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Abstract 25 

 26 
The distributions of 77 Neoproterozoic glacigenic formations are shown on global 27 

palaeogeographic maps for 715 Ma (Sturtian), 635 Ma (Marinoan) and 580 Ma 28 
(Ediacaran), constructed on grounds independent of palaeoclimatic indicators. The 29 
meridional distribution of Sturtian and Marinoan deposits is biased in favour of low 30 
palaeolatitudes, whereas Ediacaran deposits are biased in favour of high palaeolatitudes. 31 
All carbonate-hosted glacigenic formations (n=22) fall within 35 degrees of the 32 
palaeoequator. Most (6 of 8) examples of periglacial polygonal sand-wedges occur at 33 
palaeolatitudes greater than 30 degrees, whereas most (8 of 9) occurrences of large syn-34 
glacial Fe and Fe-Mn deposits lie within 30 degrees of the palaeoequator. Marinoan syn-35 
deglacial cap dolostones (n=24) decline in maximum thickness with palaeolatitude, 36 
consistent with poleward ice retreat, normal meridional temperature gradients and a 37 
small-obliquity orbit. Meridional (N-S) mean orientations of giant wave ripples in 38 
Marinoan cap dolostones from different regions (n=10) and absence of zonal (W-E) 39 
orientations are consistent with zonal wind-driven waves and not with hurricanes. In 40 
general, the results support the validity of the palaeogeographic reconstructions and the 41 
pan-glacial character of Sturtian and Marinoan ice ages.  42 

 43 
Keywords: Neoproterozoic; Palaeogeography; Snowball Earth; Banded iron-formation; 44 
Cap carbonate; Giant wave ripples.  45 
 46 
1. Introduction 47 

 48 
The hypothesis that Cryogenian glaciations (750-635 Ma) glaciations were more 49 

severe than any subsequent ones—possibly involving dynamic glaciers of global extent—50 
rests heavily (but not exclusively) on palaeomagnetic data (Embleton and Williams, 51 
1986; Kirschvink, 1992; Schmidt and Williams, 1995; Sohl et al., 1999; Evans, 2000, 52 
2003; Trindade and Macouin, 2007). For example, a pair of discrete glacigenic 53 
formations found along the margin of Laurentia from California to northwestern Canada 54 
were deposited close to the palaeoequator according to robust palaeomagnetic poles from 55 
mafic igneous suites precisely dated at 780, 723 and 615 Ma. Yet, there is confusion as 56 
well as uncertainty concerning the palaeogeographic context of the glacial intervals. 57 
Published general circulation models (GCMs), for instance, employ palaeogeographic 58 
models ranging from a polar supercontinent (Hyde et al., 2000; Peltier et al., 2004, 2007) 59 
to a band of fragmented low-latitude continents (Goddéris, et al., 2003; Donnadieu et al., 60 
2004a, b). With regard to the geochemical carbon cycle, the first palaeogeography should 61 
yield a globally warm climate (Worsley and Kidder, 1991) and the second a cold one 62 
(Donnadieu et al., 2004a).  63 

 64 
Evans (2000, 2003), Chumakov (2004) and Trindade and Macouin (2007) have 65 

synthesized the stratigraphic, geochronologic and palaeomagnetic constraints on 66 
Neoproterozoic glaciations, which post-date the breakup of the Rodinia supercontinent. 67 
There were three main glacial episodes, commonly referred to in the current literature as 68 
Sturtian, Marinoan and Gaskiers (e.g., Halverson, 2006). Sturtian and Marinoan were 69 
originally defined as chronostratigraphic terms (Mawson and Sprigg, 1950; see also 70 
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Preiss, 1987). Strictly speaking, the Sturtian ends stratigraphically well above the 71 
glacigenic Sturt Formation and its correlatives. As originally defined, the Marinoan 72 
begins well below the glacigenic Elatina Formation and continues to the end of the 73 
Precambrian. However, the internationally recognized Ediacaran and Cryogenian (when 74 
formally defined) periods will soon render Sturtian and Marinoan obsolete in their 75 
original meaning. Meanwhile, the terms have come to be used almost universally with 76 
reference to Cryogenian glacial periods of global or near global extent.  77 

 78 
This use has been criticized as amounting to a circular argument: global glaciation 79 

both depends upon, and is the justification for, the correlation of glacial deposits. This 80 
criticism is based on a misunderstanding. The case for global glaciation rests not on 81 
correlation, but on combined sedimentological and palaeomagnetic evidence that Sturtian 82 
and Marinoan ice sheets reached sea-level close to the palaeoequator (Kirschvink, 1992; 83 
Evans, 2000), including areas where no mountains existed (Hoffman, 2005). This, and 84 
the occurrence of ice-proximal deposits conformably within thick marine carbonate 85 
successions (Hoffman and Halverson, 2008; Macdonald et al., 2009a) proves that ice 86 
sheets flowed into the warmest parts of the surface ocean. If ice sheets existed at sea level 87 
in the warmest parts of the world, then higher latitudes and elevations must have been 88 
frozen as well. This, not correlation, is the rationale for global glaciation. Correlation 89 
follows from the premise; it is not a precondition. 90 

 91 
Gaskiers is the name of a mid-Edicaran (582 Ma) glacigenic formation in eastern 92 

Canada; it was never a chronostratigraphic term. Its global application is inadviseable 93 
because evidence for low-latitude glaciation at this time is weak. In this paper, we refer to 94 
the Gaskiers and other Ediacaran glaciation(s) as Ediacaran. We do not deduce that the 95 
Ediacaran glaciations were correlative although, for want of geochronological data, we 96 
plot them on a single palaeogeographic map.  97 

 98 
According to the best current geochronological data, Sturtian glaciation(s) occurred 99 

between roughly 726 and 660 Ma (Bowring et al., 2007; Fanning and Link, 2008) and 100 
Marinoan between roughly 655 Ma and 635 Ma (Condon et al., 2005; Zhang et al., 2008). 101 
There are unconfirmed reports of glaciation(s) between roughly 755 Ma and 726 Ma 102 
(Frimmel et al., 1996; Key et al., 2001; Borg et al., 2003; Xu et al., 2009). We refer to 103 
these as pre-Sturtian. 104 

 105 
Recently, a new set of palaeogeographic models (Li et al., 2008) for the 106 

Neoproterozoic eon were generated as part of an international effort by the Tectonics 107 
Special Research Centre in Perth, Western Australia, established by the late Christopher 108 
McA. Powell. The reconstructions derive from a multi-disciplinary approach, utilizing 109 
geological provincial linkages, tectonostratigraphic correlations and the mantle-plume 110 
record, in addition to palaeomagnetic constraints (listed in Table 1 of Li et al., 2008 and 111 
Table 1 of Pisarevsky et al., 2008, with new data discussed in the next paragraph). 112 
Palaeomagnetic constraints are strongest for Australia and Amazonia in the Marinoan, 113 
and for Laurentia in the Sturtian and Ediacaran. Palaeogeographic maps representing 5-114 
Myr time-slices were constructed by interpolation between palaeomagnetic and 115 
geological control points, including the Early Cambrian formation of Gondwanaland. 116 
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Importantly, the glacial record played no role in the reconstructions. In this paper, we plot 117 
the respective glacigenic deposits on palaeogeographic model maps for 715 (Sturtian), 118 
635 (Marinoan) and 580 (Ediacaran) Ma (Li et al., 2008). We do this as a means of 119 
comparing the three glacial episodes with each other and with other glaciations in Earth 120 
history. Further, we use specific aspects of the glacial-associated palaeoclimate record to 121 
test the palaeogeographic models themselves.  122 

