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Abstract: 8 

Velocity deviation log (VDL) is a synthetic log used to determine pore types in reservoir rocks 9 

based on a combination of the sonic log with neutron-density logs. The current study proposes a 10 

two steps approach to create a map of porosity and pore type by integrating the results of 11 

petrographic studies, well logs and seismic data. In the first step, velocity deviation log was created 12 

from the combination of the sonic log with the neutron-density log. The results allowed identifying 13 

negative, zero and positive deviations based on the created synthetic velocity log. Negative 14 

velocity deviations (below -500 m/s) indicate connected or interconnected pores and fractures, 15 

while positive deviations (above +500 m/s) are related to isolated pores. Zero deviations in the 16 

range of [-500m/s, +500m/s] are in good agreement with intercrystalline and microporosities. The 17 

results of petrographic studies were used to validate the main pore type derived from velocity 18 

deviation log. In the next step, velocity deviation log was estimated from seismic data by using a 19 

probabilistic neural network model. For this purpose, the inverted acoustic impedance along with 20 

the amplitude based seismic attributes were formulated to VDL. 21 
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The methodology is illustrated by performing a case study from the Hendijan oilfield, northwestern 1 

Persian Gulf. The results of this study show that integration of petrographic, well logs and seismic 2 

attributes is an instrumental way for understanding the spatial distribution of main reservoir pore 3 

types.  4 

Keywords: Pore type, well logs, 2D VDL section, petrographic studies, Hendijan oilfield, Persian 5 

Gulf 6 

1. Introduction  7 

Carbonate reservoirs show higher complexity in comparison to their sandstone counterparts. This 8 

is due to their depositional heterogeneities inherited from lateral and vertical facies changes, which 9 

causing a complex pore type and size system (Wayne 2008). In addition, secondary diagenetic 10 

processes enhance these primary complexity and heterogeneity. Thus, one of the most important 11 

challenges in carbonate reservoir study is pore typing. Pore types determine the trend of 12 

permeability and using the velocity deviation log (VDL) can help petrophysicists to determine 13 

them from well logging data. Laboratory research shows that sonic wave velocity, in addition to 14 

volumes of porosity, depends on pore types. Velocity deviation log, as introduced by Anselmetti 15 

and Eberli (1999), is an important tool for pore typing of carbonate reservoirs.  16 

Most productive Iranian petroleum reservoirs are carbonate reservoirs in which some diagenetic 17 

overprints such as compaction, anhydrite plugging, cementation and over dolomitization have 18 

reduced their quality during the geological time but fractures usually make them more prolific 19 

(Wayne 2008). These fractures generally playing the main role in reservoir permeability increase 20 

and production.  21 

In recent years an increasing trend for incorporation of seismic data into petrophysical 22 

investigations and interpretations is observed (e.g. Ouenes, 2000; Hampson et al., 2001; Doyen 23 
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2007, Kadkhodaie-Ilkhchi et al., 2009, Dezfoolian et al., 2013, Yarmohammadi, et al., 2014; 1 

Nouri-Taleghani et al., 2015; Nourafkan and Kadkhodaie-Ilkhchi, 2015; Kosari et al., 2015, 2 

Golsanami et al., 2015). Through inversion of amplitude based seismic data to acoustic impedance, 3 

many geological and petrophysical interpretations can be made. Acoustic impedance is highly 4 

under the influence of density and sonic compressional velocity, that both related to rocks 5 

properties.  6 

The Hendijan oilfield (Fig. 1) is located 55 kilometers west of Bahregan District, Persian Gulf. 7 

The Oligo-Miocene Asmari Formation is currently the main reservoir unit of the Hendijan oilfield. 8 

The mixed carbonate and siliciclastic interval of Asmari Formation is characterized by a 9 

transgressive-regressive cycle formed under shallow marine and marine marginal/lagoonal waters 10 

in an overall regressive environment. The carbonate interval represents a westward extension of 11 

the productive Asmari Formation and the Ghar sandstone corresponds to the Ahwaz Member 12 

deposited in an onshore environment. 13 

The current study reaps the benefits of both core and log data to generate a most reliable pore type 14 

log for the Asmari Formation at three wells of the studied field. Afterward, seismic data are 15 

inverted to acoustic impedance and then correlation models are established between inversion 16 

results and the most relevant seismic attributes by using probabilistic neural networks to generate 17 

a section of porosity and pore types. 18 

It is worth mentioning that the neural network model for rock properties estimation is not a novel 19 

topic and is mainly based on other researcherôs work but it could be claimed that the current study 20 

is the first report of pore types determination from seismic data. The methodology is 21 

straightforward, robust and easy to implement.  22 
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2. Methodology 1 

