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Abstract 33 

The Arabian Sea is a heterogeneous region with high coral cover and warm stable conditions at 34 

the western end (Djibouti), in contrast to sparse coral cover, cooler temperatures, and upwelling 35 

at the eastern end (southern Oman). We tested for barriers to dispersal across this region 36 

(including the Gulf of Aden and Gulf of Oman), using mitochondrial DNA (mtDNA) surveys of 37 

11 reef fishes. Study species included seven taxa from six families with broad distributions 38 

across the Indo-Pacific and four species restricted to the Arabian Sea (and adjacent areas). Nine 39 

out of 11 species showed no significant genetic partitions, indicating connectivity between 40 

contrasting environments spread across 2,000 km. One butterflyfish (Chaetodon melannotus) and 41 

a snapper (Lutjanus kasmira) showed phylogenetic divergences of d = 0.008 and 0.048, 42 

respectively, possibly indicating cryptic species within these broadly distributed taxa. These 43 

genetic partitions at the western periphery of the Indo-Pacific reflect similar partitions recently 44 

discovered at the eastern periphery of the Indo-Pacific (the Hawaiian and the Marquesan 45 

Archipelagos), indicating that these disjunctive habitats at the ends of the range may serve as 46 

evolutionary incubators for coral reef organisms.  47 

 48 
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 54 

Introduction 55 

Phylogeographic analyses provide a unique means to detect historical and ecological processes 56 

that may not be apparent from contemporary species distributions (Palumbi 1997; Avise 2000). 57 

Such studies can reveal a diversity of outcomes, even among closely related species with similar 58 

life histories and geographic ranges (Bird et al. 2007; Gaither et al. 2010; Barber et al. 2011; 59 

Carpenter et al. 2011; DiBattista et al. 2012; Fouquet et al. 2012). Conversely, diverse taxa can 60 

also show concordant genetic patterns across broad spatial scales (Toonen et al. 2011; Selkoe et 61 

al. 2014). Multi-taxon studies across regions characterised by spatially and historically variable 62 

environmental conditions (i.e. comparative phylogeography) often generate a better 63 

understanding of how historical processes, environmental gradients, and ecological traits affect 64 

population structure and genetic diversity.  65 

       Comparative phylogeography has been used in many terrestrial and freshwater environments 66 

for delimiting regional phylogeographic patterns (Avise 1992; Hewitt 2000; Soltis et al. 2006; 67 

Waters et al. 2007; Bowen et al. 2016). However, resource and logistical limitations have 68 

restricted multi-taxon studies to only a few coral reef habitats. The Hawaiian Archipelago is a 69 

nearly linear habitat array extending 2,500 km with no obvious physical barriers or strong 70 

oceanographic discontinuities that might lead to hierarchical genetic structuring. Here, isolation 71 

by distance (IBD) was predicted to explain population structure, but multi-species studies across 72 

35 taxa found diverse patterns of genetic structuring including panmixia, chaotic genetic 73 

heterogeneity, regional structuring, as well as IBD (Selkoe et al. 2014). Reef taxa in the Coral 74 

Triangle (centred on Indonesia, the Philippines, and New Guinea) show a similar lack of 75 
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congruence in patterns of genetic structure, which may in part be driven by the complex 76 

geological history of the region (Barber et al. 2011; Carpenter et al. 2011). These studies show 77 

that, like terrestrial and freshwater systems, geological history and species-specific traits may 78 

play a role in determining patterns of population structure and genetic diversity in the coral reef 79 

environment, although this hypothesis has not been formally tested.   80 

      A major difference between marine and terrestrial or freshwater species is that marine 81 

species generally have much larger geographic ranges, which often span vast areas devoid of 82 

suitable habitat. Most reef-associated species also have a dispersive pelagic larval stage that can 83 

potentially connect populations across these uninhabitable areas. Contrary to expectations, the 84 

duration of the pelagic larval phase seems to be a poor predictor of population structure or range 85 

sizes (Weersing and Toonen 2009; Selkoe and Toonen 2011; Luiz et al. 2013; Riginos et al. 86 

2011, 2014; Gaither et al. 2016). Instead, latitudinal range (as a proxy for temperature tolerance), 87 

adult size (Luiz et al. 2012), species abundance (Strona et al. 2012), as well as behavioural 88 

factors (e.g. nocturnal activity and a tendency to school) correlate with range size (Luiz et al. 89 

