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Seismic velocity deviation log an effective methodfor evaluating spatial distribution of

reservoir pore types
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Abstract:

Velocity deviation log (VDL) is asynthetic log used to determine pore types in reservoirsrock
based ora combinationof the soniclog with neutrondensitylogs The current study propcsa
two stes approach tocreatea map ofporosity andpore typeby integrating the results of
petrographic studies, well logs and seismic datthe first step, velocity deviation lagascreated
from thecombination othesoniclog withtheneutrondensitylog. The results allowedlentifying
negative, zero and positive deviations basedthencreated synthetic elocity log. Negative
velocity deviations Below -500 m/s) indicate connected imterconnectegores and fractures
while positive deviationsapove+500 m/s) areelatedto isolated pores. Zero deviations in the
range of {500m/s,+500m/$ are in good agreemewith intercrystalline ananicroporositiesThe
results of ptrographic studies were used to validatertizn pore type deriveftom velocity
deviation log. In the next stepelocity deviation logvasestimated from seismitata by using a
probabilistic neural network model. For this purpdbke,invertedacoustic impedance along with

the amplitude based seismic attributes wermulated tovDL.
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The methodology is illustrated by performing a case siaay theHendijanoilfield, northwestern

Persian GulfThe results of this study show that integration of petrographic, well logs and seismic

attributesis an instrumental way for understanding Hpatialdistribution of main reservoir pore
types.
Keywords: Pore typewell logs, 2D VDL sectionpetrographic studiesjendijan oifield, Persian

Gulf

1. Introduction

Carbonate reservoishow highercomplexty in comparison to their sandstone counterpdités
isdue tother depositional heterogeneities inherited friateral and verticdacies changg which
causinga complexporetype andsize system(Wayne 2008)In addition, secondary diagenetic
processes enhance these primary complexity and heterogéieity.me of the most important
challengesin carbonate reservoistudy is pore typing. Pore typesdeterminethe trend of
permeabilityand using the velocity deviation log(VDL) canhelp petroghysiciss to determine
them from well logging datd_aboratory research shows that sonic wave velptitgddition to
volumesof porosity depends on pore typegelocity deviation log,asintroduced byAnselmetti

and Eberli (199) is an important tool foporetyping of carbonate reservoirs.

Most productivelranian petroleum reservgiare carbonate reservein which somediagenetic
overprintssuch ascompaction anhydrite plugging, eeentation and over dolomitizatiomave
reduce their quality duringthe geologicaltime but fracturesisually make thenmmore prolific

(Wayne 2008)These fractures generally playitfte mainrole in reservoir permeabilitincrease

and production.

In recent years anncreasing trendfor incorporaion of seismic data o petrophysical

investigationsand interpretationss observede.g. Ouenes, 2000; Hampson et al., 2dDdyen
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2007, Kadkhodaidlkhchi et al., 2009 Dezfoolan et al.,, 2013Yarmohammadi, et al., 2014;
Nouri-Taleghani et al., 2015; Nourafkan and Kadkhodldechi, 2015; Kosari eal., 2015,
Golsanami et al., 20)5Through inversion of amplitude basseismicdatato acoustic impedance,
many geological and petrophysidaterpretations can be mad&coustic impedance is highly
under the influence of density and sonic compressional velocity, that both related to rocks

properties.

The Hendijan oilfield(Fig. 1) is located 55 kilometers west of Bahregan DistitersianGulf.
The OligeMiocene AsmarFormationis currently the main reservoir unit of the Hendijan oilfield.
The mixed carbonate and sildastic interval of Asmari Formation is characterized by a
transgressiveegressive cycliormedunder shallow marine and marine margflagioonalwaters

in an overall regressivenvironment The carbonatentervalrepresentsa westward extension of
the productive Asmari Formationand the Ghar andstonecorrespods to the AhwazMember

deposited irmnonshoresnvironment

The currenstudyreaps the benefits dbthcore and log data to generate a most reliable pore type
log for the AsmariFormation atthree wells of thestudiedfield. Afterward seismic dataare
inverted toacoustic impedancand then correlation modelsre established between inversion
resuls andthe most relevant seismic attributgsusing probabilistic neural networks to generate

a section oporosity andpore type.

