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ABSTRACT

We present simultaneous X-ray and radio observations of the black hole X-ray binary V404 Cygni at the end of its
2015 outburst. From 2015 July 11–August 5, we monitored V404 Cygni with Chandra, Swift, and NuSTAR in the
X-ray, and with the Karl G. Jansky Very Large Array and the Very Long Baseline Array in the radio, spanning a
range of luminosities that were poorly covered during its previous outburst in 1989 (our 2015 campaign covers

 ´ -L2 10 10 erg s33
X

34 1). During our 2015 campaign, the X-ray spectrum evolved rapidly from a hard
photon index of G » 1.6 (at » -L 10 erg sX

34 1) to a softer G » 2 (at » ´ -L 3 10 erg sX
33 1). We argue that V404

Cygni reaching G » 2 marks the beginning of the quiescent spectral state, which occurs at a factor of ≈3–4 higher
X-ray luminosity than the average pre-outburst luminosity of» ´ -8 10 erg s32 1. V404 Cygni falls along the same
radio/X-ray luminosity correlation that it followed during its previous outburst in 1989, implying a robust disk-jet
coupling. We exclude the possibility that a synchrotron-cooled jet dominates the X-ray emission in quiescence,
leaving synchrotron self-Compton from either a hot accretion flow or from a radiatively cooled jet as the most
likely sources of X-ray radiation, and/or particle acceleration along the jet becoming less efficient in quiescence.
Finally, we present the first indications of correlated radio and X-ray variability on minute timescales in
quiescence, tentatively measuring the radio emission to lag the X-ray by 15 4 minute, suggestive of X-ray
variations propagating down a jet with alength of<3.0 au.

Key words: accretion, accretion disks – stars: black holes – stars: individual (V404 Cygni) – X-rays: binaries

1. INTRODUCTION

After spending 26 years in quiescence, the low-mass black hole
X-ray binary (BHXB) V404 Cygni was detected in outburst on
2015 June 15 (Barthelmy et al. 2015; Kuulkers et al. 2015;
Negoro et al. 2015; Younes 2015), prompting an array of
multiwavelength observations. For about two weeks, V404 Cygni
displayed spectacular variability from the radio through the
gamma-ray (e.g., Mooley et al. 2015; Motta et al. 2015; Rodriguez
et al. 2015; Roques et al. 2015; Tetarenko et al. 2015b; Trushkin
et al. 2015; Gandhi et al. 2016; Jenke et al. 2016; Kimura
et al. 2016; Martí et al. 2016; Walton et al. 2016), while also
launching powerful outflows in the form of ballistic synchrotron
jets (Tetarenko et al. 2015c) and fast disk winds (King et al. 2015;
Muñoz-Darias et al. 2016). During these two weeks, V404 Cygni
also contained a high column of absorbing material
(» -10 cm24 2), likely caused by material expelled from the
accretion disk obscuring the central engine (Motta et al. 2016). On
2015 June 26, V404 Cygni exhibited the brightest X-ray flare of
the outburst, which was followed by a sudden decrease in flux
(Sanchez-Fernandez et al. 2016), and the source began a gradual
decay back toward quiescence at all wavebands (e.g., Ferrigno

et al. 2015; Martin-Carrillo et al. 2015; Tetarenko et al. 2015a;
Walton et al. 2015). The high column density during the initial
two weeks dissipated and approached the pre-outburst value of
≈ -10 cm22 2 by 2015 July 2–5 (Sivakoff et al. 2015a).
This paper focuses on simultaneous X-ray and radio

monitoring of the tail end of the decay, from 2015 July 11—
August 5. V404 Cygni is one of our prime laboratories for
testing models of accretion physics against observations,
largely because it is a nearby BHXB with an accurate distance
of 2.39±0.14 kpc measured from radio parallax (Miller-Jones
et al. 2009), allowing precise calculations of its energetics.
Furthermore, its orbital parameters are well-determined, with
the system comprised of a -

+
M9.0 0.6

0.2 black hole and a K3 III
companion star (Khargharia et al. 2010) in a 6.473±0.001 d
orbit (Casares et al. 1992), with an inclination of -

+67 1
3 deg

(Khargharia et al. 2010).
During a typical outburst, BHXBs begin their final descent

while in the “low-hard state” (  -L L10 ;X
2

Edd for V404
Cygni, the Eddington luminosity = ´ -L 1.13 10 erg sEdd

39 1),
where their X-ray spectra can be described by a powerlaw with
aphoton index14ofG » 1.6 1.7– (see, e.g., Remillard &
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14 The photon index Γ is defined such that the photon number density NE (per
unit photon energy E) follows µ -GN EE .
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McClintock 2006; Belloni 2010, for reviews on BHXB spectral
states). In the low-hard state, the inner regions of the disk are
under-luminous because material is unable to efficiently cool
via radiative losses (e.g., Ichimaru 1977; Narayan & Yi 1994;
Abramowicz et al. 1995; Yuan & Narayan 2014), resulting in a
hot, geometrically thick, radiatively inefficient accretion flow
(RIAF), which is likely to develop outflows (e.g., Narayan &
Yi 1995; Blandford & Begelman 1999). Compact radio
emission is nearly always associated with low-hard state
BHXBs, which is usually interpreted as optically thick
synchrotron radiation from partially self-absorbed relativistic
jets (e.g., Blandford & Königl 1979; Hjellming & John-
ston 1988; Fender 2001), and these jets may carry away a
substantial fraction of the accretion power (e.g., Fender
et al. 2003). Finally, there is evidence that a cool, thin disk
(e.g., Shakura & Sunyaev 1973) can persist close to the
innermost stable circular orbit toward the bright end of the low-
hard state (Miller et al. 2006; Reis et al. 2010; Uttley
et al. 2011), but the disk is observed to recede at lower
luminosities (see, e.g., Tomsick et al. 2009).

As BHXBs fade from the low-hard state toward quiescence,
their X-ray spectra become softer (e.g., Tomsick
et al. 2001, 2004; Kalemci et al. 2005; Wu & Gu 2008;
Sobolewska et al. 2011; Armas Padilla et al. 2013) until they
display G » 2.1 (e.g., Kong et al. 2002; Corbel et al. 2006;
Plotkin et al. 2013; Armas Padilla et al. 2014; Reynolds
et al. 2014; Yang et al. 2015). From an ensemble of quiescent
BHXBs, Plotkin et al. (2013) argue that the X-ray spectral
softening completes by - L10 5

Edd, at which point the X-ray
spectral shape remains constant as BHXBs continue to fade
(also see Sobolewska et al. 2011). However, the cause of the
softening remains unclear, largely because observations with
sufficient sensitivity and cadence to track the photon index as it
approaches, reaches, and eventually saturates to G » 2.1 are
scarce (see, e.g., Kalemci et al. 2005; Homan et al. 2013 for
examples of some of the best covered decays so far).

Combining X-ray spectral information with radio observa-
tions can yield insight into the cause of the X-ray spectral
softening, and how BHXBs may differ between quiescence and
the low-hard state. During the decay toward quiescence, hard-
state BHXBs display correlated X-ray and radio variations on
day to week timescales, such that individual systems travel
along non-arbitrary paths through the radio/X-ray luminosity
plane (Corbel et al. 2013; Gallo et al. 2014). These correlations
are taken as evidence for couplings between the inner accretion
flow (probed by X-rays) and the compact jet (probed by the
radio), and the slope of radio/X-ray luminosity correlations
places constraints on the physical mechanisms responsible for
the observed radiation (e.g., Heinz & Sunyaev 2003; Markoff
et al. 2003). However, even among the systems with the best
multiwavelength coverage of the decay toward quiescence
(Jonker et al. 2010, 2012; Ratti et al. 2012), none of themalso
containhigh-quality spectral information around the key
parameter space of » -L L10X

5
Edd, and it is observationally

unclear how any motion through the radio/X-ray plane
connects to changes in the X-ray spectrum.

The 2015 outburst of V404 Cygni offered a unique
opportunity to obtain sensitive X-ray and radio spectral
observations of a BHXB around » -L L10X

5
Edd as it

transitions into quiescence. Using primarily Chandra, Swift,
and the Karl G. Jansky Very Large Array (VLA), we obtained
simultaneous X-ray and radio monitoring observations over

three weeks. Of key importance is the relatively small distance
to V404 Cygni, which allows high signal-to-noise ratio (S/N)
observations at the desired luminosities. Also, the long-orbital
period of V404 Cygni implies a large accretion disk and high-
mass transfer rate from the companion star (Menou et al. 1999,
and references therein), such that, when not in outburst, V404
Cygni has the highest luminosity of any known BHXB with a
well-determined distance ( » -L 10 erg s ;X

33 1 Bernardini &
Cackett 2014; an exception is the anomalously luminous, but
distant, BHXB GS -1354 64; Reynolds & Miller 2011).
Thus, V404 Cygni is arguably the best-studied quiescent
BHXB (e.g., Casares et al. 1992; Shahbaz et al. 1994; Narayan
et al. 1997; Hynes et al. 2004, 2009; Miller-Jones et al. 2008;
Bernardini & Cackett 2014; Xie et al. 2014; Markoff et al.
2015; Bernardini et al. 2016a; Rana et al. 2016), thereby
allowing rich comparisons between our observations and its
pre-outburst properties.
In Section 2, we describe our observations and data

reduction. We present results in Section 3, which are discussed
in Section 4. During its 26 years of quiescence between
outbursts, V404 Cygni displayed strong X-ray variability by up
to a factor of five to eightover its average X-ray flux
(0.5–10 keV) of  ´ - -1.2 0.3 10 erg s cm12 1 2 (corresp-
onding to = ´ =- -L L8 10 erg s 10 ;X

32 1 6.2
Edd Bernardini &

Cackett 2014, note thatwe convert their reported 0.3–10 keV
values to 0.5–10 keV here). Throughout the paper, we refer to
the above as the “pre-outburst” flux of V404 Cygni. At the
beginning of Section 4, we argue that V404 Cygni enters the
quiescent spectral state at three to fourtimes higher luminosity.
Therefore, throughout the paper, we define quiescence for
V404 Cygni to correspond to  ´ - -F 5 10 erg s cmX

12 1 2

(  ´ »- -L L3 10 erg s 10X
33 1 5.6

Edd). All uncertainties are
quoted at the 68% (1σ) level, unless stated otherwise. We
generally report X-ray fluxes and luminosities from
0.5–10 keV, except for when we discuss radio/X-ray correla-
tions when we adopt 1–10 keV luminosities to ease compar-
isons with the literature (e.g., Corbel et al. 2013; Gallo
et al. 2014).