2012, 2013). The importance of these factors may also vary depending on the size of the 90 

geographic range. A recent study of coral reef fishes indicates that small range endemics are 91 

under a suite of selection pressures that differ from widely distributed taxa, indicating that 92 

adaptation to local environmental conditions may also restrict species ranges (Gaither et al. 93 

2015). Consequently, endemics may be expected to show greater genetic structure than 94 

widespread species (Tenggardjaja et al. 2016), especially across regions that span strong 95 

environmental gradients or have a turbulent geological history. 96 



 

 

5 

 

      Here we use a multi-taxon approach to investigate phylogeographic patterns in the distinct 97 

reef biota of the greater Arabian Sea, a vastly understudied region with diverse coral 98 

communities. The Arabian Sea is at the western margin of the Indo-Pacific and contains a 99 

contact zone between the distinct faunas of the Indo-Polynesian and Western Indian Ocean 100 

provinces (Briggs and Bowen 2012; DiBattista et al. 2015). The Western Indian Ocean province 101 

is bordered in the north by endemic hotspots in the Red Sea and the Arabian Gulf (DiBattista et 102 

al. 2016a), and represents one of the most geologically and oceanographically volatile regions of 103 

the world’s tropical oceans (Cowman and Bellwood 2013; DiBattista et al. 2016a, 2016b).  104 

      Currently, the dominant environmental feature of the Arabian Sea region is the Indian Ocean 105 

monsoon system. The upwelling induced by the southwest monsoon brings changes in 106 

temperature and productivity, especially on the southern coast of Oman (Fein and Stephens 107 

1987), and reversals of monsoon-driven currents prompt strong seasonal variation in temperature 108 

and salinity in the Gulf of Aden (Sofianos et al. 2002; Smeed 2004). Subsequently, dramatic 109 

changes in reef habitats occur over distances of less than 2,000 km, which are well within the 110 

dispersal capacity of most reef fishes (Lessios and Robertson 2006; Keith et al. 2011, 2015). At 111 

the western extreme in the Gulf of Aden, the coastal waters of Djibouti have a high and relatively 112 

stable temperature regime with notable coral cover (Wilkinson 2008), and at the eastern extreme, 113 

the coastline of Oman supports rocky reefs with sparse coral cover and seasonal upwelling 114 

driving changes in productivity (Currie et al. 1973; Savidge et al. 1990; Sheppard et al. 1992; 115 

Barber et al. 2001; McIlwain et al. 2011). Due to the unique geomorphology of the coastline and 116 

seabed (e.g. Hanish Sill in the Strait of Bab al Mandab and Strait of Hormuz constricting the 117 

shallow Arabian Gulf), historic changes in sea level have caused significant alterations in habitat 118 
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availability, oceanographic currents, and environmental conditions (references from DiBattista et 119 

al. 2016a, 2016b). These fluctuations have had profound effects on the evolution of marine 120 

organisms across the region (DiBattista et al. 2016a, 2016b). Specifically, these forces have 121 

generated population genetic structure in some, but not all, species across the boundary of the 122 

Red Sea into the Gulf of Aden, indicating that historical conditions may have influenced each 123 

species differently (DiBattista et al. 2013; Fernandez-Silva et al. 2015; Ahti et al. 2016; Coleman 124 

et al. 2016; Waldrop et al. 2016). 125 

      Here we employ a multi-taxon approach to determine if there are concordant patterns of 126 

genetic structure across this environmentally heterogeneous region. Our sampling design crosses 127 

two previously described barriers to dispersal: the upwelling region off Oman (see Priest et al. 128 

2016), and the Strait of Bab al Mandab, which separates the Red Sea from the adjacent Gulf of 129 

Aden (DiBattista et al. 2016a, 2016b). We focus on 11 reef fishes from six families, with four 130 

range-restricted and seven widespread taxa, and test the hypothesis that endemic species are 131 

more likely to exhibit genetic structure than widespread species in a region where environmental 132 

conditions vary strongly across space and time.. 133 

 134 

 135 

Materials and methods 136 

Sample collections 137 

We collected tissue samples (fin clip or gill filaments) from 11 reef fish species at sites in the 138 

greater Arabian Sea region while scuba diving or snorkelling between 2012 and 2015 (Fig. 1, 139 