The current study proposes a two steps approach to create a map of porosity and pore types by 2 

integration of petrographic studies results, well logs and seismic data in the Asmari reservoir. In 3 

the first step, velocity deviation log is created from a combination of sonic log, neutron and density 4 

logs. Then, the results of velocity deviation log are validated by using petrographic studies results. 5 

In the next step, velocity deviation log is estimated from seismic data by using a probabilistic 6 

neural network model. For this purpose, intelligent formulations are made between inversion result 7 

(acoustic impedance) and the amplitude based seismic attributes. 8 

Laboratory measurement on more than 300 samples reveals that sonic velocity in rocks in addition 9 

to porosity volume, highly depends on porosity types (Anselmetti and Eberli 1999). Actually, there 10 

is a negative correlation between porosity values and velocity. Frame-forming porosities (such as 11 

moldic or intra-fossil porosity), result in significantly higher velocity values at equal total 12 

porosities than porosities which are not embedded in a rigid rock frame, such as interparticle 13 

porosity or microporosity. 14 

As defined by Anselmetti and Eberli (1999), velocity deviation log is defined as the difference 15 

between real and synthetic sonic velocity of rocks (Eq. 1). 16 

1000)( ³-= synVpVpVDL  Eq. (1) 

Where VDL is velocity deviation (m/s), Vp is compressional velocity (Km/s) and Vpsyn is synthetic 17 

compressional velocity (Km/s). 18 

Compressional and synthetic velocity are easily derived from sonic logs by using Eq. (2) &  19 

Eq. (3) 20 
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=            Eq. (3) 2 

where DT is sonic log values in µs/ft and 304.8 is a conversion factor to calculate Vp in Km/s. 3 

DTsyn in equation 3 refers to synthetic compressional velocity and is calculated  mainly based on 4 

Wyllieôs equation (1956). The general form of Wyllieôs equation is expressed as Eq. (4) 5 

fm DTDTDT jj+-= )1(          Eq. (4) 6 

where j is porosity, DT refers to sonic wave travel time measured by logging tool, DTm and DTf 7 

are sonic wave travel time in rock matrix and fluid occupied flushed zone, respectively. They were 8 

taken as 47, 55 and 189 µs/ft for sandstone, limestone and flushed zone fluid respectively 9 

(Schlumberger, 2009). 10 

To calculate porosity, Eq. (4) can be rearranged as below. 11 

mf

m

DTDT

DTDT

-

-
=j           Eq. (5) 12 

As is seen, the aim of Eq. (5) is to determine unknown porosity from the known parameters of 13 

sonic transit time measured by logging tool, fluid and matrix transit times.  14 

Assuming that porosity is already determined from neutron or density log, Eq. (5) can be solved 15 

to find X or synthetic sonic wave travel time as follows. 16 
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To calculate X, Eq. (6) can be rearranged as below. 1 

(NDX j= mmf DTDTDT +- )          Eq. (7) 2 

The value derived from solving Eq. (1) is called velocity deviation and can either be a positive or 3 

a negative value. The magnitude of the velocity deviation positively or negatively is directly 4 

related to the pore types and their distribution in a reservoir rock.     5 

Inversion of seismic data is a common method for estimating subsurface layers acoustic impedance 6 

from gathered seismic data. Using acoustic impedance could provide a meticulous geological 7 

interpretation in detail and prevent geoscientist from misleading about subsurface. Most petroleum 8 

companies use seismic inversion to reduce uncertainty in subsurface studies and to improve the 9 

estimation of reservoir rock properties such as porosity and lithology because of its performance 10 

and usefulness  (Pramanik et al., 2002; Gavotti et al., 2012).  11 

Probabilistic neural network (Wang et al., 2015)  are now well-known methods to solve non-linear 12 

and complicated problems Many companies have now included neural network models in their 13 

commercial software packages. In the current study, they will be used as intelligent tools to 14 

estimate velocity deviation from seismic attributes. For this purpose, neural network tools of the 15 

MATLAB and Hampson Russell software available in the Curtin University of Western Australia 16 