 123 
We use a revised position for East Svalbard, with respect to Laurentia, based on new 124 

palaeomagnetic results (Maloof et al., 2006). Otherwise, the model maps are the same as 125 
those in Li et al. (2008). The position of North Slope terrane of Arctic Alaska, rotated 126 
against the Arctic margin of Laurentia (Li et al., 2008), is challenged by new studies of 127 
its Neoproterozoic-Cambrian stratigraphy (Macdonald et al., 2009b). The Euler poles 128 
used in constructing the maps can be found in Appendix III of Li et al. (2008) and the 129 
Euler pole for rotating East Svalbard to Laurentia is situated at 81°S, 125°E with 68° of 130 
rotation (Maloof et al., 2006). For the 580-Ma model, we adopt the high-latitude option 131 
for Laurentia, consistent with recent palaeomagnetic results from the 590-Ma Grenville 132 
dykes (K. Buchan, unpublished data). 133 

 134 
Following Hoffman (2009), we use the term "pan-glacial" for climate states in which 135 

continents at all latitudes have ice sheets but the extent of ocean ice-cover is unspecified, 136 
"snowball earth" for a pan-glacial state in which the oceans are covered by floating 137 
glaciers and "slushball earth" for one in which the oceans are mostly ice-free.   138 
 139 
2. Geochronology of Neoproterozoic glaciations 140 
 141 

We group Neoproterozoic glacigenic deposits into 77 formations on 22 142 
palaeocontinents (Table 1).  143 

 144 
2.1. Geochronology of Ediacaran glaciations 145 

  146 
Ediacaran glaciations are recognized on at least 8 palaeocontinents (Table 1, Fig. 1A), 147 

but only the Gaskiers Formation on the Avalon Peninsula of eastern Newfoundland, 148 
Canada, has been directly dated (Fig. 2). U-Pb zircon geochronology by isotope-dilution 149 
thermal-ionization mass spectrometry (ID-TIMS) of subaqueous volcanic tuff horizons 150 
below, within and above the glacigenic Gaskiers Formation constrains the onset of 151 
glaciation to post-date 583.7±0.5 (all ages cited with 2σ uncertainties) and its termination 152 
to pre-date 582.1±0.5 Ma (Bowring et al., 2003; S.A. Bowring, pers. comm. 2006). The 153 
maximum allowable duration of the Gaskiers glaciation of 2.6 Myr makes it unlikely to 154 
represent a snowball earth because millions of years of atmospheric CO2 accumulation 155 
would be required for its deglaciation (Walker et al., 1981; Caldeira and Kasting, 1992; 156 
Pierrehumbert, 2004). Accordingly, we cannot infer that Ediacaran glaciations on other 157 
palaeocontinents (Table 1) were synchronous with the Gaskiers glaciation. 158 

 159 
2.2. Geochronology of Marinoan (younger Cryogenian) glaciations 160 

   161 
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Despite their great age, Marinoan glacigenic deposits are the most widespread in 162 
Earth history, occurring on at least 15 palaeocontinents (Table 1, Fig. 1B). The Ghaub 163 
Formation in Namibia is directly dated by U-Pb (ID-TIMS) at 635.6±0.5 Ma (Hoffmann 164 
et al., 2004), the Fiq Formation in Oman by the same method at 640±10 Ma (Bowring et 165 
al., 2007) and the Nantuo Formation in South China by 'sensitive high-resolution ion 166 
microprobe' (SHRIMP) at 636.3±4.9 Ma (S. Zhang et al., 2008). In South China, zircons 167 
from a tuff at the top of the syndeglacial 'cap' dolostone give a U-Pb (ID-TIMS) age of 168 
635.2±0.4 Ma (Condon et al., 2005), constraining the glacial termination, while a U-Pb 169 
(SHRIMP) age of 654.5±3.8 Ma (S. Zhang et al., 2008) from a tuff near the top of the 170 
Datangpo Formation, which underlies the Nantuo Formation, is interpreted as a 171 
maximum bound on the glacial onset (Fig. 3). Accordingly, the maximum duration of the 172 
Nantuo glaciation is 23.5 Myr. However, the Nantuo Formation itself appears to have 173 
been deposited over a much shorter time interval near the end of the glacial period (Fig. 174 
4). Glaciations on other palaeocontinents (Table 1) are correlated with the Ghaub and 175 
Nantuo glaciations based primarily on isotopic and lithological similarities between their 176 
respective 'cap' dolostones (Dunn et al., 1971; Kennedy et al., 1998; James et al., 2001; 177 
Allen et al., 2005a; Shields, 2005; Hoffman et al., 2007). 178 

 179 
2.3. Geochronology of Sturtian (older Cryogenian) glaciations 180 

  181 
Sturtian glaciation(s) was almost as widespread as Marinoan, being recognized on at 182 

least 14 palaeocontinents (Table 1, Fig. 1C). However, there is considerably more 183 
uncertainty regarding the number and duration of glacial episodes (Fig. 5). Syn-glacial U-184 
Pb ages have been reported from three palaeocontinents: 723+16/-10 Ma (SHRIMP) and 185 
711.5±0.3 Ma (TIMS) for the Gubrah Formation in Oman (Brasier et al., 2000; Bowring 186 
et al., 2007), 686±4 Ma (SHRIMP) for the Scout Mountain Member of the Pocatello 187 
Formation in southern Idaho, USA (Fanning and Link, 2008), 685±7 and 684±4 Ma 188 
(SHRIMP) from the Edwardsburg Formation of central Idaho, USA (Lund et al., 2003), 189 
and 659.7±5.3 Ma for the Wilyerpa Formation in South Australia (Fanning and Link, 190 
2008). The minimum 56-Myr spread between these ages has understandably caused many 191 
to question the existence of a single synchronous glaciation during this interval. 192 
However, some of the ages themselves are open to question. Zircons from the Gubrah 193 
Formation dated at 723+16/-10 Ma could be detrital in origin (Brasier et al., 2000) and 194 
were extracted from the same horizon subsequently dated more precisely at 711.5±0.3 195 
Ma (Bowring et al., 2007). The 686±4 Ma age for the Scout Mountain Member (Fanning 196 
and Link, 2008) is from a sample reported earlier as 709±4 Ma (Fanning and Link, 2004) 197 
that is not exposed in contact with glacigenic strata. The ages from central Idaho (Lund et 198 
al., 2003) come from a tectonized paraconglomerate within a roof pendant of the Idaho 199 
Batholith (Cretaceous) and its glacial origin is unproved. The 659.7±5.3 Ma age from 200 
South Australia (Fanning and Link, 2008) is from a silt- and sand-dominated unit 201 
(Wilyerpa Formation) with rare lonestones that separates glacigenic diamictites of the 202 
Sturt Formation from thick transgressive shale of the Tapley Hill Formation. Strictly 203 
speaking, it represents a minimum age constraint on the Sturtian glaciation, but would be 204 
close to the glacial termination in age if the Tapley Hill transgression is related to 205 
glacioeustatic flooding. A Re-Os isochron age of 643±2.4 Ma (Kendall et al., 2006) was 206 
obtained from black shale of the Tindelpina Member at the base of the Tapley Hill 207 
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Formation and an age of 657.2±5.4 Ma (Kendall et al., 2006) by the same method was 208 
determined for the broadly correlative Aralka Formation in the subsurface of central 209 
Australia. The age of 659.7±5.3 Ma (Fanning and Link, 2008) for the Sturtian glacial 210 
termination leaves little time for the deposition of thick shelfal successions found 211 
between the Sturtian and Marinoan glaciations in Australia and elsewhere. In northern 212 
Namibia, for example, the Chuos and Ghaub formations (Table 1) are separated by 500-213 
800 m of platformal carbonate strata.  214 

