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Abstract

In this work, we present a novel isogeometric analysis discretization for the Navier-Stokes-
Cahn-Hilliard equation, which uses divergence-conforming spaces. Basis functions generated
with this method can have higher-order continuity, and allow to directly discretize the higher-
order operators present in the equation. The discretization is implemented in PetIGA-MF,
a high-performance framework for discrete differential forms. We present solutions in a two-
dimensional annulus, and model spinodal decomposition under shear flow.
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1 Introduction

When a homogeneous mixture is quenched into a metastable or spinodal regime, interesting and
complex patterns can emerge during the phase-separation of the fluids involved [16]. Under-
standing the morphology and the kinetics ruling the phase-transition process requires answering
thermodynamical and hydrodynamical questions, making research on this topic relevant from a
fundamental point of view. Making matters even more relevant, is the fact that these patterns
can be influenced by the presence of external fields. These fields can be of either dissipative
or non-dissipative nature [32], and can add to the system new characteristic length and time
scales [37]. These problems are interesting because the steady state after quenching is in non-
equilibrium, driven by the external fields as opposed to that of normal spinodal decomposition.
In the case of a binary fluid mixture under shear flow [29], it has been observed experimen-
tally [23] that the shear rate introduces a new time scale. The competition between the phase
separation process, due to the thermodynamical instability [6, 30], and the breakup mecha-
nism by shear, reaches a steady state that gives rise to anisotropic domain structures [25]. At
steady state, the fluid mixture separates into two distinct phases and forms a banded structure
stretched along the flow domain [16, 23, 28].

To describe the spinodal decomposition of a binary fluid, the Cahn-Hilliard equation was
proposed [6, 7]. In it, the free energy of the system is expressed in terms of a phase-field variable,
whose physical meaning is related to concentration, as well as its derivatives with respect to the
phase-field, which account for interfacial energy or surface tension. The Cahn-Hilliard equation
is a stiff, nonlinear, fourth-order partial differential equation, that describes the dissipation
process of this free energy, often referred to as the Ginzburg-Landau free energy [21]. The
process is driven by a competition between the minimization of a chemical free energy, usually
represented by either a polynomial or a logarithmic function [21], and the minimization of the
interfacial energy. The minimization of the chemical free energy, described as a double well
potential, leads the phase-field to binodal points, whereas the minimization of the interfacial
energy resists the growth of the interfacial area. Including the flow field within this setting can
be done by coupling the Cahn-Hilliard equation with the Navier-Stokes system.

Numerical experiments to simulate spinodal decomposition under uniform shear flow have
been performed [20, 28, 35] but research into this topic is still ongoing. The complicated
nature of the equation warrants consideration of advanced numerical techniques, used on high-
performance platforms, to get steady-state solutions while overcoming the limitations of more
traditional numerical methods [27]. This is the motivation and the focus of this work, where
a novel discretization of the equation is proposed, which is compatible with the mathematical
structure of the equation being solved. The discretization is based on isogeometric analysis [14],
with which globally Ck-continuous basis functions, where k � 0, can be produced while avoiding
the use of mixed forms [15, 33]. This is advantageous when dealing with higher-order partial
differential equations, as shown in [21, 22, 34]. Borrowing the theory of isogeometric differential
forms, it is possible to satisfy the inf-sup stability condition of the discrete velocity-pressure
pair. Using the corresponding divergence-conforming and integral-conforming spaces for the
velocity and pressure fields, respectively, guarantees the physical incompressibility condition
exactly at the discrete level [4]. The implementation was done using PetIGA-MF, a multi-field
high-performance implementation of divergence-conforming B-splines [31] which is built on top
of PetIGA [8, 13].

The work is organized as follows. In section 2 we review the Navier-Stokes-Cahn-Hilliard
model. Section 3 covers the discretization used for the equation, while in section 4 we discuss
preliminary results obtained. We conclude in section 5 and future work is covered in section 6.
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2 Navier-Stokes-Cahn-Hilliard system

Let ΩT ∈ R
d be an arbitrary open domain, where d = 2 or 3. The boundary of ΩT is denoted Γ,

while the outward directed unit vector normal to Γ is denoted as n. A binary mixture is con-
tained in ΩT , with the phase-field denoted by φ, which effectively represents the concentration
of one of the components present in the system. Given the focus of this work, we forego the
derivation of the Cahn-Hilliard equation that can be found in [21, 30]. The Ginzburg-Landau
free energy used in this paper, denoted by F [φ], is given by [21]