(Perth) were used. 17 

3. Application to the Hendijan oilfield 18 

3.1. Calculating velocity deviation from porosity logs 19 

In the first step, it was necessary to check well logs quality and make sure about their correctness. 20 

Well logs were checked for problems related to washouts, depth shifting, log tails, abnormal 21 

logging ranges and spikes. Afterwards, velocity deviation log was calculated throughout the 22 
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Asmari formation by using equations 1 through 7 from neutron, density and sonic log (Fig. 2). 1 

Velocity deviation log is shown in the left tracks of Fig. 2. Sonic and density logs are shown on 2 

the right tracks and the middle track represents NPHI log. Negative deviations indicate connected 3 

porosities and in some cases fractures, while positive deviations are indicative of isolated pore 4 

types such as moldic and vuggy porosity. Zero deviations show intercrystaline and micro-5 

porosities. 6 

In order to validate pore types derived from VDL, the result of petrographic studies were 7 

employed. Photomicrographs showing the main facies of Asmari formation along with their main 8 

pore types and velocity deviation are displayed in Fig. 3. As is seen, there is a good agreement 9 

between the pore types recommended by VDL log and those derived through thin-section studies. 10 

The main pore types identified within each microfacies are closely connected to their 11 

corresponding velocity deviation values. In the light of acceptable results of pore typing from a 12 

combination of log and core data, the velocity deviation logs were subjected to further study in a 13 

2D profile based on seismic data. 14 

3.2. Well to seismic tie 15 

In this study, pots stack seismic lines of the Hendijan were employed to investigate the proposed 16 

methodology of pore typing based on seismic data. A snapshot of CDP gathers after processing is 17 

displayed in Fig. 4a. As is seen, the general quality of seismic data is good with frequencies ranging 18 

from 0 to 80 Hz (average 30 Hz). The main processing steps applied on raw seismic data include 19 

demultiplexing, despiking, trace normalization, normal move out, CMP Stack, migration and 20 

scaling. Firstly, well log data were correlated to seismic data. Synthetic seismograms were 21 

generated for the available wells including HD-01, HD-03 and HD-05. The acoustic velocities 22 

from the DT logs were multiplied by the RHOB values from density logs to derive the acoustic 23 



8 
 

impedance data. The acoustic impedance was mapped to reflection coefficient, which was then 1 

transformed from depth to time by using a prober check shot velocity relation. Lastly, the reflection 2 

coefficient in time was convolved with a suitable wavelet to generate a synthetic seismogram. The 3 

transformation from depth to the time domain of the well logs was carried out by applying check 4 

shot data available for the studied wells. It was necessary to create synthetics and extract the 5 

wavelets iteratively for the placement of the log data in time. Such a process allowed for checking 6 

the well logs and their associated formation tops with the composite seismic trace in time domain. 7 

Composite trace, which is a single average trace around the borehole, is derived by averaging 8 

neighboring traces. The averaging was defined by a neighborhood radius of 1, which means one 9 

neighboring CDP away from the well was used in the averaging process. As an example, the 10 

synthetic seismogram for well HD-03 is illustrated in Fig. 4b. As shown the correlation between 11 

the synthetic seismogram in the blue and composite trace in red at the mentioned well location is 12 

0.755.  13 

3.3. Inverting  seismic data to acoustic impedance 14 

In this study, the main motivation to do seismic inversion is to provide an appropriate input for 15 

pore type determination from a set of pre-defined seismic attributed.  16 

The inversion process stated in this manuscript is the algorithm by which we analyze stacked 17 

seismic traces and attempt to estimate and rebuild the velocity or impedance structure of the 18 

earth. The fundamental model on which inversion is based is the 1-D convolutional model as 19 

following. 20 

j

T(i) = r(j) W(i-j+1)+n(i)ä
         21 

Where T(i): seismic trace, r(j): zero-offset reflectivity of the earth expressed as a time series 22 

Eq. (8) 
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W(i): seismic wavelet, assumed to be constant and n(i) is measurement noise 1 

The inversion algorithm tries to remove the extracted wavelet, W(i), from seismic traces. This 2 

process is called deconvolution. By minimizing the observed difference between the synthetic 3 

seismogram and the composite trace the acoustic impedance is estimated. Accordingly, inversion 4 

is determining the reflectivity, r(j), given the seismic trace, T(i). Reflectivity results in acoustic 5 

impedance of a series of layers in the earth by 6 

  