2. OBSERVATIONS

We triggered joint Chandra/VLA observations through a
cycle 16 Chandra target of opportunity (ToO) program
(proposal ID 16400196; PI Plotkin). This program included
six Chandra observations taken with an approximately four
day cadence over a three-week period between 2015 July 15
and August 5. Exposure times generally increased over time,
ranging from 4 to 43 ks. We also arranged for ToO
observations with the X-ray Telescope (XRT; Burrows
et al. 2005) onboard the Swift satellite (Gehrels et al. 2004)
to coincide with each Chandra epoch (PI Plotkin). The XRT
exposures ranged from 7 to 12 ks, composed of individual
1–2 ks snapshots spread over 8–19 hr on each date, with at least
one snapshot on each date simultaneous with a portion of each
Chandra observation. On July 23, we also arranged for a
simultaneous 40 ks observation with the Nuclear Spectroscopic
Telescope Array (NuSTAR; Harrison et al. 2013).
Simultaneous VLA radio observations were scheduled for

the beginning of each Chandra observation (VLA exposures
also generally increased over time, but with each VLA
observation being shorter than the corresponding Chandra
one). The VLA did not obtain usable data on our second epoch
(July 20). To make up for that epoch, the VLA scheduled an
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extra observation on July 30, for which there was not any
corresponding X-ray data. Thus, we obtained observations on
six dates in each waveband, and a total of five epochs included
periods of strictly simultaneous overlap. We also considered a
set of simultaneous X-ray and radio observations taken on July
11, obtained through separate programs (see Section 2.6). A
summary of our observations appears in Table 1.

2.1. Chandra Observations and Data Reduction

For all Chandra observations, V404 Cygni was placed at the
aimpoint of the Advanced CCD Imaging Spectrometer (ACIS;
Garmire et al. 2003) S3 chip, and the data were telemetered in
FAINT mode. To mitigate pileup, the first three observations
were taken with the High Energy Transmission Grating
(HETG; Canizares et al. 2005) in place to act as a filter, for
which we analyzed the zeroth order image. The final three
observations were taken without the HETG, but with the chip
read in 1/8 subarray mode to reduce the exposure frame time.

The Chandra data reduction was performed using the
Chandra Interactive Analysis of Observations (CIAO) software
v4.8 (Fruscione et al. 2006). We first reprocessed the data to
apply the latest calibration files, and we restricted the analysis
to the S3 chip. We used the tool axbary to apply barycentric
corrections to all event times, good time intervals, and aspect
solutions. We next searched for time periods with elevated
levels of background counts by extracting a light curve over the
entire chip (from 0.5 to 7 keV), after excluding V404 Cygni
and other point sources identified by the tool wavdetect.
None of our observations displayed obvious periods of
background flaring. However, in Appendix B, we describe a
decision to remove the final 400 s from the first Chandra
observation (obsID 16702), for reasons related to our spectral
analysis.

Finally, we extracted spectra with the tool specextract,
including response matrix files (rmf) and auxiliary response
files (arf). Although our observational setup was designed to
mitigate photon pileup as much as possible, a low-level of

pileup persisted. To apply a pileup model during spectral fitting
(Davis 2001), we extracted spectra containing all events with
energies >0.3 keV15, and we adopted a relatively small 4 pixel
radius circular extraction region centered on V404 Cygni. We
applied an energy-dependent aperture correction term to the arf
file to account for the small sizes of our extraction apertures.
The Chandra X-ray properties are listed in columns (2)–(6) of
Table 2.

2.2. Swift Observations

The Swift XRT observations were taken in photon counting
mode. We analyzed the data using the HEASOFT software,
following standard procedures. We first reprocessed each
observation with the task xrtpipeline, during which time
we also created exposure maps for each observation to correct
for bad columns on the detector. We filtered the data from
0.3–10 keV, and we extracted source photons from a circular
aperture with a 25 pixel radius centered at the position of V404
Cygni. We estimated the background count rate using two
circular apertures (each with a radius of 25 pixels) placed near
the source, but taking care to avoid regions with enhanced soft
X-ray emission from light echoes that were observed from
V404 Cygni at this point in the decay (Beardmore et al. 2015a;
Beardmore et al. 2016; Heinz et al. 2016; Vasilopoulos &
Petropoulou 2016). For each observation, we extracted a
spectrum, we built an arf with the tool xrtmkarf (incorpor-
ating the exposure maps created earlier), and we adopted the
latest rmfs from the Swift calibration database. To compare to
Chandra light curves, we applied a barycentric correction to
the midpoint of each Swift snapshot (we did not obtain enough
counts to extract useful Swift light curves over shorter
timescales). We list the X-ray properties from each XRT
observation in Table 2.

Table 1
Summary of Chandra, Swift, and VLA Observations

Chandra Swift VLA

MJD Date Start Time texp ObsID Gratings Subarray texp Start Time texp

(2015) (UT HH:MM:SS) (ks) (ks) (UT HH:MM:SS) (ks)
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

57214 Jul 11 13:02:49 39.3 17701 HETG None 1.2 L L
57218 Jul 15 03:22:13 3.7 16702 HETG 1/2 7.3 04:12:40 0.5
57223 Jul 20 04:01:48 8.8 16703 HETG None 10.9 L L
57226a Jul 23 08:36:58 19.3 16704 HETG None 8.2 11:29:56 0.5
57231 Jul 28 09:42:05 17.9 16705 None 1/8 12.0 09:55:28 2.2
57233 Jul 30 L L L L L L 09:47:36 2.2
57235 Aug 1 12:25:25 26.2 16706 None 1/8 11.7 11:24:28 5.3
57239 Aug 5 03:33:27 42.7 16707 None 1/8 9.7 03:33:00 5.6

Notes. Column (1) modified Julian date of each observing epoch. Column (2) UT date of each epoch. Columns (3)–(7) pertain to the Chandra observations, including
the UT start times (column 3), the exposure time (column 4), the observation identification number (column 5), whether or not the HETG was in place to act as a
pileup mitigation filter (column 6), and the subarray read from the ACIS chip (column 7). The Chandra observation from July 11 was from a separate DDT (see
Section 2.6). Column (8) lists the total exposure times of the Swift observations, which were scheduled as series of 1–2 ks snapshots over 8–19 hr on each date, with at
least one snapshot overlapping with the Chandra observations, except for on July 11. The Swift observation on July 11 was from a single snapshot that started at UT
07:03 (see Section 2.6). Columns (9)–(10) pertain to the radio observations (VLA project code SG0196), including the UT start times (column 9) and the total
observing times on source (column 10). A radio observation from July 11 was obtained from the VLBA over UT 07:03–07:28, simultaneous with Swift on that date
(but not with Chandra; see Section 2.6).
a We also obtained a 40 ks NuSTAR observation, taken between 2015 July 23 UT 08:21 and July 24 UT 11:01.

15 See http://cxc.harvard.edu/ciao4.4/why/filter_energy.html.
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2.3. NuSTAR Observation

We observed V404 Cygni with NuSTAR on one epoch, from
2015 July 23 UT 08:21 to 2015 July 24 UT 11:01 (ObsID
90102007011). NuSTAR has two focal plane modules, FPMA
and FPMB, and the exposure times yielded during the
observation were 40.2 and 39.5 ks, respectively. We reduced
the data using HEASOFT v6.19, NUSTARDAS v1.6.0, and
the files from the 2016 July 6 calibration database (CALDB),
and we reprocessed the data to make event files using
nupipeline. We made light curves and energy spectra
using nuproducts and a circular source extraction region
with a radius of 60″. For background subtraction, we used a
circular region with a radius of 90″ on the same detector chip
where the source falls. The average source count rates in the
3–79 keV band are 0.049±0.001 and 0.045±0.001 s−1 for
FPMA and FPMB, respectively. The light curve shows that the
source is near these count rates over the duration of the
observation except for the last ∼2 ks of the observation during
which the count rate rose by a factor of two to three. In this
work, we focus on the energy spectrum, which we rebinned
with the requirement of an S/N of 5.0 in each spectral bin.

2.4. X-Ray Spectral Analysis

The X-ray spectral analysis was performed with the
Interactive Spectral Interpretation System v1.6.2 (ISIS;
Houck & Denicola 2000). For photoelectric absorption in our
fits, we used abundances from Anders & Grevesse (1989) and
cross-sections from Balucinska-Church & McCammon (1992),
with updated He cross-sections from Yan et al. (1998). We
briefly describe our analysis here, with more details listed in the
Appendix. For spectra with <1000 counts, we binned the data
to an >S N 1.5 per bin (2 counts); higher-count spectra
were binned to >S N 4 per bin (15 counts). All fitting was
performed using Cash statistics (Cash 1979), with background
counts included in each fit. Reported (68%) error bars
correspond to changes in the Cash statistic of D =C 1.0 for
one parameter of interest.

On each of the six epochs, we fit an absorbed power-law
model (phabs∗powerlaw) to the combined Chandra and
Swift observations, where we performed a joint fit by tying the
column density (NH) and photon index (Γ) to a common value,
but allowing the normalizations of each data set to indepen-
dently vary. For the Chandra data sets, we used the Davis
(2001) pileup model to correct for mild effects of photon pileup
(the Swift data did not suffer from any pileup). Within the
Davis (2001) model, we fixed the psfrac parameter to 0.95
(the fraction of the incident energy that falls on the central
3× 3 pixels), and we left the “grade migration parameter” α

free to vary (the probability of retaining n “piled” events as a
single event is a~ -p n 1). The inclusion of the Swift data
increased the number of counts, especially at soft X-rays for the
first three epochs when the Chandra HETG was in place, and it
also assisted in constraining the pileup correction (see
Appendix B for further discussion).
The best-fit spectral parameters are presented in Figure 10 in

the Appendix, along with a sample spectral fit to our Chandra
observation from August 5 (our highest S/N spectrum) in
Figure 11. The best-fit NH values on each epoch were
consistent with each other within the errors. Therefore, we
performed another joint fit, where we forced a common NH

across all six epochs (but we allowed Γ to vary on each epoch).
We found a best-fit =  ´ -N 8.4 0.2 10 cmH

21 2, and the
best-fit photon indices are presented in Table 3, which are the
values adopted throughout the rest of the text (except on July
23; see the next paragraph). The level of pileup in the Chandra
observations from July 15to August 5 was mild, from 2%
to 5%.
On July 23, we also obtained a simultaneous observation

with NuSTAR. To improve the spectral model, we fit the
Chandra, Swift, and NuSTAR data from July 23 (including both
the NuSTAR FPMA and FPMB spectra), freezing the column
density to ´ -8.4 10 cm21 2, and forcing a common Γ. The
best-fit photon index G = 2.04 0.04 was consistent with the
best-fit value when only considering the Chandra and Swift
data (G = -

+1.97 0.05
0.08), thereby indicating that our spectral results

Table 2
X-Ray Properties

Chandra Swift

Date N tot Nbkg Net Count Rate f0.5 10 keV– L0.5 10 keV– N tot Nbkg Net Count Rate f0.5 10 keV– L0.5 10 keV– ssys

