Caledonia (Evans, 2012). The total iron con-

tent of Zermatt Saas Zone samples from the Upper Valtournenche and Pfulwe
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is around 11.5 wt%, which is at the iron-rich end of values recorded in the

literature for ultramafic rocks from the Zermatt Saas Zone (Li et al., 2004),335

Cima di Gagnone (Scambelluri et al., 2014), the Platta and Malenco units

(Muntener et al., 2010), Lanzo and Monviso (Debret et al., 2014a), and other

Western Alps locations (Barnes et al., 2014). The iron content in the major-

ity of samples analysed for these previous studies falls in the range between

7 and 10 wt%, with a few samples ranging up to 12%. The third sample,340

from Gressoney, falls in the more typical compositional range, with total

iron, as Fe2O3 of 8.4 wt%. Other compositional parameters for the Zermatt

Saas Zone samples fall in the typical compositional range for the Zermatt

Saas Zone defined by the analyses of previous workers, with the exception

of the Al- and Ti-rich composition of PF001, from Pfulwe, which may re-345

flect some form of chemical or physical mixing with some components of the

neighbouring Allalin gabbro, and/or melt-rock interaction.

4.2. Non-opaque mineralogy

In all samples, the non-opaque mineral assemblage comprises one or more

of the anhydrous minerals olivine, orthopyroxene and clinopyroxene, plus hy-350

drous alteration products, serpentine (lizardite or antigorite) ± chlorite ±

brucite ± talc (Table 3). In detail, the assemblage varies as a function of

bulk composition, metamorphic grade, and the extent of hydration. Com-

prehensive descriptions of the silicate mineral assemblage for these localities

are provided by Frost et al. (2013) and Evans et al. (2013) for the New355

Caledonian samples, by Li et al. (2004), Groppo et al. (2009), and Reddy

et al. (1999) for the Zermatt Saas Zone samples, but relevant details are

summarised briefly here.

17



Serpentine is the dominant silicate mineral in all sections (> 80% by vol-

ume). Antigorite is the dominant serpentine phase in the subducted samples360

(all but NC09-01a), while lizardite is found in the ophiolite sample NC09-01a.

PF-001 is anomalous for a mantle-derived rock in that it contains abundant

chlorite. The Al-rich bulk composition required to account for this chlorite

suggests some influence from the adjacent Allalin gabbro (Dale et al., 2009),

or refertilisation by melt impregnation prior to subduction (Bernoulli et al.,365

2003; Muntener et al., 2010).

In addition to serpentine, GSZ-11a and NC07-60 contain olivine ± brucite,

which indicates a bulk Si:(Fe+Mg) less than that of serpentine. NC09-01a

contains serpentine + opx and LC-015 contains serpentine + talc, both of

which suggest a bulk Si:(Fe+Mg) in these samples that is higher than that370

of serpentine.

The orthopyroxene in NC09-01a is likely to be primary, since NC09-01a

was not subducted. The lack of orthopyroxene in the other four samples

constrains metamorphic temperatures to less than around 600 ◦C, since this

is the temperature at which metamorphic orthopyroxene is likely to grow in375

a typical depleted ultramafic rock (Ulmer and Trommsdorff, 1995; Tromms-

dorff et al., 1998; Evans and Powell, 2015). This result is consistent with

temperature constraints for these localities from literature reports based on

studies of other lithologies (Table 1). The presence of olivine in the low

Si:(Fe+Mg) samples NC07-60 and GSZ-11a, but not the higher Si:(Fe+Mg)380

samples, LC-015 and PF-001, is also consistent with peak temperatures be-

tween 550 and 600 ◦C for the subducted samples. The reasoning is that

olivine grows as a consequence of brucite destruction from about 450 ◦C, but
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brucite would have been absent in the higher Si:Fe+Mg rocks LC-015 and

PF-001, so metamorphic olivine in these samples would not have grown until385

temperatures were greater than 600 ◦C (Evans and Powell, 2015).

Trace clinopyroxene is found only in NC09-01a and LC-015. In NC09-

01a, the clinopyroxene shows exsolution laminae typical of a mantle origin

and consistent with the lack of subduction history for this sample, while in

LC-015 the clinopyroxene is a Cr-free, low-Al diopside without exsolution390

and is inferred to be metamorphic.

All samples contain some evidence for exhumation-related retrograde min-

eral growth, such as chlorine-rich brucite veins that cross cut the foliation in

NC07-60. However, prograde olivine and, in the absence of olivine, multi-

ple antigorite foliations, suggest that prograde metamorphic assemblages are395

preserved.

4.3. Opaque Mineralogy and Accessory Phases

All five sections contain magnetite that pre-dates or is associated with fo-

liated serpentine, so magnetite is interpreted to have been ubiquitous at peak

pressures and temperatures (Table 3, Figs 2–4). Magnetite occurs in multi-400

ple textural locations and is also present in all sections as a texturally late

phase. For example, magnetite cross cuts late unoriented antigorite (NC07-

60, Fig. 2a), occurs in late coarse unoriented antigorite masses (LC-015, Fig.

2b), cross cuts oriented antigorite/chlorite foliation (PF-001, Fig. 2c), and

is associated with cross-cutting ductile fabrics associated with exhumation405

(GSZ-11a, Fig. 2d). Magnetite compositions vary significantly. For exam-

ple, Cr-rich magnetite cores in NC07-60 that contain awaruite inclusions are

overgrown by Cr-poor magnetite to form a skeletal maze-like composite of
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crystals (Figure 3a), whereas Ti-rich magnetite cores surrounded by ilmenite

occur in PF-001. See below for a more detailed discussion of magnetite com-410

positional variations.

The accessory phase assemblage, other than magnetite, is variable (Table

3). Magnetite is accompanied by awaruite (FeNi3), heazlewoodite (Ni3S2),

native Cu, platinum group minerals and pentlandite (nominally Fe4.5Ni4.5S9)

in NC09-01a (Fig. 4a), with texturally late millerite (NiS). These phases are415

interpreted to have developed during serpentinisation.