F [φ] =

∫
ΩT

f(φ,∇φ) dΩT ,

=

∫
ΩT

Ψ(φ) +
γ

2
|∇φ|2 dΩT , (1)

where Ψ(φ) = 1/(2θ)
(
φ log φ+(1−φ) log(1−φ)

)
+φ(1−φ), is the bulk free energy density that

includes entropic effects, and γ/2|∇φ|2 is the internal energy contribution to the free energy.
As previously mentioned, the latter term is used to model interfacial effects. The parameter γ
is a positive constant related to the interface thickness. This term is a strictly positive quantity,
which means that if it increases, so will the free energy. This is the reason behind the standard
steady state solutions for the Cahn-Hilliard equation found in the literature (i.e., bubbles,
spheres, or cylinders [21, 36]) when simulating spinodal decomposition of a binary mixture with
periodic boundary conditions, as these surfaces minimise the interfacial area. The variational
derivative of equation (1) with respect to φ, is the Euler-Lagrange equation [30]

δF
δφ

=
δf

δφ
−∇ · δf

δ∇φ
(2)

which, when considering this term as a flux as well as the fact that there is conservation of
mass, leads to the Cahn-Hilliard equation

φt = ∇ · (M(φ)∇ (Ψ′(φ)− γΔφ)) , (3)

where φt =
∂φ

∂t
, the mobility function M is defined as M(φ) = φ(1 − φ), and Ψ′(φ) represents

the chemical potential given by

Ψ′(φ)=
1

2θ
log

(
φ

1− φ

)
+ 1− 2φ.

The parameter θ represents the ratio between the critical and the absolute temperature, and is
assigned a value of 3/2 so as to lie inside the spinodal regime. The Navier-Stokes-Cahn-Hilliard
equation is then obtained by coupling the Cahn-Hilliard equation (3) with the conservation of
linear momentum equation [2], such that [20]

ut +∇ · (u⊗ u)−∇ · σ(u, p) +∇p+ λ∇ · (∇φ⊗∇φ) = f in ΩT , (4)

φt +∇ · (φu)−∇ · (Mc∇ (Ψ′(φ)− γΔφ)) = 0 in ΩT , (5)

∇ · u = 0 in ΩT (6)

for two immiscible and incompressible fluids with comparable densities and kinematic viscosities
ν (assumed to be all equal to one), where u(x, t) ∈ R

d and the scalar p(x, t) ∈ R denote the
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velocity and the pressure of the fluid mixture at the space time point (x, t), respectively. The
phase-field φ assumes distinct values in the bulk phases away from the interfacial region, over
which φ varies smoothly. The constants λ = 0.1 and γ = 9.54 · 10−6 represent the surface
tension coefficient, and the capillary width (i.e., width of the interfacial layer), respectively.
The vector f defines a constant external forcing.

The momentum conservation equation (4) includes the advective term ∇ · (u ⊗ u), which
represents the transport of momentum, as well as the dissipative terms coming from the Cauchy
stress tensor, given by

σ(u, p)= − pI+ 2ν∇su, (7)

where ∇su is the symmetric gradient of the velocity, I is the identity matrix, and the surface
stress tensor (∇φ ⊗ ∇φ), also known as capillary tensor [1]. This tensor can be seen as a
generator of momentum related to the interface of the phase-field. In the case of incompressible
fluids, equation (6) expresses mass conservation in the system. The model is subject to the
following initial and boundary conditions

u (., 0) = u0 (.) in ΩT , (8)

φ (., 0) = φ0 (.) in ΩT , (9)

u · n = 0 on ∂ΩT := ∂Ω× (0, T [, (10)

∂φ

∂n
=

∂

∂n
(Ψ′(φ) + γΔφ) = 0 on ∂ΩT := ∂ΩT × (0, T [. (11)

3 Discretization

The model is implemented in PetIGA-MF [31], a framework for high performance computing
based on PetIGA [8], that provides structure-preserving discretizations based on discrete dif-
ferential forms [4], using isogeometric analysis [14]. This method has been shown to possess
advantages over standard finite element methods [24], and allows for an easier discretization
of high-order partial differential equations, as shown in [8, 14, 17, 21, 31]. This nonetheless
comes at a cost, as the linear systems are harder to solve [9, 10, 11], which justifies the use
and development of libraries such as PetIGA [8, 13] and PetIGA-MF [31], which allow the use
of different discretization spaces for each variable. In this work, given the properties of the
Navier-Stokes-Cahn-Hilliard system, we use divergence-, integral-, and H1-conforming spaces
to discretize the velocity, pressure, and phase-field, respectively.