 215 
We consider the Gubrah age of 711.5±0.3 Ma (Bowring et al., 2007) to be the the best 216 

currently available for Sturtian glaciation, but acknowledge that muliple and/or a very 217 
prolonged (≥53 Myr) glaciation cannot be ruled out. We take 726±1 Ma (Bowring et al., 218 
2007) and 659.7±5.3 Ma (Fanning and Link, 2008) as the best maximum and minimum 219 
constraints, respectively. 220 

 221 
The case for pre-726±1 Ma glaciation rests on the validity and stratigraphic 222 

interpretation of a U-Pb (SHRIMP) age of 752±6 Ma (Borg et al., 2003) from the Port 223 
Nolloth Group of southwest Namibia, a similar age of 735±5 Ma (Key et al., 2001) from 224 
the Katanga Supergroup of Zambia, and a Pb-Pb zircon evaporation age of 741±6 Ma 225 
(Frimmel et al., 1996) from the Rosh Pinah Formation of southwest Namibia. The 226 
structural geology in both areas is complex and primary stratigraphic relations between 227 
glacigenic units and the dated horizons require further study. Recently, U-Pb (SHRIMP) 228 
ages of 740±7 and 725±10 Ma (Xu et al., 2009) were obtained from volcanic beds within 229 
diamictites of the Bayisi Formation of northwest China. A glacial origin for the Bayisi 230 
diamictites remains uncertain (Norin, 1937; Xiao et al., 2004; Xu et al., 2009).  231 
 232 
3. Palaeogeography of Neoproterozoic glaciations 233 
 234 

In Fig. 6, we plot the locations (stars) of established glacigenic formations (Table 1) 235 
on the palaeogeographic model maps for 580, 635 and 715 Ma (Li et al., 2008). The stars 236 
are colour-coded according to the dominant sedimentary lithology of the immediate pre-237 
glacial succession: blue for carbonate, green for mixed carbonate-siliciclastic, yellow for 238 
siliciclastic, and white for volcanic successions or where there is a major hiatus beneath 239 
the glacigenic formation. Stars with heavy black outlines indicate glacigenic formations 240 
containing polygonal sand wedges and stars outlined in red connote formations 241 
containing synglacial sedimentary iron- or iron-manganese deposits. 242 

 243 
The lithologic character of pre-glacial successions provides an independent test of the 244 

palaeogeographic reconstructions (Li et al., 2008). Because of the 'reverse' solubility of 245 
CaCO3 and (CaMg)CO3 (i.e., degree of saturation decreases with cooling and pressure, 246 
and increases with warming), Phanerozoic shallow-water carbonate deposition occurred 247 
mainly within 35° of the palaeoequator (Blackett, 1961; Opdyke, 1962; Briden and 248 
Irving, 1964; Briden, 1970; Ziegler et al., 1984; Kiessling, 2001), the same as in the 249 
Recent (Rodgers, 1957). This was particularly true for non-skeletal carbonates (Opdyke 250 
and Wilkinson, 1990); so-called 'cool-water' carbonates depend on the ability of certain 251 
skeletal animals, notably bryozoans and certain molluscs and foraminifers, to precipitate 252 
carbonate from undersaturated waters. The meridional range of shallow-water carbonates 253 
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did not vary perceptibly between warm and cool periods of the Phanerozoic (Kiessling, 254 
2001). This is because the distribution of carbonate deposition depends on the relative, 255 
not the absolute, temperature, and perhaps also because the flux of alkalinity into the 256 
ocean (which ultimately drives carbonate production) was augmented by glacial action 257 
during cool periods, when rainfall and therefore weathering rates were somewhat 258 
diminished.   259 

 260 
The occurrence of Neoproterozoic carbonate-dominated and mixed carbonate-261 

siliciclastic successions at palaeolatitudes <35° (Fig. 6) validates the palaeogeographic 262 
reconstructions for 715, 635 and 580 Ma (Li et al., 2008). And it provides additional 263 
support for a poleward decrease in palaeotemperatures and therefore a low-obliquity 264 
orbital configuration (Evans, 2006). As expected, siliciclastic-dominated sequences occur 265 
at all palaeolatitudes (Fig. 6).  266 
 267 
3.1. Meridional distribution of glacigenic formations 268 
 269 

Evans (2000, 2003) gives histograms of the frequency of occurrence of glacigenic 270 
formations over time as a function of palaeomagnetically-constrained palaeolatitude. The 271 
histograms are limited by the relatively small number of reliable palaeomagnetic 272 
determinations for Proterozoic glacigenic formations. In Fig. 7, we plot histograms of 273 
Neoproterozoic glacigenic formations as a function of palaeolatitude based on the 274 
palaeogeographic maps (Fig. 6) compiled by Li et al. (2008). Although the maps are 275 
subject to numerous uncertainties, the histograms nonetheless reveal striking differences 276 
between the Cryogenian and Ediacaran glaciations.  277 

 278 
Sturtian and Marinoan glacigenic formations plot disproportionately at middle and 279 

low palaeolatitudes (<45°), with maxima at equatorial palaeolatitudes (<15°). None are at 280 
palaeolatitudes >60°. According to Li et al. (2008), only West Africa (at 715 Ma) and 281 
Baltica (at 635 Ma) had as much as half their respective areas at latitudes >60°. 282 
Nevertheless, the sparse distribution of glacigenic deposits on the most poleward 283 
continents may reflect conditions so cold and dry that ice sheets failed to thicken 284 
sufficiently to be dynamic and transport rock debris. The 635 Ma distribution (Fig. 7B) 285 
displays a secondary minimum in the subtropics, similar to the distribution of 286 
precipitation minus evaporation related to the Hadley circulation, a not unreasonable 287 
predictor of ice-sheet mass-balance on an ice-covered planet. 288 

 289 
The distribution of Ediacaran glacigenic formations (Fig. 7A) is quite different. They 290 

occur disproportionately at high palaeolatitudes (>45°). This reflects the preponderance 291 
of high-latitude palaeocontinents and is consistent with regional-scale glaciation like the 292 
late Paleozoic and late Cenozoic. However, there are also four purported glacigenic 293 
formations at low palaeolatitudes, two of which occur in carbonate-bearing successions. 294 
The Luoquan Formation, on the southern margin of the North China craton bordering the 295 
Qinling orogenic belt (early Mesozoic), includes ice-contact tillites, glaciomarine 296 
diamictites, rhythmites with dropstones, outwash conglomerates and sandstones, and 297 
striated pavements and clasts (Guan et al., 1986). However, direct palaeomagnetic 298 
constraints are lacking (Zhang et al., 2006) and the palaeolatitude of the Luoquan 299 
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glaciation could be greater than shown in Fig. 6. The Croles Hill diamictite in 300 
northwestern Tasmania occurs within a succession of mafic and felsic terrestrial 301 
volcanics (Calver et al., 2004). Diamictites are notoriously difficult to interpret in such 302 
settings because of the many volcanic-related processes that can produce matrix-303 
supported diamictites (e.g., lahars) and because of the potential for mountain glaciers 304 
unrelated to global temperature minima. However, the proximity of its age of 582 Ma to 305 
that of the Gaskiers glaciation (Fig. 2) suggests that it did form at a time of glaciation. 306 
Perhaps the best candidates for low-latitude Ediacaran glaciation are the carbonate-307 
associated Egan (Corkoran and George, 2001) and Hankalchough (Xiao et al., 2004) 308 
glaciations.  309 

