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Abstract
In this paper we present an application of Alternating Direction Implicit (ADI) algorithm for
solution of non-stationary PDE-s using isogeometric finite element method. We show that
ADI algorithm has a linear computational cost at every time step. We illustrate this approach
by solving two example non-stationary three-dimensional problems using explicit Euler and
Newmark time-stepping scheme: heat equation and linear elasticity equations for a cube. The
stability of the simulation is controlled by monitoring the energy of the solution.
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1 Introduction

The Alternating Direction Implicit (ADI) algorithm has been originally introduced in [1, 2, 3, 4]
to solve parabolic problems. The method has been applied to two-dimensional non-stationary
problems [6], and also as a preconditioner for iterative solvers in case of complex geometries
[7]. In this paper we focus on the application of the ADI algorithm to three-dimensional non-
stationary parabolic problems and their non-linear extensions solved with the ADI algorithm
using isogeometric analysis [5]. We test our isogeometric 3D ADI algorithm on two different
computational problems: 3D model heat transfer problem and 3D linear elasticity problem. For
the first problem we employ the Euler scheme, for the second one the Newmark time integration
scheme. We show that our ADI solver has a linear computational cost at every time step.

2 Algorithm

The algorithm solves unsteady partial differential equations with FEM using explicit Euler
scheme and the ADI solver. The time-stepping scheme is standard and shown in Algorithm 1.

The ADI solver is detailed in [8, 6]. We briefly summarize the main ideas below. A Second-
order non-stationary parabolic differential equation discretized with the forward Euler scheme
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u(0) ← projection of initial state u(x, 0);
for t ∈ {0, . . . , T − 1} do

S← L2-projection of RHS of equation 1, computed using u(t);

compute u(t+1) from Mu(t+1) = S using Alternating Direction Solver
end

Algorithm 1: Nonstationary-Forward-Euler

in time and the Galerkin method in space results in the following matrix equation:

Mu(t+1) = Mu(t) +Δt
(
Su(t) + F

)
(1)

Using isogeometric FEM with tensor product basis, under certain assumptions, matrix M can
be decomposed as a tensor (Kronecker) product of three matrices corresponding to dimensions
of the domain. Following [6], we call such M separable. Assuming matrix M is separable with
Kronecker decomposition M = Mx⊗My⊗Mz, we can exploit this structure and commutativity
of tensor product and inversion:

(A⊗B)−1 = A−1 ⊗B−1 (2)

to solve system of equations given byMu = b by solving multiple systems of equations separately
in each direction, as specified in Algorithm 2.

Input: M = Mx ⊗My ⊗Mz - matrix, u - unknown, b - RHS
Result: Solution of Mu = b
u′(·, j, k) = M−1

x b(·, j, k);
u′′(i, ·, k) = M−1

y u′(i, ·, k);
u(i, j, ·) = M−1

z u′′(i, j, ·);
Algorithm 2: Alternating Direction Solver

Matrices Mx, My and Mz are banded with bandwidth 2p + 1, where p is the degree of
used B-spline basis. Assuming we use basis that is a tensor product of one-dimensional bases
with Nx, Ny and Nz degrees of freedom, respectively, applying the inverse of M using the
above algorithm is equivalent to applying inverses of Mx to NyNz vectors, My to NxNz vectors
and Mz to NxNy vectors. As applying the inverse of Mx can be done in O(Nx) thanks to its
banded structure, this stage has complexity O(NxNyNz), and similarly for My and Mz. Thus,
the whole process can be performed in O(NxNyNz), i.e. in time linear with respect to number
of degrees of freedom N = NxNyNz.

3 Example problems

In all the following problems, open-knot B-splines of degree 2 (locally quadratic) were used as
basis functions.
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3.1 Heat equation

The first solved problem is the classical heat transport equation, given by⎧⎪⎪⎨
⎪⎪⎩

∂u

∂t
= Δu on Ω× [0, T ]

∇u · n̂ = 0 on ∂ Ω× [0, T ]

u(x, 0) = u0 on Ω

(3)

where Ω = [0, 1]3, and the initial state is a ball of heat centered at (0.5, 0.5, 0.5) with diameter
0.5, as displayed in figure 1. First, we show that solution of 3 is unique.

Lemma 1. Let u be solution of equation 3, and

eu(t) =

∫
Ω

u2(x, t) dΩ

Then eu is non-increasing function of t.

