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Provoking contingent moments: Knowledge for ‘powerful teaching’ at 

the horizon  

Structured abstract 

Background Teacher knowledge continues to be a topic of debate in Australasia 

and in other parts of the world. There have been many attempts by mathematics 

educators and researchers to define the knowledge needed by teachers to teach 

mathematics effectively. A plethora of terms, such as mathematical content 

knowledge, pedagogical content knowledge, horizon content knowledge and 

specialised content knowledge have been used to describe aspects of such 

knowledge.  

Purpose This paper proposes a model for teacher knowledge in mathematics that 

embraces and develops aspects of earlier models. It focuses on the notions of 

contingent knowledge and the connectedness of ‘big ideas’ of mathematics to 

enact what is described as ‘powerful teaching’. It involves the teacher’s ability to 

set up and provoke contingent moments to extend children’s mathematical 

horizons. The model proposed here considers the various cognitive and affective 

components and domains that teachers may require to enact ‘powerful teaching’. 

The intention is to validate the proposed model empirically during a future stage 

of research. 

Sources of evidence Contingency is described in Rowland’s Knowledge Quartet 

(2005) as the ability to respond to children’s questions, misconceptions and 

actions and to be able to deviate from a teaching plan as needed. The notion of 

‘horizon content knowledge’ (Ball et al.) is a key aspect of the proposed model 

and has provoked a discussion in this article about students’ mathematical 

horizons and what these might comprise. Together with a deep mathematical 

content knowledge and a sensibility for students and their mathematical horizons, 

these ideas form the foundations of the proposed model. 

Main argument It follows that a deeper level of knowledge might enable a 

teacher to respond better and to plan and anticipate contingent moments. By 

taking this further and considering teacher knowledge as ‘dynamic’, this paper 

suggests that instead of responding to contingent events, ‘powerful teaching’ is 
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about provoking contingent events. This necessarily requires a broad, connected 

content knowledge based on ‘big mathematical ideas’, a sound knowledge of 

pedagogies, and an understanding of common misconceptions, in order to be able 

to engineer contingent moments. 

Conclusions In order to place genuine problem-solving at the heart of learning, 

this paper argues for the idea of planning for contingent events, provoking them, 

and ‘setting them up’. The proposed model attempts to represent that process. It 

is anticipated that the new model will become the framework for an empirical  

research project, as it undergoes a  validation process involving a sample of 

primary teachers. 

 

Keywords: mathematical content knowledge; contingency; horizon content 

knowledge; powerful teaching. 

Background and Context 

International large-scale studies, such as the International Association for the 

Evaluation of Educational Achievement’s (IEA) Trends in International Mathematics 

and Science Study (TIMSS) and the Organisation for Economic Co-operation and 

Development’s (OECD) Programme for International Student Assessment (PISA), have 

focused attention not only on the mathematical achievements of children but also, by 

association, on the mathematical knowledge of their teachers. The rankings of various 

countries in terms of achievement have led to much comparison between, and 

speculation about, the school systems and teacher education programmes and structures 

in those countries (Coe, Aloisi, Higgins and Major 2014; Miao and Reynolds 2014). In 

Australia, the Teacher Education Ministerial Advisory Group (TEMAG) was 

established in 2014 to “provide advice to the federal Minister for Education on how 

teacher education programmes could be improved to better prepare new teachers with 
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the practical skills needed for the classroom” (Department of Education and Training 

2015, 1). 

However, discussion about the knowledge required by pre-service and in-service 

teachers to teach mathematics effectively is not new. It has been a focus for debate for 

decades, with many researchers developing models of what knowledge for teaching 

might look like (Shulman 1986; Ball, Thames and Phelps 2008; Hill, Ball and Schilling 

2008). Some models, such as The Knowledge Quartet (Rowland, Huckstep and 

Thwaites 2005), have focused more specifically on mathematical content knowledge, 

while others have sought to represent that knowledge alongside knowledge of 

pedagogies, curriculum, and students (Department of Education, Western Australia 

2013; Levenberg and Patkin 2014; Petrou and Goulding 2011).  

Other educators and researchers have developed schemata for describing and 

organizing mathematical knowledge in terms of ‘big ideas’ (Charles 2005, 1), and 

‘concept knots’ and ‘knowledge packages’ (Ma 1999, 78) while others have developed 

frameworks for considering how knowledge broadly develops (Daggett 2014). Charles 

(2005, 2) defined a ‘big idea’ as “a statement of an idea that is central to the learning of 

mathematics, one that links numerous mathematical understandings into a coherent 

whole”. (2005, 2). Ma (1999, 18) described ‘knowledge packages’ as a way of thinking 

in that teachers could “see mathematical topics group-by-group, rather than piece-by-

piece” - for example, understanding the pieces of mathematical content that underpin a 

concept such as subtraction of whole numbers with regrouping. ‘Concept knots’ are 

described by Ma (1999, 115) as “another kind of key piece in a knowledge package” 

and she provided as an example the meaning of multiplication with fractions – it is a 

knot in the sense that it ‘ties together’ important concepts related to division by 

fractions. (Ma, 1999, 115). Related to these initiatives are ideas such as ‘teacher 
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capacity’, which is described as the capacity of teachers to utilise aspects of 

mathematical knowledge for teaching to enact reform, interpret what students do, and 

plan for teaching to progress student thinking (Zhang and Stephens, 2013, 489). The 

notion of teacher capacity links, too, with the ‘knowledge quartet’: in particular, the 

idea of ‘contingency’, (Rowland et al., 2005, 259), and this will be discussed shortly. 

Researchers have attempted, in various ways, to rationalize and clarify existing models 

or aspects of them (Goos 2013; Wilkie 2013) as well as consider the role played by 

attitudes and beliefs (Beswick, Callingham and Watson 2012; Beswick et al. 2011).  