(2015) (cts) (cts) (cts s−1) (10−12 cgs) (1033 cgs) (cts) (cts) (cts s−1) (10−12 cgs) (1033 cgs) (10−12 cgs)
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Jul 11a 3608 2.2 0.092±0.002 14.0±0.2 9.6±1.1 314 5.5 0.257±0.015 19.8±1.2 13.5±1.8 ±5.0
Jul 15 241 0.2 0.065±0.004 8.3±0.6 5.7±0.8 524 14.0 0.070±0.003 7.6±0.3 5.2±0.7 ±2.6
Jul 20 600 0.2 0.068±0.003 9.6±0.4 6.6±0.8 1020 20.5 0.092±0.003 11.0±0.4 7.5±0.9 ±4.8
Jul 23b 673 0.6 0.035±0.001 4.6±0.2 3.1±0.4 383 15.5 0.045±0.002 4.5±0.2 3.1±0.4 ±2.2
Jul 28 3333 1.4 0.186±0.003 4.7±0.1 3.2±0.4 531 15.5 0.043±0.002 4.8±0.2 3.3±0.4 ±2.7
Aug 1 3802 1.5 0.145±0.002 3.6±0.1 2.5±0.3 403 19.0 0.033±0.002 3.4±0.2 2.3±0.3 ±1.5
Aug 5 13651 2.4 0.320±0.003 8.4±0.1 5.8±0.7 801 14.5 0.081±0.003 8.5±0.3 5.8±0.7 ±4.8

Notes. Column (1): observation date. Columns (2)–(6) present information from the Chandra observations. Column (2): total number of counts in source aperture.
Column (3):number of estimated background counts in source aperture from 0.5 to 10 keV. Column (4): net count rate. Column (5): model unabsorbed flux from 0.5
to 10 keV, in units of - - -10 erg s cm12 1 2. Errors represent statistical uncertainties. Column (6): model luminosity from 0.5 to 10 keV, in units of -10 erg s33 1. Errors
include the uncertainty on the distance to the source. Columns (7)–(11) repeat the previous information for the Swift observations. Counts in columns (7)–(9) are
reported from 0.3 to 10 keV, and model fluxes and luminosities in columns (10)–(11) are from 0.5 to 10 keV. Column (12): systematic error on the X-ray flux, based
on 1σ variations in flux from the combined Chandra and Swift observations on each date (see Section 3.3).
a The Chandra observation is from a DDT program. The Swift observation is not simultaneous with Chandra (see Table 1 and Section 2.6).
b From NuSTAR, we obtained average count rates from 3 to 79 keV of 0.049±0.001 and 0.045±0.001 s−1 for FPMA and FPMB, respectively.
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can be extended toward higher energies. Throughout the
remainder of the text, we adopt G = 2.04 0.04 on July 23.

2.5. VLA Radio Observations

A total of six VLA observations (project code SG0196) were
taken between 2015 July 15 and August 5, with on-source
exposure times ranging from 8 to 93 minutes(see Table 1).
Each VLA observation was scheduled to obtain as much
strictly simultaneous coverage with Chandra as possible. As
noted earlier, we did not obtain VLA observations on our
second Chandra epoch (July 20), but we did obtain an extra
VLA observation on July 30 (for which there was no
corresponding X-ray observation).

The VLA was in its most extended A configuration, with a
maximum baseline of 30 km. We made use of the VLA
“subarray” mode, where approximately half of the VLA
antennas observed at 4–8 GHz, and the other half at
8–12 GHz. We separated the two 1024MHz basebands within
each observing band to provide the broadest possible spectral
coverage, while avoiding known radio frequency interference.
Each 1024MHz baseband comprised eight spectral windows,
each made up of 64 2MHz channels. The central frequencies of
the basebands were 5.2, 7.5, 8.6, and 11.0 GHz. The subarrays
provided a valuable frequency lever arm for investigating the
radio spectrum.

The radio analysis was performed using standard procedures
within the Common Astronomy Software Application v4.5
(CASA; McMullin et al. 2007). We calibrated each 1024MHz
baseband separately, using the Perley & Butler (2013)
coefficients within the setjy task to set the amplitude scale.
We selected our amplitude calibrator according to the local
sidereal time of each observation, using 3C 286 on July 15 and

August 5, and 3C 48 on all other epochs. At all epochs, we
solved for the complex gain solutions toward V404 Cygni by
using the secondary calibrator source J2025+3343. On July 28,
we did not obtain any usable scans of a primary flux calibrator.
So, we manually set the amplitude scale in setjy to the flux
density of J2025+3343, which was determined by interpolating
the flux density of J2025+3343 from the two surrounding
epochs (July 23 and 30) to July 28 (the flux densities on July 23
and 30 were calculated by the task fluxscale when
bootstrapping the amplitude gain solutions to J2025+3343 on
those epochs). Over our three-week campaign, we measured
flux density variations for our phase calibrator J2025+3343 at
the 3, 2, 1, and 1% levels (1σ) at 5.2, 7.5, 8.6, and 11.0 GHz,
respectively. We included corresponding systematic uncertain-
ties on flux densities from July 28.
We next imaged the field surrounding V404 Cygni with the

task clean, using Briggs weighting with a robust value of
one, and two Taylor terms to model the frequency dependence
of sources in the field. We placed outlier fields on two bright
sources within the primary beam, so that their sidelobes did not
influence the final V404 Cygni image. We achieved s1 rms
sensitivities from ≈0.010–0.035 mJy bm−1, depending on the
exposure time and frequency. These sensitivities are consistent
with the theoretical noise limit of the VLA (for 13 antennas per
frequency). Finally, we measured the flux density of V404
Cygni at each epoch by fitting a point source in the image plane
using the task IMFIT (see Table 4).

2.5.1. Radio Spectral Indices and 8.4 GHz Flux Densities

For each radio epoch, we measured the radio spectral index
ar ( nµn

af r) by fitting a powerlaw to the four flux density
measurements (via a weighted least squares fit). We estimated
the uncertainty on the spectral index, sar, through Monte Carlo
simulations. We added simulated statistical noise to each flux
density (based on a Gaussian distribution with a standard
deviation set to the uncertainty on each flux density measure-
ment), and we also randomly adjusted the central frequency of
each flux density across each 1024MHz baseband (assuming a
uniform distribution in frequency). We then fit a powerlaw to
each data set with random noise added, and we repeated 1000
times for each epoch. As expected, the distribution of 1000 ar
measures on each epoch followed an approximately Gaussian
distribution centered around zero. For sar, we adopted the
standard deviation on 1000 simulated ar measures (which we
confirmed is comparable to the 68% confidence interval). We
used the above spectral fits to calculate radio flux densities (and
errors) at 8.4 GHz, which are the values we generally adopt
throughout this paper when displaying radio fluxes and
luminosities in figures, in order to ease comparisons to the
literature.

2.6. Other Multiwavelength Observations on July 11

We also considered a 39 ks Chandra observation granted
through Director’s Discretionary Time (DDT) that was taken
on 2015 July 11 (obsID 17701; PIs Neilsen and Altamirano),
four days before our first ToO observation. This DDT
observation used the HETG, and it was obtained primarily to
study a disk wind through high-resolution spectroscopy. Here,
we considered only the zeroth order grating image, in order to
extend our time coverage during the decay into quiescence.
Analysis ofthis observation was performed identically to our

Table 3
X-Ray Spectral Properties

Date Γ α fpile

(2015)
(1) (2) (3) (4)

Jul 11a 1.64±0.04 0.42±0.07 0.08
Jul 15 1.75±0.07 -

+0.21 0.21
0.69 0.01

Jul 20 1.71±0.06 0.39±0.18 0.05
Jul 23 -

+1.97 0.05
0.08 0.60±0.37 0.03

Jul 23b 2.04±0.04 L L
Jul 28 -

+2.01 0.02
0.06

-
+0.72 0.41

0.28 0.03

Aug 1 -
+2.13 0.01

0.05
-
+0.87 0.65

0.13 0.02

Aug 5 1.99±0.04 0.73±0.14 0.05

Notes. Column (1) observation date. Column (2) best-fit photon index Γ.
Unless marked otherwise, the spectral fits are from joint spectral fits to all
Chandra and Swift data from July 15to August 5, forcing a common best-fit
column density across all epochs, while allowing Γ to vary on each date. The
best-fit =  ´ -N 8.4 0.2 10 cmH

21 2. Column (3) grade migration parameter
from the Davis (2001) pileup model applied to the Chandra data sets. Column
(4) pileup fraction in the Chandra data sets, as calculated by the pileup model.
All X-ray spectral fits use an absorbed power-law model phabs∗power-
law, with abundances from Anders & Grevesse (1989) and cross-sections from
Balucinska-Church & McCammon (1992), with updated He cross-sections
from Yan et al. (1998).
a Spectral parameters from a fit to the Chandra data, freezing the column
density to = ´ -N 8.4 10 cmH

21 2.
b Spectral parameters from a joint fit to NuSTAR, Chandra, and Swift data from
July 23, freezing the column density to = ´ -N 8.4 10 cmH

21 2.
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six ToO observations. We performed two spectral fits (of the
form phabs∗powerlaw), where we first allowed NH to vary
as a free parameter (yielding =  ´ -N 1.0 0.1 10 cmH

22 2,
G = 1.79 0.10; see Figure 10), and then we fixed NH to

´ -8.4 10 cm21 2 (i.e., the best-fit value from Section 2.4). The
latter fit yielded G = 1.64 0.04, which is the value we adopt
throughout the text (see Table 3). We applied the Davis (2001)
pileup model during these fits, and we found 8% pileup.

No VLA observations were taken on July 11. However, there
was a Very Long Baseline Array (VLBA) radio program (PI
Miller-Jones; project code BM421), from which we extracted
radio information on July 11. Although no VLBA observations
were taken simultaneously with Chandra, a 25minute portion of
a VLBA observation from UT 07:03–07:28 ( = nf 0.91 0.06
mJy at 5GHz) was obtained simultaneously with a Swift snapshot
( =  ´ - - -f 1.98 0.12 10 erg s cm ;0.5 10 keV

11 1 2
– model flux

calculated in ISIS assuming = ´ -N 8.4 10 cmH
21 2 and

G = 1.64). For placing these data on radio/X-ray luminosity
correlations, we adopted =  ´ -L 5.2 0.7 10 erg sR

28 1( ) at
8.4 GHz (assuming a flat radio spectrum) and

=  ´ -L 1.16 0.15 10 erg s1 10 keV
34 1( )– . Details on the VLBA

reduction will be provided in an upcoming publication (J. C. A.
Miller-Jones et al. 2016, in preparation).