In contrast, NC07-60 contains almost no S-bearing phases so that the

opaque phase assemblage is simply magnetite and awaruite plus a single, pos-

sibly late, small (< 10 microns), pentlandite grain (Figs 3a,b, 4d). Awaruite

in NC07-60 has indented boundaries adjacent to serpentine (Fig. 4d), which420

is interpreted to suggest that the mode of this mineral was decreasing when

metamorphism was arrested by exhumation.

GSZ-11a is the only one of the Zermatt Saas Zone samples to contain

Ni-bearing phases, with early awaruite, heazlewoodite and pentlandite over-

grown by later magnetite and millerite (NiS) (Figs 4c,d). Pentlandite and425

magnetite are in contact with the antigorite matrix and are therefore assumed

to be part of the prograde metamorphic assemblage.

In the other two Zermatt Saas Zone samples, PF-001 and LC-015, mag-

netite is accompanied by small amounts of pyrite, plus, in the case of LC-015,

barite. The textural setting of the pyrite and barite is difficult to deter-430

mine because the grains are small and are often located at grain junctions.

However, there is no evidence that these phases are late so they are taken

to be present during peak metamorphism. PF-001 also contains ilmenite,
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sphalerite, and chalcopyrite. Monazite was observed in LC-015 and PF-001.

Zircon was observed in PF-001.435

4.4. Mineral compositions

Mineral compositions are typical of those expected in serpentinised and

metamorphosed depleted harzburgites (Supplementary data S3). Primary

olivine in NC09-01a has an X(Mg) of 0.911 ± 0.002 (n=14), whereas the

metamorphic olivine in GSZ-11a and NC07-60 is slightly more iron-rich with440

X(Mg) of 0.895 ± 0.001 (n=8) and 0.875 ± 0.002 (n=9) (Table S3a). Or-

thopyroxene in NC09-01a has a composition compatible with that for olivine

with X(Mg) of 0.909 ± 0.004 (n=7) (Table S3b). Clinopyroxene in NC09-01a

is consistent with a highly depleted protolith, with low Al (< 0.05 ± 0.002

(n=6)) cations per six oxygen formula unit. Clinopyroxene in GSZ-11a, on445

the other hand, is consistent with a metamorphic origin, being almost pure

diopside, with minimal Al2O3 (Table S3c).

Serpentine compositions were broadly similar in all five samples, with

X(Mg) of 0.944 ± 0.001 (n = 16) in NC09-01a and of 0.95–0.96 in the

four HPLT samples. The Al content varied more strongly as a function of450

geodynamic setting than metamorphic grade, with Al2O3 contents less than

2 wt% in the New Caledonia samples, and 2–2.4 wt% in the Zermatt Saas

Zone antigorites (Table S3d). Amphibole and talc were found only in PF-

001. The amphibole was an tremolitic, with X(Mg) of 0.95 ± 0.05 (n=13).

Similarly, the talc X(Mg) was 0.96 ± 0.02 (n=13), with minimal Al and iron455

(Table S3e).

Magnetite exhibits a wide range of composition (Table S3f). Magnetite in

NC09-01a is almost pure Fe3O4, with minor Mg, while magnetite in NC07-60
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shows a variable proportion of Ni, up to 0.1 moles per four oxygen formula

unit, and Cr-rich cores (Fig. 3a). Magnetite compositions in PF-001 are also460

highly variable, with Ti-rich magnetite that occurs surrounded by ilmenite,

and almost pure pure Fe3O4 as late cross-cutting grains in the matrix. Simi-

larly, late magnetite in GSZ-11a is almost pure Fe3O4 but magnetite inferred

to be compositionally earlier on textural grounds is variably Cr-rich, with up

to 0.2 moles of Cr per four oxygen formula unit. LC-015 displays a similar465

temporal evolution in magnetite composition, with Cr-rich cores to mag-

netite, and close to pure Fe3O4 magnetite on the rims of Cr-rich grains and

in the matrix.

Awaruite grains large enough to analyse were found only in NC07-60,

and X(Ni) in these grains is > 0.8, at 0.862 ± 0.003 (n = 3), rather than470

the 0.75 expected for stoichiometric awaruite (Table S3g). This result was

repeated using both EDS and WDS, and is also consistent with the large

number of EDS analyses obtained during the feature mapping. Sulfides large

enough for analysis were found only in GSZ-11a. Millerite compositions were

close to stoichiometric NiS, with X(Fe) < 0.02 in all cases (Table S3h, n475

= 20). Heazlewoodite grains were also close to stoichiometric Ni3S2, with

X(Fe) between 0.01 and 0.08, but generally at the lower end of this range

(Table S3h, n = 40). Ilmenite in PF-001 is close to stoichiometric, whereas

ilmenite in LC-015 is Mn- and Mg-rich, with X(Fe) on the divalent site as

low as 0.4.480

4.5. Thermodynamic Modelling

The assemblage inferred to be present at peak pressure and temperatures

for each section was plotted onto an aO2 vs. aH2S diagram after Klein et al.
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(2009) (Fig. 5). There is a clear distinction between the awaruite-bearing

New Caledonia samples and the awaruite-absent Alpine samples. Calcula-485

tions at higher pressures (Fig 6), which are considered semi-quantitative or

better also show a significant difference between the positions of the two sam-

ples sets in aO2 – aS2 space. Calculations in the system Fe-Ni-O-H-S indicate

that the New Caledonia samples equilibrated with H2-bearing fluids X(H2)

> 0.01, in clear contrast to the water-rich fluids calculated for assemblages490

in the Alpine samples, which have X(H2) < 0.00001.

Increasing pressure shifts conditions for the buffering assemblages awaruite-

heazlewoodite-magnetite-pentandite (AMPZ), pyrite-pyrrhotite-magnetite (PPM)

and hematite-pyrite-magnetite (HMP) to lower aS2 and higher aO2 (Fig 6)

but in most cases the relative position of the buffers is not much affected by495

the changes in pressure and temperature. Thus the difference in inferred peak

pressure between New Caledonia sample NC07-60 (1.6 GPa) and the Upper

Valtournenche sample LC-015 (2.4 – 2.8 GPa) does not affect conclusions

drawn from Fig. 6.