It is worth mentioninghat the neural network model for rock properties estimation is not a novel
topicand ismainybased on ot her r es e akimddéhatths cumentstkdy b u t
is the first report of pore types determinatiftom seismic data.The methodolgy is

straightforward robustand easy to implement.



10

11

12

13

14

15

16

17

18

19

20

2. Methodology

The current study proposes a two stapproach tareatea map of porosity and pore types by
integration of petrographic studies results, well logs and seismiarddta Asmari reservairin

the first step, velocity deviation lagcreatel fromacombinatiorof sonic logheutronanddensity
logs. Then, theresuts of velocity deviation logrevalidatal by using petrographic studies result

In the next step, vetity deviation logis estimated from seismic data by using a probabilistic
neural network model. For this purposgelligent formulationsaremade betweeimversion result

(acoustic impedance) amlde amfitude based seismic attributes.

Laboratorymeasurement on more than 300 sasggeasthat sonic velocity in rocks in addition
to porosityvolume highly dependon porosity typegAnselmetti and Eberli 1999 ctually, there

is a negative correlation between porosijuesand velocity Frameforming porosities (such as
moldic or intrafossil porosity), result in significantly higher velocity values at equal total
porosities than porosities which are not embedded rigid rock frame, such as interparticle

porosity or microporosity.

As defined byAnselmetti and Eberli (1999¥elocity deviation log is defined as thdfdrence
between readnd synthetisonic velocityof rocks (Eq. 1).
VDL = (Vp- Vp,,)® 1000 Eq. (1)

Where VDL is velocity deviation (m/s), Vpé@mpressionatelocity (Km/s) and Vgnis synthetic

compressionalelocity (Km/s)

Compressionablnd syntheticvelocity are easily derived from sonic Iegby using Eq. (2)&

Eq. (3)
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where DT is sonic log values in ps/ft and 304.8 is a conversion fact@idolateVp in Km/s.

Eq. (2)

Eq. (3)

DTsynin equation 3 refers to synthetic compressional velaoity iscalculated mainly based on

Wy | | eqeatios (1956)T he general form of Wyl Il ieds

DT =DT, (1-/)+/DT,

Eq. (4)

where/ is porosity, DT refers to sonic wave travel time measured by logging toelaBdDT;

are sonic wave travel time in rock matrix and fluid occupied flushed zone, respedth@hwere

equat.i

taken as 47, 55 and 18%/ft for sandstone, limestone and flushed zone fluid respectively

(Schlumberger, 2009).
To calculate porosity, EqQ. (4) can be reaged adelow.

j -DbT-DT,
DT,- DT,

Eg. (5)

As is seen, the aim of Eq. (5) is determine unknoworosity from the known parameters of

sonic transit time measured by logging tool, fluid and matrix transistime

Assuming that porosity is already determined from neutron or densit¥tpd5) can be solved

to find X or synthetic sonic wave travel time as follows.

;o= X - DT,
" DT,-DT,,

Eqg. (6)
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To calculate X, Eqg. (6) can be rearranged as below.
X 5 \o( DT~ DT,)+DT, Eq. (7)

The value derived from solving Eq. (1) is called velocity deviation and can either be a positive or
a negative value. The magnitude of the velocity deviation positively or negatively is directly

related to the pore types and thagtdbution in a reservoir rock

Inversion ofseismic data is a common method for estimaturigsurfacdayersacoustic impedance
from gathered seismic datasidg acoustic impedance coufarovide ameticulousgeological
interpretatiorin detailand prevengeoscientisfrom misleading about subsurfadéostpetroleum
companies use seismic inversitnreduce uncertainty isubsurface stuels andto improvethe
estimation ofreservoirrock propertiesuch agorosity andithology because of its performance
and usefulnesgPramanik et al., 200Zavotti et al., 2012)