3. RESULTS

3.1. Long-term Flux and Spectral Evolution

In Figure 1,we show the X-ray and radio light curves during
our three-week campaign, along with the corresponding
evolution of the X-ray photon index Γ and the radio spectral
index ar. Throughout our campaign, the average Chandra
X-ray fluxes (0.5–10 keV) are a factor of 3–12 brighter than the
average pre-outburst X-ray flux of V404 Cygni. Although there
is an overall trend of decreasing flux with time, there is also
superposed variability, so that the decay is not monotonic.
Figure 1(b) displays a clear X-ray spectral softening, where the
spectrum is relatively hard toward the beginning
(G = 1.64 0.04 on July 11) and settles near the pre-outburst
value of G » 2 by the end of our campaign.16 Even though

V404 Cygni re-brightens on our final epoch (August 5) to a
flux comparable to July 15 (» ´ - - -8 10 erg s cm12 1 2), its
X-ray spectrum remains soft on August 5 (G = 1.99 0.04)
compared to on July 15 (G = 1.75 0.07).
The radio spectrum is consistent with being flat/inverted

throughout our entire campaign, and only on July 30 and
August 5 does it appear to be inverted at a meaningful level
(> s3 ) (Figure 1(d)). Throughout, we adopt 0.2 mJy
( ´ -1.1 10 erg s28 1 at 8.4 GHz; Corbel et al. 2008) as the
pre-outburst radio flux density, so that the radio emission is a
factor of ≈2–5 brighter during our campaign compared to pre-
outburst. However, we note that both Miller-Jones et al. (2008)
and Rana et al. (2016) observe slightly higher average radio
flux densities of 0.3 mJy in quiescence, implying that V404
Cygni may have temporarily reached its pre-outburst radio flux
level during our campaign on August 1.

3.2. Intraday Variability

For each epoch, we create X-ray and radio light curves to
explore variability on timescales of minutes to hours. X-ray light
curves over three-minute time bins are displayed in Figure 2 for all
seven Chandra observations, with fluxes from Swift snapshots
overplotted. Five of the Chandra observations contain time periods
with strictly simultaneous VLA coverage (ranging from 8 to 93
minutes), which we highlight as gray regions in Figure 2. For each
light curve, we quantify the level of variability with the fractional
rms variability amplitude statistic Fvar (see, e.g., Vaughan
et al. 2003), which we report in Table 5, incorporating all Chandra
and Swift observations. The Fvar statistic probes timescales as short
as threeminutesfrom each Chandra observation, and timescales as
long as 8–19 hr (depending on the date), which corresponds to the
range of times between the first and final Swift snapshots on each
epoch (see Table 1). All seven X-ray light curves display variability
at the »F 20% 55var – % level. Throughout, we (somewhat
arbitrarily) require s >F 1Fvar var to claim variability, and we refer
to observations displaying  s <F1 3Fvar var as mildly variable,
wheresFvar is the statistical uncertainty on Fvar. Photon pileup in our
Chandra observations could suppress the observed X-ray
variability so that our Fvar values are underestimated by up to a
factor of 0.84 during the most extreme flares (e.g., the flare from
200 to 400minute into the August 5 observation; see Appendix B).
However, during the bulk of our observations, effects from pileup

Table 4
Radio Properties

Date f5.2 f7.5 f8.6 f11.0 f8.4 ssys n nL 8.4( ) ar

(mJy bm−1) (mJy bm−1) (mJy bm−1) (mJy bm−1) (mJy bm−1) (mJy bm−1) ( -10 erg s28 1)
(1) (2) (3) (4) (5) (6) (7) (8) (9)

Jul 11a 0.91±0.06 L L L L L 5.2±0.7 L
Jul 15 0.759±0.036 0.746±0.032 0.827±0.030 0.782±0.032 0.794±0.016 ±0.046 4.6±0.5 0.07±0.08
Jul 23 0.757±0.033 0.653±0.029 0.713±0.029 0.703±0.029 0.706±0.015 ±0.053 4.1±0.5 −0.09±0.08
Jul 28 0.583±0.024 0.570±0.017 0.586±0.015 0.573±0.016 0.579±0.009 ±0.057 3.3±0.4 −0.02±0.07
Jul 30 0.538±0.018 0.573±0.020 0.578±0.022 0.643±0.026 0.591±0.012 ±0.051 3.4±0.4 0.22±0.07
Aug 1 0.372±0.013 0.335±0.011 0.367±0.011 0.387±0.012 0.369±0.005 ±0.057 2.1±0.2 0.07±0.05
Aug 5 0.742±0.011 0.801±0.010 0.802±0.010 0.850±0.010 0.808±0.005 ±0.182 4.6±0.5 0.18±0.03

Note. Column (1): observation date. Column (2): peak flux density in the baseband centered at 5.2 GHz. Column (3): peak flux density at 7.5 GHz. Column (4): peak
flux density at 8.6 GHz. Column (5): peak flux density at 11.0 GHz. Column (6):inferred flux density at 8.4 GHz from spectral fits (see Section 2.5.1). Error bars in
columns (2)–(6) represent statistical uncertainties. Column (7): systematic error on the 8.4 GHz radio flux density, based on 1σ flux density variations within each
observation (see Section 3.2). Column (8):radio luminosity at 8.4 GHz. Errors include the statistical uncertainty, and the uncertainty on the distance to the source.
Column (9):best-fit spectral index ( nµn

af r) for the flux densities in columns (2)–(5).
a VLBA observation at 5.0 GHz (see Section 2.6). We assume a flat spectral index for estimating the luminosity at 8.4 GHz.

16 Note that we would still observe an X-ray spectral softening if we were to
adopt G = 1.79 0.10 on July 11 when allowing the column density to vary
as a free parameter.
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are generally more mild. We do not obtain a sufficient number of
counts in each three-minute bin to investigate short-term spectral
variability in the X-ray; though, we note in Appendix B that we do
not see evidence for X-ray spectral variability within individual
Chandra exposures binned by count rate. For completeness, we
search for quasiperiodic oscillations in our highest count rate
Chandra observation (August 5), and we see no evidence from
0.001 to 1Hz.

For our six VLA epochs, we split each radio observation into
three-minute time bins, which we image at each central
frequency (following the same procedure described in
Section 2.5). We have sufficient radio signal to also investigate

radio spectral variability. For each time bin, we fit a powerlaw
to the radio spectrum to measure ar and infer the radio flux
density at 8.4 GHz, following the procedure in Section 2.5.1. For
each time bin, we typically measure flux densities to accuracies
of s » 0.03 0.04f – mJy bm−1 and spectral indices to
s » a 0.1 0.3r – . Light curves for the 8.4 GHz radio flux density
and for the radio spectral index ar are displayed in Figures 3 and
4, respectively (we omit our first two radio epochs because they
contain <10minute on source). V404 Cygni displays strong
radio variability during our final August 5 epoch
( = F 0.22 0.01var ), and to lesser extents on August 1
( = F 0.12 0.03var ) and July 28 ( = F 0.09 0.04;var see

Figure 1. (a) Chandra X-ray light curve during our three-week campaign.
Unabsorbed X-ray fluxes (luminosities) from 0.5 to 10 keV are labeled on the
left (right) vertical axis. The dashed line illustrates the average pre-outburst
X-ray flux (Bernardini & Cackett 2014). (b) Evolution of the X-ray photon
index. The dashed line and gray shaded region denote the pre-outburst Γ and
1σ uncertainty from Reynolds et al. (2014). (c) Interpolated radio flux density
light curve at 8.4 GHz (see left vertical axis); corresponding luminosities at
8.4 GHz are labeled on the right vertical axis, and the dashed line shows the
pre-outburst radio flux density (Corbel et al. 2008). (d) Radio spectral index ar
(we do not have radio spectral constraints from the July 11 VLBA observation).
The dashed line marks a flat radio spectrum for reference. In all panels, the time
axis is referenced to the discovery date of the outburst (2015 June 15).

Figure 2. X-ray light curves of seven Chandra observations binned by
three minutes(black solid lines), with typical error bars illustrated in the top
right of each panel. X-ray fluxes from ≈1–2 ks Swift snapshots are overplotted
(red circles). Shaded regions mark when the VLA observed. X-ray fluxes are
from 0.5 to 10 keV, in units of - - -10 erg s cm11 1 2 (see left vertical axes), and
count rates for the Chandra observations are listed on the right vertical axes.
The x-axis is referenced to the start time of each Chandra observation (see
Table 1; times from all telescopes are barycentered).
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Table 5). Intriguingly, we do not see rapid intraday fluctuations
in aR, in contrast to Rana et al. (2016) who observe the radio
spectrum to fluctuate between optically thin and optically thick
over 10-minute time intervals (though we note that we observed
when V404 Cygni was up to a factor of three radio brighter, and
a detailed comparison is out of the scope of this paper).

Finally, we consider the five epochs, where the Chandra and
VLA observations contain periods of strict simultaneity (July 15,
July 23, July 28, August 1, and August 5). For a proper
comparison, we apply barycentric corrections to the times of each
three-minute VLA time bin, and we extract Chandra light curves
over strictly simultaneous three-minute bins. The Fvar statistic is
reported in Table 5 for each portion of these five radio and X-ray
observations with strict simultaneity (we also report in Table 5 the
length of strict overlap). We detect X-ray variability in 4/5 epochs
(though most significantly on August 5), and we detect radio
variability only on August 5. For the final three epochs with
>30minutes of strict simultaneity (July 28, August 1, and August
5), we search for correlated X-ray and radio variations using a
Pearson correlation test. There is a hint for a weak, but not highly
significant, correlation on August 5 (p=0.003 that no correlation
is present; see Figure 5 for a comparison of the radio and X-ray
light curves on August 5), which we describe further in the next
subsection. There is no evidence for correlated X-ray/radio
variations on either July 28 (p=0.2) or August 1 (p=0.4).

3.2.1. August 5: Correlated Variability and a Radio Lag?

The August 5 epoch shows strong variability in both the X-ray
and radio, with a marginally significant correlation between the
X-ray and radio fluxes. Examination of the X-ray and radio light
curves (Figures 2, 3, and 5) suggests that V404 Cygni began a
small flare at the time when both Chandra and the VLA were
observing. We calculate the cross-correlation function (CCF) for
the 1–10 keV X-ray and 8.4 GHz radio light curves17 over the 93-
minute period of overlap (using three-minute time bins that are
strictly simultaneous; we adopt 1–10 keV X-ray fluxes here for
consistency with our radio/X-ray luminosity correlation analysis
in Section 3.3, but results are unchanged if we adopt 0.5–10 keV

fluxes). Our radio and X-ray light curves lack sufficient time
coverage to define a non-flaring continuum level. Therefore, when
calculating the CCF, we apply the locally normalized discrete
correlation function algorithm described by Lehar et al. (1992).

Table 5
Variability

Full Exposures Strictly Simultaneous

Date Fvar,xray Fvar,radio Fvar,xray Fvar,radio texp,sim p
(2015) (minute)
(1) (2) (3) (4) (5) (6) (7)

Jul 11 0.25±0.03 L L L L L
Jul 15 0.18±0.10 0.04±0.19 0.11±0.85 0.04±0.19 8 L
Jul 20 0.39±0.05 L L L L L
Jul 23 0.24±0.09 0.06±0.17 0.37±0.07 0.06± 0.17 8 L
Jul 28 0.54±0.05 0.09±0.04 0.29±0.13 0.09±0.04 35 0.2
Jul 30 L 0.04±0.08 L L L L
Aug 01 0.36±0.05 0.12±0.03 0.39±0.13 0.09± 0.07 32 0.4
Aug 05 0.55±0.02 0.22±0.01 0.28±0.03 0.22±0.01 93 0.003

Note. Column (1): observation date. Column (2): the Fvar statistic (with 1σ statistical uncertainties), which quantifies the rms flux variability for the full combined
Chandra and Swift X-ray light curves (July 11 is based only on Chandra observations). Column (3):Fvar for the full duration of each VLA radio light curve. Columns
(4)–(5): same as previous two columns, but over the time periods with strict simultaneity between Chandra and the VLA (Swift data omitted). Note that columns (3)
and (5) only differ on August 1, which is the only time that a VLA observation began before Chandra. Column (6): duration of simultaneous overlap (reported as the
total VLA time on source). Column (7): the probability of no correlation between the radio and X-ray fluxes, for the three epochs with the most simultaneous overlap.