 310 
3.2. Polygonal sand-wedges 311 
 312 

Polygonal fracture networks caused by thermal contraction cracking of frozen ground 313 
form poleward of 17° latitude on Earth and Mars today (Leffingwell, 1915; Lachenbruch, 314 
1962; Black, 1976; Mellon, 1997). In the Neoproterozoic, periglacial sand-wedges occur 315 
in the Sturtian Port Askaig Formation (Spencer, 1971), the Marinoan Wilsonbreen 316 
(Chumakov, 1968; Harland et al., 1993), Smalfjord (Edwards, 1975), Jbéliat (Deynoux, 317 
1982), Elatina (Williams and Tonkin, 1985; Williams, 1986, 2000; Schmidt and 318 
Williams, 1995), Storeelv (Hambrey and Spencer, 1987) and Bakoye (Deynoux et al., 319 
1989) formations, and in the Ediacaran Moelv (Nystuen, 1976) and Luoquan (Guan et al. 320 
1986) formations. These formations are identified on the palaeogeographic maps (Fig. 6) 321 
as stars with heavy black lines. With two exceptions, they all occur at palaeolatitudes 322 
greater than 30°, consistent with seasonal temperature change as the ultimate cause of the 323 
thermal stresses. 324 

 325 
One exception is the Marinoan Elatina glaciation (Fig. 6B) in South Australia, where 326 

a permafrost block field, developed on Mesoproterozoic quartzite on the Stuart Shelf of 327 
the Gawler Craton, is overlain by a synglacial aeolian sand sheet, the Whyalla Formation 328 
(Williams, 1998). Wedges composed of Whyalla sandstone taper downwards into the 329 
block field to an average depth of ~2.5 m and a second generation of wedges is 330 
developed within the sand sheet near its base (Williams and Tonkin, 1985; Williams, 331 
1986). Reliable palaeomagnetic data from the Elatina Formation and its cap dolostone, 332 
the Nuccaleena Formation, place the sand-wedges at less than 15° palaeolatitude 333 
(Embleton and Williams, 1986; Schmidt and Williams, 1995; Sohl et al., 1999; Raub and 334 
Evans, 2006). Because seasonality close to the equator is weak with small orbital 335 
obliquity, the existence of the Elatina sand-wedges provides empirical support for the 336 
hypothesis that preferential low-latitude glaciation in the Neoproterozoic was a response 337 
to a large orbital obliquity at that time (Williams, 1975; Schmidt and Williams, 1995; 338 
Williams, 2000). The large-obliquity hypothesis, which requires a rapid decrease in 339 
obliquity before the Cambrian, has been criticized on the grounds of orbital mechanics 340 
(Néron de Surgy and Laskar, 1997; Pais et al., 1999) and the meridional distribution of 341 
climate-sensitive sedimentary indicators (Evans, 2006; see also sections 3.0 and 4.1 of 342 
this work). Alternatively, Maloof et al. (2002) suggest that the Elatina sand-wedges 343 
formed in permanently frozen ground as a result of diurnal temperature oscillations, with 344 
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the depth of crack propagation greatly exceeding the depth of the thermal fluctuations 345 
because of extremely brittle soil behaviour under the conditions of a snowball earth. 346 

 347 
The other exception is the Ediacaran Luoquan Formation (Fig. 6A) in North China, 348 

where wedges of fine gravel and sand ~1.0 m deep are described in one section (Guan et 349 
al., 1986). As the Ediacaran glaciation is unlikely to have been a snowball earth because 350 
of its short duration (Fig. 2), the explanation of Maloof et al. (2002) should not apply. 351 
The Ediacaran palaeolatitude of North China is not well constrained (Zhang et al., 2006), 352 
however, and may have been greater than shown in Fig. 6.    353 
 354 
3.3. Syn-glacial iron- and iron-manganese formations 355 
 356 

The occurrence of extensive Fe2O3 and Fe2O3-MnO2 deposits, uniquely associated in 357 
the post-Palaeoproterozoic sedimentary record with Cryogenian glaciomarine deposits, 358 
has long been viewed as supporting the existence of an ice-covered ocean (Martin, 1965; 359 
Kirschvink, 1992; Klein and Beukes, 1993; Canfield and Raiswell, 1999; Hoffman and 360 
Schrag, 2002; Klein and Ladeira, 2004; Kump and Seyfried, 2005). Even assuming that 361 
air-sea gas exchange through cracks in dynamic sea-ice maintained equilibrium with 362 
respect to CO2 on geological time-scales, the rate of O2 uptake was likely insufficient to 363 
offset O2 consumption related to the discharge of reduced species at hydrothermal vents. 364 
Consequently, deep waters would become anoxic, allowing reduced Fe to be transported 365 
widely in solution. Fe-rich waters would be possible if H2S production was low because 366 
of diminished input of SO4

2- from the glaciated continents (Raiswell and Canfield, 1999) 367 
and because of lowered S:Fe ratios in hydrothermal vent fluids due to the fall in 368 
hydrostatic pressure resulting from glacioeustatic drawdown (Kump and Seyfried, 2005; 369 
Hoffman et al., 2007, Hoffman, 2008). Canfield et al. (2008) have recently suggested that 370 
ocean deep waters were Fe-rich during most of late Neoproterozoic time, but this begs 371 
the question why no banded Fe-formations occur in non-glacial sequences of that age. 372 

  373 
The occurrence of Fe- and Fe-Mn-deposits within glaciomarine sequences, including 374 

ice-proximal sequences (Martin, 1965; Whitten, 1970; Young, 1976; Klein and Beukes, 375 
1993; Trompette et al., 1998; Klein and Ladeira, 2004), suggests that precipitation of the 376 
Fe2O3 precursor and MnO2 occurred close to ice grounding-lines. The O2 responsible for 377 
their precipitation could have been supplied by subglacial meltwater discharges 378 
(Hoffman, 2005), assuming that the contemporary atmosphere and therefore air bubbles 379 
in glacial ice contained significant concentrations of O2. If atmospheric O2 was drawn 380 
down during glaciation by subaerial volcanic emissions, then hydrogen peroxide (H2O2) 381 
entrained in glacial ice as a result of ultra-violet irradiation could have supplied the 382 
oxidant for Fe- and Fe-Mn deposits (Liang et al., 2006). 383 

 384 
Sedimentary Fe2O3 deposits occur within the Sturtian Rapitan and Surprise 385 

diamictites of the North American Cordillera, the Kaigas of Namibia and the Tany of the 386 
Urals; Fe2O3 + MnO2 deposits within the Sturtian Sturt, Chang'an and Chuos diamictites 387 
of Australia, South China and Namibia, respectively, and the Marinoan Puga diamictite 388 
of Brazil. Fe2O3 deposits also occur in the glacigenic Rizu Formation of central Iran. Its 389 
age is uncertain but we tentatively assign it to the Marinoan because of the presence of a 390 
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cap dolostone that is strongly depeleted in δ13C (Kianian and Khakzad, 2008).  Eight of 391 
the nine deposits lie within 30° and half within 15° of the palaeoequator (Fig. 6). Thus 392 
they all occur where subglacial meltwater production should have been greatest. 393 
Although local sources of volcanogenic Fe have been invoked by some authors (Young, 394 
1976, 2002), volcanic rocks are rare or absent in the glacigenic formations hosting Fe or 395 
Fe-Mn deposits. No Fe or Fe-Mn deposits are associated with Ediacaran glaciations, 396 
consistent with a limited extent of sea-ice at that time. 397 