The structure-preserving spaces used in PetIGA-MF are based on the discrete de Rham
commuting diagram, defined in the parametric domain as an exact sequence of differential
operators [4]. When a pair of discrete spaces satisfy a step of the sequence, they are said to
be conformal to the corresponding differential operator, such as gradient-, curl-, divergence-,
and integral-conforming spaces. The curl-conforming pair of spaces was first used to satisfy the
stability condition of the Maxwell equations [5], and later the divergence-conforming pair was
successfully used to model incompressible viscous flow models such as in Stokes and Navier-
Stokes equations [3, 12, 18, 19].

The pair of divergence- and integral-conforming spaces, used for velocity and pressure,
satisfy the inf-sup stability condition by construction, and guarantee point-wise divergence-free
solutions [4], allowing us to model the phase-field conservation equation in an accurate manner.
For the sake of simplicity, the phase-field variable is discretized using an H1-conforming space
with the same polynomial order and inter-element continuity as the pressure, whose space is
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more regular than minimally needed. The spaces are defined in the 2D parametric domain as

Velocity Divergence-conforming S3,2
2,1 × S2,3

1,2 ,

Pressure Integral-conforming S2,2
1,1 ,

Phase-field H1-conforming S2,2
1,1 ,

where Sαx,αy

βx,βy
is a two-dimensional B-spline function, generated by a tensor product between

two one-dimensional B-splines, Sαx

βx
and Sαy

βy
. Here, αi represents the polynomial order, and βi

stands for the inter-element continuity of the function along the ith axis.

To preserve the divergence-, integral-, and H1-conforming structure built in the parametric
domain, when mapping to the physical domain, each of these spaces has a different structure-
preserving mapping to satisfy the exact sequence of the de Rham diagram, which are defined
as

Divergence-conforming u = det (DF) (DF)
−1

(u ◦ F) , u ∈ H(div; ΩT )

Integral-conforming p = det (DF) (p ◦ F) , p ∈ L2(ΩT )

H1-conforming φ = φ ◦ F, φ ∈ H1(ΩT )

where the geometric mapping F maps the reference domain Ω̂ into the physical domain Ω (Fig-
ure 1), and DF represents the gradient of the geometric mapping. This choice of discretization
satisfies the mass conservation equation exactly, providing a point-wise discrete divergence-free
velocity field. The conservation of mass in the phase-field equation is given by the divergence of
the particle and internal energy flux [30], and by the coupling with the divergence-free velocity
in the advective term.

F

Ω̂ Ω

Figure 1: Geometric mapping F used to map the unitary square into the physical domain.

3.1 Model problem

The formulation is tested on a sixth of an annular section with an inner radius of rin=1 and
an outer radius of rout=2. This domain is taken from [28], where it is used together with the
advective Cahn-Hilliard equation. The initial condition for the velocity corresponds to that of
the steady annular Couette flow, and is shown in Figure 2a. It is defined as

u0 =

[
(Ar + B

r ) sin(θ)

(Ar + B
r ) cos(θ)

]
,
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(a) Velocity (b) Phase-field

Figure 2: Initial condition for the velocity field as annular Couette flow, and random initial
condition for the phase-field.

where r and θ correspond to the polar coordinates, and

A = − U δ2

rin(1− δ2)
, B =

U rin
(1− δ2)

, δ =
rin
rout

,

with U =1 the imposed tangential velocity at rin, and the tangential velocity equal to zero at
rout. The phase-field variable φ varies between 0 and 1, and its initial condition φ0 is given by
a random function δφ with normal distribution

φ0 = φ+ δφ, (12)

where φ=0.5 is the average value of φ, and δφ ∈ [−0.05, 0.05]. The initial condition is shown in
Figure 2b. Periodic boundary conditions were imposed on the angular axis of the annulus for
all the variables. With regards to the temporal discretization, we use the implicit, second-order
accurate generalized-α method [26].

4 Numerical examples

We present the solution for the phase-field (Figures 3 to 5) obtained using three meshes having
642, 1282, and 2562 elements, respectively. Results are shown at several time steps to illustrate
the effect of the shear flow over the phase-field distribution, and the effect of the surface tension
induced by the phase-field over the velocity field.