Such debates and discussions in the literature involve the use of many 

conceptual terms (sometimes overlapping and variously defined) that describe aspects 

of knowledge: pedagogical content knowledge, subject matter content knowledge, 

specialised content knowledge, horizon content knowledge, curricular content 

knowledge and so on (Shulman 1986; Ball et al. 2008). More recently, the allied notions 

of ‘powerful teaching’ and ‘powerful learning’ (Darling Hammond, 2016, 85) have 

been examined. Darling-Hammond discusses the importance of being able “to develop 

knowledge for teaching that can support more complex, strategic learning – a kind of 

teaching that goes far beyond giving a test, and giving a grade” (2016, 85). She  notes 

that “Such powerful teaching and learning would require schools that value and 

evaluate serious intellectual performance” (2016, 85) and that current narrow measures 

of achievement limit our ability to learn about what constitutes powerful teaching. 

Previously, Darling-Hammond had described a ‘need for powerful teaching’ (2010, 3) 

and suggested that, amongst other things, teachers demonstrating this would “engage 

students in active learning and create intellectually ambitious tasks” (2010, 5).  

Earlier, Brophy (2002, 12) had raised the notion of ‘powerful ideas’ which 

seems to align well with Charles’ (2005, 1) discussion of ‘big ideas’. Brophy does not 
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explicitly define powerful ideas, but discusses their connectedness as making them 

useful for attaining the essential classroom goals of understanding, appreciation and 

application (2002, 14). He situates powerful ideas as a key element of effective teaching 

by observing the following: “Content developed with these goals in mind is likely to be 

retained as meaningful learning that is internally coherent, well connected with other 

meaningful learning and accessible for application. This is most likely to occur when 

the content itself is structured around powerful ideas and the development of this 

content through classroom lessons and learning activities focuses on these ideas and 

their connections” (Brophy, 2002, 14). 

    

Purpose 

Given the currency of debate about teacher knowledge and the variety of models and 

schemata that exist for organizing teacher knowledge, it is helpful to rationalize and 

clarify the relationships between the models already developed. This article appraises a 

number of such models and proposes a new model. Although outside the scope of this 

paper, it is anticipated that this new model will become the framework for a research 

project that will seek to validate it empirically with a sample of primary teachers. This 

paper will focus on selected aspects of some of the models mentioned above – the 

notions of ‘contingency knowledge’ (Rowland et al., 2005, 259) and ‘horizon content 

knowledge’ (Ball et al., 2008, 403; Hill et al., 2008, 377). The paper will consider how 

they these two aspects, in conjunction with ‘big idea thinking’ (Charles 2005, 1), 

underpin and constitute ‘powerful teaching’ (Darling Hammond, 2016, 85).    
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A review of models of teacher knowledge in mathematics 

The concept of contingency and contingent events 

Rowland et al. (2005) describe contingency as an ability to respond to children’s 

thoughts and actions and also to deviate from a teaching plan or agenda as required. It is 

also suggested that “greater knowledge will lead to fewer surprises when teaching since 

such knowledge enables the teacher to anticipate and plan for a greater number of pupil 

responses” (Rowland, Turner, Huckstep, and Thwaites 2009, 31). Rowland and Zazkis 

(2013, 139) later describe it as “the ‘opposite’ [their emphasis] of planning – to 

situations that are not planned and that have the potential to take a teacher outside of 

their planned route through the lesson”.  

This links to another idea that is considered central to this paper: that a teacher’s 

knowledge is dynamic. This is supported by Rowland, Thwaites and Jared (2015, 88) 

where it is observed that “readiness for predictable errors and misconceptions is part of 

pedagogical content knowledge”.   Rowland et al. (2015, 89) also draw attention to the 

importance of giving pre-service teachers a feel for “the contingent disturbances that 

they will experience in the classroom”. The authors express their interest in the 

unpredictability (i.e. ‘contingency’) of situations “in which this [teacher] knowledge of 

mathematics is activated and applied” (Rowland et al., 2015, 75). They suggest that 

“some aspects of the unknown can be anticipated by the knowledgeable teacher” 

(Rowland et al., 2015, 76)  and “If teachers know in advance of some of the possible 

circumstances in which such events could arise, they might be better prepared to ‘see 

them coming’” (2015, 77). This paper will suggest that it is beneficial to plan for 

contingent events, to provoke them, rather than only respond to them.   

It is important to identify how knowledge is enacted in teaching, rather than the holding 
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of knowledge for teaching, as this may be where the nexus between contingency and 

powerful teaching exists. Rowland et al. (2015, 82) describe it as “reflection in action 

[referring to] teachers’ monitoring and self-regulations of their actions as they perform 

them”.  Brophy (2002, 19) discussed the importance of ‘thoughtful discourse’ and the 

way in which “questions are planned to engage students in sustained discourse 

structured around powerful ideas”. In addition, Brophy (2002, 19) comments that 

effective teachers “use questions to stimulate students to process and reflect on content, 

recognize relationships among its key ideas, think critically about it, and use it in 

problem solving, decision making or other higher-order applications”. Planning for and 

provoking contingent events can be an important part of this process.   Hence, 

contingent knowledge, in this paper, will be conceptualised as reactive and proactive. It 

will be fundamental to the proposed new model of teacher knowledge.  

Horizon content knowledge and ‘big ideas’  

One compelling aspect of the model developed by Hill et al. (2008) and Ball et al. 