I(j) - I(j-1)
r(j) = 

I(j) + I(j-1)            7 

where I(j) is acoustic impedance derived from multiplying density and velocity. 8 

The acoustic impedance derived from seismic data has a strong relationship with porosity from 9 

corresponding pore types. For this purpose, first an initial geological model was created. Initial 10 

geological model is the basis for acoustic impedance inversion of seismic data. Actually, inversion 11 

algorithm modifies the initial geological model through different iterations until a good match is 12 

obtained between synthetic traces and seismic trace. It is a low frequency model created by 13 

interpolating well logs. Seismic horizons are used as a guide for interpolation of well logs as they 14 

show structural and stratigraphic constrains to the model. 15 

After performing well to seismic tie and creating appropriate synthetic seismograms, an 16 

appropriate wavelet was extracted to be used in deconvolution process. All modern seismic 17 

inversion methods require seismic data and a wavelet estimated from the data. Typically, a 18 

reflection coefficient series from a well within the boundaries of the seismic survey is used to 19 

estimate the wavelet phase and frequency. Accurate wavelet estimation is critical to the success of 20 

any seismic inversion. The inferred shape of the seismic wavelet may strongly influence the 21 

seismic inversion results and, thus, subsequent assessments of the reservoir quality.  22 

Eq. (9) 



10 
 

In this study, amplitude and phase spectra of wavelet were estimated statistically from a 1 

combination of seismic data and well controls for which sonic and density curves were available. 2 

The extracted wavelet was applied to estimate reflection coefficients. When the estimated constant 3 

phase of the wavelet is in good agreement with the final result, the wavelet estimation converges 4 

more quickly than the case of using a zero phase assumption. Errors in well to seismic tie can cause 5 

frequency or phase artifacts in the wavelet extraction process. The identified wavelet is used to 6 

create a synthetic reflection coefficient for every seismic trace. Finally, the estimated reflection 7 

coefficients are convolved with the extracted wavelet to generate synthetic seismic traces which 8 

are compared to the original seismic. The results of acoustic impedance inversion for one of 2D 9 

section from the Hendijan oilfield are displayed in Fig. 5. The inverted section is valid for the 10 

interval between Ghar top and Jahrum top for which wavelet has been extracted. Ghar member is 11 

the most prolific reservoir unit in the studied field. Well HD-03 cuts through the section and color 12 

legend represents the value of acoustic impedance variations.  13 

3.4. Seismic attributes extraction 14 

Acoustic impedance is an important attribute derived from seismic inversion. However, using the 15 

acoustic impedance alone does not seem to be a perfect way to predict reservoir pore type. The 16 

primary goal of seismic survey is to map the subsurface features and structures, properly. 17 

Assuming that the amplitudes of seismic traces are correctly obtained, a set of amplitude-based 18 

math calculation referred to as seismic attributes can be derived and used in interpretation. A set 19 

of twenty-four attributes such as instantaneous frequency, Hilbert transform, amplitude derivatives 20 

and dominant frequency were extracted from the available post-stack seismic data. Attributes are 21 

quantities which extracted from raw seismic data and can be very useful for estimating reservoir 22 
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rock properties. They were used to find the appropriate predictors besides inversion result in the 1 

neural network structure to generate velocity deviation sections. 2 

3.5.Extracting porosity and velocity deviation sections 3 

The acoustic inversion seismic data together with the extracted seismic attributes were investigated 4 

to find the appropriate set of inputs for estimation of porosity and velocity deviation. Correlation 5 

between the acoustic impedance versus porosity and sonic travel time are shown in Fig. 6 & 7. As 6 

is seen, porosity and DT log show an inverse relationship with acoustic impedance derived from 7 

inversion result confirming the validity of inversion result. Accordingly, inversion results were 8 

considered as the main input for velocity deviation mapping. There are many seismic attributes 9 

that could be considered as inputs, but those with the least error in validation process were chosen 10 

for training the neural network. The strategy for finding suitable attribute is to find the best single 11 

attribute, then the best pair of attributes, then the best triplet of attributes, etc. At each stage, the 12 

threshold for choosing the "best" set is based on the root mean square prediction error, i.e., the best 13 

set is the one that estimates the target logs with the least RMS error (Hampson-Russell userôs 14 

guide, 2014). 15 

In order to fix the resolution problem between well logs and seismic data a convolutional operator 16 