An exception to the consistent relative geometry of the phase diagrams as500

a function of pressure is the position of millerite-vaesite reaction relative to

the trivariant hematite-pyrite reaction. The millerite – vaesite reaction cuts

the trivariant hematite-pyrite reaction at lower pressures, and the magnetite-

pyrite reaction at 2 GPa. The univariant assemblage magnetite - pyrite -

vaesite - millerite - hematite is stable only at approximately 1.25 GPa on the505

inferred geotherm. Thus co-existing magnetite and vaesite can be inferred to

have formed at pressures greater than 1.25 GPa, while vaesite is expected to

co-exist with hematite pressures less than 1.25 GPa. Unfortunatley, vaesite is
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not present in any of the studied rocks, so this pressure sensitivity, while po-

tentially useful as a geobarometric indicator, does not affect the conclusions510

presented here.

5. Discussion

5.1. Subduction fluid compositions

The principal result of this study is that the New Caledonia samples con-

tain awaruite and co-existed with hydrogen-bearing fluids at ∆FMQ around515

-3 at peak pressure and temperature, while the Alpine samples contain pyrite

or millerite and equilibrated with water-dominated fluids at ∆FMQ -1 to

+2. Traces of an earlier awaruite-bearing assemblage are present in one of

the Alpine samples, GSZ-11a, so at least one of the Alpine samples evolved

from low aO2 fluids to higher aO2 fluids during its history. It is interesting to520

explore the cause and conseqences of this striking difference in fluid oxidation

state.

5.2. Causes of aO2 variability in serpentinites

Serpentinisation proceeds in two distinct stages (Delacour et al., 2008;

Alt and Shanks, 1998; Klein et al., 2009; Frost et al., 2013). In the first525

stage, at low time-integrated water:rock ratios, awaruite is stable along with

brucite, Ni-sulfides, (heazlewoodite or pentlandite), ± magnetite ± native

copper, and fluid compositions are silica-poor, highly reducing, and may in-

duce desulfidation (Frost and Beard, 2007; Klein et al., 2009; Frost et al.,

2013; Auge et al., 1999; Evans et al., 2009; Gonzalez-Jimenez et al., 2011;530

Schwarzenbach et al., 2014). This initial stage, arguably, lasts as long as
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olivine and brucite form part of the same equilibration domain as the infil-

trating fluid (Evans et al., 2013; Frost et al., 2013), though see Evans et al.

(2012a) for an alternative view.

Once time-integrated water:rock ratios increases beyond some critical535

value, olivine loses chemical connection to the infiltrating fluid and the rock

enters the second stage of serpentinisation. Awaruite and brucite are lost, and

fluid compositions evolve to higher aO2 and higher Si-activity compositions.

The rock develops an assemblage of serpentine, magnetite ± sulfur-rich sul-

fides ± isolated relict peridotite phases. Such serpentinites are described in540

oceanic settings from IODP hole 1309D (Delacour et al., 2008), at ODP Leg

209, at the 15 degrees 20 minutes N Fracture zone on the Mid Atlantic Ridge

(Klein et al., 2009), and at the Iberian margin ocean-continent transition

(Alt and Shanks, 1998; Schwarzenbach et al., 2012, 2013). Similar assem-

blages are also recorded in Ligurian ophiolites from the Northern Apennines545

where most features are thought to record seafloor metamorphism (Alt et al.,

2012b).

During subduction and deserpentinisation the mineral assemblage contin-

ues to buffer fluid composition until the buffer is exhausted or until prograde

mineral changes alter the buffer. Thus, subducted stage one serpentinites550

with awaruite would buffer fluids to low aO2, and stage two serpentinites

would buffer fluid compositions to high aO2, at least until prograde olivine

growth begins. Both types of assemblages have been reported in studies of

HPLT rocks in addition to this one. Awaruite-bearing stage one assemblages

have been recorded in HPLT rocks and contact metamorphosed HPLT rocks555

(e.g. Nozaka, 2003; Arif and Moon, 1996; Peretti et al., 1992), and it has
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been proposed awaruite may grow with prograde olivine during prograde

HPLT metamorphism (Peretti et al., 1992; Groppo and Compagnoni, 2007).

Stage 2 assemblages are recorded by samples from the Beigua unit of the

Voltri massif (T to 550 ◦C, P to 2.5 GPa), which contain pyrite, pyrrhotite560

and magnetite (Mottana and Bocchio, 1975; Messiga and Scambelluri, 1991;

Scambelluri et al., 1997; Vignaroli et al., 2005; Alt et al., 2012b).

Mineral assemblages and fluid compositions in the New Caledonian and

Zermatt Saas Zone are consistent with stage one and stage two assemblages

respectively. It is therefore useful to explore the idea that fluid composition565

during HPLT metamorphism is related to the relative progress of the two

phases of serpentinisation that occur prior to subduction.

5.3. Serpentinising environment and geodynamic setting

The dominant control on the progression from stage one to stage two of

serpentinisation is time-integrated water:rock ratio, although the composi-570

tion of infiltrating fluid and the presence or absence of active deformation

are also influential.

It is reasonable that water:rock ratios during serpentinisation of the New

Caledonia rocks were lower than those during serpentinisation of the Zer-

matt Saas Zone rocks. The New Caledonia rocks were serpentinised in a SSZ575

setting (Fitzherbert et al., 2004; Cluzel et al., 2012), and here the awaruite-

bearing assemblage of NC09-01a attests to the relatively low fluid:rock ratios

in this setting. During serpentinisation of the protolith to the Zermatt Saas

Zone ophiolite, on the other hand, water:rock ratios would most likely have

been relatively high. The Zermatt Saas Zone is one of a string of ophiolites580

thought to have been part of either the magma-poor rifted margin to the
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Tethyan ocean or its magma-poor slow spreading centre (Bernoulli et al.,

