
Preconditioners based on the Alternating-Direction-Implicit

algorithm for the 2D steady-state diffusion equation with

orthotropic heterogeneous coefficients I

Longfei Gaoa, Victor M. Calob

aApplied Mathematics & Computational Science, King Abdullah University of Science and Technology
bCenter for Numerical Porous Media, Applied Mathematics & Computational Science, Earth Science &

Engineering, King Abdullah University of Science and Technology

Abstract

In this paper, we combine the Alternating Direction Implicit (ADI) algorithm with the
concept of preconditioning and apply it to linear systems discretized from the 2D steady-
state diffusion equations with orthotropic heterogeneous coefficients by the finite element
method assuming tensor product basis functions. Specifically, we adopt the compound
iteration idea and use ADI iterations as the preconditioner for the outside Krylov subspace
method that is used to solve the preconditioned linear system. An efficient algorithm to
perform each ADI iteration is crucial to the efficiency of the overall iterative scheme. We
exploit the Kronecker product structure in the matrices, inherited from the tensor product
basis functions, to achieve high efficiency in each ADI iteration. Meanwhile, in order to
reduce the number of Krylov subspace iterations, we incorporate partially the coefficient
information into the preconditioner by exploiting the local support property of the finite
element basis functions. Numerical results demonstrated the efficiency and quality of the
proposed preconditioner.

Keywords: alternating direction implicit, Kronecker product, finite element method,
tensor product basis functions, preconditioning, compound iteration

1. Introduction

The Alternating Direction Implicit (ADI) algorithm, which belongs to the category of
matrix-splitting iterative methods, was first proposed almost six decades ago for solving

IThis work was supported in part by the King Abdullah University of Science and Technology (KAUST)
Center for Numerical Porous Media and by an Academic Excellence Alliance program award from KAUST’s
Global Collaborative Research under the title “Seismic wave focusing for subsurface imaging and enhanced
oil recovery.”

Email addresses: longfei.gao@kaust.edu.sa (Longfei Gao), victor.calo@kaust.edu.sa (Victor M.
Calo)

Preprint submitted to Journal of Computational and Applied Mathematics May 26, 2014



parabolic and elliptic partial differential equations, see [1–4]. With a proper set of accelera-
tion parameters, the ADI algorithm can be very powerful, given that each iteration can be
performed efficiently. For example, consider the 2D Poisson equation, defined on a rectangle
with full Dirichlet boundary conditions:

− (u,xx + u,yy) = f. (1)

When discretized by the finite element method, see [5–7], with tensor product basis functions,
each of u,xx and u,yy leads to a matrix that possesses the Kronecker product structure, see
[8–10]. This Kronecker product structure can be exploited to perform each ADI iteration
efficiently, see [11].

However, this elegant algorithm is fragile and its application is limited to certain model
problems only, mainly due to the fact that the Kronecker product structure can be easily
destroyed by the appearance of complex coefficients. When encountered with complex coef-
ficients, we resort to the compound iteration idea, originally proposed in [12], to extend the
practice of the ADI algorithm. Specifically, we first construct an approximate matrix for
which the ADI algorithm can be applied efficiently. Then, a fixed number of ADI iterations
is applied to invert this approximate matrix, serving as the preconditioner for the original
matrix. These iterations are called the inner iterations. Outside these ADI iterations, an-
other iterative scheme, called the outer iterations, is applied to solve the preconditioned
linear system.

The convergence speed of this compound iteration scheme depends on the quality of the
approximate matrix. In this paper, we focus on linear systems arising from the finite element
discretization with tensor product basis functions of the 2D steady-state diffusion equations
with orthotropic heterogeneous coefficients. For these linear systems, the ADI algorithm
is not applicable directly due to the appearance of these coefficients. By exploiting the
local support property of the basis functions used in the finite element discretization, we
are able to construct an approximate matrix that can incorporate partially the coefficient
information and meanwhile, enable the use of the ADI algorithm. Various numerical tests
are performed to verify the efficiency of the compound iteration scheme with the proposed
preconditioner.

The rest of this paper is organized as follows. In section 2, we briefly describe the ADI
algorithm. In section 3, we present the definition and properties of the Kronecker product, as
well as its associated efficient algorithms. In section 4, we examine the linear system arising
from the 2D Poisson equation by the finite element discretization with tensor product basis
functions and demonstrate how the Kronecker product structure can be combined with
the ADI algorithm to solve this linear system efficiently. In section 5, we discuss the 2D
steady-state diffusion equations with orthotropic heterogeneous coefficients. We present a
preconditioner based on the ADI algorithm and the local support property of the basis
functions. Numerical examples are presented in section 6 to demonstrate the performance
of this preconditioner. Finally, we conclude with section 7.

2



2. Alternating direction implicit algorithm

The Alternating Direction Implicit (ADI) algorithm was originally proposed in [1] in
1955 as an iterative method for parabolic and elliptic partial differential equations (PDEs).
We consider the linear system:

(KX +KY )b = F , (2)

where KX and KY are square matrices while b and F are vectors of compatible sizes.
The following scheme can be used to solve (2) iteratively:

(r(k)Σ +KX)b(k+ 1
2

) = (r(k)Σ−KY )b(k) + F ; (3a)

(r(k)Σ +KY )b(k+1) = (r(k)Σ−KX)b(k+ 1
2

) + F , (3b)

where k = 0, 1, 2, · · · stands for the iteration step, Σ is a matrix with the same size of KX

or KY , b(k) is the approximation of the solution vector b at iteration step k and r(k) is a
scalar number, called the acceleration parameter, to be explained with detail in section 4. If
both (3a) and (3b) can be solved efficiently and the total amount of iterations is reasonable,
the overall cost of this algorithm can be very low. This is the underlying idea of the ADI
algorithm.

At first glance, the assumption that both (3a) and (3b) can be solved efficiently might
seem questionable. However, if linear system (2) arises from the finite difference discretiza-
tion with the five-point stencil of the 2D Poisson equation (1):

− (u,xx + u,yy) = f,

where u,xx and u,yy correspond to KX and KY , respectively, then both KX and KY can be
reformulated as tridiagonal matrices after suitable permutations.

An efficient algorithm (the tridiagonal matrix algorithm, also known as the Thomas
algorithm, see [13, 14]) can be applied to invert non-singular tridiagonal matrices efficiently.
Therefore, if adding the extra term r(k)Σ does not destroy this tridiagonal structure in KX

and KY , for instance, when Σ is the identity matrix, (3a) and (3b) can be solved efficiently.
This is the original motivation behind the development of this iterative scheme.

However, there are other cases where the individual equations in (3) can be solved effi-
ciently. One noticeable example appears when the Poisson equation (1) is discretized by the
finite element method with tensor product basis functions, see [11]. In this case, both KX

and KY , which still correspond to u,xx and u,yy in (1), respectively, possess the Kronecker
product property. We briefly explain the Kronecker product in section 3.

The inverse of a non-singular Kronecker product matrix can be applied efficiently, see [15–
17]. If in addition, the extra term r(k)Σ does not destroy the Kronecker product structure and
the invertibility of KX and KY , both (3a) and (3b) can be solved efficiently and therefore,
the ADI algorithm is still applicable.

3



3. Kronecker product

3.1. Definition and properties

The Kronecker product, denoted by ⊗, is a special name for the tensor product when
restricted on matrices. Symbolically, for matrices A and B of arbitrary sizes,

A⊗B =

 a11B · · · a1nB
...

. . .
...

am1B · · · amnB

 ,
where aij is the entry of A at the ith row and jth column with i ranging from 1 to m and j
ranging from 1 to n. In other words, A⊗B means that every entry in the first matrix A is
replaced by the second matrix B and then scaled by that replaced entry.

The Kronecker product has many useful properties. We list several of them here:

• Mixed-product:
(A⊗B)(C ⊗D) = (AC)⊗ (BD);

• Inverse:
(A⊗B)−1 = A−1 ⊗B−1;

• Transpose:
(A⊗B)T = AT ⊗BT ;

• Associative:
(A⊗B)⊗ C = A⊗ (B ⊗ C);

• Bilinear:
A⊗ (B + C) = (A⊗B) + (A⊗ C),

(A+B)⊗ C = (A⊗ C) + (B ⊗ C),

(cA)⊗B = A⊗ (cB) = c(A⊗B).

In the mixed-product and associative properties, the matrices need to have compatible sizes
such that the multiplications make sense; in the inverse property, both A and B need to
be invertible; in the bilinear property, c stands for a scaler number. For derivations of the
above properties, see [8–10]. For more details about the Kronecker product, including its
applications, one can also consult [18–23].