Probabilistic eural networWang et al., 2015are now welknownmethodgo solvenon-linear

and complicategbroblems Many companies have now included neural network models in their
commercialsoftware packagedn the current studythey will be used as intelligentools to
estimate velocity deation from seismic attributeg:or thispurpose, neural network tools of the
MATLAB and Hampson Russell software available in the Curtin University of Western Australia

(Perth) weraused

3. Application to the Hendijan oilfield

3.1.Calculating velocity deviation from porosity logs

In thefirst step it wasnecessary to check wédigs quality and make sure about theorrectness
Well logs were checked for problemslated towashouts, depth shifting, log tails, abnormal

logging ranges and spikeéfterwards velocity deviation log was calculatatiroughout the
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Asmari formationby using equationl through 7 from neutrg density and sonic log (Fi@).
Velocity deviation log is shown in tHeft tracks of Fig. 2 Sonic and density logs are shoam

the right tracks anthe middle trackrepresergs NPHI log. Negative deviations indicate connected
porosities and in some cases fractures, while positive deviations are indicaBeéatdd pore
types such asnoldic and vuggy porosity. Zero deviationsosh intercrystalineand micre
porosities.

In order to validate pore types derived from VDL, the result of petrographic studies were
employed Photomicrographs showing the méatiesof Asmari formatioralong with their main

pore types and velocity deviati@re displayed irfFig. 3. As is seenthere is a good agreement
between the pore types recommended by VDL log and those derived througldiim studies.

The main pore types identified within each microfacies are closely connected to their
correspondingrelocity deviation valuedn the light of acceptable results péretyping froma
combinationof log and core data, the velocity deviation logs were subjected to further study in a

2D profile based on seismic data

3.2.Well to seismic tie
In this study, pots stack seismic lines of the Hendijan were employed to investigate the proposed
methodology of pore typing based on seismic data. A snapshot of CDP gathers after pracessing
displayed in Fig. 4a. As is seen, the general quality of seismic data isvijbdidquencies ranging

from 0 to 80 Hz (average 30 HZ)he main processingtepsapplied on raw seismic data include
demultiplexing, despiking, trace normalization, normalvenmut, CMP Stack, migration and
scaling. Firstly, well log data were correlated to seismic data. Synthetic seismograms were
generated for the available wells including 9D, HD-03 and HD05. The acoustic velocities

from theDT logs were multiplied by th&HOB values from density logs tderivethe acoustic
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impedancedata The acoustiampedance wasappedto reflection coefficient which was then
transformedrom depth to timdy using grobercheck shot velocity relatiohastly, thereflection
coefficient in time was convolved with a suitallavelet togenerate synthetic seismograrmhe
transformatiorfrom depth tahe time domainof thewell logs wascarried outby applyingcheck

shot dataavailablefor the studied wells. It was necessary to create synthetics and extract the
wavelets iteratively for the placement of the log data in tBoueh a processlowed forchecking

thewell logs and their associatéarmationtops with thecompositeseismictracein time domain
Composite trace, which is a single average trace around the borehole, is derived by averaging
neighboring traces. The averaging was defined by a neighborhood radius of 1, which means one
neighboring CDP away from the welNas used intte averaging procesés an example, the
synthetic seismograrior well HD-03 is illustrated in Fig.4b. As shown the correlation between

the synthetic sismogram irthe blueand composite &ce in recat the mentioned welbcation is

0.755.

3.3.Inverting seismicdata to acoustic impedance

In this study, the main motivation to do seismic invers®toiprovide an appropriate input for
pore type determination from a set ofulefined seismic attributed.

The inversion process stated in tinanuscript is the algorithm by which we analyze stacked
seismic traces and attempt to estimate and rebuild the velocity or impedance structure of the
earth. The fundamental model omigh inversion is based is theDL.convolutional model as

following.