2003; Lagabrielle, 2009; Manatschal and Muntener, 2009; Muntener et al.,

2010; Lagabrielle et al., 2015). It is not possible at this stage to specify

the geodynamic setting of the Zermatt Saas Zone unambiguously. However,585

the slow spreading ridge and magma-poor OCT settings are similar envi-

ronments with respect to seawater infiltration and serpentinisation, because

mantle lithosphere is exposed at, or close to, the seafloor. Under either slow-

spreading or OCT conditions, time integrated fluid:rock ratios can be high,

and serpentinisation is likely to progress to stage two.590

There is abundant evidence for extensive pre-subduction serpentinisation

in the Zermatt Saas Zone ophiolite. This evidence includes pseudomorphic

textures of serpentine after olivine, which are typical of ocean floor serpen-

tinisation (Li et al., 2004; Rebay et al., 2012; Fontana et al., 2008). There is

also evidence of rodingitisation at contacts between the Zermatt Saas Zone595

serpentinites and basaltic dykes (Li et al., 2008). Rodingitisation records

relatively low temperature (< 300 ◦C) fluid – rock interaction and is known

to occur in ocean floor settings (Beard et al., 2009). Ophicarbonate brec-

cias have been reported at Chatillon in the Zermatt Saas Zone ophiolite by

Driesner (1993), and contacts between ultramafic lithologies and metacherts600

have been documented and interpreted as a record of ultramafic rocks at the

ocean crust-sediment interface (Bearth and Schwandler, 1981).

A difference in the percentage of mantle lithosphere that is serpentinised

in magma-rich and magma-poor settings is supported by the literature. In

the Hess Deep, rifted fast spreading oceanic crust bears awaruite (Alt and605

Shanks, 1998), indicative of stage one of serpentinisation, while the mantle
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lithosphere underlying most of the Atlantic Ocean is estimated to be less than

6% serpentinised by Carlson (2001), although estimates vary. In contrast,

at the West Iberian margin, a passive margin associated with an ocean-

continent transition, estimates of the serpentinised fraction range up to 28%610

for peridotite overlain by thin crust (Skelton et al., 2005), and from 25–100%

for exhumed mantle that is thought to have undergone seawater percolation

aided by hydrothermal circulation (Dean et al., 2000). This variation in

the extent of serpentinisation is likely to be coupled with a variation in the

stage of serpentinisation, so that rocks from fast-spreading settings are more615

likely to retain the stage one assemblage that leads to release of low aO2

fluids during deserpentinisation, consistent with the results of Alt and Shanks

(1998).

An additional complexity is that the time-integrated fluid rock ratio for

any serpentinite may increase at the initiation of subduction because fluid620

infiltration occurs as the slab bends to enter the subduction zone (Ranero

and Sallares, 2004; Lefeldt et al., 2012; Naif et al., 2015). The depth and

geometry of fluid infiltration is controlled by the depth of normal faulting at

the bend and is still poorly understood (Lefeldt et al., 2012). However, it is

likely that lithologies close to the top of the slab are more likely to be infil-625

trated than those lower down, and to be infiltrated more extensively. Thus,

ultramafic rocks are at or close to the top of the subducting slab, as would

occur for ocean crust from magma-poor or OCT settings, would undergo a

greater degree of fluid infiltration and serpentinisation than ultramafic rocks

concealed beneath several km of intrusive and extrusive mafic rocks.630

It is therefore plausible that geodynamic setting is a primary control on
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the time-integrated fluid rock ratio that drives serpentinisation, and that

serpentinites from magma-poor and OCT settings, where ultramafic rocks

are readily accessed by seawater, are the most likely to reach stage two of

serpentinisation. Other settings that undergo extensive fluid–rock interac-635

tion include transform faults, oceanic core complexes, and exhumed mantle

at rifted continental margins. Geodynamic setting, therefore, may provide a

first order control on the redox characteristics of fluids released by serpen-

tinites in subduction zones.

How general is the conceptual model and how representative are the results?640

The proposed fluid-rock regimes may not apply to all rocks in a particular

geodynamic setting because fluid flow in the Earth’s crust is heterogeneous.

Such heterogeneity is evident in well studied present day oceanic settings.

For example, most serpentinised peridotites at the MARK area on the mid-

Atlantic ridge contain millerite, typical of stage two serpentinisation, but645

some samples contain locally developed awaruite (Alt et al., 2003). Similarly,

metamorphic awaruite in the Alps documented by Peretti et al. (1992) at

Val Malenco, by Diella et al. (1994) at the Mt. Avic area in the Zermatt

Saas Zone ophiolite, by Zucchetti et al. (1988) at the Balangero mine in

the western Alps, and by Carbonin et al. (2015) for the Cogne unit, in the650

Western Alps, attests to the fact that not all serpentinites derived from

Tethyan oceanic lithosphere evolved in equilibrium with water-rich fluids.

These examples demonstrate the heterogeneity of fluid flow within mantle

lithosphere on the ocean floor. Nevertheless, we propose that ultramafic

rocks derived from magma-poor OCT and slow and ultra-slow spreading655

ridge settings are likely to be, on average, more serpentinised than ultramafic
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rocks from SSZ settings and therefore to produce fluids with aO2 greater than

FMQ during subduction.

It must also be considered that only a small number of samples could

be studied in detail for this work. The samples described here are certainly660

representative in terms of their silicate mineral assemblages, which are are

consistent with those reported by previous workers (Barnicoat and Fry, 1986;

Reddy et al., 1999; Li et al., 2004; Fitzherbert et al., 2004; Groppo et al., 2009;

Rebay et al., 2012; Frost et al., 2013; Gasco et al., 2013), except that titano-

clinohumite was not present in the selected samples from the Zermatt Saas.665

Titano-clinohumite samples were present in the sample suites from which the

selected samples were chosen, but were not selected for this study because

a comprehensive discussion of the controversial genesis of titano-clinohumite

was considered outside the scope of this work (Rahn and Bucher, 1998; Li

et al., 2004; Rebay et al., 2012), and because these samples form the topic of670

work in progress. These samples are also representative of the larger sample

suites in terms of their opaque phase assemblages, so far as can be determined

from optical microscopy alone. The results are also consistent with those of

other workers who infer high aO2 fluids for Alpine HPLT rocks (see section

5.5.1).675

5.4. Alternative explanations: protolith bulk composition

It is necessary to consider if the difference in fluid compositions could have

been caused by factors other than the extent of pre-subduction serpentinisa-

tion, such as protolith bulk composition. The opaque phase assemblage in the

three Zermatt Saas Zone samples implies similar metamorphic aH2 - aH2S680

- aS2 but their protoliths are significantly different. GSZ-11a has relatively
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low Si:(Fe+Mg) compared to PF-001 and LC-015, whereas the presence of

chlorite and ilmenite in PF-001 indicate its Al- and Ti-rich bulk composition

(Table 4). PF-001 and LC-015 are both iron-rich relative to the Gressoney

sample, GSZ-11a, and also to other serpentinites from both the Zermatt Saas685

Zone and elsewhere the Western Alps (Li et al., 2004; Muntener et al., 2010;