(operator length= 5) was used. Each seismic attribute will repeat by the length of convolutional 17 

operator through upward and downward shifting of all samples in that attribute. Having eight input 18 

seismic attributes with operator length of five results in 40 seismic attributes. Each seismic 19 

attribute will repeat five times through time samples shift of -2, ī1, 0, +1 and +2. This approach, 20 

which was proposed by Hampson et al. (2001), improved the efficiency of the well to seismic 21 

mapping procedure. As is seen in Fig. 8, running the models for porosity estimation with operator 22 

length = 5 proposes eight input predictor attributes including acoustic impedance, integrated 23 
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absolute amplitude, quadrature trace, instantaneous phase, amplitude weighted cosine phase, 1 

apparent polarity, filter 50/10-15/20 and amplitude envelope.  2 

For the case of sonic transit time the nine optimal inputs (Fig. 9) including acoustic impedance, 3 

integrated absolute amplitude (amplitude), integrate, integrated absolute amplitude (AI), apparent 4 

polarity, integrate, amplitude weighted phase, second derivative instantaneous amplitude and 5 

second derivative were used in the neural network structure.  6 

Although seismic attributes are mathematical calculation, following justifications can be made to 7 

link them to rock physics and pore types variations. 8 

Acoustic impedance is the product of density and velocity showing the strongest correlation with 9 

both porosity and DT logs. Amplitude-based attributes such as integrated absolute amplitude, 10 

integrate, second derivative absolute amplitude, amplitude envelope, integrated absolute amplitude 11 

quadrature trace and frequency filters are related to changes in subsurface rocks lithology and 12 

porosity. Sharp changes in lithology and pore types can cause strong amplitude anomalies.  13 

Apparent polarity is sensitive to lateral changes of polarity along a seismic reflection. It is closely 14 

connected to reflection strength which is used to identify bright/dim/flat spots. Lateral porosity, 15 

lithology and fluid variations affect reflection polarity. Instantaneous phase and amplitude 16 

weighted phase are sensitive to pore types and acoustic impedance since they can cause local 17 

phasing.    18 

A cross-validation method was used to prevent over-training problem and to measure the reliability 19 

of the models. That is, the training process was repeated as many times as there are wells, each 20 

time leaving out a different well dataset to measure the performance of the models. It is worth 21 

mentioning one of the main advantages of PNNs over other intelligent systems is their very limited 22 

parameter setting. For this reason, they less perform as black boxes. As is seen from the algorithm 23 
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of neural network (Appendix 1), the only parameter of the PNN which needs to be optimized is 1 

scale parameter (ů). Optimizing the scale parameter to 1.0 satisfactory results were obtained. 2 

After selection of appropriate inputs and tuning and validating neural network models (Fig. 10 & 3 

11) porosity and sonic transit time were estimated over the interval of interest. The rest of the 4 

process which includes seismic based velocity deviation calculations from estimated porosity and 5 

sonic travel time sections was done in MATLAB environment. For this purpose, seismic data with 6 

SEGY format were converted to ASCII format so that they can be read and stored in Matrix files 7 

of MATLAB.  By using the graphical representation functions of MATLAB all results were 8 

visualized and interpreted. A flow chart showing the steps of creating a velocity deviation section 9 

is shown in Fig. 12. 10 

4. Results and discussion 11 

The results of seismic derived porosity and sonic transit time are shown in Figs. 13 and 14. 12 

Through performing a sequence of calculations by using equations 1 through 7 in MATLAB 13 

programming environment a section of velocity deviation was achieved (Fig. 15). Such a section 14 

is very useful in the interpretation of pore types distribution and changes in inter-well spaces. 15 

Seismic velocity deviation section can be used for pore typing. There is a good agreement between 16 

the pore types recommended by VDL log and those derived through thin-section studies. The main 17 

pore types identified within each microfacies are closely connected to their corresponding velocity 18 

deviation values. Accordingly, the reservoir rocks can be classified into three zones based on their 19 

velocity deviation values as follows. 20 

Zones with positive deviations (VDL> +500 m/s), the estimated velocity is less than the sonic 21 

velocity which is in relation to the presence of isolated pores such and vuggy or moldic porosities. 22 
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Sonic logs are more sensitive to primary and connected porosities for which neutron and density 1 

logs measure higher porosities in comparison to sonic porosity causing a positive velocity 2 

deviation. They are characterized by red to green colors in the velocity deviation section shown in 3 