Figure 3. Radio light curves for the four epochs with the longest amount of
radio coverage, binned by three minutes. The x-axis is referenced to the start
time of each VLA observation.

17 CCF results on the light curves from July 28 and August 1 are inconclusive,
which is to be expected since we do not observe obvious X-ray flares during
the (shorter) »30 minute periods of overlap on those dates.
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This algorithm is similar to the discrete correlation function (e.g.,
Edelson & Krolik 1988), except, at a given time delay, the first
and second moments of each time series are calculated by
considering only the subset of data pairs within each time delay
bin, instead of over the entire time series.

The CCF over these 93 minutes of strict simultaneity is
displayed in Figure 6. Error bars are calculated through the
following bootstrapping method that simulates the expected
CCF for uncorrelated variations: we randomize each radio and
X-ray light curve 1000 times (after adding random statistical
noise to each data point according to the flux measurement
uncertainties), and we then calculate the CCF on each
realization of the data. The error bars in Figure 6 display the
standard deviations at each time delay for the 1000 boot-
strapped CCFs. The CCF peaks (i.e., shows the strongest
positive correlation) at a time delay of D = - t 15.4 4.0
minutes, where a negative time delay indicates that the radio
emission lags the X-ray emission.18 The value of the CCF at
D = -t 15 minute is 0.76±0.22. To estimate the statistical

significance of delayed correlated variability, we use the above
simulations to calculate a global significance level (following
Bell et al. 2011). We determine the fraction of simulated CCF
values at any time delay with a value >0.76, and we find
p=0.01. This global significance level accounts for stochastic
fluctuations as well as false detections from any intrinsic yet
uncorrelated variability within each light curve (see Bell
et al. 2011 for details).
As noted earlier, the observed radio and X-ray emission are

correlated at a marginally significant level (p=0.003, from a
Pearson correlation test). However, if we remove the radio lag
by shifting the radio light curve by 15 minutes (Figure 5(d))
and then re-extract the X-ray light curves over three-minute
bins, then the correlated radio and X-ray variability becomes
more statistically significant ( = ´ -p 7 10 ;5 Figure 5(e)). For
completeness, we also perform a linear regression to the radio/
X-ray correlations over the 93 minutes of strict simultineity,
and we find a marginally steeper slope after removing the radio
lag ( µ f fr x

0.42 0.15 as observed, and µ f fr x
0.59 0.17 after

removing the radio delay; see Section 3.3 for a description of
our fitting method).
We stress that we consider the evidence for a radio time

delay to be tentative at the moment, as the p=0.01 chance of
a random correlation yields only a marginal detection.
Furthermore, the light curves supporting this CCF analysis
are not optimal, as we did not observe the beginning of the
flare in the X-ray, nor did we observe the maximum of the
flare in the radio. Nevertheless, we report the CCF results here
in order to highlight a result that merits further investigation,
but we proceed cautiously with our interpretation (see
Section 4.3).

3.3. Radio—X-Ray Luminosity Correlation

In Figure 7, we add our five new epochs of simultaneous
VLA/Chandra observations, along with the VLBA/Swift
observations from July 11, to the radio/X-ray luminosity
correlation for V404 Cygni. We compare to quasi-simultaneous
data from the 1989 outburst and to two epochs of simultaneous
observations in quiescence, as described in Section 3.4. Our
2015 campaign filled in a luminosity regime that was not well
covered during the 1989 outburst, and to our knowledge, no
other radio telescope covered these luminosities in 2015.
The error bars displayed in Figure 7 for our 2015 campaign

include statistical uncertainties from the flux measurements
(with the distance uncertainty propagated, to ease comparisons
to the literature), and a systematic error set to the standard
deviations of the intraday flux variability on each epoch (see
Tables 2 and 4). For the July 11 VLBA observation, we assume
a systematic error of 0.15 dex. Errors for the data points taken
from the literature are described in Section 3.4 (where we
assume that flux uncertainties for the quasi-simultaneous
observations are dominated by variability induced systematics).
Following Gallo et al. (2014), we fit a function of the form

- = + -L b m Llog 29 log 35R X( ) ( ) to the updated radio/
X-ray luminosity correlation, using the Bayesian linear
regression technique of Kelly (2007). We obtain nearly
identical results as Corbel et al. (2008) and Gallo et al.
(2014), who consider the 1989 and 2003 data. We find
= b 0.40 0.04, = m 0.54 0.03, and s =  0.06 0.03int .
Since all of our 2015 X-ray observations are longer than our

radio observations, we also re-image our radio and X-ray
observations to only include strictly simultaneous time periods,

Figure 4. Variation of radio spectral index with time for the four longest radio
epochs (binned by threeminutes). The dotted lines mark a = 0r for reference.
The x-axis is referenced to the beginning of each VLA observation.

18 To estimate the time delay (Dt) and error (sDt), we consider data points in
the CCF between - < D <t48 18 minutes (which corresponds to the full-
width half-maximum of the peak in the CCF). We then calculate Dt and sDt ,
respectively, as the average time and standard deviation, weighted by the CCF.
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in order to investigate how non-simultaneity may influence the
radio/X-ray correlation. We find the difference to be
negligible, and well within the attributed measurement errors
and scatter about the luminosity correlation: the radio
luminosities are hardly affected, and no X-ray luminosity
changes by more than 0.2 dex. We similarly do not find any
impact to the radio/X-ray correlation if we consider periods of
strict overlap after removing the 15-minute radio time delay.

3.4. Comparison Observations from the Literature

Here, we describe comparison data from other X-ray and
radio campaigns on V404 Cygni in the literature. Our
comparison data is comprised primarily of quasi-simultaneous
radio and X-ray observations from the 1989 outburst, as
compiled by Corbel et al. (2008), and two epochs of
simultaneous radio and X-ray observations in quiescence
(pre-2015 outburst), one from the VLA/Chandra in 2003

Figure 5. (a) The hard (1–10 keV) Chandra X-ray light curve from August 5 (binned by 3 minute), with the shaded region denoting the time period with strictly
simultaneous VLA observations. A typical error bar is illustrated in the top right corner. (b) X-ray (black circles) and radio (red triangles) light curves during the period
of strict simultaneity. (c) Radio vs. X-ray emission. A Pearson correlation test indicates a (marginal) positive correlation at the » ´ -p 3 10 3 level. The black solid
shown shows the best-fit radio/X-ray correlation during the 93 minutes of strict simultaneity ( µ L LR X

0.4 0.2). (d) Same as panel (b), except with the radio data delayed
by 15 minutes. (e) Same as panel (c), except with X-ray light curves re-extracted after factoring in the 15-minute radio delay. After correcting for the time delay, a
Pearson correlation test indicates a stronger correlation ( » ´ -p 7 10 5), and µ L LR X

0.6 0.2. All X-ray fluxes are from 1 to 10 keV (in units of - - -10 erg s cm11 1 2),
and all radio flux densities are at 8.4 GHz (in units of mJy bm−1); the normalizations of the radio and X-ray light curves in panels (b) and (d) correspond to the
aforementioned units.
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(Hynes et al. 2004, 2009; Corbel et al. 2008), and one from the
VLA/NuSTAR in 2013 (Rana et al. 2016). We also adopt X-ray
spectral parameters from the literature based on three additional
X-ray observations taken pre-outburst from Chandra, XMM-
Newton, and Suzaku (Reynolds et al. 2014) and one Chandra
observation taken after the outburst in 2015 November
(Tomsick et al. 2015; see Section 3.4.3).

3.4.1. Corbel et al. (2008)

Corbel et al. (2008) assemble a total of 20 epochs of quasi-
simultaneous radio and X-ray observations of V404 Cygni
during the decay of its 1989 outburst, with luminosities ranging
from < < -L10 10 erg s34

X
37 1. Although the statistical mea-

surement errors on each data point are typically ≈10%, we
adopt larger uncertainties here, to account for the radio and
X-ray data not being strictly simultaneous, and to account for
the lack of detailed spectral information for each data point.
Following Gallo et al. (2014), we adopt errors of 0.15 and 0.30
dex on each radio and X-ray luminosity, respectively. Corbel
et al. (2008) also re-examine strictly simultaneous Chandra and
VLA observations of V404 Cygni in quiescence from 2003
July 28–29 (56 ks with Chandra and 14 hr with the VLA; also
see Hynes et al. 2004, 2009). We adopt their X-ray and radio
flux measurements, including a 3–9 keV X-ray flux of

´-
+ - - -1.79 10 erg s cm0.06

0.13 13 1 2 and a radio flux density of
0.193±0.022 mJy at 8.4 GHz (they find a radio spectral index
of a = 0.29 0.46r ). For placing these observations onto the
radio/X-ray plane, the above fluxes correspond to X-ray and
radio luminosities of = ´ -L 2.8 10 erg sX

32 1 (1–10 keV) and
= ´ -L 1.1 10 erg sR

28 1 (8.4 GHz). We adopt 30% systematic
uncertainties on these X-ray and radio fluxes to account for
variability in each band during the strictly simultaneous
observations (0.13 dex).

3.4.2. Rana et al. (2016)

Rana et al. (2016) present VLA observations in quiescence
taken on 2013 December 2, along with three epochs of
NuSTAR X-ray observations (2013 October 13, October 14,
and December 2) and one epoch of XMM-Newton observations
(2013 October 13). Here, we only consider their simultaneous
radio and X-ray epochs from December 2, which includes 9 hr
with the VLA and 25 ks with NuSTAR.
Their VLA observations are from 5 to 8 GHz, and they

provide radio flux density measurements at four central
frequencies (each with 512MHz bandwidth; see their Table
3). To compare to 8.4 GHz flux densities from our 2015
campaign, we fit a powerlaw to their published 5–8 GHz radio
spectrum, using the same routine described in Section 2.5.1.
We find a radio spectral index a = - 0.27 0.05r and

= f 0.274 0.0828.4 mJy ( = ´ -L 1.6 10 erg sR
28 1).