(2008) is the notion of ‘horizon content knowledge’. This is described by Ball et al. in 

the following way: “Horizon knowledge is an awareness of how mathematical topics 

are related over the span of mathematics included in the curriculum” (2008, 403). The 

authors continue by explaining that knowledge of the ‘mathematical horizon’ is about 

teachers identifying the mathematics that children in a particular year level need to 

know but also knowing about the mathematics that precedes and follows it. This implies 

that teachers need to exercise ’big idea thinking’ (Charles, 2005, 1) with the myriad 

links and connections within and between concepts informing their assessment of 

children and their planning. Such a proposition seems to be supported by Rowland and 

Zazkis (2013), who note that a breadth and depth of content knowledge is required for 
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effective teaching. Without specifically using the term ‘horizon content knowledge’, 

they state that knowing the curriculum would be sufficient if teaching did not present 

any unforeseen situations: but, since it does, “mathematical knowledge beyond the 

immediate curricular prescription is beneficial and demonstrably essential” (Rowland 

and Zazkis, 2013, 138). Here, they are also alluding to the idea of contingency 

knowledge and dealing with contingent moments.  

Ball et al. (2008) note uncertainty in terms of where the notion of horizon content 

knowledge (HCK) fits within their model, explaining that “we are not sure whether this 

category is part of subject matter knowledge or whether it may run across the other 

categories” (2008, 403). Subsequently, Ball and Bass (2009, 5) described horizon 

knowledge as more than content knowledge, as it “supports a kind of awareness, 

sensibility, disposition that informs, orients, and culturally frames instructional 

practice” . . . and that it includes . . .   “awareness of the mathematical horizon”. The 

notion that a teacher requires a deep understanding of mathematical concepts in order to 

cater for the needs of all students in a given class is supported by Ball and Bass. It is 

given further credence by Siemon, Bleckley and Neal, who cite the results from the 

Scaffolding Numeracy in the Middle Years Project, observing that there is up to “an 8 

year range in achievement at each year level” (2012, 23) and that as well as having a 

strong grasp of ‘big ideas’, “teachers need to know how they are connected and how 

they might be acquired over time” (2012, 24). The idea that a teacher must have a broad 

‘horizon content knowledge’ is, then, suggested to be critical.   

This article acknowledges the importance of horizon content knowledge (HCK)  and 

agrees with Ball and Bass (2009) that it is much more than being an aspect of content 

knowledge. In doing so, horizon content knowledge and the idea of the ‘mathematical 
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horizon’, are positioned as separate, but closely related ideas which are generally 

enacted simultaneously.  

Ball and Bass (2009, 8) make the point that horizon content knowledge  involves ‘key 

mathematical practices’ such as ‘questioning’ and ‘proving’. It is, then, worth viewing 

horizon content knowledge (or at least part of it) as being about the ‘processes of 

learning’ as opposed to purely being about content knowledge. Indeed, it could be said 

that it is the application of processes, or learning proficiencies such as reasoning, 

problem solving, justifying, elaborating, and hypothesising that enable students to 

develop a deep understanding of concepts. The Australian Curriculum: Mathematics 

(Australian Curriculum Assessment and Reporting Authority, 2013) highlights four 

proficiencies of fluency, understanding, reasoning and problem solving as vehicles by 

which teachers, having identified the particular mathematics to be known by students, 

facilitate their required  learning.  In the same vein, it could be argued that teachers 

provoke contingent moments by posing carefully phrased questions and setting up 

appropriate tasks based on their horizon content knowledge.  

Knowledge as process, as well as product, is another representation of the 

horizon content knowledge /mathematical horizon relationship mentioned earlier. It is 

akin to the idea of teaching children to be mathematicians, rather than just teaching 

them the mathematics. This is how they will move beyond their existing horizons and it 

is the generation of contingent moments that provides the context for doing that. 

Ruthven (2011, p. 10) cites the work of Thurston (1994) in saying that “effective 

mathematical communication involves some degree of interactivation and 

mathematisation of the knowledge at stake”. That is, knowledge as content is not 

sufficient on its own and needs to undergo “a process of reconstruction by means of 

active negotiation between the participants in classroom mathematical activity” 
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(Ruthven, 2011, p. 10). It needs to be an overt reflective process and Ruthven (2011, p. 

11) argues that “taking on a teaching role involves a recasting of intrapersonal 

metacognition into interpersonal activity and dialogue”. It is suggested that the 

proficiencies of reasoning and problem solving are examples of knowledge processes 

that are vehicles for development of deep understanding.   

It is suggested here that Rowland’s notion of contingency is linked to horizon content 

knowledge and that, together with ‘big idea thinking’, they may constitute ‘powerful 

teaching’.  Rowland, Thwaites and Jared (2015, p. 78) identify three situations or events 

that are ‘triggers of contingent moments’. Two of them are described as being initiated 

by a student, such as “an unanticipated response to a stimulus within the lesson” and 

initiated by the teacher where “a consequence of some teacher insight caused them to 

reassess their lesson image” (Rowland et al., 2015, p. 78). The second, in particular, 

seems to be directly linked to horizon content knowledge. The third trigger is provided 

by the availability, unavailability, or use or a resource or artefact during a lesson. 

Rowland et al. (2015, p. 76) also provide an example of knowledge as process in 

reflecting that contingent moments may “unsettle and disturb the teacher [but] offer the 

teacher an opportunity to learn”.  