3.2. Efficient algorithms

An efficient algorithm for inverting a Kronecker product matrix can be developed by
exploiting its structure, for instance, see [15–17]. We restate this algorithm here for com-
pleteness. For simplicity, we first introduce the operators V ec and Mat, which will be useful
in the upcoming discussion. These two operators are borrowed from [10] and [24]. In their
definitions given below, we also borrow the colon notation ‘:’ from MATLAB [25] to specify
index values. For instance, ‘1 : m’ means the corresponding index varies from 1 to m, while
‘:’ without the starting and ending value means the corresponding index varies through all
its possible values.

4



Definition 1. Let F ∈ Rm×n, V ec(F ) is the operator that returns a column vector of length
mn by stacking all the columns of F together under the natural order:

V ec(F ) ≡

 F (:, 1)
...

F (:, n)

 .
Definition 2. Let f be a column vector of length mn, Mat(f,m, n) is the operator that
returns a matrix of size m × n by chopping f into n pieces of length m and putting these
pieces into the matrix under the natural order:

Mat(f,m, n) ≡ [f(1 : m), · · · , f ((n− 1)m+ 1 : nm)] .

With the above operators, we now present Algorithm 1 to solve the following linear
system that involves a Kronecker product matrix:

(My ⊗Mx)x = f, (4)

where matrices My and Mx have sizes Ny × Ny and Nx × Nx, respectively, while x and f
are column vectors with length NyNx.

Algorithm 1.

1: F = Mat(f,Nx, Ny);
2: T = zeros(Nx, Ny);
3: X = zeros(Nx, Ny);
4: for j = 1 : Ny do
5: T (:, j) = Mx\F (:, j);
6: end for
7: for i = 1 : Nx do
8: X(i, :)T = My\T (i, :)T ;
9: end for

10: x = V ec(X);

In Algorithm 1, we also borrow the commands ‘zeros’ and ‘\’ from MATLAB, where
zeros(m,n) returns an m-by-n matrix of zeros while A\b returns the solution x of Ax = b.

A visualization of Algorithm 1 is presented in Figure 1: We first apply Mx to all the
columns of the original data matrix F and then apply My to all the rows of the intermediate
data matrix T .

5



Figure 1: Visualization of Algorithm 1.

If we use a direct method to apply the inverses of Mx and My in Algorithm 1, and if
in addition, both Mx and My are dense, the factorization cost is O

(
(Nx)

3 + (Ny)
3
)

while
the total substitution cost in Algorithm 1 is O

(
(Nx)

2Ny + (Ny)
2Nx

)
. However, if both

Mx and My are banded diagonal matrices with bandwidth independent of the matrix size,
the factorization cost is O (Nx +Ny) while the total substitution cost in Algorithm 1 is
O (NxNy). This banded diagonal structure is common for 1D matrices arising from finite
element discretizations due to the local support of basis functions.

A similar algorithm exists for applying the matrix vector multiplication with a Kronecker
product matrix. For instance, to multiply My ⊗Mx with x and assign the result to f , we
can use the following algorithm:

Algorithm 2.

1: F = zeros(Nx, Ny);
2: T = zeros(Nx, Ny);
3: X = Mat(x,Nx, Ny);
4: for j = 1 : Ny do
5: T (:, j) = Mx ∗X(:, j);
6: end for
7: for i = 1 : Nx do
8: F (i, :)T = My ∗ T (i, :)T ;
9: end for

10: f = V ec(F );

In Algorithm 2, we use ‘∗’ to denote the 1D matrix vector multiplication.
In the next section, we demonstrate how to combine the Kronecker product property

with the ADI algorithm for a model problem.

6



4. Model problem: the 2D Poisson equation

The idea of combining the Kronecker product with the ADI algorithm has been discussed
in [11]. Below, we briefly explain it for completeness. Let us consider a model problem, i.e.,
the 2D Poisson equation, defined on a rectangle, as descreibed in (1): − (u,xx + u,yy) = f,
to demonstrate the mechanism of combining the Kronecker product properties with the
ADI algorithm, as well as its efficiency. For simplicity, we assume zero Dirichlet boundary
conditions on the boundary. However, the method presented here can also be applied to
other boundary conditions.

4.1. Kronecker product structure in the stiffness matrix

Discretized by the finite element method with a set of basis functions, denoted with B,
model problem (1) leads to linear system:

(KX +KY )b = F ,

as shown in (2), where KX and KY correspond to u,xx and u,yy, respectively.
(
KX +KY

)
is the stiffness matrix.

We denote the partial derivative of B with respect to x as B,x and its partial derivative
with respect to y as B,y. If we list B, B,x and B,y as column vectors, KX and KY can be
expressed in the following succinct forms:

KX =

∫
Ω

(B,x)(B,x)
TdΩ and KY =

∫
Ω

(B,y)(B,y)
TdΩ. (5)

If B is built as the tensor product of two 1D basis sets By and Bx, i.e., B = By ⊗ Bx,
where By and Bx are also listed as column vectors, we have:

B,y = By
,y ⊗Bx and B,x = By ⊗Bx

,x, (6)

where Bx
,x and By

,y stand for the derivatives of Bx and By, respectively. After substituting
these two relations into (5) and applying the mixed-product property, we arrive at:

KX =

∫
Ω

(
By(By)T

)
⊗
(
Bx
,x(B

x
,x)

T
)
dΩ and KY =

∫
Ω

(
By
,y(B

y
,y)

T
)
⊗
(
Bx(Bx)T

)
dΩ. (7)

Since the integration domain Ω is rectangular, the integrals in (7) can be separated into
products of 1D integrals, which leads to:

KX =

(∫
y

By(By)Tdy

)
⊗
(∫

x

Bx
,x(B

x
,x)

Tdx

)
;

KY =

(∫
y

By
,y(B

y
,y)

Tdy

)
⊗
(∫

x

Bx(Bx)Tdx

)
.

(8)

7



Noticing that

(∫
y

By(By)Tdy

)
and

(∫
x

Bx(Bx)Tdx

)
are the 1D mass matrices built with

By and Bx, respectively, while

(∫
y

By
,y(B

y
,y)

Tdy

)
and

(∫
x

Bx
,x(B

x
,x)

Tdx

)
are the correspond-

ing 1D stiffness matrices, we can express KX and KY in the following concise forms:

KX = My ⊗Kx and KY = Ky ⊗Mx, (9)

with the help of the following notations:

My =

∫
y

By(By)Tdy, Mx =

∫
x

Bx(Bx)Tdx;

Ky =

∫
y

By
,y(B

y
,y)

Tdy, Kx =

∫
x

Bx
,x(B

x
,x)

Tdx.

Moreover, we define M , the corresponding 2D mass matrix, as

M = My ⊗Mx, (10)

which plays an important role in the ADI algorithm discussed in the next section.

4.2. Applying the ADI algorithm to the model problem

In this section, we demonstrate how to apply the ADI algorithm to solve linear system(
KX +KY

)
b = F that corresponds to the finite element discretization of model problem

(1) with tensor product basis functions.
Knowing that both KX and KY possess the Kronecker product structure and that Al-

gorithm 1 can efficiently apply the inverse of a Kronecker product matrix (given that it is
invertible), we first want to find a suitable matrix Σ for the ADI algorithm, as shown in (3),
such that the Kronecker product structure is preserved. The mass matrix M , as defined in
(10), is a natural choice since by the bilinear property of the Kronecker product, we have:

r(k)M +KX = r(k)My ⊗Mx +My ⊗Kx = My ⊗
(
r(k)Mx +Kx

)
;

r(k)M +KY = r(k)My ⊗Mx +Ky ⊗Mx =
(
r(k)My +Ky

)
⊗Kx.

Since the mass matrix M is symmetric positive-definite, the extra term r(k)M , with
r(k) > 0, ensures that the matrices to be inverted in (3a) and (3b) are non-singular, even
for the case when Neumann boundary conditions are imposed on two parallel edges of the
rectangular domain such that either KX or KY is singular. But more importantly, this extra
term can accelerate the convergence of the ADI algorithm, if chosen properly.

To see why it is so, we first subtract the following equivalent forms of (2):

(r(k)M +KX)b = (r(k)M −KY )b+ F ,
(r(k)M +KY )b = (r(k)M −KX)b+ F ,

8



from (3a) and (3b), respectively, obtaining:

(r(k)M +KX)e(k+ 1
2

) = (r(k)M −KY )e(k), (11a)

(r(k)M +KY )e(k+1) = (r(k)M −KX)e(k+ 1
2

), (11b)

where e(i) = b(i) − b for i = k, k + 1
2

and k + 1.

Substituting e(k+ 1
2

) from (11a) into (11b), we get

e(k+1) =
[
(r(k)M +KY )−1(r(k)M −KX)(r(k)M +KX)−1(r(k)M −KY )

]
e(k). (12)

With the following definition:

P(k) = (r(k)M +KY )−1(r(k)M −KX)(r(k)M +KX)−1(r(k)M −KY ), (13)

we can write the relations between the errors at different iterations as:

e(k+1) =
(
P(k)

)
e(k); (14)

e(k+1) =

(
k∏
j=0

P(j)

)
e(0). (15)

From the definition of P(k) in (13), as well as the error relations in (14) and (15), it is
clear that the convergence speed of the ADI algorithm depends on the choice of r(k). We
refer to r(k) as the acceleration parameter in the rest of this paper.