For the X-ray flux coinciding with their VLA observation,
we estimate an absorbed 3–10 keV X-ray flux of

´ - - -2.5 10 erg s cm13 1 2 during their December 2 NuSTAR
epoch (see their Figure 6). Using their best-fit power-law
spectrum to V404 Cygni in quiescence ( = ´N 1.2H

-10 cm22 2 and G = 2.12 0.07; 90% confidence), we
estimate = ´ - - -f 5.4 10 erg s cm1 10 keV

13 1 2
– ( = ´L 3.7X

-10 erg s32 1). The difference in NH obtained by Rana et al.
(2016) compared to our best-fit NH in Section 2.4 is because
Rana et al. adopt Wilms et al. (2000) abundances during their
fits, and we adopt Anders & Grevesse (1989) abundances (see
Appendix A). We add 30% systematic errors (0.13 dex) to both
the radio and X-ray luminosities to account for variability.

3.4.3. Quiescent X-Ray Spectra

Reynolds et al. (2014) take a comprehensive look at four pre-
outburst X-ray spectra, obtained by Chandra, XMM-Newton, and
Suzaku. Over these four epochs, they find 0.3–10 keV X-ray
fluxes ranging from ´ ´- - - -0.8 10 3.4 10 erg s cm12 12 1 2– ,
and Γ ranging from 1.95 to 2.25. They also perform a joint
spectral fit to these four spectra, forcing a common column
density and power-law component, obtaining G = 2.05 0.07
and =  ´ -N 1.15 0.07 10 cmH

22 2( ) (90% confidence). We
adopt G = 2.05 as the “canonical” pre-outburst X-ray spectrum.
Although Reynolds et al. (2014) favor a larger column density
than our study (likely because they adopt different abundances,
from Asplund et al. 2009), adopting their G = 2.05 will not
systematically influence our conclusions. Earlier studies based on
the same pre-outburst Chandra (two epochs) and XMM-Newton
observations (1 epoch) quote best-fit column densities similar to
our study— ´-

+0.75 100.08
0.15 22 and  ´ -0.81 0.01 10 cm22 2

from Chandra (Corbel et al. 2008), and  ´0.88 0.6
-10 cm22 2 from XMM-Newton (Bradley et al. 2007). Those

earlier studies find photon indices of G = 2.1 0.3, 2.17±
0.13, and 2.09±0.08, respectively, which are consistent with the
range of Γ in Reynolds et al. (2014).
We also include a Chandra observation of V404 Cygni

obtained by Tomsick et al. (2015) on 2015 November 27 (obsID
17245; PI Tomsick; note that this was 26 days before V404 Cygni
flared again on 2015 December 23; Beardmore et al. 2015b). This
post-outburst observation shows X-ray properties similar to pre-
outburst, including =  ´ -N 1.1 0.3 10 cmH

22 2( ) (using
Wilms et al. 2000 abundances), G = 2.0 0.3 (90% con-
fidence), and an absorbed 0.3–10 keV flux of ´7.6

- - -10 erg s cm13 1 2. When we display values from Reynolds

Figure 6. Cross-correlation function (CCF) for the strictly simultaneous X-ray
and radio light curves on August 5. Negative time delays mean that the radio
emission lags the X-ray emission. The CCF shows marginal evidence for the
radio emission lagging the X-ray by 15±4 minutes (the shaded region
illustrates the ±1σ confidence interval on the time delay). The solid and dashed
horizontal lines mark the p=0.01 and p=0.05 probabilities, respectively,
that the CCF peak is due to random fluctuations and/or uncorrelated variability
(see Section 3.2.1).

11

The Astrophysical Journal, 834:104 (19pp), 2017 January 10 Plotkin et al.



et al. (2014) and Tomsick et al. (2015) in upcoming figures, we
convert their reported 0.3–10 keV fluxes to 0.5–10 keV.

4. DISCUSSION

In Figure 8,we display the X-ray spectral evolution of V404
Cygni as a function of Eddington ratio. This figure supports the
statistical assertion by Plotkin et al. (2013) that the spectral
softening occurs over a narrow range of luminosity, before the
BHXB reaches its minimum (i.e., pre-outburst) quiescent
luminosity. From Figure 1, V404 Cygni reaches G » 2
between July 23 and August 1, which indicates that V404
Cygni re-enters the quiescent spectral state around

= ´ -L 2.5 3.2 10 erg s0.5 10 keV
33 1––

(  - -L L5.6 log 5.5X Edd ), and that the transition into
quiescence occurs over only a factor of »3 in luminosity. This
luminosity where V404 Cygni enters quiescence is lower than
the - L10 5

Edd threshold suggested by Plotkin et al. (2013), but it
is still a factor of ≈3–4 above the average pre-outburst
quiescent luminosity of ´ -8 10 erg s32 1 for V404
Cygni(0.5–10 keV; Bernardini & Cackett 2014). Sivakoff
et al. (2015b) suggest that V404 Cygni did not settle back to its
pre-outburst LX until sometime between August 5 and 21
(interestingly, the optical emitting outer disk did not return to
its pre-outburst flux level until 2015 October 10–20; Bernardini
et al. 2016b).

The X-ray variability properties of V404 Cygni during our
campaign are also comparable to pre-outburst, as our maximum
measured X-ray = F 55 2%var is similar to = F 57.0var
3.2% reported by Bernardini & Cackett (2014). We also
demonstrate that the X-ray spectral softening is not accompanied
by corresponding changes in the shape of the radio spectrum from

the outer jet (Han & Hjellming 1992 also observed flat/inverted
radio spectra at comparable radio flux densities during the decay
of the 1989 outburst). The normalization of the radio/X-ray
luminosity correlation appears identical between the 2015 and
1989 outbursts, thereby suggesting a robust disk/jet coupling for
V404 Cygni. The BHXB GX 339−4 also displays nearly
identical correlation slopes and normalizations between different
outbursts (Corbel et al. 2013).

4.1. Comments on RIAF X-Ray Emission

Our data are consistent with an RIAF origin for the X-rays
from V404 Cygni, as long as the X-ray emission is very
inefficient throughout the entire decay as described below.19

We can parameterize the X-ray luminosity as µL Mq
X ˙ , where

q describes the radiative efficiency (for convenience, we will
refer to q as the “radiative efficiency”) and Ṁ is the mass
accretion rate through the inner regions of the accretion flow.
For a partially self-absorbed synchrotron jet, the radio
luminosity follows µ a-L QR j

17 12 2 3 r( ) , where the jet power,
Qj, is linearly proportional to Ṁ (e.g., Falcke & Bier-
mann 1995). We adopt a = 0r , such that the slope of the
radio/X-ray correlation =m q17 12( ) . For V404 Cygni,

»m 0.5, which implies an X-ray efficiency of »q 2.8 (for the
most inverted radio spectrum observed during our campaign,
a » 0.2r , the implied X-ray efficiency is »q 2.6, and an
inverted radio spectrum does not alter our conclusions). This

Figure 7. Radio/X-ray luminosity correlation for V404 Cygni. Blue squares show observations from our 2015 campaign, including the simultaneous VLBA and Swift
observations on July 11. Black circles show data from the 1989 decay (Corbel et al. 2008), and the red triangles show two pre-outburst epochs: 2003 (Corbel
et al. 2008; Hynes et al. 2009) and 2013 (Rana et al. 2016). The red solid line and shaded region showthe bestfit to the radio/X-ray correlation ( µL LR X

0.54) and the
1σ uncertainty.

19 We note, however, that there are arguments against an RIAF interpretation
for V404 Cygni in the literature, including a lack of X-ray emission lines from
V404 Cygni in quiescence (e.g., Bradley et al. 2007; Rana et al. 2016), and also
UV emission that is inconsistent with most RIAF models unless an outflow is
incorporated (Hynes et al. 2009).
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efficiency is consistent with expectations from many RIAF
models. For example, Merloni et al. (2003) calculate that the
X-ray efficiency may range from »q 2.0 3.4RIAF – at the lowest
accretion rates.

It is beyond the scope of this paper to explore specific RIAF
models in detail. However, any model must satisfy other
observational constraints besides »q 2.8. One is the relatively
rapid X-ray spectral softening. In a hot accretion flow,
synchrotron self-Compton (SSC) processes are important for
generating X-ray emission (see, e.g., recent reviews by
Poutanen & Veledina 2014; Malzac 2016), and the X-ray
spectral softening toward quiescence is generally expected to
be driven by a lower optical depth to inverse Compton
scatterings and/or a lower flux of seed photons as Ṁ decreases
(e.g., Esin et al. 1997; Tomsick et al. 2001; Sobolewska
et al. 2011; Niedźwiecki et al. 2014). However, for V404
Cygni, our monitoring campaign demonstrates that such a
decrease in optical depth/seed photon flux cannot be
accompanied by a large change in the the X-ray efficiency q,
since the slope of the radio/X-ray correlation does not change
at a detectable level (i.e., the uncertainty on the best-fit

= m 0.54 0.03 implies s » 0.08q ). Furthermore, the X-ray
variability properties of V404 Cygni are similar across our
entire campaign and pre-outburst, in both flux amplitude and
timescale, which may indicate that the size of the X-ray
emitting region does not evolve significantly.

4.2. Comments on Jet Synchrotron X-Ray Emission

Several studies of V404 Cygni in quiescence have favored a
synchrotron origin for the X-ray emission (e.g., Bernardini &
Cackett 2014; Xie et al. 2014; Markoff et al. 2015). In this case,
the observed G » 2 implies that the synchrotron emitting
particles are radiatively cooled (see, e.g., Plotkin et al. 2013),
and/or that the particle acceleration mechanisms along the jet
become less efficient as luminosity decreases (i.e., the
maximum Lorentz factor of accelerated particles becomes
smaller, see, e.g., Connors et al. 2016 for recent discussions on
both scenarios).
In the case of radiatively cooled particles, the X-ray spectral

softening implies a switch in the X-rays from being dominated
by the RIAF and/or by the optically thin jet in the hard state, to
becoming dominated by a (synchrotron-cooled) jet in quies-
cence (Yuan & Cui 2005). However, as described below, our
2015 campaign excludes a synchrotron-cooled jet in quies-
cence, unless the emission is scattered into the X-ray waveband
through SSC. For synchrotron-cooled X-rays, the radiative
efficiency = + - Gq p 2 3 2cool ( ) (Heinz 2004), where p
describes the energy distribution of the synchrotron emitting
particles before they are cooled by radiative losses (i.e., below
the cooling break, the number density of relativistic particles

gµ -ne
p, where γ is the Lorentz factor of the emitting

particles). For < <p2.0 2.3 (which is typical in astrophysical
contexts; e.g., Bell 1978; Drury 1983; Achterberg et al. 2001),
G = 2 yields < <q1.0 1.3cool , which results in a steeper
radio/X-ray correlation slope of < <m1.1 1.4cool (for an
inverted a » 0.2r , the shallowest slope supported by our data
would be »m 1.0cool ).
If X-rays are to become synchrotron cooled in quiescence,

then the transition must occur at » ´ -L 3 10 erg sX
33 1 (i.e.,

where the X-ray spectrum reaches G » 2). However, a
steepening of the radio/X-ray correlation at that X-ray
luminosity predicts a quiescent radio luminosity that is
≈0.5–0.9 dex lower than was observed in either 2003 or
2013 (for p=2.0–2.3; see Figure 9). We note that empirical
studies on the broadband SEDs of other hard state BHXBs
suggest that the spectrum of optically thin jet synchrotron
emission could (on average) follow nµn