Table 1). Geographic coordinates and sample sizes are provided in Table 2. Cases of low (or nil) 140 
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samples for a species from a particular site reflect rarity or complete absence in those locations, 141 

presumably owing to the heterogeneous nature of habitat in this region. Tissues were preserved 142 

in a saturated salt-DMSO solution or 96% ethanol, and subsequently stored at -20 ˚C. Select fish 143 

specimens were vouchered at the California Academy of Sciences (CAS; ESM Table S1). 144 

 145 

Mitochondrial DNA sequencing 146 

Total genomic DNA was extracted using the “HotSHOT” protocol of Meeker et al. (2007). 147 

Fragments of the mitochondrial cytochrome c oxidase subunit I gene (COI) were amplified using 148 

the primers FishF2 and FishR2 (Ward et al. 2005). Polymerase chain reaction (PCR) mixes 149 

contained 7.5 l of BioMix Red (Bioline Ltd., London, UK), 0.26 M of each primer and 5 to 50 150 

ng template DNA in 15 l total volume. PCR conditions included an initial denaturing step at 95 151 

˚C for 3 min, 35 cycles of amplification (30 s of denaturing at 94 ˚C, 60 s of annealing at 50 ˚C, 152 

and 60 s of extension at 72 ˚C), with a final extension at 72 ˚C for 10 min. PCR products were 153 

visualised on 2% agarose gels and purified by incubating with exonuclease I and FastAP™ 154 

Thermosensitive Alkaline Phosphatase (ExoFAP; USB, Cleveland, OH, USA) at 37 °C for 60 155 

min, followed by 85 °C for 15 min. DNA was sequenced in the forward direction (and reverse 156 

direction for questionable haplotypes, N = 5) with fluorescently labelled dye terminators 157 

following manufacturer’s protocols (BigDye; Applied Biosystems Inc., Foster City, CA, USA) 158 

using an ABI 3130XL Genetic Analyzer (Applied Biosystems). The sequences were aligned, 159 

edited and trimmed to a uniform length using GENEIOUS PRO 5.6.7 (Drummond et al. 2009). 160 

Individual mtDNA sequences are deposited in GenBank (accession numbers: XX-XX); mtDNA 161 
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sequences for Chaetodon melapterus were available from a related study in the region 162 

(DiBattista et al. 2015). 163 

      ARLEQUIN 3.5.1.2 (Excoffier et al. 2005) was used to calculate haplotype (h) and nucleotide 164 

diversity (π), as well as to test for population structure. jModelTest 1.0.1 (Posada 2008) was used 165 

to select the best nucleotide substitution model using the Akaike information criterion (AIC). 166 

Genetic differentiation among sampling sites was first estimated with analysis of molecular 167 

variance (AMOVA) based on pairwise comparisons of sample groups; deviations from null 168 

distributions were tested with non-parametric permutation procedures (N = 99,999). Pairwise ΦST 169 

statistics were also calculated in ARLEQUIN, significance tested by permutation (N = 99,999) and 170 

P-values adjusted according to the modified false discovery rate (FDR) method (Narum 2006). 171 

For ΦST calculations, samples were pooled as follows given their close proximity (< 65 km), lack 172 

of genetic differentiation (data not shown) and low individual sample size: 1) Bay de Ghoubett, 173 

Moucha/Maskali, and Obock in Djibouti, 2) Mirbat and Salalah in Oman and 3) Barr Al 174 

Hickman and Masirah Island in Oman.  175 

       Evolutionary relationships among haplotypes were evaluated using median joining spanning 176 

networks (Bandelt et al. 1999) in PopART 1.7 (http://popart.otago.ac.nz). In two cases 177 

(Chaetodon melannotus and Lutjanus kasmira; see Fig. 2), sequences from outside the Arabian 178 

Sea (see DiBattista et al. 2013) were included to highlight the presence of cryptic species within 179 

this region, which was not the case for other surveyed species. Deviations from neutrality were 180 

assessed with Fu’s FS (Fu 1997) for each species using ARLEQUIN; significance was tested with 181 

99,999 permutations.  182 

       183 

http://popart.otago.ac.nz/
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Results 184 

COI sequences from 11 species of reef fish sampled across the Gulf of Aden to Arabian Sea 185 

included 2 to 42 haplotypes. Haplotype (h) and nucleotide (π) diversity ranged from 0.037 to 186 

0.879 and 0.00006 to 0.02933 (Table 1), respectively, with significantly higher nucleotide 187 

diversity values in widespread versus range-restricted fishes (two sample t-test, t = 2.09, df = 40, 188 