 398 
3.4. Syn-glacial sand seas 399 
 400 

Marinoan syn-glacial aeolian sand seas (ergs) are well described by Deynoux et al. 401 
(1987) from the Bakoye Formation of Mali and by Willliams (1998) from the Whyalla 402 
Sandstone (Elatina glaciation) of South Australia (Fig. 6B). Reliable palaeomagnetic data 403 
place the Elatina within 15° of the palaeoequator (Embleton and Williams, 1986; Schmidt 404 
and Williams, 1995; Sohl et al., 1999; Raub and Evans, 2006), in the northern 405 
hemisphere in conventional reconstructions (Williams, 1998; Li et al., 2008). There are 406 
no reliable Cryogenian palaeomagnetic data for West Africa and its declination and 407 
palaeolatitude ~40° S (Fig. 6B) rest on the questionable assumption that the Rockelide 408 
orogen connecting it to Amazonia was sutured by 635 Ma (Li et al., 2008).  409 

 410 
Palaeowind directions inferred from aeolian foreset inclinations were from the 411 

northwest in South Australia (Williams, 1998) and southeast in Mali (Deynoux et al., 412 
1989) assuming the reconstruction (Fig. 6B) to be correct. Neither wind direction would 413 
be predicted from the palaeogeography. Easterly trade winds would be predicted for 414 
tropical South Australia given open water to the east; mid-latitude westerlies would be 415 
predicted for West Africa given open water in that direction (Fig. 6B). We tentatively 416 
suggest that katabatic winds prevailed in both areas and that their directions were dictated 417 
by the descent of cold air off the adjacent ice sheets, which were centered over 418 
northwestern Australia (Perry and Roberts, 1968; Preiss, 1987) and northern West Africa 419 
(Deynoux et al., 1989), respectively.   420 
 421 
4. Palaeogeography of post-glacial cap carbonates 422 
 423 
4.1. Syn-deglacial 'cap dolostones' 424 
 425 

A unique feature of the Marinoan glaciation was the deposition globally of 426 
transgressive 'cap dolostones' (Kennedy, 1996) during the glacioeustatic flooding of 427 
continental margins and inland seas as ice-sheets receded (Hoffman et al., 2007). These 428 
pale yellowish or pinkish dolostones are typically well-laminated and were deposited as 429 
sand- and silt-sized peloids and micropeloids (James et al., 2001; Xiao et al., 2004). 430 
Characteristic sedimentary structures include low-angle cross-lamination, giant wave 431 
ripples (Allen and Hoffman, 2005a) and stromatolite bioherms containing 'geoplumb' 432 
(paleovertical) tubes filled by laminated micropeloidal sediment and/or void-filling 433 
cement (Cloud et al., 1974; Corsetti and Grotzinger, 2005). Cap dolostones in West 434 
Africa and South China are top-truncated by subaerial exposure surfaces and contain 435 
'tepee' structures and 'tepee breccias' (Assereto and Kendall, 1971, 1977; Kendall and 436 
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Warren, 1987) with early diagenetic crustose barite cement (Jiang et al., 2006; Shields et 437 
al., 2007a, b). The lack of accommodation space in West Africa and South China likely 438 
stems from an absence of tectonic subsidence during the glacial period (Hoffman and 439 
Schrag, 2002). Cap dolostones have a global average thickness of ~18 m and their 440 
deposition on the timescale of ice-sheet melting implies sedimentation rates on the order 441 
of 1.0 cm.yr-1 (Hoffman et al., 2007). The alkalinity flux responsible for cap dolostone 442 
sedimentation is attributed to carbonate weathering (Higgins and Schrag, 2003) 443 
augmented by glacioeustatic effects on carbonate saturation (Kennedy, 1996; Ridgwell et 444 
al., 2003), and anaerobic methane oxidation (Kennedy et al., 2001). Transgressive cap 445 
carbonates, as distinct from high-stand cap carbonates, are not found above Sturtian 446 
glacigenic deposits, suggesting that critical oversaturation was not achieved until after 447 
those ice-sheets had completely disappeared (Hoffman and Schrag, 2002). 448 

 449 
In Fig. 8, we plot the thickness of Marinoan cap dolostones (based on data compiled 450 

in Table 1 of Hoffman et al., 2007) as a function of palaeolatitude. Despite considerable 451 
scatter, there is a discernable correlation of maximum thickness with palaeolatitude. All 452 
those thicker than 12 m, ranging from 24 to 175 m, were deposited at palaeolatitudes 453 
lower than 27°. Conversely, all those deposited at palaeolatitudes higher than 37° are less 454 
than 6 m thick. The correlation could be explained in different ways. First, the rate of 455 
sedimentation and therefore the thickness should be a function of temperature because of 456 
the temperature-dependence of dolomite (or calcite) saturation: the stronger dependence 457 
on pressure would not be a factor for these shallow-water deposits. Second, on the 458 
assumption that ice-sheets receded poleward during deglaciation, middle-latitude areas 459 
should have been ice-free for a shorter time interval before the end of the glacioeustatic 460 
transgression compared with low-latitude areas. This effect should have been particularly 461 
important given the absence of high-latitude continents in the Cryogenian (Fig. 6). And 462 
third, the ice-free fraction of the glacioeustatic rise should have been greatest close to the 463 
palaeo-equator, thereby maximizing accommodation at low latitudes and minimizing it at 464 
high latitudes.  465 

 466 
According to all three explanations, the observed correlation (Fig. 8) argues against a 467 

reverse meridional temperature gradient (i.e., equator colder than the poles) due to large 468 
orbital obliquity, hypothesized to account for low-latitude glaciation (Williams, 1975; 469 
Williams and Schmidt, 2004). Our data therefore support the conclusion of Evans (2006), 470 
based on the palaeolatitudes of evaporite deposits over geologic time, that the Earth has 471 
had a normal meridional temperature gradient and therefore a low (<54 degrees) orbital 472 
obliquity since Palaeoproterozoic time. 473 
 474 
4.2. Azimuthal orientations of giant wave ripples 475 
 476 

Distinctive sedimentary bedforms in Marinoan cap dolostones are 'giant wave ripples' 477 
(Allen and Hoffman, 2005a). These strongly aggradational structures have trochoidal 478 
profiles (i.e., curved troughs and sharp, near-symmetrical crests) with bidirectional cross-479 
stratification in their crestal regions. Their synoptic relief, crest-to-trough, is 20-40 cm 480 
and the crestlines are spaced 1.5-5.5 m apart (see data in Allen and Hoffman, 2005a). 481 
Individual ripple trains aggrade through a stratigraphic thickness of <1.4 m. They initiate 482 
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from a plane bed and die out by onlap or truncation. The crests develop sigmoidally, 483 
climbing obliquely near the base, vertically in the main stage and obliquely again near the 484 
top. Although they were originally described as tepee structures, their crestlines in plan 485 
view are consistently straight and parallel (Aitken, 1991; James et al., 2001), not 486 
polygonal like those of true tepee structures (Assereto and Kendall, 1971, 1977; Kendall 487 
and Warren, 1987), which originate by lateral expansion due to the force of 488 
crystallization of evaporative cements precipitated in supratidal settings. In addition, 489 
synsedimentary breccias and associated void-filling cements, which are diagnostic 490 
features of true tepee structures (Assereto and Kendall, 1971, 1977; Kendall and Warren, 491 
1987), are not associated with giant wave ripples. As noted above, true tepee structures 492 
and tepee breccias do occur in cap dolostones in West Africa (Hoffman and Schrag, 493 
2002; Shields et al., 2007a, b) and South China (Jiang et al., 2006), but they are quite 494 
distinct from the giant wave ripples found elsewhere.  495 