4.3. Selection of the acceleration parameters

To see how to determine a good set of acceleration parameters for linear system (2)
that corresponds to the model problem, we first present a lemma regarding the generalized
eigenvalue decomposition of matrices KX and KY .

Lemma 1. Assume the generalized eigenvalue decomposition for 1D matrices Kx and Ky

exist:

KxV x = MxV xDx; (16a)

KyV y = MyV yDy, (16b)

where Dx and Dy are diagonal matrices with their diagonal entries being the generalized
eigenvalues, then for the 2D matrices KX = My⊗Kx, KY = Ky⊗Mx and M = My⊗Mx,
we have the following generalized eigenvalue decomposition:

KXV = MVDX ; (17a)

KY V = MVDY , (17b)

with V = V y⊗V x, DX = Iy⊗Dx and DY = Dy⊗ Ix where Ix and Iy stand for the identity
matrices with the same sizes as Dx and Dy, respectively.

9



If we further have relations:

(V x)TMxV x = Ix; (18a)

(V y)TMyV y = Iy, (18b)

then the following relation also holds:

V TMV = Iy ⊗ Ix. (19)

Proof. By the properties of the Kronecker product, particularly the mixed-product property
and the associative property, we can easily verify (17a), (17b) and (19) as follows:

KXV = (My ⊗Kx)(V y ⊗ V x)
= (MyV y)⊗ (KxV x)
= (MyV yIy)⊗ (MxV xDx)
= (My ⊗Mx)(V y ⊗ V x)(Iy ⊗Dx)
= MVDX ;

KY V = (Ky ⊗Mx)(V y ⊗ V x)
= (KyV y)⊗ (MxV x)
= (MyV yDy)⊗ (MxV xIx)
= (My ⊗Mx)(V y ⊗ V x)(Dy ⊗ Ix)
= MVDY ;

V TMV = (V y ⊗ V x)T (My ⊗Mx)(V y ⊗ V x)
=

(
(V y)TMyV y

)
⊗
(
(V x)TMxV x

)
= Iy ⊗ Ix.

Relations (17a) and (17b) tell us that KX and KY share the same set of generalized
eigenvectors. Denoting the columns of V as vi, for i = 1, . . . , N , where N is the dimension
of matrix V , we can write:

KXvi = λXi Mvi; (20a)

KY vi = λYi Mvi, (20b)

where λXi and λYi are the diagonal entries in DX and DY that correspond to vi, respectively.
Moreover, we call vi and vj M -orthonormal since according to (19), we have:

(vi)
TMvj =

{
1 if i = j,
0 if i 6= j.

To clarify, in the following content, when using the terminology ‘generalized eigen-
value/eigenvector’ of KX or KY , we refer to the generalized eigenvalue/eigenvector defined
by (20a) or (20b), respectively. Similarly, the generalized eigenvalue/eigenvector of Kx or
Ky corresponds to (16a) or (16b), respectively.

10



Lemma 1 also tells us that the generalized eigenvalues of KX are repeated: KX has the
same set of distinct generalized eigenvalues as Kx. Analogous result holds for KY and Ky.

Moreover, coming from the finite element discretization of the 2D Poisson equation (1),
Kx and Ky are symmetric positive semi-definite while Mx and My are symmetric positive-
definite. This guarantees that all the diagonal entries of Dx and Dy are non-negative real
numbers and there exist full rank matrices V x and V y such that (16) and (18) hold. Under
these conditions, the columns of V form a basis for vector space RN .

With all these properties established above, we can now proceed to analyze the relations
between errors at different iterations and the selection of acceleration parameters. We start
by introducing the M -norm:

Definition 3. Given a symmetric positive-definite matrix M , the M-norm of a vector v
with compatible size is defined as:

‖v‖M =
(
vTMv

) 1
2 .

For matrix A with compatible size, the induced matrix M-norm is defined as:

‖A‖M = sup
v 6=0

‖Av‖M
‖v‖M

.

With the above definitions, we have the following theorem that states the relations
between errors at different iterations:

Theorem 1. If KX , KY and M are N × N symmetric positive-definite matrices and
relations (17a) and (17b) hold, then

∥∥e(k+1)
∥∥
M
≤

∥∥∥∥∥
k∏
j=0

P(j)

∥∥∥∥∥
M

·
∥∥e(0)

∥∥
M
, (21)

where ∥∥∥∥∥
k∏
j=0

P(j)

∥∥∥∥∥
M

= max
1≤i≤N

{
k∏
j=0

∣∣∣∣r(j) − λXi
r(j) + λXi

∣∣∣∣ · ∣∣∣∣r(j) − λYi
r(j) + λYi

∣∣∣∣
}
< 1, (22)

and ∥∥∥∥∥
k+1∏
j=0

P(j+1)

∥∥∥∥∥
M

<

∥∥∥∥∥
k∏
j=0

P(j)

∥∥∥∥∥
M

. (23)

Proof. Definition 3 immediately leads us to inequality (21), according to relation (15).

Now let us focus on the term
∥∥∥∏k

j=0P(j)
∥∥∥
M

, which bounds the error reduction rate after

k iterations. For any generalized eigenvector vi and a positive number r(k), we have the
following relations that can be easily verified based on (20a) and (20b):

(r(k)M −KX)vi = (r(k) − λXi )Mvi;

(r(k)M −KY )vi = (r(k) − λYi )Mvi,

11



and
1

(r(k) + λXi )
vi = (r(k)M +KX)−1Mvi;

1

(r(k) + λYi )
vi = (r(k)M +KY )−1Mvi.

These relations enable us to look through the effect of applying P(k) on a single generalized
eigenvector vi:

P(k)vi =

(
r(k) − λXi
r(k) + λXi

)
·
(
r(k) − λYi
r(k) + λYi

)
vi, (24)

and similarly for
(∏k

j=0P(j)
)

:(
k∏
j=0

P(j)

)
vi =

(
k∏
j=0

(
r(j) − λXi
r(j) + λXi

)
·
(
r(j) − λYi
r(j) + λYi

))
vi. (25)

Since {vi}Ni=1 are M -orthonormal with each other, while r(k), λXi and λYi are all positive
numbers, we readily have the inequalities (22) and (23).

Remark 1. The symmetric positive-definite requirement on KX and KY in Theorem 1 can
be relaxed so that only one of KX and KY need to be symmetric positive-definite while the
other can be symmetric positive semi-definite. Being able to allow this relaxation is important
for the case when Neumann boundary conditions are imposed on two parallel edges of the
rectangular domain.

Relations (21) and (22) motivate the investigation on the following min-max problem in
order to select a good set of acceleration parameters:

{s(j)}kj=0 = arg min

{r(j)}kj=0

{
max

1≤i≤N

{
k∏
j=0

∣∣∣∣r(j) − λXi
r(j) + λXi

∣∣∣∣ · ∣∣∣∣r(j) − λYi
r(j) + λYi

∣∣∣∣
}}

. (26)

However, (26) is not practical since it involves all the eigenvalues {λXi }Ni=1 and {λXi }Ni=1.
Instead, the following relaxed min-max problem can serve as a good surrogate:

{s(j)}kj=0 = arg min

{r(j)}kj=0

{
max

0<α≤x≤β

{∣∣∣∣∣
k∏
j=0

r(j) − x
r(j) + x

∣∣∣∣∣
}}

, (27)

where 0 < α ≤ λXi , λ
Y
i ≤ β for 1 ≤ i ≤ N.

The relaxed min-max problem (27) has been thoroughly investigated in [26]. It has been
shown that there exists a unique set of distinct parameters {s(j)}kj=0 as the solution of (27).
More importantly, [26] provides a theoretically sound and numerically elegant algorithm to
find these parameters for the special cases when k = 2i with i a nonnegative integer, see
also [27, 28]. We call these parameters the optimal acceleration parameters. Moreover, [26]
also provides a tight upper bound on the error reduction rate associated with these optimal
acceleration parameters.

12



4.4. Efficiency of the ADI algorithm

In Table 1, we demonstrate the performance of the ADI algorithm with optimal acceler-
ation parameters of the model problem (KX +KY )b = F , discretized from (1) with different
mesh sizes.

The number of optimal acceleration parameters is denoted with k, while 32×32, 128×128
and 512 × 512 elements uniform meshes are used. The actual relative errors (in l2 norm)
are recorded in columns tagged as ‘observed’ while their upper bounds provided from [26]
are recorded in columns tagged as ‘predicted’. For all the simulations involved, zero initial
points and random right-hand sides are used.