Proof. We have
∂

∂t
eu =

∫
Ω

∂u2

∂t
dΩ = 2

∫
Ω

u
∂u

∂t
dΩ = 2

∫
Ω

uΔu dΩ

By Green’s first identity and the Neumann boundary conditions,∫
Ω

uΔu+ ‖∇u‖2 dΩ =

∫
Γ

u∇u · n̂ dΓ = 0

therefore
∂

∂t
eu = −2

∫
Ω

‖∇u‖2 dΩ ≤ 0

Theorem 1. If equation 3 possesses a solution, it is unique.

Proof. Let u, v be solutions to equation 3. Due to linearity, u − v is a solution to equation
3 with u0 = 0, hence applying the lemma to u − v shows that eu−v is non-increasing. But
eu−v(0) = 0, hence eu−v = 0 (since it is non-negative by definition), and therefore u = v.

The weak form of equation 3 is obtained by multiplying by w ∈ H1(Ω) both sides and
integrating over Ω, and discretized with forward Euler scheme, yielding

〈u(t+1), w〉 = 〈u(t), w〉+Δt〈Δu,w〉 (4)

Using Green’s first identity for the part with the Laplacian and utilizing zero Neumann
boundary condition gives

〈u(t+1), w〉 = 〈u(t), w〉 −Δt

∫
Ω

〈∇u,∇w〉 dΩ (5)

for all w ∈ H1(Ω).
The time step used for the simulation was Δt = 10−4. It was chosen empirically to ensure

stability of the computation, using CFL condition as a starting point. Results (cross-sections
through a plane z = 0.5) are depicted in figure 1.
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(a) Initial state (b) step 10 (c) step 20

(d) step 40 (e) step 40 (f) step 40

(g) step 40 (h) step 100 (i) step 200

Figure 1: Solution of the heat transport equation

3.2 Linear elasticity

The second problem is the small strain linear elasticity equation, describing deformation of solid
objects in presence of an external force. Strong form of the equation is given by⎧⎪⎪⎨

⎪⎪⎩
ρ
∂2u

∂t2
= ∇ · σ + F on Ω× [0, T ]

u(x, 0) = u0 for x ∈ Ω

σ · n̂ = 0 on ∂ Ω

(6)

where Ω = [0, 1]3 is an unit cube, u is a 3-dimensional displacement vector to be calculated, ρ
is material density, f is the applied external force, and σ is rank-2 stress tensor, given by

σij = cijklεlk (7)

where

εij =
1

2
(∂jui + ∂iuj) (8)
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and c is a rank-4 elasticity tensor (Einstein summation convention applies in the proceeding
equation). For our simulations we assumed isotropic material with Lamé coefficients λ = μ = 1.

In order to utilize forward Euler integration scheme, the above system of 3 equations is
converted to system of 6 equations by introducing additional variables corresponding to com-
ponents of displacement’s velocity:

vi =
∂ui

∂t
(9)

Corresponding weak formulation discretized with the explicit Newmark’s scheme (with β =
γ = 0) is given by ⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

〈u(t+1)
i , w〉 = 〈u(t)

i +Δt v
(t)
i +

Δt2

2
a
(t)
i , w〉

〈v(t+1)
i , w〉 = 〈v(t)i +Δt a

(t)
i , w〉

a
(t)
i =

1

ρ
(σij,j + Fi)

(10)

for all w ∈ H1(Ω), where 〈·, ·〉 denotes standard scalar product in L2(Ω), and ui, vi ∈ H1(Ω).
The energy of the system consists of two parts: kinetic energy, due to change of displacement,

and potential energy, due to material’s resistance to distortions. These energies are given by

Ek =
1

2

∫
Ω

ρ ‖v‖2 dΩ

Ep =
1

2
cijklεijεkl =

1

2
σ : ε

(11)

3.2.1 Initial deformation, no force

In the first tested variant, no external force is applied (F = 0) and the cube is initially sheared
along an x axis, that is

u0(x) = (10−3z, 0, 0) (12)

Solution of the problem is depicted in figure 2. Deformation is magnified 200 times to make
it visible.

