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Abstract
We model high molecular weight homopolymers in semidilute concentration via Dissipative
Particle Dynamics (DPD). We show that in model reduction methodologies for polymers it is
not enough to preserve system properties (i.e., density ρ, pressure p, temperature T , radial
distribution function g(r)) but preserving also the characteristic shape and length scale of the
polymer chain model is necessary. In this work we apply a DPD-model-reduction methodology
for linear polymers recently proposed; and demonstrate why the applicability of this method-
ology is limited upto certain maximum polymer length, and not suitable for solvent coarse
graining.
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1 Introduction

Meso-scale particle-based methods are commonly used in the study of static and dynamic prop-
erties of polymers in solution. In bottom-up methodologies (a.k.a Coarse graining) the atoms
of the polymer molecules are coarse-grained, and their atomic potentials are replaced by effec-
tive potentials between beads. Some of the most widespread methods include coarse-grained
Molecular Dynamics (cgMD)[1] and Dissipative Particle Dynamics (DPD)[2], among others. In
coarse-grained molecular dynamics the effective potentials are constructed to preserve partic-
ular properties from molecular dynamics simulations, providing a quantitative analysis of the
physical systems. Nevertheless, the derivation of this potentials may require iterative refining
stages, and sometimes the shape of the derived potentials can restrict the number of atoms
coarse grained in a bead[3]. Rigorous effective potentials can also be derived for DPD[4], how-
ever in contrast to cgMD, in dissipative particle dynamics it is generalized the use simplified soft
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potentials[5] that facilitates the study polymeric systems from a qualitative stand point. In this
context DPD appears as an attractive and simple tool in polymer modeling. Indeed, dissipative
particle dynamics is widely used in the modelling of biological [6] and synthetic polymers [7].
Many practical applications have been reported for microphase separation [5], amphiphiles [8],
self assembly of block copolymers [9, 10], and blood flow [11, 12].

DPD describes a linear polymer as a set of beads connected through bond potentials such as
harmonic springs or finite-extensible non-linear elastics potentials. The DPD chain models are
constructed by mapping macro or microscopic properties of real polymers to the DPD param-
eters, and groups of atoms (i.e., monomers, Kuhn segments) are coarse grained into DPD beads.

One of the most relevant problems in the modelling of polymers is the increment of the compu-
tational demand as the molecular weight of the polymer increases. Typical mapping method-
ologies associate the size of a DPD bead with a few solvent molecules or monomers [13] (i.e.,
three molecules of water per bead), which in turn may require hundreds or even thousand of
DPD beads to represent high molecular weight polymers. Indeed, the applicability of DPD to
model high molecular weight molecules was questioned [14] based on the mapping methodology
proposed by Groot and others [15, 5, 13], where the level of coarse graining exhibits a disap-
pointly low maximum, limiting the use of DPD as a full meso-scale method.

In order to overcome the upper limits in coarse graining, Backer et al.[16], and Füchslin et
al., [17] proposed model reduction methodologies for non-connected particles in flow problems.
Füchslin [17] showed that the maximum level of coarse graining [14] appears due to the map-
ping procedure used; in [17] the authors proposed a consistent scaling of DPD parameters that
restates DPD as a truly atomistic-to-continuum bridging method. In general these authors
proposed a model reduction process that preserves particular properties of the fine-grained rep-
resentation such as pressure p, temperature T , mass density ρ, and number of interactions.

Regarding the coarse graining of polymer chains, Spaeth et al.[18] generalized the model reduc-
tion proposed by Backer et al.,[16]. This model reduction for polymeric systems preserved the
relevant characteristics of the polymer-solvent phase diagram. However, large deviations occur
when the level coarse graining q was higher than five, furthermore this error also increases when
the DPD chains contain more than 40 beads.

Herein we show that model reduction methodologies cannot be arbitrarily extended in the
modelling of polymer chain, since the characteristic shape and size of the chain plays an im-
portant role in the equilibrium and dynamic properties of the polymer. The upper limits in
chain lengths and coarse grain level were identified by [18] based on the construction of the
phase diagram for fine- and coarse-grained systems. Since the asymmetry of the phase diagram
is dictated by the relative size of the two species, in [18] the authors were able to reproduce
the original system if the coarse graining procedure is applied only over the polymer chain (but
not in the solvent). In this work we present the particular example of semidilute systems to
demonstrate the effect of the inadequate preservation of the characteristic chain size, when the
model reduction is applied to polymer chains with larger molecular weight and level of coarse
graining

This documents is organized as follows, first, we introduce the conventional DPD governing
equations, next the model reduction extended by [18] is presented. Later it is described the
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simulation conditions used in our study. Finally we present the analysis of variation in size
of polymer chain models; and show how the the polymer-solvent phase equilibria can not be
preserved for long polymer chains.