P = 0.043) but no discernable geographical trends across the Arabian Sea (One-way ANOVA, F 189 

= 0.75, df = 6, P = 0.61; see Fig. 3). Higher nucleotide diversity values in widespread versus 190 

range-restricted fishes remained significant after excluding L. kasmira (two sample t-test, t = 191 

2.08, df = 38, P = 0.044), an apparent outlier in the data set. This disparity in genetic diversity 192 

also does not appear to be driven by a sampling bias towards widespread versus range-restricted 193 

fish given a lower average sample size in the former (ESM Fig. S1). With two exceptions (C. 194 

melannotus and L. kasmira), the most common haplotype within a species was shared across 195 

sampling locations (Fig. 4). Analyses of molecular variance revealed significant population 196 

structure only for these two widespread species, C. melannotus (ΦST = 0.813, P < 0.001) and L. 197 

kasmira (ΦST = 0.838, P < 0.001), differentiated at Oman to Socotra and Djibouti to Somalia, 198 

respectively (also see ESM Table S2). These partitions are matched by divergences seen in the 199 

median joining spanning networks that include outgroup sequences (i.e. central Red Sea, 200 

Seychelles, and Maldives; see Fig. 2), invoking the possibility of cryptic species. The Red Sea to 201 

Djibouti lineage of C. melannotus is distinguished from a widespread Indian Ocean lineage 202 

(Socotra to Maldives) by five fixed substitutions (d = 0.008). The divergence is much larger for 203 

L. kasmira, 22 fixed substitutions (d = 0.048), distinguishing a Red Sea/Djibouti/Somalia to 204 

Seychelles lineage and a Socotra to Oman lineage, with both lineages observed in Djibouti. 205 
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Despite the strong genetic differences within both C. melannotus and L. kasmira, no 206 

morphological or meristic differences were observed in preliminary examinations by L.A.R (also 207 

see ESM Table S1). Tests for COI neutrality revealed negative and significant Fu’s FS values in 208 

7 of the 11 species (Fu’s Fs = -27.39 to 4.29; Table 1).  209 

 210 

Discussion 211 

The study region, from the Gulf of Aden to the north-eastern coast of Oman, is characterised by 212 

environmental gradients and defined by historical barriers to gene flow (for review see DiBattista 213 

et al. 2016a, 2016b). To the west, the Strait of Bab al Mandab separates the endemism hotspot of 214 

the Red Sea from the adjacent Gulf of Aden. To the east, the coastline of Oman supports rocky 215 

reefs with sparse coral cover and is characterised by monsoonal upwelling that drives seasonal 216 

changes in productivity (McIlwain et al. 2011; DiBattista et al. 2016b). Mean sea temperatures 217 

on the Omani coast are significantly lower than the adjacent Gulf of Aden during the monsoon. 218 

The Yemeni island of Socotra, although influenced by the monsoon on its southern coast, 219 

supports carbonate reefs with notable live coral cover and a more stable annual sea temperature 220 

pattern on its northern coast (Kemp 1998, 2000). These environmental and geological factors are 221 

likely reflected in the genetic signatures of fish that inhabit these coral reefs. 222 

      Our mtDNA datasets reveal cryptic evolutionary divergences within two widespread reef 223 

fishes. In the butterflyfish C. melannotus, the mtDNA partition distinguished samples from the 224 

Red Sea and Djibouti by 0.8% at the COI barcoding gene compared to the widespread Indian 225 

Ocean lineage. In the snapper L. kasmira, a highly divergent lineage is apparent in the eastern 226 

Gulf of Aden and Oman (4.8% divergence from the widespread lineage). This lineage was not 227 
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detected in a previous range-wide survey of L. kasmira (Gaither et al. 2010), in which sampling 228 

in the Western Indian Ocean was limited to the Seychelles and South Africa. The Red 229 

Sea/Djibouti/Somalia lineage detected here is the same as the widespread lineage reported in 230 

Gaither et al. (2010). In the same study, Gaither and colleagues reported population genetic 231 

homogeneity across 12,000 km of the Pacific and Indian Oceans, therefore the genetic partition 232 

observed in the Arabian Sea is not due to limited dispersal ability. Interestingly, Gaither et al. 233 

(2010) described a cryptic evolutionary lineage on the eastern extreme of the range in the 234 

Marquesas Islands. This symmetry of divergent lineages at the eastern (Marquesas) and western 235 