- -f 0.7 0.8( ) (Russell
et al. 2013), from which one infers p as large as 2.6,
corresponding to =q 1.6cool . Synchrotron-cooled X-ray emis-
sion could therefore yield a slope as shallow as =m 0.9cool .
Even in this limiting case, synchrotron-cooled X-ray emission
underpredicts the observed pre-outburst radio luminosities of
V404 Cygni by »0.3 dex. Synchrotron-cooled X-rays in
quiescence also appear unlikely from the radio properties of
A0620−00 (Gallo et al. 2006) and XTEJ1118+480 (Gallo
et al. 2014, both sources at » -L L10X

8.5
Edd). Although, for

those two sources, it is not possible to isolate the inflection
point in X-ray luminosity, where the radio/X-ray correlation
should steepen. A steepening of the radio/X-ray correlation in
quiescence also appears to be disfavored from statistical
analyses of supermassive black holes (e.g., Dong & Wu 2015).
In light of the above, we suggest two possibilities for a jet

X-ray origin in quiescence: (1) the X-ray emission is SSC with
synchrotron-cooled seed photons (also see, e.g., Markoff et al.
2005 for discussions on SSC from jet models); or (2) particle
acceleration along the jet becomes less efficient with decreasing
luminosity. In the first case, for SSC arising from an optically thin
plasma, q is generally expected to be larger (i.e., less efficient)

Figure 8. X-ray spectral evolution of V404 Cygni as afunction of Eddington
ratio (L LX Edd, where LX, which is displayed along the top axis, is calculated
from 0.5 to 10 keV). Blue circles represent observations from our 2015 decay,
with the blue solid lines connecting the data points to illustrate the evolution
with time (following the direction of the blue arrow). Red triangles show
spectral fits from pre-outburst observations compiled from Reynolds et al.
(2014) and Rana et al. (2016), the red diamond represents a Chandra
observation from 2015 November (Tomsick et al. 2015), and black squares
represent the average photon indices of 10 quiescent BHXBs binned by
Eddington ratio, from Plotkin et al. (2013). The X-ray spectral softening occurs
over a narrow range in Eddington ratio (from -10 5.1 to -10 5.6), which is more
luminous than the average pre-outburst Eddington ratio ( -10 ;6.2 Bernardini &
Cackett 2014). The dashed line and gray shaded region illustrate the average Γ
and 1σ confidence interval for V404 Cygni pre-outburst (from Reynolds
et al. 2014).
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than the value for the mechanism that produces the source of seed
photons, on account of SSC depending on the product of the
photon field density and the particle density (e.g., Falcke &
Biermann 1995). For simplicity, we will assume here that q will
increase by one(e.g., for a conical jet without velocity gradients
in the bulk flow, the particle density normalization is expected to
scale linearly with M ;˙ Heinz & Sunyaev 2003). In that case, the
radiative efficiency of SSC (with synchrotron-cooled seed
photons) for < <p2.0 2.3 would be < <q2.0 2.3SSC,cool ,
implying < <m0.6 0.7SSC,cool (or >m 0.5SSC,cool for
<p 2.6). Such a change in slope of the radio/X-ray correlation

(i.e., »m 0.5 in the hard state to 0.6–0.7 in quiescence, for
< <p2.0 2.3) may not be detectable given the pre-outburst

luminosity of V404 Cygni (see Figure 9).
SSC X-rays with synchrotron-cooled seed photons could

also plausibly explain the softer quiescent X-ray spectrum, if
the Comptonized spectrum is produced by single scatterings off
an optically thin plasma.20 To properly assess the radiative
efficiency and spectral shape of SSC emission would require
detailed Componization modeling, to simulate the number of
scatterings, the energy distribution of the synchrotron emitting
particles, and adiabatic cooling losses related to the escape rate
of the highest energy particles (also see, e.g., Malzac &
Belmont 2009 for relevant discussions on calculating SSC in
the context of a coronal BHXB model), which we intend to
address in a future paper.

For the second possibility of inefficient particle acceleration,
the observedG » 2 implies (uncooled) optically thin synchrotron
radiation emitted by a non-thermal population of particles with
»p 3, which results in » + - =q p17 12 1 3 2.1thin ( ) ( )

(e.g., Plotkin et al. 2012, and references therein). In this case, we
expect a radio/X-ray correlation slope of =m 0.7thin , consistent
with our prediction for SSC emission. The X-ray spectral

softening during the transition into quiescence is straightforward
to explain if the larger Γ is driven by a transition to optically thin
synchrotron radiation emitted by a population of non-thermal
electrons with p=3, since G = +p 1 2( ) for optically thin
synchrotron. We cannot distinguish between SSC and inefficient
particle acceleration here.
Finally, we note that at even lower luminosities

( » -L L10X
8.5

Edd), a transition to SSC X-rays in quiescence
has also been suggested from broadband modeling of two other
systems—A0620−00 (Gallo et al. 2007) and XTE J1118+480
(Plotkin et al. 2015)—and also phenomenologically from the
broadband spectrum of a third system, Swift J1357.2−0933
(Plotkin et al. 2016); this transition may also be accompanied
by a decrease in the particle acceleration efficiency (e.g.,
Plotkin et al. 2015; though, see Markoff et al. 2015; Connors
et al. 2016 regarding degeneracies between weak particle
acceleration and radiative cooling losses). An important caveat,
however, is that in the above cases the source of synchrotron
seed photons is proposed to be emitted by a mildly relativistic
population of electrons following a thermal distribution of
energies, and not necessarily synchrotron-cooled emission from
a non-thermal jet (see Shahbaz et al. 2013; Plotkin et al. 2015;
Connors et al. 2016 for details).

4.3. A Tentative Size for the Compact Jet

In Section 3.2.1, we present tentative evidence for correlated
radio and X-ray emission on August 5 with a 15.4 4.0
minute radio lag. The best-fit correlation slopes on August 5
( = m 0.42 0.15; or = m 0.59 0.17 after removing the
radio time delay) are, furthermore, consistent with an RIAF or
jet origin (from SSC or weakly accelerated particles) for the
X-ray emission. If this correlated variability is real, then it
implies that disk/jet couplings hold on minute-long timescales,
even in quiescence. Previous long simultaneous radio and
X-ray observations of V404 Cygni in quiescence did not detect
correlated radio and X-ray variations, most likely because our
study is the first with sufficiently matched radio and X-ray
sensitivities: the 2003 VLA and Chandra campaign (Hynes
et al. 2004, 2009) was performed before the VLA upgrade, so
that radio light curves were binned on ≈15–20 minute
intervals; the more recent 2013 campaign (with the upgraded
VLA and NuSTAR; Rana et al. 2016) was limited to
»50 minute X-ray time bins due to the sensitivity of NuSTAR.
Those two previous campaigns do, however, exclude the
possibility of longer radio and X-ray time lags (up to ≈5–10 hr;
the possibility of even longer lags is not constrained).
The measurement of a radio time delay opens the possibility

of placing constraints on the size of the radio jet. If we denote z
as the distance from the black hole along the axis of the jet,
then we can approximate the X-rays as originating at »z 0
(i.e., the X-rays are emitted very close to the black hole, at a
location consistent with the base of the jet), and we can define
the 8.4 GHz radio emission as originating from a region located
at a larger distance z0. If information from X-ray variations
propagate down the axis of the jet with a dimensionless bulk
speed b = v cb (where vb is the bulk speed and c is the speed
of light), then b b q= D - -z c t 1 cos0

1( ) , where Dt is the
radio time delay, θ is the viewing angle between the jet axis and
our line of sight, and b q-1 cos( ) is a correction term related
to superluminal motion. By approximating θ as the orbital
inclination = -

+i 67 1
3 deg, then b < 1 places an upper limit on

the jet size to < z 3.0 0.80 au. This size limit is based only

Figure 9. Radio/X-ray luminosity correlation from Figure 7, zoomed in on the
2015 data. Symbols have the same meaning as in Figure 7. The gray shaded
region shows the predicted path V404 Cygni would take through the radio/X-
ray plane if the X-ray spectral softening signifies a switch to synchrotron-
cooled X-ray emission in quiescence, a scenario that is inconsistent with the
pre-outburst radio luminosity. The light blue shaded region illustrates the path
if the X-rays switch to SSC emission with synchrotron-cooled seed photons.

20 As noted by Corbel et al. (2008), the slope of »m 0.5 in the hard state
could be consistent with SSC from optically thin synchrotron seed photons
with =p 2.0 2.3– , which yields =q 2.8SSC,thin and »m 0.5SSC,thin . Although,
such an interpretation in the low-hard state is less likely for other BHXBs, since
other sources generally show steeper radio/X-ray correlation slopes.
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on geometric arguments and not specific to any jet model, the
only assumptions being that the X-ray flare signifies the
beginning of material propagating down the jet, the adopted
viewing angle, and that there is no velocity gradient in the bulk
flow. However, the latter two assumptions in particular require
further scrutiny. For example, VLBA observations during the
2015 outburst of V404 Cygni suggest that assuming q = 67
deg for the viewing angle might not be valid (J. C. A Miller-
Jones et al. 2016, in preparation).

Despite the above approximations, the calculated <z 3.00
au limit is consistent with a direct limit placed on V404 Cygni
in quiescence, where the compact core remains unresolved in
high-resolution radio observations, providing a projected
angular size of <1.3 milliarcsec (Miller-Jones et al. 2008),
which corresponds to a physical length <z 3.4 au0 (assuming
=d 2.39 kpc and q = 67 ). If the X-ray variations are indeed

propagating down the jet toward the radio photosphere, then in
addition to the time delay, we expect the radio light curve to be
a “smoothed” version of the X-ray light curve: the radio
emitting region will have a larger physical size than the X-ray
emitting one, thereby smearing the radio signal (according to
the light travel time across the radio emitting region) and
supressing the highest (temporal) frequency variations (see,
e.g., Gleissner et al. 2004, and references therein). If we smooth
our X-ray light curve with a 10-minute sliding filter21, then the
X-ray variations decrease from = F 0.28 0.03var (see
Table 5) to = F 0.23 0.03var , which is similar to the
observed radio light curve from which we measure

= F 0.22 0.02var . Although this is an intriguing result,
further study is required. For example, if we also reduce the
amplitude of the X-ray variability by LR

0.54 (i.e., according to
the radio/X-ray luminosity correlation), then smoothing the
X-ray light curve yields rms fluctuations ( = F 0.15 0.03var )
that are smaller than observed in the radio. Plus, the above
ignores the effects of photon pileup on the Chandra-based Fvar
estimate (though these effects are expected to be small; see
Appendix B).