Mathematical horizons and horizon knowledge 

The idea of the ‘mathematical horizon’ can be considered in a number of ways. We 

need to consider to what extent it is the teacher’s mathematical horizon that is important 

or whether it is more important to focus on the mathematical horizons of the students 

being taught. After all, educators are teaching to students’ mathematical futures (Ball 

and Bass 2009; Zazkis and Mamolo 2011). Hence, the mathematical horizon beyond the 

classroom also needs to be considered. It is important to consider whether teachers are 
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well enough equipped to provide students with the understanding, mindsets, and 

knowledge to prepare them for their mathematical futures. Ball and Bass (2009) also 

observed that horizon knowledge is more than just content: some of it is about teaching 

practices and some of it is about values. The preparation of students for progressing to 

the mathematical horizon is, then, more than detailed content knowledge; it is also the 

development of reflective attitudes, advanced problem-solving skills, and the ability to 

reason, justify, elaborate, question and hypothesize. It follows that teachers’ horizon 

knowledge must consist of those same mindsets and abilities if they are to be effective 

in assisting their students to reach and cope with their mathematical horizons. The two 

ideas – horizon knowledge and knowledge of students’ horizons – are considered as 

being separate - yet, because they are closely linked, they need to be considered 

together. For example, knowing about the mathematical horizon entails teachers being 

aware of the horizons that are applicable to their students but using their horizon content 

knowledge to help them to reach their immediate horizons and move beyond.  

Part of the teacher’s role can be conceptualised as recognising where the 

student’s mathematical horizon is and positioning the student to be able to move beyond 

it. Irrespective of where that horizon may be, a teacher is better placed to help a student 

move forward if s/he has a deep understanding of the links and connections within a 

particular concept and between it and other concepts. In their discussion of ‘big ideas’, 

Hurst and Hurrell (2014, 1) refer to this as knowing the ‘micro content’ or the ‘little 

ideas’ that contribute to the ‘big ideas’. For example, to teach the concept of place 

value, a teacher needs to understand the precursor knowledge that provides the 

foundation. There are two key aspects which are embedded in early number and pre-

number work and a teacher needs to understand exactly how they provide the 

foundation for place value. One is the notion of grouping, derived from sorting and 
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classifying, subitizing, and later, flexible grouping. This inherently links to the idea of 

the ‘ten group’, which is the basis for place value, and flexible partitioning, which 

enables us to operate with numbers. The second is the number string, derived from 

counting. When combined with the idea of grouping, and the repeating pattern in 

naming numbers, we have the essence of place value. It is that depth of content 

knowledge that enables the teacher to identify a student’s misconceptions and use 

appropriate pedagogies to develop a student’s understanding of the particular concept at 

hand. Such horizon content knowledge also allows teachers to set appropriate tasks and 

ask questions to provoke errors and unmask misconceptions (Ball 2014).  The position 

of the mathematical horizon will be different for different people; it will,  

simultaneously, be near and far. Deep content knowledge empowers teachers both to 

deal with and to provoke contingent moments in order to help their students generate 

what is, for them, new knowledge which lies beyond their current horizon. In other 

words, it is argued that horizon content knowledge is analogous to ‘big idea thinking’ 

and the links and connections within and between the ‘big ideas’ of mathematics. 

In the same way that a mathematical horizon may be near or distant, 

contingency can be manifest in two ways. It can be serendipitous when a situation arises 

in the classroom and needs to be dealt with immediately. It can also be longer term 

where teachers may be able to position themselves to see the overview of the situation 

and plan the next stage of teaching. In any case, it is characterised by the feeling of 

‘What do I do when I don’t know what to do?’.  Horizon knowledge is brought to bear 

in such cases. Whatever the situation, contingent knowledge depends on the intimate 

knowledge of the mathematics and of the students in question, which enables the 

teacher to deal effectively with the situation at hand. It is this contingency itself which 
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can initiate and drive learning, problem solving, and the development of conceptual 

understanding. 

Sensibility, awareness and ‘big idea thinking’ 

The use of the term ‘sensibility’ by Ball (1993) and Ball and Bass (2009) is 

interesting as they describe it as an ‘awareness’ that informs practice. The implication 

here is that it would enable teachers to deal with contingent moments. It is described as 

“a kind of peripheral vision or awareness of the mathematical horizon” (Ball and Bass 

2009, 5) and teaching is enhanced “when teachers have mathematical perspective on 

what lies in all directions, behind as well as ahead, for their pupils” (Ball and Bass, 

2009, 11). The term ‘sensibility’ was also used by Askew (2008) in his discussion of 

teacher knowledge. He is critical of how mathematical content knowledge is reduced to 

lists of specific pointers that he terms “death by a thousand bullet points” (Askew 2008, 

21). Rather, Askew calls for “a mathematical sensibility . . .  that would enable them to 

deal with existing curricula but also be open to change” (2008, 22). His notion of 

‘sensibility’ is akin to having a feel for the ‘big ideas’ of mathematics and being able to 

learn more about different aspects of mathematics, as connections become obvious. 

Most importantly, it means that teachers are potentially better able to teach more 

effectively. Teachers who have such ‘sensibility’ are likely to make mathematical 

connections explicit for their students. 

Connected knowledge, contingency and ‘powerful teaching’ 

In considering Rowland’s notion of contingency (or contingent knowledge), the 

links between it and ‘powerful teaching’, as well as ‘big idea thinking’ and horizon 

content knowledge, become clear.  
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In a recent representation of the Knowledge Quartet (Rowland, Huckstep and 

Thwaites 2005), Rowland (2015) suggested that the components of transformation and 

connection, which effectively equate to ‘big idea thinking’ with its links and 

connections, underpin the teacher’s ability to deal with contingent events.  Horizon 

content knowledge enables teachers to have a peripheral view of the content needed by 

children prior to and following any particular stage of learning (Ball and Bass 2009). 

Hence, it can be said that horizon content knowledge and ‘big ideas’ are inextricably 

linked, or even could be considered as one and the same. Also, it is the proposition of 

this paper that contingency knowledge and the ability to deal with contingent events are 

essential for powerful teaching. That is to say, powerful teaching equates to exploring 

the learning potential of unexpected (or contingent) events in the classroom. Rowland et 

al. (2015, 88) cite Ball and Bass (2000) in saying that “readiness for predictable errors 

and misconceptions is part of pedagogical content knowledge [and] that teachers can 

even be prepared for the unpredictable uncertainties”. 