Fig. 15. 4 

Zones with approximately zero deviation dedicated to zones with inter crystalline, inter granular 5 

and micro porosity, these pore types due to good sorting and connected pore throat usually indicate 6 

zones with good pore connectivity except micro porosity in which despite zero VDL amounts has 7 

low pore connections. They are characterized by small negative or positive deviation values (-8 

500< VDL < +500 m/s) called zero deviations. They are characterized by light blue to blue colors 9 

in the velocity deviation section shown in Fig. 15.  10 

Zone with negative deviations (VDL<-500 m/s) where that the estimated velocity based on 11 

neutron-density logs is more than the real velocity derived from the sonic log. Such a case happens 12 

in fractured rocks, gas bearing zones or rocks containing interconnected and connected pores for 13 

which a higher sonic travel time (lower velocity) is recorded. Accordingly, porosity derived from 14 

the sonic log is higher than neutron or density logs in negative velocity deviation zones. Negative 15 

deviation zones appear in dark blue to purple colors in Fig. 15.  16 

Looking at the 2D porosity section the first thing draws attention is fairly low porosity distribution 17 

over the Asmari reservoir, but on the other hand when the reservoir production is reviewed, it is 18 

reported as a prolific reservoir (according to wells report, production rate of the studied zone is 19 

about 750 cubic meter per day). The only reason of such a high productivity is fractured 20 

development causing negative velocity deviations. In fact, fractures have a low role in the total 21 

porosity values, but even a small amount of fractures is really effective in reservoir permeability 22 

enhancement. Reservoirs with fracture usually produce more than expected.  23 
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5. Conclusion 1 

In this study, through a series of sequential calculations on well log data, acoustic impedance and 2 

seismic attributes a section of velocity deviation was created over the Asmari Formation in the 3 

Hendijan oilfield. There is a good agreement between the results of petrographic studies and the 4 

well log derived pore types based on VDL. The Asmari Formation was divided into three zones 5 

based on seismic velocity deviation. Positive deviations greater than +500 m/s indicate isolated 6 

pore types such as moldic and vuggy porosities. Intercrystalline and microporosities are the main 7 

causers of zero deviations between -500 and +500 m/s in VDL. Negative deviations under -500 8 

are created as a result of the dominance of connected porosities and possibly fractures. Generally, 9 

Asmari Formation in the studied field is characterized by a frequency of low porosities and its high 10 

productivity is related to occurring of natural fractures. 11 

It is expected to use the methodology described in this study for pore typing in other carbonate 12 

reservoirs to reduce the uncertainty related to reservoir static and dynamic models.   13 
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Fig. 1. Location map of the Hendijan oilfield in Persian Gulf (IOOC reports, 2007) 
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Fig. 1. Calculated VDL profiles (left track) in wells HD-01, HD-03 and HD-05 of Hendijan oilfield. Neutron log is 

displayed in middle track. Composite plot in right track represents overlay of sonic transit time and density logs. 
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Fig.3. Photomicrographs showing different pore types of Asmari formation and their corresponding velocity deviation. 

Values inside the parenthesis indicate approximate velocity deviation for each microfacies. (a) bioclasic floatstone 

with microporosities (+250 m/s), (b) mixed carbonate/clastic microfacies with cemented porosities (+58 m/s), (c) 

bioclastic wackestone to packstone with some interpartcile porosities (-715 m/s), (d) dolomitized mudstone with 

intercrystalline and microporosities (-116 m/s), (e) peloidal packstone to wackestone with microporosity (-208 m/s), 

(f) bioclstic ooil grainstone with interparticle porosity (-1700 m/s), (g) fractured dolomudstone to wackestone (-2420 

m/s), (h) dolomitic wackestone to packstone with clastic debris and intercrystalline porosity, (-492 m/s), (i) bioturbated 

mudstone to wackestone with microporosity (+435 m/s) 
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Fig. 4a. Seismic section showing general quality of post stack seismic data  
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Fig. 4b. Synthetic seismogram showing well to seismic ties with correlation of 0.755, well HD-03. Gamma ray, 

neutron, density, sonic log, neutron-density and velocity deviations logs are show in track 1 through 6 from left. Right-

side plots represent seismic section (black), composite trace (red) and synthetic seismogram (blue).  
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Fig. 5. A 2D section showing the results of acoustic impedance inversion. Ghar member of Asmari formation is 

generally characterized by low to medium acoustic impedance  

 

 