With no force present, total energy of the system should remain constant. This is, however,
not the case in our simulation. Figure 3 displays total energy growth for various mesh sizes and
degrees of B-splines used. The growth increases with number of floating-point operations, which
suggests it occurs due to round-off errors. Due to long duration of the full simulation, these tests
were limited to 2,300 iterations. There was no such issue with heat and flow equations (without
forcing) – in these problems, the energy was approximately constant throughtout the simulation,
as expected. We have also performed the simulation with Lamé coefficients λ = 0, μ = 1, which
corresponds to zero Poisson ratio, and we have obtained indentical numerical behaviour of the
method. This is expected, since algebraically we solve identical problem, as the 3D problem, so
there is no decoupling there. This confirms our hipothesis that the growth of energy is related
to round-off error.

17,000 iterations have been performed on a machine with Intel Core i5-2410M CPU (4 cores,
2.3 GHz) and 4 GB of RAM. Total time of the main simulation was 24,790 seconds (almost 7
hours). Times of the short simulations whose results are displayed in figure 3, were linear with
respect to number of degrees of freedom, as expected.

Note that our algorithm performs 17,000 iterations, and the average execution time per
iteration is around 1.5 seconds. Thus, the long execution time is due to the large number of
iterations performed.
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(a) initial state (b) t = 0.1 (step 1000)

(c) t = 0.3 (step 3000) (d) t = 0.4 (step 4000)

(e) t = 0.7 (step 7000) (f) t = 1 (step 10000)

Figure 2: Deformation of cube – initial shear
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Figure 3: Deformed cube – energy of the solution (n – number of degrees of freedom )

3.2.2 No initial deformation, applied force

In the second tested variant, cube is initially not deformed, but a non-zero force is applied. The
force is given by

F(x, t) = −φ(t/t0)r(x)p (13)

p = (1, 1, 1) (14)

t0 = 0.02 (15)

φ(t) =

{
t2(1− t)2 if t ∈ (0, 1)

0 otherwise
(16)

r(x) = 10 exp
(−10 ‖x− p‖2) (17)

i.e. it is a short impulse directed towards the origin, applied at the opposite corner of the cube.
Figure 4 displays results of the simulation with the time step Δt = 10−4. Displacement is

magnified 20 times to make it visible.
Figure 5a shows the energy of the solution as a function of time. Since initially the cube is

not deformed and is at rest, it has zero total energy. When the short force impulse is applied,
kinetic energy of the system experiences a rapid growth, as the force accelerates the corner of
the cube. Due to elastic response to deformation, kinetic energy decreases and the potential
energy builds up. Subsequently, as the deformation propagates inside the cube, kinetic and
potential energies oscillate (the cube ,,bounces”), but after the impulse total energy of the
system should remain constant. As in the previous problem, however, a small (of the order
10−6) but steady growth of total energy is visible on the plot (shown in detail in figure 5b).
After 30,000 steps the growth is around 1.6× 10−6 (1.5% of the total energy).

As in the previous case, we believe the growth to be due to round-off error. Our method
seems more sensitive to the round-off error, because we solve three 1D problems with multiple
right-hand sides. The 1D problem is more sensitive to the round-off error than 3D problem.
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(a) initial state (undeformed) (b) step 1000

(c) step 4000 (d) step 6000

(e) step 8000 (f) step 10000

(g) step 14000 (h) step 18000

Figure 4: Deformation of cube – force applied in the corner
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The energy growth has been analyzed for various combinations of mesh sizes and degrees of
B-splines. Results are presented in figure 6. The energy grows with size of the mesh, although
the relation is less clear than in the variant without the force. Additionally, simulation with
force applied at different point and angle has been carried out, and resulted in very similarly
shaped energy curves.

30,000 iterations have been performed, total time of the simulation was 39,233 seconds
(around 11 hours).

4 Conclusions and future work

In this paper we presented the application of the Alternating Directions Implicit solver to solving
three-dimensional non-stationary problems using isogeometric finite element method. We tested
the algorithm on model heat transfer problem and on the linear elasticity problem. For the
last problem, 30,000 iterations was performed in less than 11 hours (1.46 seconds per iteration
on average) on a single machine with Intel Core i5-2410M CPU (4 cores, 2.3 GHz) and 4 GB
of RAM. The future work will involve the execution of parallel version of the non-stationary
solver.
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Figure 5: Energy of the cube as a function of time
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Figure 6: Growth of the energy after the initial impulse for various mesh sizes
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