A model for provoking contingent events: a proposal 

I argue here that the notion of contingency can be taken further with the idea that 

really powerful teaching is about teachers actually setting up contingent events. It is 

more than taking advantage of the teachable moment or the serendipitous opportunity: it 

is about engineering such opportunities. Put another way, it could be akin to providing 

provocation and what could be thought of as mild ‘discomfort’ in the form of 

mathematical challenges. This, indeed, requires powerful knowledge that is rich and 

connected. It also invokes the learning processes and proficiencies that can be described 

as being two parts of a duality that is horizon knowledge. The remainder of this paper 

will describe how a model is proposed which is based on this notion and which 
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incorporates and adapts ideas from other models. It is conceptualised in terms of a series 

of stages. 

Stage 1: Hierarchy and sensibility 

At this stage, two elements of the new model can be described as follows. One is 

the hierarchical nature of content knowledge. The other is the idea of ‘sensibility’ for 

students’ mathematical horizons: assessing them effectively, and incorporating the 

proficiencies and processes of learning. Foundation knowledge (Rowland et al. 2005) or 

‘common content knowledge’ (Ball et al. 2008, 403) could be considered to be similar 

and at the lower end of a hierarchy. Rowland (2015) seems to suggest such a hierarchy, 

whereas Ball et al. (2008, 403) include common content knowledge as one of three 

equal elements of the domain of Subject Matter Knowledge, the others being ‘horizon 

content knowledge’ and ‘specialised content knowledge’. Using Rowland et al.’s  

(2005) notion of the Knowledge Quartet as the basis, the representation of mathematical 

knowledge proposed at this stage incorporates Ma’s (1999, 115) notion of ‘concept 

knots’ (i.e. mathematical ideas that tie concepts together ) at the next level. Ma’s (1999, 

120) idea of ‘profound understanding of fundamental mathematics’ (PUFM) which she 

described as “understanding of fundamental mathematics [that is] deep, broad, and 

thorough”, and the notion of ‘big idea thinking’ (Charles, 2005, 1) are seen as belonging 

to the top of the hierarchy and the keys to teachers enacting their contingency 

knowledge and provoking contingent moments.  

‘Sensibility’ is seen here as being an awareness of students’ mathematical 

horizons. This can be derived from knowledge of students themselves and astute 

diagnostic assessment. The latter relies heavily on a teacher’s understanding of big 

mathematical ideas and the pieces of micro-content that contribute to them (Hurst and 

Hurrell, 2014, 1). It also incorporates an awareness of the processes and proficiencies 
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for learning mathematics. Along with deep content knowledge, this sensibility enables 

teachers to deal with and provoke contingent moments to help their students move to 

and beyond their mathematical horizons.   

Stage 2: Preparing for contingent moments 

This discussion could be considered in terms of what constitutes the necessary resources 

for powerful teaching. First, it is the considerable extent of deep, rich, connected 

knowledge of the big ideas of mathematics, which can enable the teacher to understand 

and diagnose students’ learning in terms of the mathematics they know and need to 

know. Secondly, teachers need to understand students’ mathematical horizons and 

devise a path for helping them reach and move beyond those horizons. It is their rich 

content knowledge that will help enable them to devise that path. Thirdly, teachers 

require a mindset that helps them to provoke the contingent moments, provide the 

challenges, and invoke the key mathematical proficiencies and processes such as 

reasoning, justifying, hypothesizing and problem solving that are critical conduits for 

children progressing to their mathematical horizons and equipping them to move 

beyond the horizons. 

It has already been suggested here that contingency knowledge is both reactive 

and proactive. An example of that relates to task design where a teacher seeks to 

address a particular obstacle to children’s learning. Such obstacles may arise from the 

context of a lesson or they may be known to the teacher in the form of a common 

misconception or misunderstanding held by one or more students.  In order to do that 

effectively, teachers need to develop deep and specific understanding of concepts akin 

to the connectedness of ‘big idea thinking’. Common misconceptions in mathematical 

learning have been well documented (Ryan and Williams, 1999; Swan, 2003) and 
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teachers can prepare by looking beyond the immediate horizon, anticipating, and 

enacting some ‘contingency knowledge’. This is proactive planning: teachers will 

anticipate that these potential obstacles will be there.  

Swan (2003) provides some clear examples of typical misconceptions for which 

teachers can prepare. For instance, when asked to complete decimal number sequences 

such as 0.2, 0.4, 0.6, __, __, __, many children will provide an answer of 0.8, 0.10, 0.12 

(Swan 2003, p. 118). If a teacher is aware of the possibility of such answers, s/he can 

prepare appropriate teaching strategies and tasks. Ryan and Williams (1999) also refer 

to a common misconception about decimals in that many children think that 0.15 is 

bigger than 0.2, on the basis of their previous knowledge of whole numbers. They pose 

the question “How can teachers find carefully crafted tasks that provide enough (but not 

too much cognitive conflict so that children establish correct reasoning for the new 

number domain?”(Ryan and Williams, 1999, p. 148). The answer lies in the depth of 

their content knowledge to underpin their capacity to plan contingent moments. It is 

therefore suggested that contingency knowledge may have a third dimension, planned 

contingent moments, in addition to contingency ‘in the moment’ and ‘deferred 

contingency’ which is enacted at a later time. 

Stage 3: Inquiry, learning proficiencies and connected knowledge 

Makar, Arthur and Ben-Zvi (2015, 1108) studied argumentation-based inquiry and 

observed that “inquiry problems are complex, so the entire pathway from beginning to 

end is not necessarily visible [and] as movement is made (or not) towards a viable 

solution, evidence provides a focal point for judging ideas, progress, and next steps 

within the problem context”. This was even more so when problems were ill-structured 

and the route to the solution requires negotiation and careful consideration.  It could be 
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said that ‘ill-structured problems’ provide ‘contingent moments’, once again, by design 

on the part of the teacher. This further strengthens the position of contingent knowledge 

and ‘contingent teaching’ as being proactive in nature and not simply reactive. 

