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Abstract

Behavioural factors play an important and crucial role in determining the

intensity of the self-initiated pre-cautionary health protective actions and the

success of a voluntary vaccination programme for infectious diseases. The

individual-level of decision making on whether or not to adopt altered be-

haviour in reducing the risk of infection as well as to opt for vaccination in

getting the vaccine-induced immunity is usually based on simple cost-benefit

considerations, which could be incorporated into epidemic models through

game-theoretical approaches. In this thesis, three different models addressing

these two types of behavioural changes are constructed through the replicator

dynamical equations, the vaccination population games framework and the

asymmetric smoothed best response function, respectively.

By using a multi-population replicator dynamical equation framework,

the first model focuses on the altered and normal behaviours of strategy in-

teractions between two subpopulations with different preferences and relative

strengths. Without imitations, the strategy switching is only minimal in nat-

ural selection process. With imitations, the strategy distributions depend on

the existing preference, the relative strength of subpopulations, the cost of

altering behaviour, the social group pressure and the extra benefit to indi-

viduals adopting the preferred behaviour in their respective subpopulation.

The social group pressure could be a “double-edged sword” in influencing the

altered behavioural changes and hence the resulting epidemic dynamics.

The vaccination behaviour is explored with two approaches. First, in

iii



the vaccination population game framework, the second model in this thesis

deals with the impact of three characteristics of imperfect vaccine in a two-

class vaccine-induced immunity epidemic model on individual-scale vaccina-

tion strategy choosing based on the population-scale vaccination rate. When

vaccine is not effective in reducing the susceptibility of the vaccinated indi-

viduals, the greater reduction of infectivity to vaccinated infected individuals

would be beneficial in circumventing the persistence of disease despite instant

vaccination is achieved in the population. If vaccine is able to provide longer

duration of high immunity to vaccinated individuals and/or faster recovery in

breakthrough infection, the cost thresholds for no vaccination would increase.

Due to the imperfect vaccine, there exist multiple Nash equilibria vaccination

rates which complicate the disease control efforts.

Second, by quantifying the probability of choosing vaccination strategy

with a Gompertz-type of asymmetric function, the third model in this the-

sis looks into the smoothed best response of prevalence-based cost-benefit

considerations for voluntary vaccination within a mean-field framework. The

asymmetric smoothed best response produces the same vaccination coverage

and epidemic dynamics as those given by the symmetrically smoothed best re-

sponse except when the cost of vaccination is perceived to be very high. This

suggests that the Gompertz function is suitable in modelling the behavioural

changes for individuals who are usually risk-averse in nature.
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Chapter 1

Introduction

1.1 Background

The early twentieth century witnessed one major disease outbreak, namely

the 1918-1920 influenza pandemic that infected 500 million people across the

world and killed 50 to 100 million people, which amount to three to five per-

cent of the world’s population at that time [98]. Despite significant medical

advances in the twenty-first century, health-related events occur in excess of

normal expectancy and public news about infectious disease outbreaks be-

come more common nowadays. During the period from November 2002 to

July 2003, severe acute respiratory syndrome (SARS) spread from southern

China and Hong Kong to infect individuals in 37 countries [94] and caused an

eventual 8096 cases and 774 deaths, with 9.6% fatality rate [112]. Also, the

confirmed death cases in the 2009 flu pandemics reached 14,285 worldwide

[29].

Considering these historical and recent statistics as well as scientific ad-

vancement in health and medicine, it should not be denied that controlling and

responding to future pandemics will be more challenging due to a number of

emerging global trends including increased and denser urbanization, increased

local and global travel, as well as a generally older and immune-compromised

population [61]. The emergence of high-profile respiratory infectious diseases

such as SARS epidemic, Middle East Respiratory Syndrome (MERS), Zika
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and variant influenza A (H1N1) virus infection, persistent prevalence of child-

hood communicable diseases such as measles-mumps-rubella (MMR) and per-

tussis, as well as non-vaccine-preventable sexually-transmitted diseases such

as human immune-deficiency virus infection / acquired immune-deficiency

syndrome (HIV/AIDS) have not only threaten millions of people throughout

the world, but also brought substantial economic and social impacts. There-

fore, it becomes an acute need for governments and public health systems to

evaluate the control measures designed to prevent infectious disease spreading.