32× 32 128× 128 512× 512
k observed predicted observed predicted observed predicted
1 8.90E-01 8.92E-01 9.71E-01 9.72E-01 9.93E-01 9.93E-01
2 3.77E-01 3.78E-01 6.17E-01 6.20E-01 7.85E-01 7.88E-01
4 3.84E-02 3.86E-02 1.21E-01 1.21E-01 2.37E-01 2.38E-01
8 3.71E-04 3.72E-04 3.66E-03 3.66E-03 1.45E-02 1.46E-02
16 3.44E-08 3.46E-08 3.35E-06 3.35E-06 5.28E-05 5.29E-05
32 1.08E-14 2.99E-16 2.70E-12 2.81E-12 6.98E-10 7.01E-10
64 1.04E-14 2.24E-32 1.02E-13 1.97E-24 5.03E-13 1.23E-19

Table 1: Errors and their upper bounds.

Table 1 demonstrates the fast convergence speed of the ADI algorithm. It becomes
more apparent when we compare its error reduction rates against the conjugate gradient
method without preconditioner for 64 iterations: which is 1.70E-09, 5.06E-03 and 4.88E-01
for meshes with 32× 32, 128× 128 and 512× 512 elements, respectively.

Moreover, the upper bound is extremely tight and therefore, can serve as a good indicator
for deciding how many optimal acceleration parameters shall be used, given a desired relative
error. For a few cases shown in Table 1, the observed relative error are actually bigger than
their predicted upper bounds. This is due to the effect of round-off error.

4.5. Limitation and generalization

For realistic problems that are more complicated than the presented model problem,
the assumption that KX and KY share the same set of generalized eigenvectors is rarely
satisfied, see [27]. There exist various attempts on extending the theory and practice of
the ADI algorithm to more general cases, among which we find the ‘compound iteration’
presented in [12] a particularly appealing idea.

In [12], the ADI algorithm is used as the ‘inner iteration’ to approximately invert an
approximate matrix of

(
KX +KY

)
that satisfies this assumption. This iterative scheme

serves as the preconditioner while the conjugate gradient method is used as the ‘outer
iteration’ to solve the preconditioned linear system.

In the next section, we propose preconditioners based on this compound iteration idea
for more complicated problems.

13



5. Preconditioning

Earlier attempts on using the ADI iterations as a preconditioner for the Krylov subspace
methods can be found in [12, 29–33]. A parallel implementation is discussed in [34]. Here,
we apply this idea to the 2D steady-state diffusion equation with orthotropic heterogeneous
coefficients. To achieve high efficiency, we exploit the Kronecker product structure in the
preconditioner to perform the ADI iterations. Other attempts on exploiting the Kronecker
product structure in solving linear systems can be found in [10, 20, 22, 35].

5.1. Steady-state diffusion equation with orthotropic heterogeneous coefficients

We consider the following 2D steady-state diffusion equation defined on a rectangle:

−∇ ·
(
κ(x, y)∇u(x, y)

)
= f(x, y), (28)

with orthotropic coefficients:

κ(x, y) =

[
κ11(x, y) 0

0 κ22(x, y)

]
and full Dirichlet boundary conditions.

Similar as in section 4.1, when discretized with the finite element method using the tensor
product basis functions B = By ⊗Bx, (28) leads to the following linear system:(

KX + KY
)
b = F , (29)

where

KX =

∫
Ω

(
By(By)T

)
⊗
(
Bx
,x(B

x
,x)

T
)
κ11dΩ, (30a)

KY =

∫
Ω

(
By
,y(B

y
,y)

T
)
⊗
(
Bx(Bx)T

)
κ22dΩ. (30b)

Although the integration domain is still rectangular and tensor product basis functions
are used, in general, the integrals in (30a) and (30b) cannot be written as products of 1D
integrals due to the appearance of κ11 or κ22, which couples the two directions. There-
fore, KX and KY do not possess the Kronecker product structure and the ADI algorithm
shown in section 4 is no longer applicable. For this more complicated problem, we resort to
preconditioning and the compound iteration idea.

5.2. The simplest choice: (KX +KY )−1

The simplest choice of preconditioner would be (KX + KY )−1, with KX and KY as
defined in (7). The ADI algorithm can be used to apply (KX + KY )−1 efficiently, serving
as the inner iteration. Then, the preconditioned linear system can be solved by Krylov
subspace methods, serving as the outer iteration. This is precisely the compound iteration
idea proposed in [12].

14



A clarification of terminology is necessary here: (KX + KY )−1 is actually not the pre-
conditioner in the strict sense. Instead, the approximate inverse of (KX +KY ) induced by
the ADI iterations is the preconditioner. However, for simplicity, we still call (KX +KY )−1

the preconditioner, assuming there is no ambiguity. Besides, we may also refer to the ADI
iterations, or the inner iterations, as the preconditioner.

There are still several questions left regarding this compound iteration idea:

1. What are we really using as the preconditioner and does it have a matrix form?

2. If so, is this matrix symmetric positive-definite such that the conjugate gradient
method can be applied as the outer iteration?

3. How many inner iterations are needed?

We answer these questions one by one in the following.

5.2.1. Matrix form of the preconditioner

Recall the relation between the errors at different ADI iterations, as shown in (15):

e(k+1) =

(
k∏
j=0

P(j)

)
e(0),

where e(0) = b(0)− b and e(k+1) = b(k+1)− b with b denoting the true solution of linear system
(KX +KY )b = F . Substituting e(0) and e(k+1) to the error relation (15), we have:

b(k+1) =

(
I −

(
k∏
j=0

P(j)

))
b+

(
k∏
j=0

P(j)

)
b(0). (31)

If we use zero initial guess for the ADI iterations, i.e., b(0) = 0, (31) can be simplified to:

b(k+1) =

(
I −

(
k∏
j=0

P(j)

))
b. (32)

Further substituting the true solution b = (KX +KY )−1F into (32) leads to:

b(k+1) =

(
I −

(
k∏
j=0

P(j)

))
(KX +KY )−1F . (33)

Now it is clear that the matrix form of the preconditioner can be written as:(
I −

(
k∏
j=0

P(j)

))
(KX +KY )−1. (34)

Therefore, if we fix the number of inner iterations k for each outer iteration, this matrix is
fixed as well, thus suitable for serving as the preconditioner of Krylov subspace methods.

15



5.2.2. Symmetry and positive definiteness of the preconditioner

Since matrix (KX + KY ) is symmetric positive-definite (SPD), the conjugate gradient
(CG) method is the most desirable method for the outer iteration. However, CG requires the
preconditioner to be SPD as well, which is yet unclear for this inner iteration preconditioner.

First, let us recall the effect of applying
(∏k

j=0P(j)
)

on a generalized eigenvector vi, as

shown in (24): (
k∏
j=0

P(j)

)
vi =

(
k∏
j=0

(
r(j) − λXi
r(j) + λXi

)
·
(
r(j) − λYi
r(j) + λYi

))
vi.

In other words, vi is an eigenvector of
(∏k

j=0P(j)
)

. Using DP to denote the diagonal matrix

with its ith diagonal entry being the eigenvalue of
(∏k

j=0P(j)
)

that corresponds to vi, we

have: (
k∏
j=0

P(j)

)
V = V DP . (35)

On the other hand, according to (17a) and (17b), we can write:(
KX +KY

)
V = MVD (36)

where D = (Iy ⊗Dx +Dy ⊗ Ix) is also diagonal.
We can rewrite (35) and (36), respectively, as(

I −

(
k∏
j=0

P(j)

))
= V (I −DP)V −1

and (
KX +KY

)−1
= V D−1V −1M−1,

which lead us to the following equation:(
I −

(
k∏
j=0

P(j)

))(
KX +KY

)−1
= V

(
(I −DP)D−1

)
(MV )−1.

Recalling the relation V TMV = I from Lemma 1, we have:(
I −

(
k∏
j=0

P(j)

))(
KX +KY

)−1
= V

(
(I −DP)D−1

)
V T . (37)

From (37), it is clear that if all the diagonal entries of (I −DP) and D are positive, the
preconditioner, as shown in (34), is SPD. Since all the acceleration parameters are positive,
the above assumption is actually satisfied and (34) is indeed SPD.

To sum up, the preconditioner induced from
(
KX +KY

)−1
by a fixed number of ADI

iterations with zero initial guess is symmetric positive-definite, and therefore, it can be
combined with the conjugate gradient method.

16



5.2.3. Number of the inner iteration steps

Since (KX + KY ) is just an approximation of (KX + KY ), applying its inverse super-
accurately does not benefit us much on reducing the number of outer iterations. Rather,
only an approximate inverse is needed. Our experience is that a number of ADI iterations
that can achieve a relative error around 1e-3 is enough for most cases.