 496 
Gammon et al. (2005) interpreted tepee structures in the Nuccaleena cap dolostone at 497 

Parachilna Gorge, South Australia, in terms of syn-sedimentary faulting because of 498 
decreases in apparent fault displacement up-section. However, the faults are oriented 499 
perpendicular to bedding and could not therefore have formed in response to bedding-500 
parallel extension or contraction. Fault slip was probably at a high angle to the plane of 501 
the outcrop (i.e., strike-slip if syndepositional), in which case the 2-dimensional analysis 502 
(Gammon et al., 2005) is innappropriate for the 3-dimensional displacement problem: 503 
uniform displacement of warped strata could easily result in variable offsets up-section. 504 
Moreover, most intrastratal wave structures in the Nuccaleena Formation are not 505 
associated with faults (Fig. 9).  506 

  507 
Allen and Hoffman (2005a) relate the bedforms to surface gravity waves and attribute 508 

their near-symmetrical form, trochoidal profile, bidirectional internal cross-stratification 509 
and chevron-type upbuilding in the crestal region to oscillatory flow with flow separation 510 
over the bedform crest with each half-cycle of the wave motion. Their hydrodynamic 511 
analysis suggests that the bedforms formed at water depths of  200-400 m under the 512 
influence of long-period (maximum 21-30 seconds) waves generated by sustained wind 513 
velocities exceeding 20 m.s-1 in basins of unlimited fetch (Allen and Hoffman, 2005a). In 514 
comparison, zonal wind velocities in today's oceans (e.g., trade winds) average ~7 m.s-1. 515 
As giant wave ripples are observed in cap dolostones on at least 8 palaeocontinents 516 
(Table 2), but have not been reported elsewhere in the stratigraphic column, Allen and 517 
Hoffman (2005a) ascribe their occurrence to extraordinary meteorological conditions 518 
during ice-sheet retreat following a snowball Earth. Jerolmack and Mohrig (2005), in 519 
contrast, suggest that giant wave ripples formed at depths of 20-40 m under the influence 520 
of hurricanes. Because hurricanes are small in areal extent, successive hurricanes should 521 
intersect a coast at different locations, producing variable wind and wave conditions in 522 
successive events. In contrast, Allen and Hoffman (2005b) noted that where successive 523 
ripple trains are observed, their crestal azimuths do not differ by more than 15°. This 524 
observation supports an origin by sustained zonal winds.  525 

 526 
In Fig. 10, we test the zonal wind hypothesis by plotting the azimuthal orientations of 527 

giant wave ripple crests (Table 2) on the palaeogeographic map for 635 Ma (Li et al., 528 
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2008). We summarize the results in rose diagrams representing the individual 529 
measurements (n=68) and the mean orientations for each region (n=12). As there are no 530 
independent (i.e., palaeomagnetic) data constraining the orientation of the Tuva-531 
Mongolia microcontinent, we do not include the data (Table 2) from that region in our 532 
compilation. The overall mean azimuths are 001-181° (95% confidence interval = 20°) 533 
and 173-353° (95% confidence interval = 48°). Notably absent are azimuths between 534 
056-236° and 121-301° (Fig. 10). Assuming the ripple crests are oriented perpendicular 535 
to the oscillation directions in the water column incited by the surface winds, the 536 
observed orientations are consistent with zonal (easterly) winds, given that most of the 537 
data come from palaeolatitudes below 30° (Fig. 10). Individual measurements show little 538 
evidence of wave refraction (crests are typically orientated at high angles to inferred 539 
shorelines and slope contours), so the dispersion in the data may reflect a combination of 540 
palaeotopographic effects on surface winds, Ekman forcing in subsurface waters and 541 
errors in the palaeogeographic reconstruction. Ekman forcing might possibly account for 542 
the deviation from a N-S orientation (i.e., 173-353°) of the regional means given the 543 
strong southern-hemisphere bias in their palaeogeographic distribution (Fig. 10). In any 544 
event, the non-random distribution of azimuthal orientations is more consistent with 545 
zonal winds than with hurricanes as the agent responsible for the giant wave ripples.  546 
 547 
4.3. Facies of cap-carbonate sequences 548 
 549 

'Cap-carbonate sequences' (Hoffman and Schrag, 2002) refer to depositional 550 
sequences initiated by glacioeustatic flooding and ultimately accommodated by syn-551 
glacial erosion and subsidence. Cap dolostones are the transgressive tracts of cap-552 
carbonate sequences. The maximum flood and highstand tracts of cap-carbonate 553 
sequences are variable in facies, carbonate and/or siliciclastic (Hoffman and Schrag 554 
2002). In Fig. 11, we categorize the maximum flood and lower highstand facies of 555 
Marinoan cap-carbonate sequences globally: distinguishing organic-rich and organic-556 
poor siliciclastic- and carbonate-dominated facies. The siliciclastic- and carbonate-557 
dominated designations differ from those in Fig. 6, which relate to the pre-glacial 558 
successions. We acknowledge that some sequences have likely been misclassified 559 
because of surficial weathering causing organic degradation. The Masirah Bay 560 
Formation, for example, is organic-poor in outcrop, but a significant petroleum source 561 
rock in the subsurface. Perhaps this is why the distribution of organic-rich and organic-562 
poor cap carbonates makes little sense (Fig. 11). The only meaningful correlation appears 563 
to be the limitation of carbonate-rich sequences to palaeolatitudes less than 35°, similar to 564 
their distribution in pre-glacial successions (Fig. 6).    565 
 566 
5. Conclusions 567 
 568 