2 Dissipative Particle Dynamics

In DPD, the particle dynamics and the balance of linear momentum are written according
to Newton’s laws as dri/dt = vi and mi(dvi/dt) = fi respectively. Here, ri, vi, mi are the
position, velocity and mass of a particle i, respectively. The force acting over the particles (fi)
is given by

fi =
∑
j �=i

(FC
ij + FD

ij + FR
ij ), (1)

where FC
ij is a conservative force, that models pressure effects between particles. FD

ij , mod-

els dissipative interactions in a fluid, and FR
ij models random collisions between particles (i.e.,

Brownian motion).

The conservative force typically [15] has the form

FC
ij =

{
aij ωC êij ; (rij < rc),

0; (rij ≥ rc)

}
, (2)

where aij is the maximum repulsion between particles i and j, ωC = (rc − rij) is a weighting
function that sets the range of interaction between particles; rc is the cut-off radius, rij = ri−rj ,
rij = |rij |, êij = rij/|rij |.

Dissipative and random forces are defined as

FD
ij = −γωD(rij)(êij · vij)êij , (3)

FR
ij = σωR(rij)ζΔt−1/2êij , (4)

where the weighting functions ωD and ωR vanish for r > rc, vij = vi − vj , and ζ is a
random number with Gaussian statistics. The parameters γ and σ are the friction coefficient
and the noise amplitude, respectively. Espanol and Warren [19] showed that DPD obeys a
Gaussian distribution and satisfy the fluctuation-dissipation theorem if ωD(r) = [ωR(r)]2 and
σ2 = 2γkBT , where kB is the Boltzmann constant and T is the equilibrium temperature. The
most common choice of the weighting function ωR(r) is

ωD(r) = [ωR(r)]2 =

{
(1− r/rc)

2; (r < rc),
0; (r ≥ rc),

(5)

where ωR(r) is assumed to vary linearly away from the particle. In DPD the time scale is given
by

τ2 = r2c
m

ε
, (6)

where the traditional selection rc = 1, m = 1 and ε = kBT = 1 leads to a DPD time scale
of unity. In this case the time scale is defined once the energy units are chosen. ε = kBT is
adequate in the study of equilibrium states, however the time scale can be also determined by
direct comparison of experimental and simulated transport coefficients as discussed by [17].
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Polymer chains are constructed in DPD as a sequence of M connected particles interacting
through bond potentials (i.e., harmonic springs, finite-extensible-non-linear elastic, etc)[20].
When harmonic spring are used, the force contribution FS

ij (in addition to FC , FD and FR)
between connected particles i and j is given by

FS
ij = Ks(rij − ro), (7)

where Ks is the force spring constant, and ro is the equilibrium bond distance between them.

The equilibrium distribution of particles along the chains models and therefore the chain size is
governed by enthalpic and entropic interactions between beads. The entropic contribution can
be associated with the configuration of the polymer, such as linear, star, branched, etc. While
the enthalpic contributions are in general driven by the polymer-polymer and/or polymer-
solvent interactions in solutions. In this paper we restrict our study to linear polymers, in order
to facilitate the discussion of the coarse graining restrictions stressed.

2.1 Coarse Graining methodology

Herein we use the coarse graining approach proposed by [18] to reduce the number of degrees
of freedom of a polymer solution. In this paper we apply the coarse graining over the whole
system (polymer and solvent). At the high level of coarse graining that we use, the relative size
of the species is not preserved, therefore, there is not practical relevance to coarse grain only
the polymer chains.