Barnes et al., 2014; Debret et al., 2014a; Scambelluri et al., 2014). In spite

of these differences, similar petrological features are observed in the three of

the Zermatt Saas Zone samples studied here, and in the majority of other

samples from the Western Alps. Additionally, the bulk composition of the690

New Caledonia samples is very similar to that of GSZ-11a, but the mineral

assemblage and inferred fluid composition are significantly different. Combi-

nation of these observations suggest that protolith bulk composition is not

the cause of the observed systematic difference in fluid composition between

the Zermattt-Saas and New Caledonian locations.695

5.5. Alternative explanations: input from adjacent lithologies

The nature of units adjacent to the studied metaperidotites must also be

considered as a potential cause of the observed systematic differences in fluid

composition between the two localities. There is significant variation in the

units currently adjacent to the Zermatt Saas Zone samples but this variation700

is not related to redox aspects of the inferred fluid composition. LC-015 was

sampled within 50 metres of a Mn-rich sedimentary sequence, while PF-001

was sampled within 20 metres of the Allalin gabbro. It is plausible that

proximity to the Allalin gabbro affected the bulk composition of PF-001, as

recorded by the high proportion of Ti-bearing phases in this sample (Table705

3). However, the redox aspects of the fluid compositions inferred for all three
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of the Zermatt Saas Zone samples are indistinguishable and significantly

different to those for the New Caledonia samples, so it is proposed that

while adjacent lithologies may affect some aspects of fluid chemistry, their

proximity had, at best, a second order effect on the redox state of fluids.710

5.5.1. Other evidence for oxidised fluids in Alpine HPLT rocks

There is a growing body of evidence for the presence of high aO2 fluids

in HPLT rocks in the Alps. The presence of diamond in metasediments

from Lago di Cignana has been interpreted to record water-rich fluids on the

EMOD (enstatite-magnetite-olivine-diamond) redox buffer (Frezzotti et al.,715

2014). Debret et al. (2015) record a decrease in whole rock Fe3+/Fetot at the

antigorite dehydration isograd at Cerro de Almirez, which occurred at the

pressures and temperatures found in the cooler parts of the mantle wedge.

This result is interpreted as the consequence of loss of redox budget in fluids,

consistent with the suggestion of Alt et al. (2012a) that sulfate was lost from720

these rocks during serpentinite dehydration. In the Western Alps, Debret

et al. (2016) interpret hematite laths in magnetite as a record of high oxygen

activity, and a correlation between whole rock Fe3+/Fetot and iron isotopes

in rocks as evidence of the loss of oxidised sulfur in fluids. Further, Tumiati

et al. (2015), document sulfates and hematite in manganese ores hosted by725

metasediments thought to have reached 2 GPa at Praborna, in the Italian

Western Alps.

These results are consistent with those from this study. The presence of

late or post-foliation magnetite in all four high pressure samples is consis-

tent with infiltration of fluids capable of oxidising iron after formation of the730

dominant foliation (e.g. Fig. 2, Table S3f). Late magnetite displays talc
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rims in some cases, and the restricted pressure range of talc stability sug-

gests that this late magnetite grew at pressures greater than 1 GPa (Evans

and Powell, 2015), i.e. during the early stages of exhumation. At this time,

changes in the stress field of the slab may facilitate infiltration of slab fluids735

into lithologies that would otherwise have remained relatively inaccessible to

externally-derived fluids (Evans et al., 2014). If this is the case then mag-

netite growth during early exhumation provides evidence for the presence of

fluids capable of accepting electrons deep within the subduction zone. Plau-

sible candidates for the electron-accepting fluid species are SO2 and SO2−
4 .740

Such fluids may, as discussed below, be produced as sulfur mobilises during

subduction.

5.6. Consequences: arc outputs

We have hypothesised that subduction of mantle lithosphere serpentinised

in magma-poor oceanic or rifted continental margin settings may lead to re-745

lease of fluids more oxidised than those associated with subduction of man-

tle from other geodynamic settings. If this is the case then products from

arcs associated with subduction zones that consume mantle lithosphere from

magma-poor settings might be expected to record this additional redox bud-

get.750

The extent of changes to the redox budget of the sub-arc mantle depends

on the magnitude of fluid release; serpentinised oceanic lithosphere is thought

to make up only a few weight percent of that subducted globally (Carlson,

2001; Cannat et al., 2010), and material produced at slow and ultra-slow

spreading ridges is only subducted, at the present day, at the Antilles and755

Scotia arcs (Alt et al., 2013). Thus, the effects of subduction of extensively
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serpentinised mantle lithosphere at the present day may be localised and

minor. However, as noted by Alt et al. (2013), the role of subducted ser-

pentinites may have been greater in the Cretaceous, when Tethyan ocean

floor produced at slow and ultra-slow spreading ridges in the Jurassic was760

subducted.

Evans (2012) calculated the redox budget of primitive arc magmas for a

selection of arcs including those that consume crust from the fast-spreading

ridges in the Pacific Ocean and those from the magma-poor Mid-Atlantic

Ridge. These data display a statistically significant correlation between re-765

dox budget, subduction zone age and convergence rate. The Antilles arcs,

which sample subducted MAR-produced lithosphere, lie on the same trend

as the Aleutians, Kurile, Izu-Bonin, and other arcs that sample Pacific-ridge-

produced lithosphere, so at first sight the subducted lithosphere type is not

a first order control on the average redox budget of the whole arc. However,770

if the areas of seaflloor formed at spreading rates < 40 mm year−1 by Can-

nat et al. (2010) are considered then it can be seen that crust produced at

slow spreading ridges is only entering subduction zones at the very tip of the

Antilles subduction zone, and along the Scotia subduction zone. Few data

from the Scotia subduction zone include analysis of both ferric and ferrous775

iron, so at present it is not possible to properly assess the consequences of

subduction of mantle lithosphere serpentinised in magma-poor environments.