It is suggested that what has been considered previously as a single entity – horizon 

content knowledge – may be better considered as a duality consisting of rich, strongly 

connected content knowledge, and a deep understanding of mathematical processes, 

structures and proficiencies. When coupled with an understanding of children’s 

mathematical horizons, they can be the tools of a ‘powerful teacher’ in provoking 

contingent moments and fostering deep learning. Rowland and Zazkis (2013) seem to 

support the proposition of a dual structure, noting that contingent situations pose both a 

‘mathematical problem’ (knowledge of content) and a ‘pedagogical problem’ 

(knowledge of processes and proficiencies) for teachers (Rowland and Zazkis 2013, 

151). They conclude that “a teacher’s responses to problematic contingent moments that 

arise in teaching mathematics are fundamentally dependent on their mathematical 

knowledge, which prompts and guides pedagogical implementation” (Rowland and 

Zazkis 2013, 151).  

Stage 4: Moving from the ‘inner’ to the ‘outer’ horizon 

Ball and Bass (2009, 12) draw attention to the importance of a teacher having a 

“mathematical perspective on what lies in all directions, behind as well as forward, for 

their pupils” - that is, knowledge of what precedes and follows particular stages of 

learning.  This is supported by Zazkis and Mamolo (2011). They also re-conceptualized 

the idea of horizon knowledge, based on Husserl’s notions of ‘inner and outer horizons’ 

(citing Follesdal, 2003). Essentially, they considered the ‘inner horizon’ to be “specific 

features of the object itself and includes the attributes of the object that lie in the 
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periphery of our focus” (Zazkiz and Mamolo 2011, 9). The ‘outer horizon comprises 

“not the particular features of the object . . .  but rather features that are connected  to 

the object and that embed it in a greater structure” (Zazkis and Mamolo 2011, 9-10). If 

we interpret this in terms of knowledge, the ‘inner horizon’ might consist of the specific 

identifying attributes or content that immediately characterises a concept or idea (or as 

they term it, ‘an object’). The ‘outer horizon’ similarly connects that concept or idea to 

other concepts or ideas.  

A clear link with ‘big idea thinking’ (Charles, 2005, 1) can helpfully be made here, 

which can be demonstrated by using place value (certainly a ‘big idea’) as an example. 

The ‘inner horizon’ might consist of ideas such as knowing the names of the places, 

knowing the cyclic pattern for reading and writing the numbers, knowing that there is a 

ten times multiplicative relationship that exists between the places, and knowing that 

zero can be a place holder. The ‘outer horizon’ would consist of ideas such as the use of 

‘trading up and down’ to facilitate addition and subtraction of larger numbers, using 

standard place value partitioning and the distributive property to facilitate learning an 

algorithm for multiplication, and the use of the standard metric system of measurement 

units. These ‘outer’ ideas are inextricably connected to the essence of place value and 

are underpinned by it. Zazkis and Mamolo (2011) note that there may be some aspects 

of the ‘mathematical horizon’ that may not be within reach of students. For instance, “a 

teacher’s knowledge at the mathematical horizon includes features in both the inner and 

outer horizons . . . while only some of those features are accessible to students” (Zazkis 

and Mamolo 2011, 10).   

 

Stage 5: ‘Big idea thinking’ – the enabler of ‘powerful teaching’ 

The notions of ‘big idea thinking’, ‘horizon knowledge’, ‘powerful teaching’, and 
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‘contingency/contingent teaching’ are, appear closely linked. Obviously, some aspects 

of knowledge and understanding are going to be more distant for students and for some 

students more than others. If ‘big idea thinking’ is employed, the connections within the 

‘inner horizon’ and between it and the ‘outer horizon’ can be made accessible. Powerful 

teachers can engineer contingent moments that challenge their students, provoke 

learning, and make the connections and links explicit. Zazkis and Mamolo (2011, 13) 

summarise it aptly in their concluding comments about what they consider knowledge 

at the mathematical horizon to be, that it is: “advanced mathematical knowledge in 

terms of concepts (inner horizon), connections between concepts (outer horizon), and 

major disciplinary ideas and structures (outer horizon) applied to ideas in the 

elementary school or secondary school curriculum”. This is broadly supported by Chick 

and Stacey (2013) in their discussion of how teachers deal with contingent moments. 

They note that without strong and specific content knowledge, “a mathematically 

appropriate solution to the teaching problem is unlikely. Moreover, the greater a 

teacher’s conceptual fluency, the more likely it is that a suitable solution will come to 

mind” (Chick and Stacey 2013, 135). Here, I propose that ‘big idea thinking’ is the 

‘enabler’ that allows teachers to move between the ‘inner’ and ‘outer’ horizons and, as 

such, it is the ‘enabler’ that allows teachers to set up the contingent moments that are 

the essence of powerful teaching.  

‘Horizon content knowledge’ could be also considered as the knowledge that 

teachers create from their own practice. Hence,  inevitably, it must be dynamic as 

opposed to static, as has been discussed earlier. Zazkis and Mamolo (2011) suggest that 

one requirement for developing horizon knowledge is engagement in learning of 

mathematics, though it is not the sole requirement. Rowland and Zazkis (2013, 150) say 

that ‘syntactic knowledge’ (Shulman, 1986) “is most likely to be acquired by doing 
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mathematics, by posing and solving problems, by ‘signing up’ to the world of 

mathematics”. Again, there is a link here to the importance of disposition which is 

likely to underpin a teacher’s decision to undertake such involvement. Chick and Stacey 

(2013, 122) also note the dynamic nature of teacher knowledge in citing Hodgen (2007) 

who discussed the extent to which such knowledge is abstract and theoretical “or 

whether it is tacit craft knowledge” – that is, it is informed by and developed through 

their practice.  