Epidemiology is the science of study focusing on the cause-and-effect of

health and disease conditions in the population, targeted on improving con-

trol measures and policy-making decisions. Borrowing terminologies from the

theory of complexity, disease spreading is a complex (i.e. not fully know-

able, but reasonably predictable) dynamic problem, or sometimes, can even

be regarded as chaotic (i.e. neither knowable nor predicable) problem, such

as the cases of SARS which spread on the Asian continent in 2003. The

unpredictability in the occurrence of disease outbreaks is the consequence of

an uncountable number of interactions among numerous components rang-

ing from epidemiological characteristics (e.g. mode of transmission, contact

pattern, genetic susceptible or resistance, latent or infectious period, recovery

rate, type and amount of disease control etc.) to socio-demographic factors

(e.g. age, gender, as well as social, cultural and economic activities etc.), geo-

graphic factors (e.g. spatial location, travelling and visitation, neighbourhood

and community structure etc.) and also environmental factors (e.g. climate,

seasons, landscape, land use etc.).

Moreover, human behaviour plays a central role in the spread of infectious

diseases, and understanding the influence of individuals behavioural changes

and responses on the spread of diseases can be the key to improving disease

control efforts [39]. For instance, sexual behavioural changes (i.e. the use of

condom, sexual abstinence until marriage etc.) have been identified as the key
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to success in the control of HIV in Uganda [43]. However, for mild infections

such as a minor cold, people rarely fundamentally change their behaviour,

but with lethal or novel infectious diseases, they will change their behaviour

considerably to try to reduce their risk of infection. For instance, the dra-

matic reduction in travel and social contact were observed in Hong Kong and

Singapore during the 2003 SARS epidemic [32].

In the context of epidemiology, human behavioural change is referred to as

individuals change of their behaviour in a way that is relevant for the spread of

disease, that is how people act or response to a disease outbreak. For instance,

behaviours such as facemask wearing, increased hand-washing, and avoidance

of crowded places were observed during the Hong Kong SARS epidemic [54]

and H1N1 influenza pandemic [71]. Indeed, focusing on individual behaviours

as a key determinant of the dynamics of infectious diseases in mathemat-

ical epidemiology could be categorized into a specific discipline known as

behavioural epidemiology [1], and the mathematical models constructed are

called disease-behaviour models. Without incorporating behavioural changes

and/or responses, the disease spreading models will predict the “worst” pos-

sible scenario [22].

Behavioural changes in relation to the infectious disease spreading can be

categorized into two broad classes based on the motivation to start taking

a particular preventive action, namely changes imposed by public health au-

thorities and individual self-initiated behavioural changes [73]. The changes

imposed by public-health authorities refer to actions taken by people in the

population as a result of public control measures, including the closure of

schools and workplaces, bans on public gatherings such as social and sports

events, as well as travel restrictions to high-risk regions. These will change

the mobility or contact patterns of individuals in the population. As for the

self-initiated behavioural changes, individuals adopt their activities volun-

tarily due to the concerns induced by the disease, such as avoiding crowded
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places, social distancing (i.e. staying at home), wearing protective face masks,

practicing better hygiene, reducing travels (which could be categorized into

non-pharmaceutical interventions), or using preventive medicines and tak-

ing vaccination voluntarily (which indeed are the pharmaceutical interven-

tions). From the mathematical modelling perspective, the pharmaceutical

interventions change the disease state of the individuals. For instance, by

taking voluntary vaccination, individuals shift from susceptible class to vacci-

nated/recovered class. Meanwhile, it is assumed that certain epidemiological

parameters, such as the disease transmission rate in the epidemic models, may

be modified as the results of adopting non-pharmaceutical interventions.

In reality, individual’s responses often shift as an epidemic progresses.

Human behaviour in the context of epidemiology is based on attitudes, be-

lief systems, opinions and awareness of a disease, and all these factors can

change over time, both in individual and population levels [39]. Neverthe-

less, it is generally believed that risk perception (i.e. the awareness or belief

about the potential hazard) shapes individual behaviour [57], and moreover

the risk perception may in turn be shaped by the consequences of individual

behaviour [102]. For instance, individuals often refuse or avoid vaccinations

they perceived to be risky. On the other hand, a successful immunization

program (i.e. a high proportion of people opt for vaccination) will strongly

bring the disease prevalence down and therefore reduce the perceived infection

risk, resulting in a decline in vaccine demand [1]. In addition, the perceived

benefits (resp. costs) may be conceivably constructed as the beliefs about the

positive (resp. negative) outcomes associated with a behaviour in response

to a real or perceived disease prevalence. Therefore, it can thus be suggested

that the difference between the benefits and costs of adopting certain health

preventive actions will stimulate (resp. discourage) individuals in altering

their behaviours voluntarily.