(Socotra/Oman) ends of the range, and vast connectivity in between, adds to the accumulating 236 

evidence that peripheral habitats, especially those with unique environmental conditions, can 237 

serve as evolutionary incubators (Budd and Pandolfi 2010; Bowen et al. 2013; Hodge et al. 2014; 238 

Gaither et al. 2015). 239 

The isolation of two lineages in the Arabian Sea is not surprising given the region’s 240 

tumultuous paleo-climactic history and current heterogeneity in environmental conditions 241 

(DiBattista et al. 2016a, 2016b). Both Randall (1998) and Allen (2008) have noted that endemic 242 

hotspots for tropical marine organisms are located in peripheral areas of the Indo-Pacific. The 243 

Arabian Sea is bordered by two such hotspots (Red Sea and Arabian Gulf), which contain many 244 

species that have diverged from widespread sister taxa (Cowman and Bellwood 2011, 2013; 245 

Hodge and Bellwood 2016). This peripheral endemism has likely been augmented by historical 246 

sea level fluctuations and unique environmental conditions that may have isolated populations of 247 

widespread species (DiBattista et al. 2016a, 2016b), including C. melannotus and L. kasmira. 248 

The divergence of these cryptic lineages is estimated at 0.4 Ma and 2.4 Ma, respectively, which 249 
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date to the Pleistocene Epoch and thus the period of modern glacial cycles with frequent sea 250 

level fluctuations. In addition to historical isolation, the Arabian Sea is characterised by 251 

heterogeneous environmental conditions, also likely to have been a chronic condition during 252 

most of the Pleistocene (DiBattista et al. 2015). Thus, the genetic structure of C. melannotus and 253 

L. kasmira across the Arabian Sea may be explained by a combination of isolation and local 254 

adaptation, a hypothesis which warrants further investigation.  255 

Congruence across species is seldom the case in comparative phylogeography studies of reef 256 

organisms (Lessios and Robertson 2006; Toonen et al. 2011; Selkoe et al. 2014). In the Coral 257 

Triangle, population genetic breaks and phylogenetic partitions appear in a variety of regions, 258 

with little discernible concordance (Barber et al. 2011; Carpenter et al. 2011; Sorenson et al. 259 

2014). Similar discordance was observed in the Hawaiian Islands, and analyses of various traits 260 

revealed that dispersal ability, taxonomy (fish versus invertebrates), and habitat specificity were 261 

significant predictor variables, although almost 90% of the variance remains unexplained (Selkoe 262 

et al. 2014). Closer to the Arabian Sea, DiBattista et al. (2013) showed genetic structure across 263 

the Strait of Bab al Mandab for some but not all species of reef fishes. For those species that did 264 

show structure, the depth of divergences showed no discernable concordance with each other or 265 

with glacial climate cycles. Although multi-taxon studies and comparative phylogeographic 266 

studies of reef organisms are few, some generalisations are emerging (Bowen et al. 2016). Those 267 

generalisations reinforced by this study include: 1) the geographic factors that define population 268 

structure in terrestrial and freshwater systems may not be as important in coral reef ecosystems, 269 

2) habitats at the periphery of the Indo-Pacific have higher endemism than previously expected, 270 

and 3) peripheral reef habitats like those contained in the Arabian Sea may host cryptic 271 
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evolutionary lineages, and thus genetic novelty, for even some of the most widely distributed 272 

species.     273 

The most interesting finding of this study is that only two of the 11 species (C. melannotus 274 

and L. kasmira) had significant genetic structure and micro-evolutionary partitions across the 275 

Arabian Sea. Determining why this is the case will help elucidate the factors generating novel 276 

biodiversity in marine organisms. The two species that had genetic structure are widely 277 

distributed across the Indo-Pacific; however, five of the other nine species surveyed are also 278 

widespread and show no structure. A comparison of various biological and ecological traits 279 

thought to be associated with dispersal and colonisation success (Brown et al. 1996; Gaston 280 

2003; Luiz et al. 2012, 2013) such as geographic range size, body size, spawning mode, pelagic 281 

larval duration (PLD), diet, dietary specialisation, depth range, habitat use, schooling behaviour, 282 

and nocturnal activity did not reveal any obvious differences between species that did or did not 283 

display genetic structure (Table 3). Although C. melannotus is somewhat unique because its diet 284 

includes soft coral (Cole and Pratchett 2013), other specialist butterflyfishes (e.g. C. melapterus 285 

and C. trifascialis) did not show genetic structure. Furthermore, the only other species showing 286 

genetic structure (L. kasmira) is a generalist carnivore, like many other coral reef mesopredators 287 