Following the notation used in [18], the properties of systems containing only fine-grained par-
ticles are identified with the subscript zero (0), while fully coarse-grained systems are denoted
with the subscript one (1). In addition, subscripts “00”, “11” and “10” refer to interactions
between fine, coarse and mixed particles respectively. Similarly to other authors[16, 17] they
use a scaling factor q, that indicates the level of coarse graining. In [18] the authors define the
scaling factor as

q =
rc,11
rc,00

, (8)

where rc is the cutoff radius. In order to preserve the mass density, the mass of the particle
scales with the volume as

m1 = q3m0, (9)

Conserving the number of interaction per particle Nint in the coarse-grained representation,
and assuming uniform mixing, the particle number density n = ρ/m scales as n1 = n0/q

3.
The pressure, p, of the system is preserved if the proper scaling of the interaction parameters,
aij is adopted [18, 17]. Starting with the virial theorem, assuming the integral of the radial
distribution function g(r) of the system is approximately equal to one; the pressure is kept in
the coarse-grained system, when the interaction parameter a11 scales

a11 = (q6 − q3)
30

π

kBT

n0r4c,11
+ q6a00

r4c,00
r4c,11

. (10)

The scaling of the friction coefficient (and therefore the noise term) are chosen to preserve the
shear viscosity ν0 [21]
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νD0 =
2π

1575
n2
0γ00

r5c,00
r5c,11

. (11)

Therefore, the expression of the friction coefficient for coarse particles, similarly to Füchslin[17]
becomes

γ11 = qγ00. (12)

If the temperature of the system is conserved after the model reduction, the noise parameter
of the DPD random force; satisfying the fluctuation-dissipation theorem scales as

σ11 = (2γ11kBT )
1/2 (13)

In the Table 1 the scaling factors proposed in the model reduction of [18], are summarized.

Table 1: Coarse parameters Acoarse and scaling function ψ(q) proposed for coarse graining of
systems with chains models.

Acoarse ψ(q)

m1 q3

NT,11 q−3

rc,11 q
v1 q3

τ1 1
ε1 1
aij,1 q
γ1 q

σ1 (2γ11kBT )
1/2

3 Simulation Details

The DPD simulations were conducted using the software LAMMPS [22]. We initially study
effect of the number of beads and polymer-solvent interaction for single fine-grained chain mod-
els to elucidate why the size of the chain is a relevant restriction in the model reduction. We
then constructed non-reduced semidilute solutions containing 30% of polymer beads, with DPD
chains of 160 beads.

In all the fine-grained systems it was used a particle density ρ̂ = 3 particles/r3c , and the
traditional scales of energy ε = kBT = 1, length rc = 1, and mass m = 1, leading from equation
6 a time unit τ = 1. The simulations conducted include an athermal (aii−aij = 0) stabilization
stage of 20000 time steps, and a production stage of 500000 time steps; the position of the chain
particles was stored every 500 steps. The time step Δτ = 0.04 was adopted to reduce thermal
fluctuations. Similarly to Moreno et. al., [23] the size of the simulation domain Lbox is defined
based on the expected end-to-end distance of the polymer chain, in order to avoid finite size
effects, such that

Lbox = 2Rf,expect = 2(0.85N b), (14)
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where, N is the number of bonds per chain. For highly diluted systems b = 0.65 for interaction
parameters polymer-solvent aps < 29.0, and b = 0.4 otherwise.

Following the scaling functions presented in Table 1, equivalent reduced systems were con-
structed, and the size of the aggregates in semidilute solutions was compared with its original
fine representation.

In [18] the polymer chains are constructed based the spring force used by Schlijper et al.[24],
and the magnitude of the spring constant Ks is tuned in order to make the average bond length
ro equal to the distance at which the pair-correlation function g(r) for pure monomers exhibit
the first maximum (0.85rc). Here we also procure ro = 0.85rc, but instead of following Schli-
jper, our spring force is given by the equation (7).

We characterize the chain size computing the mean-square radius R2, the radius of gyration
Rg, and the contour length lc of the DPD chains. The mean-square radius can be written as

R2 = RN ·RN =
N∑
i=1

N∑
j=1

si · sj , (15)

where si is the bond vector pointing from (i− 1)th to ith segment in the chain. If the average
distance between connecting particles is assumed constant, we can express si · sj = r2o cos θij ,
where θij is the angle between si and sj and ro is the distance between particles. The mean-
squared radius is computed over different realizations as

〈R2〉 = r2o

⎛
⎝ N∑

i

N∑
j

〈cos θij〉
⎞
⎠ . (16)

The radius of gyration Rg is in general proportional to R, and is the second moment around
the center of mass for the segments position rcm in a polymer chain, we compute the radius of
gyration as

R2
g =

1

N

N∑
i=1

〈
(ri − rcm)2

〉
=

1

N2

N∑
i=1

N∑
j=i

〈
(ri − rj)

2
〉
. (17)

where ri is the position vector of the ith particle. The last parameter we use to characterize
the size of a DPD chain is the contour length lc, which we defined as

lc =

N∑
|si| ≈ roN. (18)

To evaluate the efficacy of the coarse grain methodology used [18] we define the ratio Q be-
tween the different preserved properties. Given a property A in its fine and coarse grained
representation, we compute

Q = 1− |Acoarse −Afine|
Afine

, (19)

where Q tends to one when A is properly preserved after the coarse graining.
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4 Results

In this section we showed why the applicability of the model reduction proposed by [18] is limited
to short DPD chain model, and there is not a considerable freedom choosing the mapping from
monomer to beads, when high molecular weight polymers are modelled.