Given matrix (KX +KY ), we go through the following procedure to decide the number
of inner iterations: First, we estimate its smallest and largest generalized eigenvalues and set
them as the lower bound α and upper bound β for the min-max problem (27), respectively;
Then, we choose the number of inner iteration steps such that the upper bound of error
reduction rate associated with the solution of (27) is smaller than 1e-3.

5.3. Partially incorporate the coefficients

The preconditioner
(
KX +KY

)−1
does not contain any information from the coefficients

κ11 and κ22. In this section, we propose a more sophisticated preconditioner that can
partially incorporate these coefficients and meanwhile, can still be applied efficiently. This
preconditioner possesses a similar structure to the generalized Kronecker product structure
discussed in [19]. A similar idea has been applied to the mass matrix case, see [36].

5.3.1. Approximations of KX and KY that partially incorporate the coefficient information

First, we consider a representative entry of KX :

KX
µν =

∫
Ω

(By
i B

y
k)(Bx

j,xB
x
`,x)κ11dΩ,

where µ = (i− 1)Nx + j, ν = (k− 1)Nx + `. If the basis function By
i only has local support,

the integration region for KX
µν on the y direction is restricted to the support region of By

i ,
which is a thin strip of the whole rectangle, as illustrated on the left of Figure 2.

Figure 2: Local support property of the basis functions.

Therefore, this representative entry can be written as:

KX
µν =

∫
Ω

(By
i B

y
k)(Bx

j,xB
x
`,x)κ

y|i
11dΩ,

17



where κ
y|i
11 stands for the restriction of the coefficient κ11 to the ith horizontal thin strip.

It is plausible to assume that κ
y|i
11 does not have much variation on the y direction, simply

due to the short width of the support region. Under this assumption, we approximate KX
µν

as:

KX
µν ≈

(∫
y

By
i B

y
kdy

)(
1

Lyi

∫
Ω

Bx
j,xB

x
`,xκ

y|i
11dΩ

)
,

where Lyi stands for the length of the support region for basis function By
i . By introducing

the following notation:

Kx
i =

1

Lyi

∫
Ω

Bx
,x(B

x
,x)

Tκ
y|i
11dΩ, (38)

for i = 1, · · · , Ny, we can write down the corresponding approximation of KX as:

KX ≈ KX =
(
Iy1M

y
)
⊗Kx

1 + · · ·+
(
IyNy

My
)
⊗Kx

Ny
, (39)

where Iyi denotes the Ny ×Ny matrix with value 1 at its ith diagonal entry and value 0 at
every other entry. Each Kx

i contains partial information of κ11.
Moreover, the following derivation holds:

KX =
(
Iy1M

y
)
⊗
(
Kx

1 I
x
)

+ · · ·+
(
IyNy

My
)
⊗
(
Kx
Ny
Ix
)

=
(
Iy1 ⊗Kx

1

)(
My ⊗ Ix

)
+ · · ·+

(
IyNy
⊗Kx

Ny

)(
My ⊗ Ix

)
=

(
Iy1 ⊗Kx

1 + · · ·+ IyNy
⊗Kx

Ny

)(
My ⊗ Ix

)
=

 Kx
1

. . .

Kx
Ny


 My ⊗ Ix

 . (40)

According to (40), KX can be written as the product of a block diagonal matrix and a
Kronecker product matrix. Therefore, an efficient algorithm can be developed to apply its
inverse, as presented in Algorithm 3 and illustrated in Figure 3.

Algorithm 3.

1: B = Mat(b,Nx, Ny);
2: T = zeros(Nx, Ny);
3: X = zeros(Nx, Ny);
4: for j = 1 : Ny do
5: T (:, j) = Kx

j \B(:, j);
6: end for
7: for i = 1 : Nx do
8: X(i, :)T = My\T (i, :)T ;
9: end for

10: x = V ec(X);

18



Figure 3: Visualization for Algorithm 3.

Similarly, given a representative entry of KY :

KY
µν =

∫
Ω

(By
i,yB

y
k,y)(B

x
jB

x
` )κ22dΩ,

where µ = (i− 1)Nx + j, ν = (k − 1)Nx + `, it can also be written as

KY
µν =

∫
Ω

(By
i,yB

y
k,y)(B

x
jB

x
` )κ

x|`
22 dΩ

by restricting the integration domain to the local support of basis function Bx
` , as illustrated

on the right of Figure 2. We further approximate KY
µν as:

KY
µν ≈

(
1

Lx`

∫
Ω

By
i,yB

y
k,yκ

x|`
22 dΩ

)(∫
x

Bx
jB

x
` dx

)
,

where Lx` is the length of the support region for basis function Bx
` . With the following

notation:

Ky
` =

1

Lx`

∫
Ω

By
,y(B

y
,y)

Tκ
x|`
22 dΩ, (41)

for ` = 1, · · · , Nx, we have the corresponding approximation for KY :

KY ≈ KY = Ky
1 ⊗

(
MxIx1

)
+ · · ·+Ky

Nx
⊗
(
MxIxNx

)
, (42)

where Ix` denotes the Nx ×Nx matrix with value 1 at its `th diagonal entry and value 0 at
any other entry. Each Ky

` contains partial information of κ22.
Moreover, the following derivations hold:

KY =
(
IyKy

1

)
⊗
(
MxIx1

)
+ · · ·+

(
IyKy

Nx

)
⊗
(
MxIxNx

)
=

(
Iy ⊗Mx

)(
Ky

1 ⊗ Ix1
)

+ · · ·+
(
Iy ⊗Mx

)(
Ky
Nx
⊗ IxNx

)
=

(
Iy ⊗Mx

)(
Ky

1 ⊗ Ix1 + · · ·+Ky
Nx
⊗ IxNx

)
.

19



An efficient algorithm for applying the inverse of KY is presented in Algorithm 4 and
illustrated in Figure 4. Specifically, how to apply the inverse of

(
Iy ⊗Mx

)
is simple due to

its Kronecker product structure, as demonstrated in lines 4-6 of Algorithm 4. However, how
to apply the inverse of

(
Ky

1 ⊗ Ix1 + · · ·+Ky
Nx
⊗ IxNx

)
is less straightforward. First, we notice

that (
Ky

1 ⊗ Ix1 + · · ·+Ky
Nx
⊗ IxNx

)(
(Ky

1 )−1 ⊗ Ix1 + · · ·+ (Ky
Nx

)−1 ⊗ IxNx

)
=

Nx∑
j=1

Nx∑
`=1

(
Ky
j ⊗ Ixj

)(
(Ky

` )−1 ⊗ Ix`
)

=
Nx∑
j=1

Nx∑
`=1

(
Ky
j (Ky

` )−1
)
⊗
(
Ixj I

x
`

)
=

Nx∑
`=1

Iy ⊗ Ix`

=Iy ⊗ Ix.
Therefore, applying the inverse of(

Ky
1 ⊗ Ix1 + · · ·+Ky

Nx
⊗ IxNx

)
is equivalent to applying (

(Ky
1 )−1 ⊗ Ix1 + · · ·+ (Ky

Nx
)−1 ⊗ IxNx

)
. (43)

We can use Algorithm 2 to apply each term in (43) efficiently. However, for their sum, we do
not have to go through Algorithm 2 to apply each one of these terms individually. Instead,
due to the special forms of matrices Ix` , we can apply (43) in a collective manner, as shown
in lines 7-9 of Algorithm 4.

Algorithm 4.

1: B = Mat(b,Nx, Ny);
2: T = zeros(Nx, Ny);
3: X = zeros(Nx, Ny);
4: for j = 1 : Ny do
5: T (:, j) = Mx\B(:, j);
6: end for
7: for i = 1 : Nx do
8: X(i, :)T = Ky

i \T (i, :)T ;
9: end for

10: x = V ec(X);

20



Figure 4: Visualization for Algorithm 4.

5.3.2. Symmetrization

We have constructed approximations for KX and KY , i.e., KX and KY , respectively, and
presented efficient algorithms to apply their inverses. It is natural to combine them with
the ADI algorithm to precondition linear system (29):(

KX + KY
)
b = F .

An inner iteration preconditioner for
(
KX + KY

)
can be constructed by applying the

ADI algorithm on its approximation:
(
KX +KY

)
. However, due to the asymmetry of(

KX +KY
)
, the induced preconditioner is also asymmetric and therefore, cannot be com-

bined with the conjugate gradient method (CG). We need to use some other Krylov subspace
method, for instance, the generalized minimal residual method (GMRES), or to symmetrize
the preconditioner. We choose the second path due to the efficiency of CG on symmetric
positive-definite matrices.

It takes two steps to symmetrize the preconditioner. First, we need to obtain a symmetric
approximation of

(
KX +KY

)
. To achieve this goal, we resort to the Cholesky factorization.