Different phenomena are present on the results found, each of them occurring at a different
time scale. Phase separation initially takes place at a very high speed, with the simulation
requiring a time size on the the order of 10−10. During this process, the first step involves
the formation of several small bubbles that start growing and merging. The effect of advection
over the phase-field is not noticeable given the small time scale. Once the total time of the
simulation is on the order of 10−5, the phases start to coarsen and the effects of advection are
noticeable. The flow stretches the bubbles, which then merge together. These effects are mostly
seen close to the inner radius, where the velocity is highest. This causes a coarsening of the
phase-field, initially toward the inner wall, and gradually reaching the outer wall. This effect

Navier-Stokes-Cahn-Hilliard Vignal et al.

939



t 642 1282 2562

1e−8

1e−7

1e−6

Figure 3: Phase-field separation. Evolution from the initial random distribution is shown at
four time steps, for the three different meshes considered.

is also noticeable on the radial component of the velocity, where the highest values appears
towards the outer wall. The high values close to the inner wall are dissipated.

The effect of the surface tension on the velocity field depends on the surface tension coef-
ficient λ and the surface stress tensor. This tensor measures the curvature changes along the
interface, and acts as a generation term in the momentum equation, producing a velocity in
the opposite direction of the interface curvature changes. This effect coupled with the mini-
mization of surface energy in the Cahn-Hilliard equation, results in a system that minimizes
the interfacial energy faster than an advective Cahn-Hilliard system.

5 Conclusion

A novel discretization to solve the Navier-Stokes-Cahn-Hilliard equation was developed. It
is implemented in PetIGA-MF, a multi-field high-performance implementation of divergence-
conforming B-splines built on top of PetIGA. The discretization guarantees mass conservation
for the problem through the use of these spaces. Spinodal decomposition under shear flow
presents several time scales ruled by different phenomena. Our results show three main stages.
The first one mainly shows phase separation, the second one seems to be governed by the
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t 642 1282 2562

1e−5

3e−5

Figure 4: Phase-field evolution due to the velocity field at two different time steps. Results for
the three different meshes considered are shown.

t = 2.8e−4 t = 3.6e−4t

Figure 5: Formation of bands in the phase-field due to the velocity field in the mesh with
2562-quadratic elements.

transport of the phases, while the last one is controlled by the characteristics of the flow.
Including the surface stress term in the model is equivalent to including a source term in the
momentum equation. This produces a new phenomenon that is not observed in the advective
Cahn-Hilliard equation, which has an intrinsic time scale related to the interface morphology.
From an energy-minimisation point-of-view, this term improves the dissipation properties of
the system, and therefore can lead the system to reach the steady state faster.

6 Future work

The energy dissipation effect of the shear velocity and surface stress variations should be studied.
This would improve the understanding behind the different phenomena taking place. The
minimum resolution needed to solve the problem is also not clear: results differ for the three
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different grids presented in this work. Even though results on minimum resolution needed
to properly solve the Cahn-Hilliard equation as a function of the interfacial parameter γ are
available [21], we intend to study convergence of the system by monitoring its total energy,
which includes the kinetic energy coming form the Navier-Stokes equation and the free energy
from the Cahn-Hilliard equation. Given the robustness PetIGA and PetIGA-MF have shown,
it would seem that larger-scale simulations as well as three-dimensional results can be obtained.
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[22] H. Gómez and X. Nogueira. An unconditionally energy-stable method for the phase field crystal
equation. Computer Methods in Applied Mechanics and Engineering, 249-252(0):52–61, 2012.

[23] T. Hashimoto, K. Matsuzaka, E. Moses, and A. Onuki. String phase in phase-separating fluids
under shear flow. Phys. Rev. Lett., 74:126–129, Jan 1995.

[24] T. J. R. Hughes. The Finite Element Method: Linear Static and Dynamic Finite Element Analysis.
Dover, New York, 2000.

[25] T. Imaeda, A. Onuki, and K. Kawasaki. Anisotropic spinodal decomposition under shear flow.
Progress of Theoretical Physics, 71(1):16–26, 1984.

[26] K. E. Jansen, C. H. Whiting, and G. M. Hulbert. A generalized-α method for integrating the
filtered Navier-Stokes equations with a stabilized finite element method. Computer Methods in
Applied Mechanics and Engineering, 190(3-4):305 – 319, 2000.

[27] R. LeVeque. Finite Difference Methods for Ordinary and Partial Differential Equations: Steady-
State and Time-Dependent Problems (Classics in Applied Mathematics Classics in Applied Math-
emat). Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, 2007.
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