We stress that our radio and X-ray observations on August 5
do not cover an entire flare, thereby making it difficult to
understand systematics on our radio lag measurement. Thus,
we present the < z 3.0 0.80 au limit here as an example of
the type of constraints that are attainable with current facilities,
if one were to obtain longer stretches of strictly simultaneous
radio and X-ray coverage (and measuring a time delay at 2
radio frequencies might provide knowledge of β, which would
yield a measurement on z0 instead of a limit22). So far,
constraints on jet sizes are sparse, as, even at higher
luminosities, we have direct constraints on the sizes of the
compact, partially self-absorbed radio core for only three
sources that have been resolved in the radio: GRS 1915+105
(projected size ≈25–30 au at 8.4 GHz and 8.6 kpc source
distance; Dhawan et al. 2000; Reid et al. 2014), Cyg X-1
(projected size »28 au at 8.4 GHz and 1.86 kpc source

distance; Stirling et al. 2001; Reid et al. 2011), and MAXI
J1836−194 (projected size ≈60–150 au at 2.3 GHz, albeit with
an uncertain distance of 4–10 kpc; Russell et al. 2015), plus the
aforementioned limit on V404 Cygni in quiescence. A more
precise measure for V404 Cygni would open the door to
comparative studies to study how physical properties evolve
from the hard state to quiescence, providing crucial constraints
to inform jet models (see, e.g., Heinz 2006).

5. CONCLUSIONS

We have presented a series of X-ray and radio spectra of
V404 Cygni during the end of its 2015 outburst, as it
transitioned back into quiescence. Even though V404 Cygni
was a factor of ≈3–12 (≈2–5) more luminous in the X-ray
(radio) during our campaign compared to pre-outburst, by our
final observing epoch its other multiwavelength properties were
similar to pre-outburst, including a soft X-ray spectrum
(G » 2), modest X-ray variability ( »F 20% 50%var – ), and a
flat/inverted radio spectrum. We thus conclude that V404
Cygni reached the quiescent spectral state before it settled to its
minimum quiescent luminosity.
We suggest that V404 Cygni enters the quiescent spectral

state at » ´ -L 3 10 erg s0.5 10 keV
33 1

– (determined by the
luminosity when the X-ray spectrum finishes softening to
G » 2). There is no corresponding evolution in the shape of the
radio spectrum, or in the slope of the radio/X-ray luminosity
correlation. From the latter, we exclude the possibility that
X-ray emission is dominated by a synchrotron jet in quiescence
(Yuan & Cui 2005), unless the X-rays are SSC with
synchrotron-cooled seed photons, or particle acceleration along
the jet becomes less efficient in quiescence. From correlated
X-ray and radio variability on our final observing epoch
(August 5), we tentatively measure the radio emission lagging
behind the X-rays by 15.4±4.0 minute, which would imply a
jet size< 3.0 0.8 au (measured between the jet base and the
location of the 8.4 GHz photosphere). Better multiwavelength
coverage of a simultaneous X-ray and radio flare in quiescence
is required.
Because of its well-constrained distance and orbital para-

meters, V404 Cygni is an exceptionally important source for
understanding quiescent accretion flows and jets. As a long-
orbital period system with a large accretion disk, V404 Cygni
settles to a relatively high quiescent luminosity of ≈10 -erg s33 1

(e.g., Menou et al. 1999). In the future, it will be insightful to
perform a similar campaign on a shorter orbital period system, to
determine if BHXBs with smaller accretion disks (and lower
minimum quiescent luminosities) complete their X-ray spectral
softening and re-enter the quiescent state as rapidly as V404
Cygni, and/or at a similar luminosity. Finally, as the most
luminous quiescent BHXB with a well-determined distance, our
improved knowledge on V404 Cygni in quiescence will help
guide multiwavelength surveys to discover new (and less biased)
populations of BHXBs through their quiescent radiative
signatures (e.g., Jonker et al. 2011; Strader et al. 2012; Chomiuk
et al. 2013; Fender et al. 2013; Torres et al. 2014; Miller-Jones
et al. 2015; Tetarenko et al. 2016).
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observing frequencies (from 5.2 to 11.0 GHz). Although delays were detected
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APPENDIX A
ON THE COLUMN DENSITY

Here, we address a couple points regarding our best-fit
column density ( =  ´ -N 8.4 0.2 10 cmH

21 2). First, as
pointed out in the text, some studies of V404 Cygni in
quiescence favor a larger column density than we do(e.g.,

´ -1.2 10 cm22 2 in Reynolds et al. 2014 and Rana et al. 2016),
which we attribute to using different abundances when
modelling photoelectric absorption. To illustrate this point,
we refit our August 5 Chandra spectrum (i.e., our observation
with the most counts) using Wilms et al. (2000) abundances,
and we obtain =  ´ -N 1.2 0.1 10 cmH

22 2( ) . We stress that
our conclusions on the X-ray spectral softening are not
sensitive to which abundances are adopted (e.g., we find
G = -

+1.94 0.02
0.10 on August 5 using Wilms et al. 2000 abun-

dances, compared to G = 1.99 0.04 adopted in the text
using Anders & Grevesse 1989 abundances).

Second, throughout the text, we adopt spectral parameters
obtained from a joint fit, where we force a common NH across all
epochs. This decision is made because we do not see large
fluctuations in NH during our campaign. In light of the high
column density observed during the first two weeks of the
outburst (e.g., Motta et al. 2016; Sanchez-Fernandez et al. 2016),
we present more details here to justify our choice of using a
common NH. In Figure 10, we display our best-fit NH and Γ
values when we jointly fit the Chandra and Swift spectra, but
allowing both NH and Γ to vary on each epoch. There are some
mild variations in NH between epochs, but these variations are
consistent with the errors (and after taking into account the
expected degeneracies between NH and Γ). We tend to obtain
slightly higher best-fit NH values on epochs before July 28
(> -10 cm22 2), which could be indicative of a lingering column
that did not fully dissipate until the final week of July. However,

the differences pre- and post-July 28 are generally <1σ.
Furthermore, July 28 is the date when we stopped using the
Chandra HETG to mitigate pileup. Thus, the slightly higher best-
fit NH values earlier in the decay could feasibly be related to
systematics caused by the poorer soft X-ray response, and we do
not see overwhelming evidence for significantly varying column
densities. Finally, we display a spectral fit to the August 5
Chandra spectrum (using Anders & Grevesse 1989 abundances)
in Figure 11 to illustrate the quality of our fits.

APPENDIX B
DETAILS ON X-RAY SPECTRAL ANALYSIS AND

PILEUP CORRECTIONS

Here, we expand on our discussion of the X-ray spectral
analysis in Section 2.4 by describing tests regarding pileup
corrections to the Chandra observations. One effect of pileup is
energy migration, where two photons are registered as a single
event with an energy (improperly) set to the total energy of
both photons, which causes the observed spectrum to appear
harder than the intrinsic one. By applying the Davis (2001)
pileup model to the Chandra data during the spectral fits, we
correct for this effect and recover unpiled photon indices.
One of the assumptions behind the Davis (2001) model is

that the X-rays are emitted at a constant count rate. However, as
described in Section 3, V404 Cygni was variable during the
Chandra observations. To check that the variability was not
strong enough to violate the assumption for constant count rate,
we divided each Chandra observation into two to three
segments, with each segment filtered over time periods when
V404 Cygni displayed similar count rates (the boundaries for
the count rate filters were chosen so that each segment
contained a comparable number of total counts). For each
epoch, we then performed a joint fit to the two to three
segments by allowing the photon index Γ and the pileup grade
migration parameter α to vary for each segment, but tying the
best-fit column density NH to a common value. We obtained
similar best-fit photon indices for each segment, and the best-fit
spectral parameters were comparable to the values obtained
when we applied the pileup model to each full observation. The
only exception is on July 15, where the count rate from V404
Cygni dropped to <0.03 count s−1 for the final 400 s of the
observation (compared to an average count rate of
0.065± 0.004 during the rest of the observation; at no other
point in that observation was the count rate <0.03 count s−1).
While we do not expect that change in thecount rate to
influence the pileup correction, it was not possible to
empirically test this expectation since only eight counts were
detected from V404 Cygni over those 400 s. We therefore
chose to remove those 400 s from the observation. We cannot
envision that this choice to err on the conservative side for the
spectral fitting would impact our other results, especially
considering that we had Swift monitoring on that date for over
19 hr, which provides additional variability information and
indeed confirms that the flux level decreased shortly after the
July 15 Chandra observation ended (see Figure 2).
Due to grade migration, photon pileup can also act to suppress

the observed amplitude of X-ray flux variations. However, we do
not find variability suppression to be a highly significant effect
for our observations, based on the following test. We filtered our
August 5 Chandra spectrum (i.e., our brightest and most variable
observation) to include only time periods with the highest count
rates (>0.5 count s−1). The pileup fraction in this filtered
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spectrum remained mild at 14% (with a » 0.96). Such a pileup
fraction from observations with a 0.4 s frame time implies that the
observed count rate is on average a factor of0.84 smaller than the
average intrinsic count rate23 (the fractional variability will be

reduced by a similar factor). We stress that the above estimate is a
limit, as we only see such large count rates from ≈200–400
minutes into the August 5 observation. The suppression of
variability from pileup during other less extreme X-ray flares will
be less severe (including during the August 5 flare from which
we estimate a radio/X-ray time delay, which peaks at a Chandra
count rate of <0.5 count s−1).

Figure 10. Confidence contour maps of joint spectral fits to the Chandra and Swift observations for the photon index (Γ) and the column density (NH), when allowing
NH to vary as a free parameter on each epoch. Contours denote 68%, 90%, and 99% confidence intervals (corresponding to changes in the Cash statistic ofD =C 2.3,
4.6, and 9.2, respectively, for two parameters of interest). The final panel for July 11 does not include Swift data. Note the different axis scales for the top row, and that
because we allow NH to vary during each epoch, the errors illustrated here are larger than those listed in Table 3.

23 See Equation (3) of http://cxc.harvard.edu/ciao/download/doc/pileup_
abc.pdf.
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As a final check on our pileup correction, we note that our final
three observations show weak readout streaks, which are
produced by photons that strike the detector while an ACIS
frame is being read. Only the readout streak from the final
observation (obsID 16707; August 5) is strong enough for a
meaningful spectral analysis (139 net counts, opposed to30 net
counts in each of the other two streaks). For this final observation,
we extracted a streak spectrum from 0.5 to 8.0 keV, using
rectangular apertures aligned with the streak on either side of
V404 Cygni. We created rmf and arf files at the location of V404
Cygni, using the tools mkacisrmf and mkarf, respectively.
The effective exposure time of the streak spectrum was 358 s,
which is equal to * * ´ -N N 4 10frames rows

5 s, where Nframes is
the number of frames read (total exposure time/frame
time=42696 s/0.4 s), Nrow is the number of rows in our streak
apertures (84 rows), and ´ -4 10 5 s is the readout time for each
ACIS frame. We fit an absorbed power-law model, finding

=  -N 1.0 0.4 cmH
2 and G = 2.0 0.2 when allowing NH to

vary, and G = 1.8 0.2 when freezing NH to ´ -8.4 10 cm21 2.
Thus, the streak spectrum provides consistent results to the fits
performed with the Davis (2001) model (within the errors).
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