We use Ly to denote the lower Cholesky factor of My, i.e., My = Ly (Ly)T , and Lx to denote
the lower Cholesky factor of Mx, i.e., Mx = Lx (Lx)T . According to the Kronecker product
properties, we have:

My ⊗ Ix =
(
Ly(Ly)T

)
⊗ (IxIx) = (Ly ⊗ Ix)

(
(Ly)T ⊗ Ix

)
;

Iy ⊗Mx = (IyIy)⊗
(
Lx(Lx)T

)
= (Iy ⊗ Lx)

(
Iy ⊗ (Lx)T

)
.

We define SX and SY as follows:

SX =
(
Ly ⊗ Ix

)(
Iy1 ⊗Kx

1 + · · ·+ IyNy
⊗Kx

Ny

)(
(Ly)T ⊗ Ix

)
;

SY =
(
Iy ⊗ Lx

)(
Ky

1 ⊗ Ix1 + · · ·+Ky
Nx
⊗ IxNx

)(
Iy ⊗ (Lx)T

)
.

It is easy to verify that SX and SY are both symmetric. We simply use SX and SY to
approximate KX and KY , respectively.

21



Second, we need to ensure that the preconditioner induced from the symmetrized ap-
proximation

(
SX + SY

)
by the ADI iterations maintains the symmetry. For this purpose,

after selecting a set of acceleration parameters, we apply the cycle of ADI iterations twice,
with a reversed order of parameters in the second time. The proof of symmetry for the
aforementioned preconditioner can be found in Appendix A, along with the proof of its
positive definiteness.

Besides preserving the symmetry, the selection of acceleration parameters also becomes a
question since the condition in Theorem 1 that SX and SY share the same set of generalized
eigenvectors is no longer satisfied. In addition, the estimation of the smallest and largest
generalized eigenvalues also becomes unclear.

However, we only need to apply
(
SX + SY

)−1
approximately. In this case, we estimate

the smallest and largest generalized eigenvalues of KX and KY , scaled by the magnitude
of κ11 and κ22, respectively, and then choose the lower bound α and upper bound β for
min-max problem (27) accordingly. The corresponding solution of (27) is selected as the set
of acceleration parameters.

6. Numerical examples

In this section, we show some numerical results to demonstrate the performance of the
preconditioners described in Sections 5.2 and 5.3. Specifically, we apply the compound
iterations to linear system (29):

(KX + KY )b = F ,

discretized from partial differential equation (28), defined on a unit square with full Dirich-
let boundary conditions, for different orthotropic coefficients κ11 and κ22, as illustrated in
Figures 5-7. Exact formulae for these coefficients can be found in Appendix B.

For all the results shown in this section, uniform meshes are used. Moreover, the con-
jugate gradient (CG) method is applied as the outer iteration and forced to stop whenever
the relative residual (in l2 norm) is smaller than 1e-7 or 200 iterations have been performed.
When the iterative process exceeds 200 iterations without converging, we use ‘—’ to denote
the corresponding result.

6.1. Highly orthotropic coefficients

In this example, we test the numerical performances corresponding to the proposed
preconditioners with highly orthotropic coefficients, where κ11 is of order 1 while κ22 is of
order 105, as shown in Figure 5.

22



Figure 5: Highly orthotropic coefficients.

Table 2 records the number of CG iterations required for convergence with respect to
different mesh sizes, while the number of inner iterations is fixed at 64. The two inner itera-
tion preconditioners, induced from

(
KX +KY

)
and

(
SX +SY

)
, respectively, are tested. The

incomplete Cholesky (IC) preconditioner with zero fill-in is also presented for comparison.

N1D 32 64 128 256 512 1024(
KX +KY

)−1
14 15 15 16 16 16(

SX + SY
)−1

6 6 5 5 4 3
IC 4 4 4 4 5 9

Table 2: Number of CG iterations vs. mesh size; Ninner = 64.

From Table 2, we can see that all three preconditioners can handle these highly or-
thotropic coefficients very well, in the sense that the number of CG iterations is small and
not growing drastically as the mesh gets refined. This is confirmed by the solving time
corresponding to these preconditioners, recorded in Table 3. These data of elapsed time, as
well as those appeared later, are recorded with the MATLAB routines ‘tic’ and ‘toc’.

N1D 32 64 128 256 512 1024(
KX +KY

)−1
1.8E-01 5.3E-01 1.5E+00 6.2E+00 3.4E+01 1.6E+02(

SX + SY
)−1

1.3E+00 2.9E+00 6.1E+00 1.9E+01 5.3E+01 1.6E+02
IC 1.7E-03 3.3E-03 1.0E-02 4.5E-02 2.0E-01 1.3E+00

Table 3: Solving time vs. mesh size; Ninner = 64.

23



From Table 3, we observe that the solving time corresponding to the IC preconditioner

is much smaller than those corresponding to
(
KX +KY

)−1
and

(
SX + SY

)−1
. This is also

the case for the setup time, as recorded in Table 4.

N1D 32 64 128 256 512 1024(
KX +KY

)−1
2.8E-03 5.2E-03 1.0E-02 2.1E-02 4.6E-02 8.2E-02(

SX + SY
)−1

1.0E-02 2.5E-02 8.6E-02 3.2E-01 1.4E+00 5.6E+00
IC 1.4E-04 5.5E-04 3.8E-03 2.3E-02 8.1E-02 2.7E-01

Table 4: Setup time vs. mesh size; Ninner = 64.

For this example, where the coefficients are only mildly heterogeneous, the IC precondi-

tioner is favorable against
(
KX +KY

)−1
and

(
SX + SY

)−1
in terms of the time consumed,

at least for mesh size up to h = 1/1024.
In Table 5, we also record the numbers of CG iterations required for convergence with

respect to different numbers of inner iterations, denoted as Ninner, while the mesh size is
fixed at 1/256. The last row, tagged as ‘bound’, record the upper bounds of the relative error
associated with the selected acceleration parameters for linear system (KX +KY )b = F .

We observe that the number of CG iterations stops decreasing when the number of
inner iterations is sufficiently large, which validates the conjecture we made before that the

preconditioners
(
KX +KY

)−1
and

(
SX + SY

)−1
only need to be applied approximately.

Ninner 2 4 8 16 32 64(
KX +KY

)−1
146 35 19 16 16 16(

SX + SY
)−1

25 11 7 5 5 5
Upper bound 8.45E-01 4.20E-01 8.87E-02 3.94E-03 7.74E-06 3.00E-11

Table 5: Number of CG iterations vs. number of inner iterations; N1D = 256.

6.2. Sinusoidal coefficients

In this example, we test the numerical performance corresponding to the proposed pre-
conditioners with coefficients that are sinusoidal functions, as shown in Figure 6. The
incomplete Cholesky (IC) preconditioner with zero fill-in is also presented for comparison.

24



Figure 6: Sinusoidal coefficients.

Table 6 records the numbers of CG iterations required for convergence with respect to
mesh size, while the number of inner iterations is fixed at 64. From Table 6, we observe that

preconditioner
(
SX + SY

)−1
works well in terms of the number of CG iterations. On the

other hand, the preconditioner
(
KX +KY

)−1
and the IC preconditioner are not satisfactory

due to the increase in the numbers of CG iterations as the mesh gets refined. For mesh
size h = 1/512, the IC preconditioner already exceeds the prescribed maximum 200 iterations
without converging.

N1D 32 64 128 256 512 1024(
KX +KY

)−1
40 58 76 88 94 96(

SX + SY
)−1

5 5 4 4 3 3
IC 22 45 90 186 — —

Table 6: Number of CG iterations vs. mesh size; Ninner = 64.

Moreover, for preconditioner
(
SX + SY

)−1
, we even see a slight decrease of the number

of CG iterations as we refine the mesh. This is due to an improved approximability of
the preconditioner as it is constructed based on the local support property of the basis
functions. In other words, the finer the mesh size is, the better the preconditioner

(
SX +

SY
)−1

incorporates the coefficient information.

The advantage of preconditioner
(
SX+SY

)−1
against

(
KX+KY

)−1
can also be observed

in Table 7, where the solving time is recorded. Meanwhile, the setup time is recorded in

Table 8. Although the setup time of
(
KX +KY

)−1
is much smaller than of

(
SX +SY

)−1
, it

25



is almost negligible when compared with the solving time. Therefore,
(
SX + SY

)−1
is still

favorable against
(
KX + KY

)−1
. Although the time consumed by the IC preconditioner is

still the least among the three preconditioners when the iteration converges, we expect it to
increase dramatically as we refine the mesh, due to the increase of iteration steps needed for
convergence.

N1D 32 64 128 256 512 1024(
KX +KY

)−1
1.1E+00 3.6E+00 1.1E+01 3.6E+01 2.0E+02 9.3E+02(

SX + SY
)−1

1.9E+00 3.7E+00 4.9E+00 1.5E+01 4.0E+01 1.6E+02
IC 9.4E-03 3.7E-02 1.7E-01 1.6E+00 — —

Table 7: Solving time vs. mesh size; Ninner = 64.