Further detailed studies of local arc segments are required if the hypotheses

presented here are to be tested.
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5.7. Consequences: sulfur budgets and mobility780

Sulfur is the 11th most common element in the Earth’s crust and is neces-

sary for effective mobilisation and deposition of many elements of economic

significance, such as copper, lead, zinc, and the platinum group elements.

Further, sulfur as SO2 is a possible vector for transport of redox budget from

the subducting slab to the sub-arc mantle (Kelley and Cottrell, 2009; Evans,785

2012; Debret et al., 2014a; Tomkins and Evans, 2015). Sulfur, even in rela-

tively low concentrations, can carry significant redox budget, because eight

electrons are necessary to reduce sulfur from the S(+6) form in sulfate to

S(-2) in sulfide.

Sulfur is present in all subducted mantle lithosphere; fertile mantle peri-790

dotite contains 250–300 ppm sulfur as sulfide, more than that for any of the

samples considered here (Table 4). Stage one of serpentinisation is thought

to decrease the sulfur content of ultramafic rocks, because the reducing con-

ditions drive desulfidation and stabilisation of metal alloys (Frost, 1985).

Subsequently, sulfur content increases as seawater sulfate is immobilised by795

reduction to form sulfides (Alt and Shanks, 1998; Alt et al., 2003; Delacour

et al., 2008). Limited investigations suggest that sulfur in stage two serpen-

tinites occurs mostly as sulfide, with a minor proportion, 1–11%, as sulfate.

Sulfate in serpentinites is thought to be derived mostly from oxidation of sul-

fide minerals (Alt and Shanks, 1998; Schwarzenbach et al., 2012; Alt et al.,800

2013).

The oxidation state of subduction fluids affects sulfur mobility, because

the limited data available suggests that oxidised sulfur fluid species are more

soluble than reduced species. Anhydrite solubilities of up to 6 molal in salt-
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rich solutions in experiments at 1 GPa and 800 ◦C (Newton and Manning,805

2005). H2S, on the other hand, is only sparingly soluble, with reported

solubilities in fractions of moles per litre (Barrett et al., 1988; Suleimenov and

Krupp, 1994), although the experiments on which these values are based were

undertaken at relatively low pressures and temperatures (< 320 ◦C, < 0.1

GPa). The SO2/sulfide (SSO2) transition in aqueous fluids is calculated to810

occur at oxygen activities just above the pyrite-pyrrhotite-magnetite (PPM)

buffer at 0.5 GPa and 800 ◦C, (Newton and Manning, 2005). Thus sulfur

in fluids equilibrated with samples from the Zermatt Saas Zone samples,

according to the best evidence available, would have been dominantly S(+4)

in SO2 or S(+6) in SO2−
4 . Sulfur in fluids equilibrated with the New Caledonia815

samples, on the other hand, would have been S(2-) in hydrogen sulfide, and

sulfur mobility would have been limited.

Thus, sulfur is likely to be more effectively mobilised in subduction zones

that process extensively serpentinised, and therefore oxidised, mantle litho-

sphere from magma-poor geodynamic settings. There are two significant820

consequences if sulfur cycling is more effective when mantle lithosphere from

magma-poor settings is subducted. First, transport and deposition of metals

that depend on sulfur as a ligand will be more effective in mantle that over-

lies subducted slab from magma-poor settings. Second, transport of redox

budget from the subducting slab to the sub-arc mantle is likely to be more825

substantial when the subducted crust is magma-poor.

It is difficult to assess the extent of sulfur mobility with the sample set

for this study. The number of samples is small, and the S content varies by

a factor of four (Table 4), similar to the range displayed by pre-subduction
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sulfur contents (Alt et al., 2013). Reports of trends in sulfur concentrations830

with increasing extent of HPLT metamorphism are inconsistent. Hattori

and Guillot (2007) measured sulfur concentrations in five samples from the

Monviso ophiolite, which lies south of the Zermatt Saas Zone and underwent

HPLT metamorphism (Messiga et al., 1999; Schwartz et al., 2000; Castelli

et al., 2002; Spandler et al., 2011). S concentrations varied from below the835

detection limit of 5 ppm to 2410 ppm. In another study, Alt et al. (2012b)

compared sulfur concentrations in Ligurian serpentinites from the Apennines,

which are largely unaffected by HPLT metamorphism, with serpentinites

from the Voltri massif. Ultramafic rocks in the Voltri massif, like the Zer-

matt Saas Zone, are thought to have been part of slow-spreading or OCT840

Tethyan mantle lithosphere, and to have been subducted and metamorphosed

at peak pressures and temperatures of 550 ◦C and 2–2.5 GPa (Messiga and

Scambelluri, 1991; Vignaroli et al., 2005). There was no significant difference

in the sulfur contents between the localities affected and unaffected by the

HPLT metamorphism. On the other hand, Debret et al. (2014b) measured845

sulfur concentrations in serpentine hosted by samples from Alpine ophiolites

from different parts of the Alps and metamorphosed to different metamor-

phic grades. Sulfur in the serpentine showed a decrease in concentration

with metamorphic grade. However, bulk composition data for sulfur was not

provided so it is not clear if sulfur was transferred to sulfur-bearing minerals850

and retained, or to a fluid phase, and lost.

Thus, while the effects of pre-subduction geodynamic setting on sulfur

mobilisation are potentially significant, existing data emphasise the spatially

heterogeneous nature of the sulfur distribution in serpentinites and the need
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for more measurements of whole-rock sulfur concentrations integrated with855

petrographic and outcrop scale evidence of oceanic and metamorphic fluid

flow to constrain the extent of sulfur release.