T(0) = & r() W(i-+1)+n(i) Eq. (8)

WhereT(i): seismic tracer(j): zercoffset reflectivity of the earth expressed as a time series
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W(i): seismic wavelet, assumed to be conssaain(i) is measurement noise

The inversion algorithm tries to remove the extedctvavelet W(i), from seismic traces. This
process is called deconvolutioBy minimizing the observed difference between the synthetic
seismogram and the composite trace the acoustic impedance is estinatedingly, inversion

is determining the reftgivity, r(j), given the seismic trace, T(i). Reflectivity results in acoustic

impedance of aesies of layers in the earth by

~_10) - 1G-1)
rg) = m Eq. (9)

where I(j) is acoustic impedance derived from multiplying density and velocity.

The acoustic impedance derived from seismic data has a strong relationship with porosity from
corresponding pore typeBor this purpose, first an initial geological model was created. Initial
geological model is the basis for acoustic impedance inven$waismic data. Actually, inversion
algorithm modifies the initial geological model through different iterations until a good match is
obtained between synthetic traces and seismic trace. It is a low frequency model created by
interpolating well logs. Semic horizons are used as a guide for interpolation of well logs as they

show structural and stratigraphic constrains to the model.

After performing well to seismic tie and creating appropriate synthetic seismogeams,
appropriate wavelet was extracteaml be used in deconvolution procegdl modern seismic
inversion methods require seismic data and a wavelet estimated from the data. Typically, a
reflection coefficient series from a well within the boundaries of the seismic survey is used to
estimate thevavelet phase and frequency. Accurate wavelet estimation is critical to the success of
any seismic inversion. The inferred shape of the seismic wavelet may strongly influence the
seismic inversion results and, thus, subsequent assessments of the rgsalityir

9
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In this study, amplitude and phase spectra avelet were estimated statisticallfrom a
combination of seismic data and well congrédr whichsonic and density curvegere available
The extracted waveletasappliedto estimateeflection oefficients When the estimatezbnstant
phase of the wavelet is good agreememtith the final result, the wavelet estimation converges
more quickly tharihe case of using zero phase assumption. Errors in weleismidie cancause
frequency ormphase artifacts in the waveleixtraction processl he identified waveletis used to
createa synthetiaeflection coefficientfor every seismic tracé=inally, the estimated reflection
coefficients areonvolved with theextractedwavelet togeneratesyntheic seismic traces which
are compared to the original seismidie results of acoustic impedance inverdmwmone of 2D
section from the Hendijan oilfieldre displayed in Figs. The inverted section is valid for the
interval between Ghar top anahdum top for which wavelet has been extractedar member is
the most prolific reservoir unit in the studied fieldeWHD-03 cuts through the secti@nd color

legend represents the value of acoustic impedance variations.

3.4.Seismic dtributes extraction

Acoustic impedance is an important attribdegived from seismic inversion. However, using the
acoustic impedance alone does not seem to be a perfect way to predict rgsge/oipe The
primary goal of seismic surveyis to map thesubsurfacefeaturesand structures, properly

Assuming that themplitudes of seismic tracese correctlyobtained a set ofamplitudebased

mathcalculation referred to as seismic attributes can be derived and used in interpretation. A set

of twenty-four attributes such aastantaneous frequency, Hilbert transfoamplitude derivatives
and dominant frequenayere extracted frorthe availablgoststack seismic dat#ttributes are

guantities which extracted from raw seismic data and can be very useful for estirastingir

10
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rock propertiesThey were used to find the appropriate predictors besides inversion result in the

neural network structur® generateelocity deviatiorsections

3.5Extracting porosity and velocity deviation sections

The acoustic inversion seismic data together with the extracted seismic atiibtgasvestigated

to find the appropriate set of inputs for estimation of porosity and velocity devi@oorelation
betweertheacoustic impedance versus porosity and straiel timeare shownn Fig. 6& 7. As

is se@, porosity and DT log show an inverse relationshigh acoustic impedancgerived from
inversion result confirming the validity of inversion resuitcordingly, inversion resultsiere
considered as the main input for velocity deviation mappiingre arenanyseismic attributes

that could beonsidereds inputsbut thosewith the least erroin validationprocess were clsan

for trainingthe neural networkThe strategyor finding auitable attribute is téind the best single
attribute, then the best pair of attributes, then the best triplet of attributes, etc. At each stage, the
thresholdfor choosinghe "best'setis based on theot mean squa prediction error, i.e., the best

setis the one thaestimategshe targe logs with the least RMS erroHampsorRussell useér s

guide 20149.