N1D 32 64 128 256 512 1024(
KX +KY

)−1
4.5E-03 1.2E-02 2.0E-02 2.1E-02 4.6E-02 8.2E-02(

SX + SY
)−1

1.4E-02 5.3E-02 1.6E-01 3.3E-01 1.3E+00 5.4E+00
IC 2.2E-04 8.2E-04 3.3E-03 2.3E-02 — —

Table 8: Setup time vs. mesh size; Ninner = 64.

In Table 9, where the numbers of CG iterations with respect to different numbers of inner
iterations are recorded for h = 1/256, we observe again that the number of CG iterations is
not further reduced after the number of inner iterations is large enough.

Ninner 2 4 8 16 32 64(
KX +KY

)−1
112 93 87 87 87 87(

SX + SY
)−1

23 9 5 4 4 4
Upper bound 8.45E-01 4.20E-01 8.87E-02 3.94E-03 7.74E-06 3.00E-11

Table 9: Number of CG iterations vs. number of inner iterations; N1D = 256.

6.3. Gaussian spikes

In this example, we test the numerical performances corresponding to the proposed
preconditioners with coefficients that are superpositions of Gaussian functions, as shown in
Figure 7. The incomplete Cholesky (IC) preconditioner is also presented for comparison.

26



Figure 7: Gaussian spikes.

Table 10 records the numbers of CG iterations required for convergence with respect to
mesh size, while the number of inner iterations is fixed at 64. Table 10 records the numbers
of CG iterations with respect to different numbers of inner iterations, while the mesh size is
fixed at 1/256.

For these coefficients that are much more complicated than those tested in sections 6.1

and 6.2, the preconditioner
(
KX +KY

)−1
simply does not work and the IC preconditioner

only manages to converge within 200 iterations for mesh size up to h = 1/128. On the other

hand, the preconditioner
(
SX + SY

)−1
still manages to deliver satisfactory results, given

that the number of inner iterations is sufficiently large.

N1D 32 64 128 256 512 1024(
KX +KY

)−1
— — — — — —(

SX + SY
)−1

16 10 9 9 10 10
IC 33 60 119 — — —

Table 10: Number of CG iterations vs. mesh size; Ninner = 64.

Ninner 2 4 8 16 32 64(
KX +KY

)−1
— — — — — —(

SX + SY
)−1

— — — 28 13 10
Upper bound 8.45E-01 4.20E-01 8.87E-02 3.94E-03 7.74E-06 3.00E-11

Table 11: Number of CG iterations vs. number of inner iterations; N1D = 256.

27



7. Conclusions

The alternating direction implicit algorithm can be combined with the Kronecker product
properties to efficiently solve the linear system discretized from the Poisson equation, i.e.,
the model problem, by the finite element method assuming tensor product basis functions.
However, its application to more general problems is limited by its stringent requirements.
In this paper, we adopt the compound iteration idea and use the alternating direction im-
plicit algorithm as the inner iterations, serving as the preconditioner for the outer iterations,
i.e., the conjugate gradient iterations. By exploiting the local support property of the basis
functions, this inner iteration preconditioner can partially incorporate the coefficient infor-
mation and therefore, obtain good approximability. These compound iterations are applied
to steady-state diffusion equations with orthotropic heterogeneous coefficients, achieving
satisfactory numerical performances with low setup cost.

Appendix A.

In this appendix, we show that the preconditioner induced from (SX + SY )−1 by the
ADI iterations with a zero initial guess is symmetric positive-definite (SPD).

With a set of acceleration parameters {r(j)}kj=0, r(j) > 0, we use the following iterative
scheme to solve (SX + SY )b = F approximately.

First, a forward cycle is applied:

(r(0)M + SX)b(0+ 1
2

) = (r(0)M − SY )b(0) + F ,
(r(0)M + SY )b(0+1) = (r(0)M − SX)b(0+ 1

2
) + F ,

...

(r(k)M + SX)b(k+ 1
2

) = (r(k)M − SY )b(k) + F ,
(r(k)M + SY )b(k+1) = (r(k)M − SX)b(k+ 1

2
) + F .

(A.1)

Then, a backward cycle is applied:

(r(k)M + SY )b̃(0+ 1
2

) = (r(k)M − SX)b(k+1) + F ,
(r(k)M + SX)b̃(0+1) = (r(k)M − SY )b̃(0+ 1

2
) + F ,

...

(r(0)M + SY )b̃(k+ 1
2

) = (r(0)M − SX)b̃(k) + F ,
(r(0)M + SX)b̃(k+1) = (r(0)M − SY )b̃(k+ 1

2
) + F .

(A.2)

With the following definitions:

P(j) = (r(j)M + SY )−1(r(j)M − SX)(r(j)M + SX)−1(r(j)M − SY ); (A.3a)

P̃(j) = (r(j)M + SX)−1(r(j)M − SY )(r(j)M + SY )−1(r(j)M − SX), (A.3b)

we can write:
ẽ(k+1) = P̃(0) · · · P̃(k)P(k) · · · P(0)e(0), (A.4)

28



where e(0) = b(0) − b and ẽ(k+1) = b̃(k+1) − b.
Substituting the true solution b = (SX + SY )−1F into (A.4), we have:

b̃(k+1) = (I − P̃(0) · · · P̃(k)P(k) · · · P(0))(SX + SY )−1F , (A.5)

given that zero initial guess is used, i.e., b(0) = 0. From (A.5), it is clear that the induced
preconditioner has the following matrix form:

(I − P̃(0) · · · P̃(k)P(k) · · · P(0))(SX + SY )−1. (A.6)

Symmetry

To demonstrate the symmetry of the induced preconditioner, we only need to show that

P̃(0) · · · P̃(k)P(k) · · · P(0)(SX + SY )−1 (A.7)

is symmetric, since (SX + SY )−1 itself is symmetric. For this purpose, we first present the
following lemma:

Lemma 2. For P(j) and P̃(j) as defined in (A.3), we have:

P(j)(SX + SY )−1 = (SX + SY )−1(P̃(j))T . (A.8)

Proof. On one hand, we have:

(r(j)M + SX)−1(r(j)M − SY )(SX + SY )−1

= (r(j)M + SX)−1(r(j)M + SX − SX − SY )(SX + SY )−1

= (SX + SY )−1 − (r(j)M + SX)−1;
(A.9)

On the other hand, we have:

(SX + SY )−1(r(j)M − SY )(r(j)M + SX)−1

= (SX + SY )−1(r(j)M + SX − SX − SY )(r(j)M + SX)−1

= (SX + SY )−1 − (r(j)M + SX)−1.
(A.10)

Therefore, the following relation holds:

(r(j)M+SX)−1(r(j)M−SY )(SX+SY )−1 = (SX+SY )−1(r(j)M−SY )(r(j)M+SX)−1. (A.11)

Similarly, we also have:

(r(j)M+SY )−1(r(j)M−SX)(SX+SY )−1 = (SX+SY )−1(r(j)M−SX)(r(j)M+SY )−1. (A.12)

Combining (A.11) and (A.12) with the definitions of P(j) and P̃(j), we readily have
relation (A.8).

By repeatedly applying Lemma 2, it is obvious that (A.7) is equivalent to:

P̃(0) · · · P̃(k)(SX + SY )−1(P̃(k))T · · · (P̃(0))T

and is indeed symmetric. Therefore, the induced preconditioner, with its matrix form shown
in (A.6), is also symmetric.

29



Positive definiteness
To demonstrate the positive definiteness of the induced preconditioner, we need to show
that

xT (I − P̃(0) · · · P̃(k)P(k) · · · P(0))(SX + SY )−1x > 0, ∀x 6= 0. (A.13)

Defining y = (P̃(k))T · · · (P̃(0))Tx and S−1 = (SX + SY )−1, (A.13) is equivalent to:

‖x‖S−1 > ‖y‖S−1 , (A.14)

where ‖x‖S−1 is defined as ‖x‖S−1 = xTS−1x.
First, let us examine the matrix

(P̃(j))T = (r(j)M − SX)(r(j)M + SY )−1(r(j)M − SY )(r(j)M + SX)−1.

Due to the matrix similarity, we have:

ρ
(
(P̃(j))T

)
= ρ
(
(r(j)M + SX)−1(r(j)M − SX)(r(j)M + SY )−1(r(j)M − SY )

)
,

where ρ(A) stands for the spectral radius of the square matrix A. Moreover, we have

ρ
(
(r(j)M + SX)−1(r(j)M − SX)(r(j)M + SY )−1(r(j)M − SY )

)
= ‖(r(j)M + SX)−1(r(j)M − SX)(r(j)M + SY )−1(r(j)M − SY )‖2

≤ ‖(r(j)M + SX)−1(r(j)M − SX)‖2 · ‖(r(j)M + SY )−1(r(j)M − SY )‖2.