(Hiatt and Strasburg 1960, Froese and Pauly 2016), including C. argus from this study, which 288 

itself did not show genetic structure. Contrasting patterns of genetic structure have also been 289 

reported in other closely-related, ecologically-similar, and widely-distributed reef fishes (e.g. 290 

Gaither et al. 2010) for reasons that remain unresolved. 291 

Among the two cryptic evolutionary lineages revealed here, one lies primarily inside the Red 292 

Sea to the western Gulf of Aden and the other is distributed from the eastern Gulf of Aden to 293 
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Oman. Recent genetic surveys have found several more of these biodiversity gems hidden in Red 294 

Sea populations of widely-distributed species (DiBattista et al. 2013; Fernandez-Silva et al. 295 

2015, 2016; Coleman et al. 2016; Priest et al. 2016). These findings at the western periphery of 296 

the Indo-Pacific are remarkably concordant with surveys at the eastern periphery, which revealed 297 

cryptic evolutionary lineages at the Marquesas and Hawai’i (Gaither et al. 2010, 2011, 2015; 298 

DiBattista et al. 2011; Szabo et al. 2014; Bowen 2016). Together these data sets invoke a general 299 

finding that reef habitats in peripheral seas are important evolutionary incubators. As peripheral 300 

habitats lie at the geographic limits of a taxon’s distribution, exposure to divergent 301 

environmental and habitat conditions are expected. Under such circumstances, strong and novel 302 

selection pressures are likely to contribute to genetic diversification (Gaither et al. 2011; Suzuki 303 

et al. 2016); the critical emerging issue is why this may involve only a proportion of the taxa 304 

present. The development of phylogeographic hypotheses based on taxon-specific traits (as per 305 

Papadopoulou and Knowles 2016) are therefore required to illuminate the diversification of 306 

evolutionary lineages in peripheral environments. 307 

 308 
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Table 1 Number of sample sites, fragment length and nucleotide substitution model (see Posada, 2008) for mitochondrial DNA cytochrome c oxidase 

subunit I (COI), Fu’s FS statistic, molecular diversity indices and differentiation metrics (i.e. AMOVA) for range-restricted and widespread reef fish 

sampled in the Arabian Sea region. All negative ΦST values were adjusted to zero. Average values are + one standard deviation. 

species sites 
fragment      

size (bp) 
model Nb HN 

Fu’s        

FS 

haplotype 

diversity              

(h + SD)  

nucleotide diversity 

(π + SD) 

ΦST                                                

(p-value) 
evidence for barriers? 

range-restricted           

Chaetodon dialeucos            

(Oman butterflyfish) 
5 647 HKY 50 6 -2.81 0.505 + 0.064 0.00089 + 0.00081 0 (0.468) No 

Chaetondon melapterus 

(Arabian butterflyfish) 
10 590 HKY 198 17 -6.95a 0.723 + 0.020 0.00261 + 0.00174 0.008 (0.244) No 

Chaetodon nigropunctatus 

(black-spotted butterflyfish) 
2 625 K80 54 2 -1.70 0.037 + 0.035 0.00006 + 0.00018 0.018 (0.404) No 

Chaetodon pictus 

(horseshoe butterflyfish) 
10 582 TIM2 178 19 -24.71 0.404 + 0.047 0.00089 + 0.00083 0 (0.951) No 

widespread           

           Abudefduf vaigiensis      

(Indo-Pacific sergeant) 

 

9 576 K80 193 45 -27.39 0.879 + 0.013 0.00341 + 0.00215 0.013 (0.05) No 

Cephalopholis argus 

(peacock hind) 
6 528 HKY 63 7 -8.22 0.211 + 0.069 0.00042 + 0.00056 0 (0.769) No 

Chaetodon melannotus 

(blackback butterflyfish) 

 

 

4 619 K80 29 3 4.292 0.507 + 0.079 0.00359 + 0.00227 0.813 (< 0.001) Yes (isolation at Socotra) 

Chaetodon trifascialis 

(chevron butterflyfish) 
8 577 TrN 117 12 -5.74 0.722 + 0.028 0.00181 + 0.00134 0.007 (0.333) No 
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Ctenochaetus striatus 