In order tofix theresolutionproblem betweewell logs and seismic data a cofivional operator
(operator length5) was usedEach seismic attribute will repeat by the length of convolutional
operator through upward and downward shifting of all samples in that atttitaitieg eight input

seismic attributes with operator length of five results in 40 seismic attributes. Eagficseis
attribute will repeat five times through time sangsaift of-2 , 1 1, 0 ,Thistagproach d + 2.
which was proposed by Hampson et al. (20@hproved the efficiency of the well to seismic
mapping procedurds is seen in Fig8, running the model®r porosity estimation with operator

length = 5 proposes eight input predictor attributes including acoustic impedance, integrated

11
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absolute amplitude, quadrature trace, instantaneous phase, amplitude weighted cosine phase,

apparent polarity, filter 50/2@5/20 and amplitude envelope.

For the case of sonic transit time the nine optimal ingkits 9) including acoustic impedance,
integrated absolute amplitude (amplitude), integrate, integrated absolute amplitude (Al), apparent
polarity, integrate, amplitude weighted phase, second derivative instantas@piiside and

second derivative were usedthe neuralnetwork structure.

Although seismic attributes are mathematical calculation, following justifications can be made to
link them to rock physics and pore types variations.

Acoustic impedance is the product of density and velocity showing the estocayrelation with

both porosity and DT logs. Amplitudeased attributes such as integrated absolute amplitude,
integrate, second derivative absolute amplitude, amplitude envelope, integrated absolute amplitude
guadrature trace and frequency filters eglated to changes in subsurface rocks lithology and
porosity. Sharp changes in lithology and pore types can cause strong amplitude anomalies.
Apparent polarity is sensitive to lateral changes of polarity along a seismic reflection. It is closely
connectd to reflection strength which is used to identify bright/dim/flat spots. Lateral porosity,
lithology and fluid variations affect reflection polarity. Instantaneous phase and amplitude
weighted phase are sensitive to pore types and acoustic impedancehsincan cause local

phasing.

A crossvalidation method was used to prevent etvaming problem and to measure the reliability

of the models. That is, the training process was repeated as many times as there are wells, each
time leaving out a differd well dataset to measure the performance of the mddedsworth
mentioning one of the main advantages of PNNs over other intelligent systems is their very limited
parameter setting. For this reason, they less perform as black boxes. As is seba &lgorithm

12
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of neural network (Appendix 1), the only parameter of the PNN which needs to be optimized is

scal e par ameing¢he scdlelparameter pot kifkisfactoryesults were obtained.

After selection of appropriate inputs and tunargl vdidating neural networkmodels(Fig. 10 &

11) porosity and sonic transit time were estimated over the interval of int@testest of the
process which includeseismic based velocity deviation calculations from estimated porosity and
sonic travel timeectionswasdone in MATLAB environmentFor this purpose, seismic data with
SEGY format were converted to ASCII format so that they can be read and stored in Matrix files
of MATLAB. By using the graphical representation functions of MATLAB all results were
visualized and interprete@ flow chart showing thetgys of creating aelocity deviation section

is shown in Fig. 12.

4. Results and discussion

The results ofkeismicderived porosity and sonic transit time are shown irs.Fi$ and 14.
Through perfornmg a sequence of calculations by using equatibnhrough 7 in MATLAB
programming environment a section of velocity deviation was achievedl@jigSuch a section

is very useful inthe interpretationof pore typs distribution and changes in interll spaces.
Seismic velocity deviation section can be use@etyping. There is a good agreement between
the pore types recommended by VDL log and those derived througsetttion studies. The main
pore types ideified within each microfacies are closely connected to their corresponding velocity
deviation valuesAccordingly, the reservoir rocks can be classified into three Zmasesd on their
velocity deviation valueas follows.