Stage 6: Frameworks of teacher knowledge 

Research about teacher knowledge over the last three years has provided further 

impetus to consider a new approach to knowledge for teaching mathematics. The 

research has typically been based on aspects of existing models such as those mentioned 

at the beginning of this paper. Researchers have generally attempted to re-conceptualize 

previous efforts to define teacher knowledge. For example, Beswick, Callingham and 

Watson (2012) acknowledged the importance of the work of Shulman (1986) and others 

in developing frameworks for teacher knowledge but noted that the “apparently multi-

faceted nature of teachers’ knowledge for teaching mathematics . . . has complicated 

efforts to establish clear links between it and students’ mathematical achievement” 

(Beswick et al. 2012, 131). However, in putting the case for their conceptualization of 

knowledge for teaching mathematics as a ‘single underlying variable’ called ‘teacher 

knowledge’, they advocated further analysis and development of earlier models such as 

those proposed by Shulman (1986) and Ball and her colleagues (Ball et al. 2008; Hill et 

al. 2008). Within the single construct of teacher knowledge, Beswick et al. proposed 

four hierarchical levels: ‘personal numeracy’ (1), ‘pedagogical awareness’ (2), 

pedagogical content knowledge awareness’ (3), and ‘pedagogical content knowledge 
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consolidation’(4). Their ‘uni-dimensional’ construct of ‘teacher knowledge’ could also 

be considered in terms of the ‘inner’ and ‘outer’ horizons. Specifically, Levels 1 and 2 

would be more likely to be in the realm of pre-service and novice teachers and Levels 3 

and 4 would be more likely to characterise the teaching of experienced teachers.  

Goos (2013) approached the issue of teacher knowledge by proposing a bipartite 

model consisting of pedagogical content knowledge (PCK) and mathematical content 

knowledge (MCK). Her findings suggested that “MCK and PCK work together and may 

develop in tandem with each other . . .  yet PCK cannot exist without a foundation in 

MCK” (Goos 2013, 981).  Goos’ work connects with that of Beswick et al. (2012) in 

that the pedagogical content knowledge  she describes relates closely to Levels 3 and 4 

of their hierarchy. If the views of Goos (2013) and Beswick et al. (2012) are combined 

with what has already been presented, the proposed model can be extended. The most 

effective or most powerful teacher would be likely be one whose content knowledge is 

deep and whose pedagogical awareness is strong, enabling him/her to set up and deal 

with contingent moments. 

Wilkie (2014) found, as did Goos (2013), that ‘specialised content knowledge’ 

(SCK), a term used by Ball and her colleagues, did not necessarily lead to strong levels 

of ‘knowledge of content and teaching’ (KCT) or ‘knowledge of content and students’ 

(KCS) (also terms coined by Ball and colleagues). For example, Wilkie (2014, 420) 

explained that teachers may have had high levels of content knowledge but did not 

necessarily understand how children learned or were able to  “apply it to appropriate 

activities for teaching it”. Further, she suggested that teachers whose content knowledge 

was procedure-based found it difficult to interpret students’ mistakes and respond 

effectively to them. These findings indicate that there are factors other than content 

knowledge that come into play. It also suggests that such knowledge may need to be 



RERE-2016-0065_resub_with_eds_final_queries+CH.docx 

Page 24 of 33 

 

better organized and held, which, again, has given impetus to the development of a 

proposed new model on the basis of what has been described earlier in this paper.  

While it is generally accepted that content knowledge alone is not sufficient, 

Chick and Stacey (2013) have noted that the more conceptually fluent a teacher, the 

more likely it is that s/he will be able to address the learning needs of children. They 

describe such fluency in terms of Ma’s (1999) notion of ‘profound understanding of 

fundamental mathematics’ (PUFM) and state that “Apparently small mathematical 

details of activities can affect learning.  For this reason, development of excellent tasks 

demands substantial expertise” (Chick and Stacey 2013, 134). This links with the notion 

of ‘specialised content knowledge’ (Ball et al. 2008) as well as the concept of ‘big 

ideas’ that are based on deep and connected knowledge. The dual structure, proposed 

earlier for horizon knowledge, is also given credence by Chick and Stacey (2013) when 

they cited Polya’s (1962) notion of how knowledge consists of ‘information and know-

how’. This seems similar to what Beswick et al. (2012) and Goos (2013) described as 

mathematical content knowledge and pedagogical content knowledge, which, in terms 

of the proposed structure for horizon knowledge, equate to ‘content’ (information) and 

‘processes’ (know-how).  

Zhang and Stephens (2013) developed a construct for ‘teacher capacity’ to 

analyse effectiveness of a sample of Australian and Chinese teachers. They state their 

preference for moving away from knowledge alone being the predictor of teacher 

capacity and that it is more important to see “how teachers utilise that knowledge in 

their practical teaching” (Zhang and Stephens 2013, 488). The critical element of their 

construct is ‘design of teaching’, which they describe as “teachers’ capacity to design 

teaching in order to move students’ thinking forward and to respond to specific 

examples of student’s thinking in the light of official curriculum documents” (Zhang 
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and Stephens 2013, 489). ‘Design of teaching’ is informed by three other criteria:  

knowledge of mathematics, understanding of students’ mathematical thinking, and 

interpretation of curriculum. This resonates with the earlier discussion about knowledge 

of students’ mathematical horizons, and ‘design for teaching’ and could easily be seen 

as an analogy for ‘contingency’, given the comment about moving students’ thinking 

forward. All of these ideas have greatly informed the development of the new model for 

teacher knowledge. 