(striated surgeonfish) 
5 519 TrN 97 14 -9.76 0.624 + 0.054 0.00183 + 0.00140 0.011 (0.204) No 

Halichoeres hortulanus 

(checkerboard wrasse) 
6 551 HKY 95 19 -16.06 0.611 + 0.056 0.00211 + 0.00152 0 (0.435) No 

Lutjanus kasmira  

(bluestripe snapper) 
7 483 GTR 145 32 1.15 0.718 + 0.034 0.02933 + 0.01464 0.838 (< 0.001) 

Yes (isolation at Djibouti & 

Somalia) 

aNumbers in bold are significant, P < 0.02 (Fu, 1997). 

bAbbreviations are as follows: N, sample size; HN, number of haplotypes. 
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Table 2 Sample size and location for reef fish sampled in the Arabian Sea. 

sampling site location 
A. 

vaigiensis 

Ce.        

argus 

Ch. 

dialeucos  

Ch. 

melannotus 

Ch. 

melapterus 

Ch. 

nigropunctatus 

Ch. 

pictus 

Ch. 

trifascialis 

Ct. 

striatus 

H. 

hortulanus 

L. 

kasmira 

Moucha/Maskali, Djibouti N 11.759° E 43.217° 20 20 – 1 20 – 21 20 19 20 25 
Obock, Djibouti N 11.967° E 43.333° 21 21 – 15 29 – 28 20 19 21 15 
Bay de Ghoubett, Djibouti N 11.533° E 42.667° 23 1 – 3 20 – 19 23 20 20 24 
Berbera, Somalia N 10.400° E 44.783° 16 13 – – 16 – 20 14 15 12 21 
Socotra, Yemen N 12.617° E 54.350° 23 – – 10 25 – 23 21 – 20 38 
Salalah, Oman N 16.912° E 53.960° 20 – – – – – 6 – – – – 
Mirbat, Oman N 16.959° E 54.757° – 1 7 – 12 – 16 7 – – – 
Al Hallaniyats, Oman 

 

N 17.483° E 55.983° 23 8 14 – 13 – 18 4 24 2 – 
Schwaymeeyah, Oman N 17.895° E 55.710° – – 2 – – – – – – – – 
Barr Al Hickman, Oman 

 

 

N 20.383° E 58.217° – – 6 – 3 – – – – – – 
Masirah Island, Oman N 20.165° E 58.634° 25 – 21 – 26 22 22 8 – – 2 
Muscat, Oman N 23.525° E 58.740° 21 – – – 35 32 5 – – – 20 
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Table 3 Biological and ecological traits associated with dispersal and colonisation abilities for the eleven study species. These include: geographic range 

size (extent of occurrence km2), body size (total length or TL) (Froese and Pauly 2016), spawning mode (Froese and Pauly 2016), pelagic larval duration 

(PLD) (Brothers and Thresher 1985; Victor 1986; Leis 1989; Thresher et al. 1989; Soeparno et al. 2012; Trip et al. 2014; J.P. Hobbs unpub. data) diet and 

dietary specialisation (Hiatt and Strasburg 1960; Bellwood and Pratchett 2013; Cole and Pratchett 2013; Froese and Pauly 2016), depth range (Froese and 

Pauly 2016), habitat use (Froese and Pauly 2016), schooling behavior, and nocturnal activity (Allen et al. 1998; Kuiter 2002; Yabutu and Berumen 2013). 

species 

Rangea 

size (x 

106 km2) 

Body size 

(TL in cm) 

Spawning 

mode 

PLD 

(mean 

days) 

Diet 
Dietary 

specialisation 

Depth 

range (m) 
Habitat use 

Schooling 

behaviour 

Nocturnal 

activity 

Chaetodon dialeucos            

(Oman butterflyfish) 
0.13 18 Broadcast n/a 

Omnivore (benthic 

invertebrates) 
Generalist 5-25  

Rocky and 

coral reefs 
Pairs No 

Chaetondon melapterus 

(Arabian butterflyfish) 
0.28 13 Broadcast 33.8 Corallivore 

Moderate 

specialist 
1-16 Coral reefs Pairs No 

Chaetodon nigropunctatus 

(black-spotted butterflyfish) 
0.11 14 Broadcast n/a 

Omnivore (benthic 

including coral)  
Generalist 1-18 

Rocky and 

coral reefs 
Pairs No 

Chaetodon pictus 

(horseshoe butterflyfish) 
0.24 20 Broadcast 39 Omnivore (benthic) Generalist 1-20 Rocky reefs Pairs No 