Chain size variation

The dependence of the polymer size with the number of beads per chain has already been
reported by different authors [25, 26, 27, 20, 23] showing that power laws underlying polymer
physics [28] are captured in DPD chain models. Ilnytskyi and Holovatch [29] showed that the
chain size variation with the polymer-solvent interactions, in the range of athermal to very-good
solvent are in agreement with the experimental and theoretical results. Here, we extend the
analysis of the variations in the characteristic size of the chain models, to demonstrate why the
size of the chain is a relevant restriction in the model reduction.

In Figure 1 it is depicted the dependence of the radius of gyration with the number of beads per
chain Pl and the polymer-solvent interactions aps, for systems with polymer lengths between
12 to 50 beads per chain with interactions ranging from good to poor solvent.

a) b)

Figure 1: Radius of gyration Rg variation with the number of beads per chain (a) and different
interaction parameters aps (b). For larger chains there is a pronounced jump in Rg correspond-
ing to the transition between theta to poor-solvent. In contrast, for short chains the transition
at the theta point is weaker and the change in the chain size is negligible.

From Figure 1.a it can be noticed that the relationship between the chain size and the number
of beads follows the form

Rg ∝ N b, (20)

where N = Pl − 1 is the number of bonds per chain. The exponent b is consistent with the
theoretical values [28] expected for polymers in good, athermal, theta, and poor solvents. In
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Figure 1.a the identified values of b are presented for good (≈ 3/5), theta (≈ 1/2) and poor
(≈ 1/3) solvents. The interaction parameter aps for theta solvent corresponds with the inter-
action intervals found by other authors [29, 30].

The existence of different correlation between beads along the polymer chains associated with
the exponent b is the most important restriction in the applicability of the model reduction
proposed by [18]. During the model reduction it is assumed that fine grained beads are homo-
geneously mixed in the volume of the coarse grained particle, however, since the fine-grained
chains exhibit particular conformations it is erroneous to assume that the fine particles can be
arbitrary mixed in homogeneous coarse particles. In Figure 4 it is illustrated this limitations,
showing how the mixing assumptions do not preserve the geometrical properties of the original
fine grained system.

Figure 2: Sketch of successive model reduction stages assuming homogeneous mixing into coarse
grained representations. In this case the mass density is effectively preserved along the model
reduction however it is clear that the geometrical features of the original model are not con-
served. The lack on the preservation of the characteristic size in the reduced model modifies
the relative size of the species in the systems, and therefore its phase diagram.

In Figure 1.b we present the change in the radius of gyration for a given chain as the sol-
vent affinity decrease. From this figure we can see that the variation in Rg with the interactions
parameter is stronger as the number of beads per chain increases, therefore, it explains why
the model reduction proposed by [18] reproduces the phase diagram of the fine systems only if
the chains have a few beads (Pl ≤ 40). Although the model reduction does not preserve the
geometry of the original fine system the variation in short chains is negligible.

On the other hand it is also possible to foresee the upper limit in the level of coarse grain-
ing (q = 51/3), reported by [18]. This upper limit also appears when the variation in the
characteristic size becomes large enough. As it is illustrated in Figure 4 when the level of
coarse graining increases the size of the coarse-grained models is reduced.

Model reduction of semidilute systems

In Figure 3 we presente the ratio Q between different preserved properties of the polymeric
system. Based on equation (19) we compute the efficiency of the model reduction to preserve
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the pressure p, temperature T , contour length lc, radius of gyration Rg, end-to-end distance
Rf , and the radial distribution function g(r/rc). From Figure 3 it is evident that for short
polymer chains with small coarse graining the variation in size of the reduced model is not
significant, while for coarser systems the size deviations are larger than 50%. In both cases the
contour length of the chains is equally affected due to the reduction in the interfacial area when
particles are grouped.