Suppose
{
λXi
}N
i=1

are all the generalized eigenvalues of SX and M , satisfying:

SXvXi = λXi MvXi .

We have the following relations:

(r(j)M − SX)vXi = (r(j) − λXi )MvXi ;

(r(j)M + SX)−1MvXi =
1

r(j) + λXi
vXi .

Therefore,

‖(r(j)M + SX)−1(r(j)M − SX)‖2 = max
i=1,...,N

∣∣∣∣r(j) − λXi
r(j) + λXi

∣∣∣∣ ≤ 1. (A.15)

Similarly, we have:

‖(r(j)M + SY )−1(r(j)M − SY )‖2 = max
i=1,...,N

∣∣∣∣r(j) − λYi
r(j) + λYi

∣∣∣∣ ≤ 1. (A.16)

At least one of SX and SY should be positive-definite if the Poisson equation they correspond
to is accompanied with Dirichlet boundary condition on part of the boundary. Thus, at least
one of the symbols ‘≤’ in (A.15) and (A.16) can be replaced with ‘<’, which leads us to:

ρ
(
(P̃(j))T

)
< 1.

Therefore, the absolute value of all the eigenvalues of (P̃(j))T is less than 1.
In other words, if we define z = (P̃(0))Tx, z is ‘shorter’ than x from all ‘angles’. Since

‖ ·‖S−1 is just a particular angle to measure the length of z and x, we have ‖x‖S−1 > ‖z‖S−1 .
By repeatedly applying the same argument, we arrive at (A.14) and therefore, the induced
preconditioner is indeed positive-definite.

30



Appendix B.

In this appendix, formulae for coefficients of the numerical examples shown in section 6
are presented.

Figure 5 (Highly orthotropic coefficients):

κ11 = 100

(
2 +

e100(x+y−1)−1

e100(x+y−1)+1

)
;

κ22 = 105

(
2 +

e100(1−x−y)−1

e100(1−x−y)+1

)
.

Figure 6 (Sinusoidal coefficients):

κ11 =
(

1 + 0.99 cos
(
5(x− y)

))
+
(

1 + 0.99 sin
(
5(x+ y)

))
;

κ22 =
(

1 + 0.99 sin
(
5(x− y)

))
+
(

1 + 0.99 cos
(
5(x+ y)

))
.

Figure 7 (Gaussian spikes):

κ11 =
5∑
i=1

Ae−(a(x−xi)2+c(y−yi)2)

with A = 100, a = 75, c = 75 and (x1, y1) = (0.25, 0.25); (x2, y2) = (0.25, 0.75); (x3, y3) =
(0.5, 0.5); (x4, y4) = (0.75, 0.25); (x5, y5) = (0.75, 0.75).

κ22 =
5∑
i=1

Ae−(a(x−xi)2+c(y−yi)2)

with A = 100, a = 150, c = 150 and (x1, y1) = (0.5, 0.25); (x2, y2) = (0.5, 0.75); (x3, y3) =
(0.5, 0.5); (x4, y4) = (0.75, 0.5); (x5, y5) = (0.25, 0.5).

References

[1] D. W. Peaceman, H. H. Rachford, Jr, The numerical solution of parabolic and elliptic differential
equations, Journal of the Society for Industrial & Applied Mathematics 3 (1955) 28–41.

[2] J. Douglas, H. Rachford, On the numerical solution of heat conduction problems in two and three space
variables, Transactions of the American mathematical Society 82 (1956) 421–439.

[3] E. L. Wachspress, G. Habetler, An alternating-direction-implicit iteration technique, Journal of the
Society for Industrial & Applied Mathematics 8 (1960) 403–423.

[4] G. Birkhoff, R. S. Varga, D. Young, Alternating direction implicit methods, Advances in Computers 3
(1962) 189–273.

[5] P. Ciarlet, The finite element method for elliptic problems, volume 4, North Holland, 1978.
[6] D. Braess, Finite elements: Theory, fast solvers, and applications in solid mechanics, Cambridge Uni-

versity Press, 2001.
[7] T. J. R. Hughes, The Finite Element Method: linear static and dynamic finite element analysis, Dover

Publications, 2000.

31



[8] W. Steeb, T. Shi, Matrix Calculus and Kronecker Product with Applications and C++ Programs,
World Scientific, 1997.

[9] D. Turkington, Generalized Vectorization, Cross-Products, and Matrix Calculus, Generalized Vector-
ization, Cross-products, and Matrix Calculus, Cambridge University Press, 2013.

[10] C. F. Van Loan, The ubiquitous Kronecker product, Journal of Computational and Applied Mathe-
matics 123 (2000) 85–100.

[11] W. R. Dyksen, Tensor product generalized ADI methods for separable elliptic problems, SIAM Journal
on Numerical Analysis 24 (1987) 59–76.

[12] E. L. Wachspress, Extended application of alternating direction implicit iteration model problem theory,
Journal of the Society for Industrial & Applied Mathematics 11 (1963) 994–1016.

[13] W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes 3rd Edition: the
art of scientific computing, Cambridge University Press, 2007.

[14] A. Quarteroni, R. Sacco, F. Saleri, Numerical Mathematics, volume 37, Springer, 2006.
[15] C. de Boor, Efficient computer manipulation of tensor products, ACM Transactions on Mathematical

Software (TOMS) 5 (1979) 173–182.
[16] V. Pereyra, G. Scherer, Efficient computer manipulation of tensor products with applications to mul-

tidimensional approximation, Mathematics of Computation 27 (1973) 595–605.
[17] P. E. Buis, W. R. Dyksen, Efficient vector and parallel manipulation of tensor products, ACM

Transactions on Mathematical Software (TOMS) 22 (1996) 18–23.
[18] J. Brewer, Kronecker products and matrix calculus in system theory, Circuits and Systems, IEEE

Transactions on 25 (1978) 772–781.
[19] P. A. Regalia, M. K. Sanjit, Kronecker products, unitary matrices and signal processing applications,

SIAM review 31 (1989) 586–613.
[20] J. G. Nagy, M. E. Kilmer, Kronecker product approximation for preconditioning in three-dimensional

imaging applications, Image Processing, IEEE Transactions on 15 (2006) 604–613.
[21] D. W. Fausett, C. T. Fulton, Large least squares problems involving Kronecker products, SIAM Journal

on Matrix Analysis and Applications 15 (1994) 219–227.
[22] J. Kamm, J. G. Nagy, Kronecker product and SVD approximations in image restoration, Linear algebra

and its applications 284 (1998) 177–192.
[23] M. Davio, Kronecker products and shuffle algebra, Computers, IEEE Transactions on 100 (1981)

116–125.
[24] C. D. Martin, Higher-order Kronecker Products and Tensor Decompositions, Ph.D. thesis, Cornell

University, 2005.
[25] MATLAB, Version 7.10.0 (R2010a), The MathWorks Inc. Natick, Massachusetts (2010).
[26] E. L. Wachspress, Optimum alternating-direction-implicit iteration parameters for a model problem,

Journal of the Society for Industrial & Applied Mathematics 10 (1962) 339–350.
[27] R. S. Varga, Matrix Iterative Analysis, volume 27, Springer, 2009.
[28] E. L. Wachspress, Iterative solution of elliptic systems and applications to the neutron diffusion equa-

tions of reactor physics, Prentice-Hall, 1966.
[29] D. Evans, Alternating direction implicit preconditioning methods for self-adjoint elliptic differential

equations, Computers & Mathematics with Applications 7 (1981) 151–158.
[30] R. C. Chin, T. A. Manteuffel, J. de Pillis, ADI as a preconditioning for solving the convection-diffusion

equation, SIAM journal on scientific and statistical computing 5 (1984) 281–299.
[31] M. Hochbruck, G. Starke, Preconditioned Krylov subspace methods for Lyapunov matrix equations,

SIAM Journal on Matrix Analysis and Applications 16 (1995) 156–171.
[32] J. C. Miellou, P. Spitéri, Optimization of the relaxation parameter for SSOR and ADI preconditioning,

Numerical Algorithms 29 (2002) 153–195.
[33] K. Jbilou, ADI preconditioned Krylov methods for large Lyapunov matrix equations, Linear Algebra

and its Applications 432 (2010) 2473–2485.
[34] H. Jiang, Y. S. Wong, A parallel alternating direction implicit preconditioning method, Journal of

computational and applied mathematics 36 (1991) 209–226.

32



[35] C. F. Van Loan, N. Pitsianis, Approximation with Kronecker products, Technical Report, Cornell
University, 1992.

[36] —–, Fast isogeometric solvers for explicit dynamics, Computer Methods in Applied Mechanics and
Engineering (submitted).

33