Cryogenian glacigenic deposits occur at palaeolatitudes <60° and disproportionately 569 
at <45°, where most of the palaeocontinents then resided (Fig. 12). Ediacaran diamictites 570 
occur predominantly at palaeolatitudes >45° and some closest to the palaeoequator may 571 
be non-glacial in origin or mislocated. Glacigenic formations within carbonate-dominated 572 
and carbonate-bearing successions all formed within 35° of the palaeoequator, supporting 573 
the validity of the palaeogeographic maps (Li et al., 2008), which were constructed 574 
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strictly according to non-climatological criteria. Most glacigenic Fe and Fe-Mn deposits 575 
occur at palaeolatitudes <30°, whereas most polygonal sand-wedges formed at 576 
palaeolatitudes >30°. The maximum thicknesses of syn-deglacial cap dolostones decrease 577 
with palaeolatitude, which along with the meridional distribution of carbonate-bearing 578 
successions generally supports a low-obliquity orbit with warmer tropics and colder 579 
poles. Meridional (N-S) mean orientations of the crestlines of giant wave ripples in cap 580 
dolostones and the absence of zonal (W-E) orientations supports their formation by zonal 581 
wind-driven waves and not by hurricanes. The palaeogeographic maps (Li et al., 2008), 582 
although lacking palaeotopography, provide a suitable starting point for general 583 
circulation models of Neoproterozoic palaeoclimate.  584 
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 1086 
Figure captions 1087 
 1088 
Fig. 1. Present distribution of Ediacaran, Marinoan and Sturtian glacigenic formations 1089 
(see Table 1). Raisz's 'armadillo' projection. 1090 
 1091 
Fig. 2. U-Pb zircon radiometric age constraints on Ediacaran glaciation. Shaded area 1092 
indicates the possible age range of glaciation. 1093 
 1094 
Fig. 3. U-Pb zircon radiometric age constraints on Marinoan glaciation. Shaded area 1095 
indicates the possible age range of glaciation. Symbology as in Fig. 2.  1096 
 1097 
Fig. 4. U-Pb zircon radiometric age constraints on the Nantuo Formation and the Nantuo 1098 
glaciation, plotted against (A) stratigraphic depth and (B) time. Note that the Nantuo 1099 
Formation may only represent the final stages of the Nantuo glaciation.  1100 
 1101 
Fig. 5. U-Pb zircon radiometric age constraints on Sturtian glaciation(s). *The 686±4 Ma 1102 
age for the Scout Mountain Member (Fanning and Link, 2008) was previously reported 1103 
as 709±5 Ma (Fanning and Link, 2004). Shaded area indicates possible age range of 1104 
glaciation. Symbology as in Fig. 2. 1105 
 1106 
Fig. 6. Palaeogeographic maps (Li et al., 2008) for (A) 580 Ma, (B) 635 Ma and (C) 715 1107 
Ma, showing the distribution of Ediacaran, Marinoan and Sturtian glacigenic formations 1108 
(stars), respectively. Stars are colour-coded by pre-glacial sucession: blue for carbonate, 1109 
green for mixed carbonate-siliciclastic, yellow for siliciclastic, and white for volcanic 1110 
successions or where there is a major hiatus beneath the glacigenic formation. Stars with 1111 
heavy black outlines contain polygonal sand-wedges and those outlined in red contain 1112 
sedimentary Fe or Fe-Mn deposits. For abbreviations of palaeocontinents see Table 1. 1113 
 1114 
Fig. 7. Palaeomeridional distribution of (A) Ediacaran, (B) Marinoan and (C) Sturtian 1115 
glacigenic formations based on palaeogeographic reconstructions (Fig. 6). See Table 1 1116 
for abbreviations of formation names and present locations. Grey lines indicate a random 1117 
distribution. Note bias in favour of high palaeolatitudes in (A), and low palaeolatitudes in 1118 
(B) and (C). 1119 
 1120 
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Fig. 8. Thickness of syn-deglacial Marinoan cap dolostones as a function of 1121 
palaeolatitude. Note decrease in maximum thickness withn increasing palaeolatitude. The 1122 
linked open and closed circles refer to Australian poles from the Elatina Formation (open 1123 
circles) used by Li et al. (2008) to construct Fig. 6B and poles from the Nuccaleena 1124 
Formation cap dolostone from Raub and Evans (2007), which imply that the Elatina poles 1125 
have experienced a degree of inclination flattening due to compaction. Accordingly, 1126 
palaeo-latitudes based on the Elatina poles (open circles) may be too low by ~8 degrees.  1127 
Fig. 9. Giant wave ripple in Marinoan cap dolostone (Nuccaleena Formation) near Elatina 1128 
Creek (31°21.474´S, 138°37.054´E), central Flinders Ranges, South Australia. Note 1129 
underformed strata above and below the wave ripple (a and b, correlative layers), and 1130 
absence of a fault or void-filling cement. Linear ripple crests (n=23) in the vicinity have a 1131 
mean azimuth of 009.22°, which was close to true north at 635 Ma (Fig. 6B). Hammer is 1132 
32.5 cm long. 1133 
 1134 
Fig. 10. Azimuthal orientations of the crests of giant wave ripples (red bars) in Marinoan 1135 
cap dolostones (see Table 2). Rose diagrams for individual directions (left) and regional 1136 
mean directions (right) exclude data from Tuva-Mongolia (orange bars), for which no 1137 
independent palaeomagnetic data are available. Note near-meridional (N-S) mean 1138 
directions and lack of zonal (W-E) directions, consistent with formation of giant wave 1139 
ripples by zonal wind-driven waves (Allen and Hoffman, 2005). 1140 
 1141 
Fig. 11. Palaeogeographic map for 635 Ma (Li et al., 2008) showing colour-coded 1142 
distribution of post-glacial cap-carbonate sequences. 1143 
 1144 
Fig. 12. Distribution of (A) Marinoan and (B) Sturtian glacigenic deposits on 1145 
palaeogeographic maps for 635 and 715 Ma (Li et al., 2008).   1146 
 1147 



Table 1. Neoproterozoic glacigenic formations 

 
Ediacaran (590-570 Ma) 
Paleocontinent Sym. Formation Sym. Succession/Basin Reference 

Amazonia Am Serra Azul Az Alto Paraguay Alvarenga et al. (2007) 
Australia Au Egan Eg Kimberleys Corkeron and George (2001) 
Avalonia Av Gaskiers Ga Conception Eyles and Eyles (1989)  
  Squantum Sq Boston Bay Sayles (1914)  
Baltica Ba Mortensnes Mt Verstertana Edwards (1984) 
  Moelv Mo Sparagmite Nystuen (1976) 
  Vilchitsy Vi Eastern Europe Chumakov (2004) 
  Churochnaya Cn Urals Chumakov (2004) 
Cadomia Ca Granville Gr Brittany Graindor (1964) 
Laurentia Laur Loch na Cille Lo Dalradian McCay et al. (2006) 
North China NC Luoquan Lq Qinling Guan et al. (1986) 
Tarim Tm  Hankalchough Ha Quruqtagh Xiao et al. (2004) 
1Tasmania Ta Croles Hill Cr Kanunnah Calver et al. (2004) 
 

Marinoan (655-635 Ma) 
Amazonia Am Puga Pu Alto Paraguay Alvarenga and Trompette (1992) 
Arabia Ar Fiq Fi Huqf Allen et al. (2004) 
  Shareef Sh Mirbat Rieu et al. (2007) 
Australia Au Elatina El Adelaidean Williams et al. (2008) 
  Olympic Ol Amadeus Wells (1981) 
  Landrigan La Kimberleys Coats and Preiss (1980) 
Baltica Ba Smalfjord Sm Verstertana Edwards (1984) 
Congo Co Petite Pe Katangan Cahen and Lepersonne (1981) 
  Ghaub Gh Otavi Hoffman and Halverson (2008) 
  Supérieure Sp West Congolian Schermerhorn and Stanton (1963) 
  Bondo Bo Fouroumbala Poidevin (2007) 
Laurentia Laur Wildrose Wr Death Valley Prave (1999) 
  Vreeland Vr Rocky Mtns McMechan (2000) 
  Ice Brook (Stelfox) Ib Mackenzie Mtns Aitken (1991) 
  Storeelv St East Greenland Hambrey and Spencer (1987) 
  Wilsonbreen Wb East Svalbard Harland et al. (1993) 
  Stralinchy-Reelan Re Dalradian McCay et al. (2006) 
India In Blaini Bl Lesser Himalaya Holland (1908) 
Iran Ir Rizu Ri Lut Hamdi (1992) 
Kalahari Ka Numees Nu Gariep Frimmel et al. (2002)  
  Blässkranz Bk Witvlei Miller (2008) 
São Francisco SF Palestina Pa Bambuí Misi et al. (2008) 
Siberia Si Dzemkukan Dz Patom Sovetov (2008) 
  Marnya Ma Sayan Sovetov and Komlev (2005) 
  Pod'em Pd Yenisey Sovetov (2008) 
South China SC Nantuo Na Yangtze Wang and Li (2003) 
Tarim Tm Tereeken Te Quruqtagh Xiao et al. (2004) 
1Tasmania Ta Cottons Co King Island Calver and Walter (2000) 