Figure 3: Preservation of DPD target variables, for original fine systems constituted by 16 and
160 beads per chain, with levels of coarse graining of 4 and 10 respectively. The deviation in
the fine-grained size increases with the level of coarse graining

Due to the dramatic modification in the chain size at high levels of coarse graining, it is
expected that during the polymer-solvent phase separation the size of the domains must be also
affected. In Figure 4 it is depicted the final phase-separation structure for a fine-grained system
and the equivalent reduced model. As it is stressed before, the model reduction considerably af-
fects the effective polymer size, producing a decrease in the size and shape of the final aggregate.

The formation of the aggregate depicted Figure 4 is originated by a poor-solvent condition
(aps = 35). Under these circumstances a single polymer chain must follow a conformation
given by an exponent b = 1/3, which correspond to close packing of beads, which is the closest
conformation to the assumption of homogeneous mixing. However this assumption is no longer
valid for semidilute systems in poor solvents. For semidilute regimes is expected the existence
two phases [28], the solvent rich phase and the polymer rich phase. In the polymer-rich phase
the chains are completely overlapped and the polymer nearly resembles the pure melt condi-
tion, moreover the exponent governing the chain conformation changes to b ≈ 1/2; hence the
homogeneous mixing assumption breaks down.
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Figure 4: Final aggregate structure for fine-grained (left) system and its reduced-grained (right)
counterpart. The effective change in the polymer size after coarse graining affects significantly
the reachable coarse graining.

5 Conclusions

The coarse graining procedure used along this paper showed to decrease the degrees of freedom
in DPD simulations preserving the pressure and the temperature of the system; however the
existence of an upper limit in the applicability of the coarse graining is a significant limitation
to overcome the computational cost associated with high molecular weight polymer simulation.
In this paper we show how this upper limit arises from the homogeneous mixing assumption on
the coarse graining, and it is reflected in the change in size of the chain model.

6 Future Work

Due to the limitations in the current coarse graining methodology, improved model reduction
methodologies where the relevant size of the polymer is preserved are going to be presented in
further publications.
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[19] Pep Español and Patrick B Warren. Statistical Mechanics of Dissipative Particle Dynamics .
Europhysics Letters (EPL), 30(4):191–196, 1995.

[20] Vasileios Symeonidis, George Em Karniadakis, and Bruce Caswell. Dissipative Particle Dynamics
Simulations of Polymer Chains: Scaling Laws and Shearing Response Compared to DNA Experi-
ments. Physical Review Letters, 95(7):076001, August 2005.

[21] C A Marsh. Static and dynamic properties of dissipative particle dynamics. Physical Review E,
56(2):1676–1691, 1997.

[22] Steve Plimpton. Fast Parallel Algorithms for Short-Range Molecular Dynamics. Journal of Com-
putational Physics, 117(1):1–19, March 1995.

[23] Nicolas Moreno, Suzana P. Nunes, and Victor M. Calo. Geometrically-Consistent Model Reduction
of Polymer Chains in Solution. Aplication to Dissipative Particle Dynamics Simulations: Model
Description. In prepara, 2014.

[24] CW Schlijper, AG and Hoogerbrugge, PJ and Manke. with the dissipative particle dynamics
method. Polymer, 39(3):567–579, 1995.

[25] CW. Schlijper, AG and Hoogerbrugge, PJ and Manke. Computer simulation of dilute polymer

Restrictions in model reduction for polymer chain models in DPD Moreno, Nunes and Calo

738



solutions with the dissipative particle dynamics method. Journal of Rheology, 39(3):567, May
1995.

[26] Y. Kong, C. W. Manke, W. G. Madden, and A. G. Schlijper. Effect of solvent quality on the con-
formation and relaxation of polymers via dissipative particle dynamics. The Journal of Chemical
Physics, 107(2):592, July 1997.

[27] N. A Spenley. Scaling laws for polymers in dissipative particle dynamics. Europhysics Letters
(EPL), 49(4):534–540, February 2000.

[28] Michael Rubinstein and Ralph H. Colby. Polymer Physics. Oxford University Press, 1st edition,
2003.

[29] J. M. Ilnytskyi and Yu. Holovatch. How does the scaling for the polymer chain in the dissipative
particle dynamics hold? December 2007.

[30] Kan Yang, Aleksey Vishnyakov, and Alexander V Neimark. Polymer translocation through a
nanopore: DPD study. The journal of physical chemistry. B, 117(13):3648–58, April 2013.

Restrictions in model reduction for polymer chain models in DPD Moreno, Nunes and Calo

739