5.8. Use of exhumed mantle as an analogue for typical subducted mantle

Mantle lithosphere exhumed in high pressure terrains presents our best

opportunity to examine the effects of subduction on this lithology. However,860

if the extent of pre-subduction is as influential as is suggested here, then

it may be that mantle serpentinised in magma-poor settings may not be

representative of much of the subducted lithospheric mantle.

Yet such mantle is the most widely studied; the Alpine ophiolites are dis-

proportionately well represented in the small but growing number of stud-865

ies of the effects of subduction on the redistribution of redox-sensitive ele-

ments (Peretti et al., 1992; Groppo and Compagnoni, 2007; Alt et al., 2012b;

Schwarzenbach et al., 2012; Debret et al., 2014a,b, 2015) because the Alps

are well exposed, well studied, and relatively accessible. Further, it has been

suggested by Beltrando et al. (2010) that magma-poor margins lie in posi-870

tions favourable for exhumation from HP or UHP metamorphism, because

of their location between negatively buoyant oceanic lithosphere and more

buoyant continental lithosphere. In contrast, the global subduction budget

is dominated by subduction of lithosphere formed at fast and intermediate

spreading rates.875

Under these circumstances, the use of exhumed mantle lithosphere from

magma-poor settings as an analogue for all serpentinised mantle must be

undertaken with caution, because conclusions drawn from exhumed mantle

lithosphere serpentinised in magma-poor oceanic or rifted continental margin

38



settings, such as those in the Western Alps, would produce over-estimates of880

the capability of mantle lithosphere to oxidise the sub-arc mantle and deep

Earth.

6. Conclusions

Opaque phase assemblages in serpentinites from New Caledonia and the

Zermatt Saas Zone ophiolite equilibrated at significantly different aO2 during885

HPLT metamorphism. The assemblages are consistent with the assemblages

that would develop in serpentinites that proceeded to stage one and stage

two of serpentinisation, prior to subduction, respectively.

The geodynamic setting of serpentinisation is a control on time-integrated

water rock ratios seen by serpentinites, and therefore on the stage of ser-890

pentinisation reached. Serpentinisation in environments subject to low wa-

ter:rock ratios, such as SSZ environments and mantle lithosphere underlying

thick mafic crust, is likely to proceed only to stage one, while serpentinisa-

tion in environments with ready access to fluids, such as mantle lithosphere in

slow and ultra-slow spreading environments, and in OCT settings, is likely895

to proceed to stage 2, although fluid flow is heterogeneous and stage one

assemblages can be preserved locally in these overall high water:rock ratio

settings.

The oxidation state of fluids produced by serpentinites during subduction

therefore depends on the geodynamic setting of pre-subduction serpentinisa-900

tion. This suggestion, though based on a small data set, is consistent with

literature reports, and alternative explanations, such as bulk composition

and adjacent lithologies do not explain the observed results. Thus, serpen-
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tinites produced in magma-poor or OCT setting may release more oxidised

fluids during metamorphism than those produced elsewhere. If this is the905

case then serpentinite-derived oxidised fluids may affect the sub-arc mantle

and sulfur mobility in some geodynamic settings. The idea that relatively

oxidised fluids are present during HPLT metamorphism is supported by ex-

isting reports from the literature and by the late growth of magnetite during

the earliest stages of exhumation in all rocks studied. This magnetite growth910

samples subduction zone fluids that could have moved up the subduction

interface or into the sub-arc mantle wedge if subduction had continued.

The thermodynamic calculations presented here suggest that these fluids

were more oxidised that the PPM buffer and could have carried oxidised

sulfur in the form of SO2 or sulfate. Confirmation requires experimental work915

to properly constrain sulfur speciation in fluids at high pressures and a better

understanding of the processes that control arc output Fe3+/Fetot, and the

consequences of interactions between fluids released by different lithologies

must also be investigated. However, the preservation of magnetite as part of

the prograde assemblage in all the samples studied suggests that subducted920

ultramafic rocks retain at least some redox budget through subduction to

depths of 10s of kms, and that this redox budget is likely to be added to the

deep Earth.
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9. FIGURE CAPTIONS

Figure 1: Sample localities (a) New Caledonia, after Fitzherbert et al.

(2004); (b) the Zermatt Saas Zone in the Western Alps, after Barnicoat1350

and Fry (1986).

Figure 2: Texturally late magnetite in (a) New Caledonia sample NC07-

60; (b) Zermatt Saas Zone sample LC-015; (c) Zermatt Saas Zone

sample PF-001 – here the large opaque grain is magnetite rimmed with

ilmenite; (d) Zermatt Saas Zone sample GSZ11-a.1355

Figure 3: magnetite relationships: (a,b) details of different magnetite gener-

ations and their relationship with awaruite in NC07-60; (c) pentlandite

overgrown by magnetite in GSZ-11a; (d) heazlewoodite and pentlandite

overgrown by magnetite with millerite in the matrix in GSZ-11a.

Figure 4: alloys: (a) intergrown pentlandite and awaruite with magnetite1360

and serpentine in NC09-01a; (b) native copper in NC09-01a; (c) Ruthe-

nium alloy with laurite (RuS2) in NC09-01a; (d) intergrown awaruite

and magnetite in NC07-60;

Figure 5: Qualitative aH2-aH2S diagram to illustrate relative conditions

of stability for the Alpine and New Caledonian samples. After Klein1365

et al. (2009). Abbreviations: ZS: Zermatt Saas Zone; a: activity;

aw: awaruite; hz: heazlewoodite; hm: hematite; mi: millerite; mt:

magnetite; pn: pentlandite; po: pyrrhotite; pyr: pyrite; vs: vae-

site. Marked buffers are: AMPZ: awaruite–magnetite–pentlandite–
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heazlewoodite; PPM: pyrite-pyrrhotite-magnetite, HMP: hematite–magnetite–1370

pyrite; and FMQ: quartz-fayalite-magnetite.