Zones with positive deviationgVDL> +500 m/s), the estimated velocity is less than the sonic

velocity which is in relation tthe presencef isolated pores such amdggy or moldic porosities.

13
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Sonic logs are more sensitive to primary and connected porosities for which neutron and density
logs measure higher porosities in comparison to sonic porosity causiugitare velocity
deviation. They are characterized by redteencolors in the veloity deviation section shown in

Fig. 15.

Zones with approximately zero deviationdedicated to zones withter crystallinginter granular
andmicro porosity these pore types due to good sorting and connected pore throat usually indicate
zones with googhore connectivityexceptmicro porosityin which despitezero VDL amounts has

low pore connectionsThey are characterized by small negative or positive deviatires(-

500< VDL <+500 m/s) called zero deviationghey are characterized bight blueto bluecolors

in the velocity deviation section shown in Figh.

Zone with negative deviations(VDL<-500 m/s) where that the estimated velocity based on
neutrondensity logs is more than the real velocity derived ftb@soniclog. Such a case happens

in fractured rocks, gas bearing zones or rocks containing interconnected and connected pores for
which a higher sonic travel time (lower velocity) is recorded. Accordingly, porosity derived from
thesoniclog is higher than neutron or density logsiegativevelocity deviation zones. Negative
deviation zones appear dark blueto purplecolorsin Fig. 15.

Looking atthe 2D porosity sectiothefirst thing drave attention is fairly low porosity distribution
overthe Asmarireservoir, but on the other hand whée reservoiproductionis reviewed it is
reported as prolific reservoir(according to wells report, production ratetbé studied zone is

about 750 chic meter per day) The only reason ofsuch ahigh productivity is fracturel
development causing negative velocity deviatidngact, fractures have low role in the total
porosityvalues but evena small amount of fractures really effective in reservopermeability

enhancemenReservois with fracture usuallyproducemore than expected.

14



[EEN

10

11

12

13

5. Conclusion

In this study, through series of sequential calculations on well log dataustiampedanceand
seismicattributes a section of velocity deviation was created over the A$foamationin the
Hendijan oilfield. There is a good agreement betweemeabelts ofpetrographic studiesndthe
well log derived pore types based on VDL. The Asnranmationwas divided into three zones
based on seismic velocity deviation. Positive deviatgneater than +500 miadicate isolated
pore types such anoldic andvuggyporosities. Intercrystalline and microporosities are the main
causerof zero deviationbetween-500 and +500 m/s VDL. Negative deviationsinder-500

are created as a resulttbé dominanceof connected porosities and possibly fractures. Generally,
AsmariFormationin the studied field is characterizeddfyequencyof low porosities and sthigh
productivity is related to occurringf natural fractures.

It is expected to usthe methodology described in this study paretyping in othercarbonate

reservois to reduce the uncertaintglated tareservoirstatic and dynamimodels.
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Fig.3.Photomicrographs showing different pore types of Asmari formation and their corresponding velocity deviation.
Values inside the parenthesis indicate approximate velocity deviation for each microfacies. (a) bioclasic floatstone
with microporositieg+250 m/s), (b) mixed carbonate/clastic microfacies with cemented porosities (+58 m/s), (c)
bioclastic wackestone to packstone with some interpartcile porosities (n/s), (d) dolomitized mudstone with
intercrystalline and microporositiesl(l6 m/s), (epeloidal packstone to wackestone with microporosi@8 m/s),

(f) bioclstic ooil grainstone with interparticle porosit {00 m/s), (g) fractured dolomudstone to wackeste?w20

m/s), (h) dolomitic wackestone to packstone with clastic debris amdriygtalline porosity,492 m/s), (i) bioturbated
mudstone to wackestone with microporosity (+435 m/s)
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Fig. 4b. Synthetic seismogram showing well to seismic ties witlretation of 0.755, well HBD3. Gamma ray,
side plots represent seismic section (black), composite trace (red) and synthetic seigbiogjam



Fig. 5. A 2D section showing the results of acoustic impedance inversion. Ghar member of Asmari formation is
generally characterized by low to medium acoustic impedance
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