Tuva-Mongolia TM Khongoryn Kg Dzabkhan Macdonald et al. (2009a) 
West Africa WA Jbéliat Jb Taoudéni (Adrar) Deynoux (1985) 
  Bakoye Ba Taoudéni (Mali) Deynoux et al. (1991) 
  Kodjari Ko Volta Trompette (1981) 

Sturtian (726-660 Ma)  
Akaska-Chukot AC Hula Hula Hu Sadlerochit Macdonald et al. (2009b) 
Arabia Ar Gubrah Gu Huqf Le Guerroué et al. (2005) 
  Ayn Ay Mirbat Rieu et al. (2006) 
  Tambien Ta Nubia Stern et al. (2006) 
Arequipa Aq Chiquerío Cq Chiquerío-Antafalla Chew et al. (2007) 
Australia Au Sturt St Adelaidean Preiss (1987) 
  Areyonga Ar Amadeus Wells (1981) 
Baltica Ba Tany Ty Urals Chumakov (2004) 
Congo Co 2Grand Gr Katangan Cahen and Lepersonne (1981) 
  Chuos Ch Otavi Hoffman and Halverson (2008) 
  Inférieure In West Congolian Schermerhorn and Stanton (1963) 
  Akwokwo Ak Lindian Poidevin (2007) 
Laurentia Laur Surprise Su Death Valley Prave (1999) 
  Pocatello Po Idaho Link (1983) 
  Toby To Windermere Aalto (1981) 
  Rapitan Ra Mackenzie Mtns Young (1976) 
  Tindir Ti Tindir Allison et al. (1981) 
  Ulvesø Ul East Greenland Hambrey and Spencer (1987) 
  Petrovbreen Pb East Svalbard Harland et al. (1993) 
  Port Askaig Pt Dalradian Spencer (1971) 
  Konnarock Kn Blue Ridge Miller (1994) 
Kalahari Ka 2Kaigas Ka Gariep Frimmel et al. (2002) 
  Blaubekker Bb Witvlei Miller (2008) 
Kazakhstan Kz Baykonur Br Kazakh Chumakov (1978) 
São Francisco SF Jequitaí Je Bambuí Rocha-Campos and Hasui (1981) 
Siberia Si Kharlukhtakh Kh Patom Sovetov (2008) 
  Chivida Cv Yenisey Sovetov (2008) 
South China SC Jiangkou Ji Yangtze  Wang and Li (2003) 
Tarim Tm 2Bayisi By Quruqtagh  Xiao et al. (2004) 
1Tasmania Ta Julius River Ju Kanunnah  Calver (1998) 
Tuva-Mongolia TM Maikhan Ul Mk Dzabkhan  Lindsay et al. (1996) 
1Possibly part of the Australian rifted margin 
2Possibly pre-Sturtian (i.e., pre-726 Ma)  



Table 2. Azimuthal orientations of giant wave ripple crests in Marinoan cap dolostones 
 

Palaeocontinent Location Name Area Azimuths 
 
Amazonia SW Brazil Mirassol Mirassol d'Oeste 170° 

Arctic Alaska NE Alaska Nularvik 1Sadlerochit Mtns 172°, 175° 

Australia South Australia Nuccaleena 1Brachina Gorge 005-015° (n=6; average 010°) 

   Elatina Creek 000-015° (n=16; average 006.7°) 

    013-018° (n=7; average 015°) 

 Kimberleys, WA Landrigan Louisa Downs 030±10° 

Congo NC Namibia Keilberg Otavi Mountains 075°, 170° 

 NW Namibia Keilberg Kaokoveld 110°, 119°, 126°, 133°, 140°  

 NW Namibia Keilberg Fransfontein slope 085°, 092°, 100°, 118°, 120° 

Kalahari SW Namibia Bloeddrif 1Namaskluft 092-115° (n=9; average 101.2°) 

    107-120° (n=6; average 105.7°) 

    97° 

Laurentia NW Canada Ravensthroat Arctic Red River 048°, 052°, 057° 

   Cranswick River 005° 

   Stoneknife River 010° 

   Twitya River 030-050° (n=5; average 040°) 

   Shale Lake 010-030° (n=4; average 22.5°) 

   Stelfox Mountain 015°, 020°, 095°, 097°, 100° 

   Ravensthroat River 075° 

 East Svalbard Dracoisen Svaenor 085° 

Tasmania King Island Cumberland Ck Yarra Creek 000-015° (n=3; average 007°) 

Tuva-Mongolia SW Mongolia Ol 1Dzabkhan 59°, 65°, 100°, 100° 
1Data courtesy of Francis A. Macdonald (unpublished) 

 



           Sturtian
        755-660 Ma

        Marinoan
       655-635 Ma

  Ediacaran
583-581 Ma



620 610 600 590 580 570

Scotland                            (Tayvallich Fm, Dalradian Spg), Dempster et al. (2002)

Scotland                                (Tayvallich Fm, Dalradian Spg), Halliday et al. (1989)

Newfoundland (Gaskiers Fm, 

Conception Gp), Bowring et al. 

(2003, personal communication)

Eastern U.S.                  (Squantum Fm, Boston Bay Gp), Thompson & Bowring (2000)
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Newfoundland (Drook Fm, Conception Gp),                          Bowring et al. (personal communication)

Age (Ma)
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582.1 ± 0.5 Ma

583.7 ± 0.5 Ma

582.4 ± 0.5 Ma  Gaskiers
        Fm

Avalon Peninsula,
Newfoundland,
Canada

Tasmania (Grimes Intrusive Suite, Grassy Gp,                           King Island), Calver et al. (2004)

Tasmania (Croles Hill Fm, Kanunnah Sbgp),                            Calver et al. (2004)

ID-TIMS U-Pb zircon age (2-sigma uncertainty)

SHRIMP U-Pb zircon age (2-sigma uncertainty)

maximum age constraint on glacigenic strata

detrital zircon age from glacigenic strata

depositional age for glacigenic strata

depositional age for deiamictite of uncertain origin

minimum age constraint on glacigenic strata 

tentative minimum (or maximum) age constraint 



South China (Datangpo Fm), Zhou et al. (2004)

Central Namibia (Kachab Mb, Ghaub Fm), Hoffmann et al. (2004)

South China (basal Doushantuo Fm cap dolostone), Condon et al. (2005)

South China (lower Doushantuo Fm), Condon et al. (2005)

South China (lower Doushantuo Fm), Yin et al. (2005)

South China (lower Doushantuo Fm), Zhang et al. (2005)

670 660 650 640 630 620 610 600 590 580 570

South Australia (Marino Arkose, Umberatana Gp), Ireland et al. (1998)

670 660 650 640 630 620 610 600 590 580 570
Age (Ma)

Age (Ma)

maximum duration 
       of glaciation

635.2 ± 0.4 Ma

635.6 ± 0.5 Ma

South China (Nantuo Fm), Zhang et al. (2008)

South China (Datangpo Fm), Zhang et al. (2008)

636.3 ± 4.9 Ma

654.5 ± 3.8 Ma

632 ± 0.5 Ma

Oman (Fiq Fm), Bowring et al. (2007)540 ± 10 Ma
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