Figure 6: Quantitative aO2-aS2 diagrams (a) 0.5 GPa; (b) 2 GPa. Ab-

breviations: ZS: Zermatt Saas Zone; a: activity; aw: awaruite; hz:

heazlewoodite; hm: hematite; mi: millerite; mt: magnetite; pn: pent-

landite; po: pyrrhotite; pyr: pyrite; vs: vaesite. Marked buffers are:1375

AMPZ: awaruite–magnetite–pentlandite–heazlewoodite; PPM: pyrite-

pyrrhotite-magnetite, HMP: hematite–magnetite–pyrite; and FMQ: quartz-

fayalite-magnetite.
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Table 1: Details of sampled locations, pressures, temperatures and literature descriptions

NC09-1a NC07-60 PF-001 GSZ-11a LC-015
Reference 1 2 3 4 5
GPS Zone 58K 58K 32T 32T 32T
mE 0694332 0463563 0410417 0405623 0391613
mN 7549631 7737418 5096587 5081001 5080719
Peak pressure (GPa) 0.2 1.6 1.7 – 2 1.8 – 2 2.7 – 2.8
Peak temperature (◦C) <300 500 – 600 550 – 600 550 – 650 600
References: 1: Frost et al. (2013); 2: Fitzherbert et al. (2004); 3: Fry and Barnicoat (1987);
4: Gasco et al. (2013); 5: Groppo et al. (2009)
Co-ordinates are given in UTM/UPS format relative to the WGS84 map datum

10. Tables

63



Table 2: Sources of parameters for thermodynamic calculations

∆H	
f S V Cp aoi κ298 Tλ Smax Vmax

Awaruite H03 H03 A90 1 1 1 1 1 1
Heazlewoodite RH95 RH95 P80 RH95 JH94 YR11 n.a. n.a. n.a.
Magnetite HP98 HP98 HP98 HP98 HP98 HP98 HP98 HP98 HP98
Millerite RH95 RH95 RH95 RH95 S04 S04 n.a. n.a. n.a.
Pentlandite RH95 RH95 RH95 B01 RP75 n.a. n.a. n.a. n.a.
Pyrite E11 E11 E11 E11 E11 E11 E11 E11 E11
Pyrrhotite E11 E11 E11 E11 E11 E11 E11 E11 E11
Vaesite C98 C98 C66 WP04 2 2 n.a. n.a. n.a.

H2O HP98 HP98 HP98 HP98 HP98 HP98 HP98 HP98 HP98
H2 HP98 HP98 HP98 HP98 HP98 HP98 HP98 HP98 HP98
H2S E11 E11 E11 E11 E11 E11 E11 E11 E11
O2 HP98 HP98 HP98 HP98 HP98 HP98 HP98 HP98 HP98
S2 E11 E11 E11 E11 E11 E11 E11 E11 E11
∆H	

f Enthalpy of formation at standard state
S Entropy at standard state
V Volume under standard state conditions
CP,a−d Maier-Kelley heat capacity coefficients
aoi Thermal expansion coefficient
κ298 Bulk modulus
Tλ Critical temperature for order-disorder phase transitions
Smax Maximum entropy of disorder
Vmax Maximum volume of disorder
B01 Berezovskii et al. (2001)
C98 Chase (1998)
C66 Clarke and Glew (1966)
E11 Evans et al. (2010)
JH94 Fjellvag and Andersen (1994)
H03 Howald (2003)
HP98 Holland and Powell (1998)
P80 Parise (1980)
RP75 Rajamani and Prewitt (1975)
RH95 Robie and Hemingway (1995)
S04 Sowa et al. (2004)
WP04 Waldner and Pelton (2004)
YR11 Yu and Ross (2011)
1 Taken from weighted average of properties for Fe and Ni in HP98
2 Values for pyrite used64



Table 3: Feature mapping results

Percentages ∗ NC09-1a NC07-60 PF-001 GSZ-11a LC-015
native Cu 1.2 - - - -
awaruite 3.7 17 - 0.7 E -
magnetite 66 82 14 45 73
hematite - - - - -

pyrrhotite - - - - -
pyrite - - 1 - 1
barite - - - - 24

heazlewoodite 2 - 43 E -
pentlandite 26 1 - 8 E -
millerite 0.6 L - - 4 -

-
ilmenite - - 17 - -
zircon - - 67 L - -
monazite - - 0.1 L - 1
sphalerite - - 0.3 - -
chalcopyrite - - 1.3 - -
galena - - - - 1
PGM T - - - -
Total features 1083 96 611 866 3637
Non-opaque minerals ol, opx, cpx ol ap, zircon ol cpx

liz, chl atg, br chl, atg, ta atg, chl atg, talc
∗Percentages refers to the percentage of the total number of features (Total features)
Abbreviations: E: Early; L: Late; T: Trace (< 0.1%); PGM Platinum group minerals
ap: apatite; atg: antigorite; br: brucite; cpx: clinopyroxene;
chl: chlorite; liz: lizardite; ol: olivine; opx: orthopyroxene; ta: talc
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Table 4: Results of whole rock analysis

Element Unit NC09-01 NC07-60 PF001 GSZ-11 LC015
SiO2 wt % 38.22 40.40 37.40 40.77 37.67
TiO2 wt % <0.01 <0.01 0.89 0.01 0.09
Al2O3 wt % 0.23 0.59 7.23 1.26 2.03
Fe2O3(tot) wt % 7.69 6.67 11.21 8.40 11.51
FeO wt % 4.32 3.40 6.19 4.05 3.62
MgO wt % 41.77 39.05 33.49 40.86 36.40
MnO wt % 0.11 0.10 0.11 0.16 0.14
CaO wt % 0.25 <0.01 0.67 1.10 0.04
Na2O wt % 0.05 0.02 0.07 0.05 0.09

C wt % 0.088 0.080 0.050 0.05 0.040
P wt % <0.001 0.002 0.009 <0.002 <0.004
S wt % 0.005 <0.002 <0.01 0.01 0.020

LOI wt % 9.95 12.22 10.31 7.36 10.72

Zn ppm <50 51 53 45 55
V ppm <50 31 136 21 63
Cr ppm 1198 2517 118 1978 2734
Co ppm 107 109 101 119 117
Ni ppm 2286 2294 1449 1990 1929

Fe(III)/Fe(tot) 0.38 0.43 0.39 0.46 0.65
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