Stage 7: Attitudes, beliefs and dispositions 

The construct for teacher capacity developed by Zhang and Stephens (2013) depicts 

‘dispositions, attitudes, beliefs, and values’ as having a large impact on teacher 

effectiveness. The importance of teacher affect has also been noted by Chick and Stacey 

(2013) who state that “successful teachers must have the capacity to apply the 

knowledge they do have during [their emphasis] teaching” (Chick and Stacey 2013, 

122).  The inference here is that even if the capacity for effective action is there, the 

development and enacting of it in practice depends on a teacher’s attitudes and beliefs. 

Rowland and Zazkis refer to a combination of “knowledge and inclination” (2013, 150), 

while findings from the research by Beswick et al. (2012) validated teacher beliefs as a 

contributor to their uni-dimensional construct for teacher knowledge.  

The importance of affect cannot be underestimated in terms of its role in 

determining the effectiveness of a teacher. Therefore, the final version of the new model 

would have an affective domain as underpinning the idea of powerful teaching, in 

addition to the development of the other three domains. 
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Proposing a new model 

Some clarifications about terminology 

In the above discussion, I have attempted to build a case for a new model of teacher 

knowledge for the teaching of mathematics. I have argued that, from the analysis of 

existing models such as those reviewed in this paper, there appear to be two central 

ideas – mathematical content knowledge and pedagogical knowledge. I have not used 

the terms ‘curricular content knowledge’ or ‘knowledge of curriculum’ because modern 

curricula are often little more than syllabuses, the contents of which are easily 

encompassed in the term ‘mathematical knowledge’. If a wider view of curriculum is 

taken, then elements such as learning processes, and knowledge of students and 

contexts, are included elsewhere in the proposed model (i.e., ‘sensibility’) as they are 

seen as critical elements of it.  

At the centre, I place the two ideas which I believe provide the greatest and most 

positive impact on student learning – contingency and powerful teaching. The rationale 

for this is outlined in the previous discussion. As noted, a teacher’s ability to enact 

contingent knowledge and to provoke contingent moments is the essence of powerful 

teaching and is, effectively, at the centre of mathematical problem solving and learning. 

‘Big idea thinking’, which has been described as a key element, contributes greatly to a 

teacher’s knowledge base and is seen as the ‘enabler’ for the generation of contingent 

moments. It sits within the ‘mathematics’ domain. The other three domains seen as 

having impact on the quality of teaching are ‘pedagogies’, ‘sensibility (about students, 

contexts and processes)’, and ‘affect, attitudes, beliefs and dispositions’.  

In this article, I have attempted to clarify what might be meant by ‘horizon 

content knowledge’ (Ball et al. (2008, 403) and based on Shulman’s (1986) notion of 

‘vertical knowledge’. The conclusion reached is that it is not a single entity but a multi-
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faceted one. It seems that teachers need two things: first,  a knowledge of students’ 

mathematical horizons, that is, where each student is situated in terms of his/her 

mathematical understanding, and, second, horizon knowledge. The latter part is 

considered as a duality consisting of connected content knowledge based on the ‘big 

ideas’ of mathematics and also a sensibility about mathematical proficiencies and 

processes that can be invoked to help children reach their mathematical horizons and 

move beyond them.  

In the proposed model, these elements appear in all three of the domains – 

mathematics, sensibility and pedagogies. Knowledge of students’ mathematical 

horizons is seen as being a part of ‘sensibility’, as it is dependent upon a teacher’s 

awareness of effective diagnostic assessment, which is of course informed by deep and 

connected content knowledge. The first part of the duality is, indeed, that content 

knowledge and fits within the domain of ‘mathematics’. The second part involves an 

awareness of proficiencies and processes which, again, are seen as a part of the 

‘sensibility’ domain but also as belonging to the domain of ‘pedagogies’ in that the 

choice of appropriate pedagogies is a critical element of effective teaching. Therefore, I 

suggest that the notion of ‘horizon knowledge’ is quite varied and is difficult to situate 

in just one position in any model of knowledge for teaching. However, if a simpler 

version of the new model is considered, horizon knowledge would encompass the three 

domains of mathematics, sensibility, and pedagogies. Each domain is linked to 

‘mathematical content knowledge’, ‘knowledge of students and content’, and 

‘pedagogical content knowledge’ respectively. 
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Conclusion 

In this article, I have attempted to make a case for proposing a new model to represent 

knowledge for teaching mathematics and to conceptualize elements and domains that 

constitute the ‘act of teaching’. The latter has purposely been placed at the centre and 

termed as ‘design for powerful teaching’, the main component of which is the ability of 

the teacher to provoke and deal with contingent moments. In developing the new model, 

other models developed by Ball et al. (2008), Rowland et al. (2005), and Shulman 

(1986)  have been rationalized and recent research by Beswick et al. (2012) and Goos 

(2013) has been incorporated. The new model has also been informed by the work of 

Askew (2008) and Zhang and Stephens (2013). 

It is proposed that the four domains of knowledge of mathematics, knowledge of 

pedagogies, sensibility about students and process, and affect and beliefs all contribute 

to a teacher’s capacity to enact powerful teaching in the form of contingent moments. It 

is suggested that it is this capacity that lies at the heart of effective mathematical 

activity. 

A research project is currently being established to conduct an evidence-based 

exploration of the proposed model in order for it to undergo a validation process. The 

intention is to conduct extensive research with a large cohort of primary school teachers 

of different levels of expertise and experience. Data will be generated from a range of 

sources, including classroom observations, content analysis of planning documents, 

interviews, and questionnaires. The new model will form the conceptual framework for 

the research. 
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