           Abudefduf vaigiensis      

(Indo-Pacific sergeant) 

 

50.2 20 Benthic 21.7 
Omnivore 

(plankton and 

benthic) 

Generalist 1-15 
Rocky and 

coral reefs 
Schools No 

Cephalopholis argus 

(peacock hind) 
49.89 60 Broadcast 22.8 

Carnivore (fish and 

benthic 

invertebrates) 

Generalist 1-40 Coral reefs Harems Yes 

Chaetodon melannotus 

(blackback butterflyfish) 

 

 

49.02 18 Broadcast n/a 
Omnivore (benthic 

and soft corals) 

Moderate 

specialist 
1-20 

Rocky and 

coral reefs 
Solitary No 

Chaetodon trifascialis 

(chevron butterflyfish) 
51.86 18 Broadcast 35.9 Corallivore Extreme specialist 1-30 Coral reefs Solitary No 

Ctenochaetus striatus 

(striated surgeonfish) 
52.50 26 Broadcast 

47 to 

69 
Detritivore Generalist 1-34 

Rocky and 

coral reefs 
Schools No 
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Halichoeres hortulanus 

(checkerboard wrasse) 
50.75 27 Broadcast 32.5 

Omnivore (benthic 

invertebrates) 
Generalist 1-30 Coral reefs Harems No 

Lutjanus kasmira  

(bluestripe snapper) 
50.23 40 Broadcast 23.5 

Carnivore (fishes 

and invertebrates) 
Generalist 1-265 Coral Reefs Schools Yes 

aRange size estimates were obtained through measurement of the area (km2) occupied by each species using IMAGE TOOL (as per Choat et al. 2012). 
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Figures 

Fig. 1 Map indicating collection sites for all reef fish considered in this study, with range-restricted species 

denoted by asterisks. Colours used for collection location are identical to those in Fig. 2. Note the reversing 

circulation of the Somali Current (from northward to southward), the Southwest Monsoon Current (from 

westward to the eastward Northwest Monsoon Current), the Western Indian Coastal Current (from eastward 

to westward), and the current flowing into the Red Sea from the Gulf of Aden (versus out of the Red Sea 

and into the Gulf of Aden) during the northeast monsoon season (December to March). Site-specific 

samples sizes are provided in Table 2 (photo credit: T.H.S-T. and J.E. Randall). Samples from Thuwal, 

Maldives, and the Seychelles were included for only two species demonstrating cryptic lineages within Red 

Sea to Arabian Sea samples (Chaetodon melannotus and Lutjanus kasmira) 

 

Fig. 2 Median-joining networks showing relationships among mitochondrial DNA cytochrome c oxidase 

subunit I (COI) haplotypes for reef fish sampled in the Arabian Sea where cryptic evolutionary lineages 

were identified. COI fragment length and site-specific samples sizes are provided in Table 1 and Table 2, 

respectively. Outgroup populations are: Chaetodon melannotus, Thuwal, Kingdom of Saudi Arabia, N = 20 

and Maldives, N = 5; Lutjanus kasmira, Thuwal, Kingdom of Saudi Arabia, N = 22 and Seychelles, N = 20. 

Each circle represents a unique haplotype and its size is proportional to its total frequency (i.e. number of 

samples) as per the provided legend. Thin branches and black cross-bars represent a single nucleotide 

change, small open circles represent missing haplotypes and colours denote collection location as indicated 

by the embedded key 
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Fig. 3 Haplotype (a) and nucleotide diversity (b) for 11 species of reef fish sampled from sites in the Gulf of 

Aden (Djibouti) to sites in the Arabian Sea (Muscat, Oman). Species and sample sizes are denoted by circle 

colours and sizes, respectively, as outlined in the provided key. 

 

Fig. 4 Median-joining networks showing relationships among mitochondrial DNA cytochrome c oxidase 

subunit I (COI) haplotypes for all remaining widespread and range-restricted reef fish sampled in the 

Arabian Sea region, with range-restricted species denoted by asterisks. COI fragment length and site-

specific samples sizes are provided in Table 1 and Table 2, respectively. Each circle represents a unique 

haplotype and its size is proportional to its total frequency as per the included legend. Thin branches and 

black cross-bars represent a single nucleotide change, small open circles represent missing haplotypes and 

colours denote collection location as indicated by the embedded key. 
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