In general, every rational individual has certain level of crisis awareness. If

4



an (non risk-seeking) individual realizes that there are infected people around

him/her, he/she will spontaneously take some preventive actions to protect

himself/herself [83]. It is likely that awareness and knowledge are closely

related. Awareness of individuals often comes from two different sources of

information, namely the globally and locally available information [39, 73].

Newspapers, television stations, websites and other media channels that dis-

seminated information published by public health authorities are some typical

examples of the globally available information. For instance, health-related

newscasts would change individuals’ perceptions on vaccine safety and efficacy

[8]. Meanwhile, the locally available information includes the spread of infor-

mation by word of mouth among acquaintances in local community or social

neighbourhood. As nowadays information could be quickly spread in social

media, it is not surprising that even with just the word of mouth of aware

individuals advising their social acquaintances to take flu shot, the dynamics

of seasonal-like influenza epidemic may be shifted dramatically [42]. Thus,

social influence (i.e. the behavioural change of individuals affected by others

in a social network [96]) becomes a widely accepted phenomenon in studying

the change of individual- and population-scale health-protective behaviour in

the course of epidemic outbreaks.

In the context of health beliefs, according to [69], in order for behaviour

to change, people must feel personally vulnerable to a health threat, view the

possible consequences as severe, and see that taking action is likely to either

prevent or reduce the risk at an acceptable cost with few barriers. In other

words, the cost-benefit consideration is of utmost relevance in making decision

whether or not to alter the behaviour. Not only that, they also pointed out

that some internal or external stimulus is required to ensure that actual be-

haviour change occurs. In [111], some key internal (e.g. beliefs, perceptions,

etc.) and external (e.g. healthcare practitioners’ advice, vaccine availability,

cost etc.) stimuli which influence the individual behavioural changes during a

disease outbreak are listed. Since the self-initiated behavioural change is not
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mandatory, individuals will decide to adopt it, or not, by making some cost-

benefit considerations as well as under the influence of various factors such as

social factors and the information received. We focus on this individual-level

decision making, by taking the game-theoretical approaches, for both phar-

maceutical (specifically, voluntary vaccination) and non-pharmaceutical in-

terventions (specifically, pre-cautionary health protective actions) of the self-

induced behavioural changes in this thesis.

1.2 Game-theoretical approaches in the disease-

behaviour models

In the context of game theory, a game is an abstract formulation of an interac-

tive decision situation with possibly conflicting interests [97]. A game consists

of players (which are the decision-makers), strategies (or actions, behaviours),

payoffs (or fitness, in the field of biology) and strategy switching rules. Hence,

game theory could be considered as a mathematical approach for studying the

conflict and/or cooperation between decision-makers (e.g. human, animals,

companies, countries etc). The classical game theory assumes that the players

are fully rational and have complete information about the game (i.e. his/her

own and opponent (or interaction partner) strategy profiles (i.e. the set of all

possible strategies) as well as the payoffs received by them for each possible

combination of strategies), whereas the evolutionary game theory relaxes the

full rationality assumption in which players may have incomplete information

in the strategy interactions. A rational player will always choose the best

strategy that maximizes his/her payoff, in response to the strategy chosen by

others, which is a concept known as the best response correspondence.

In modelling the human behaviour on the disease spread, at microscopic

level, the players or the decision-makers are usually referred to as the sus-

ceptible individuals who decide whether or not to adopt some pharmaceuti-

cal and/or non-pharmaceutical interventions. Hence, the term “vaccination
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behaviour” in disease-behaviour models reflects that upon receiving infor-

mation on the diseases, individuals who are given the chance for updating

their strategies (i.e. play the game) will choose in between two strategies,

i.e. vaccination and non-vaccination, in a voluntary vaccination program. By

choosing the vaccination strategy, it is assumed that individuals go to vacci-

nate and the vaccine-induced immunity takes effect in protecting them from

infection risks immediately, which can be termed as the positive payoff (i.e.

the benefit) for the vaccination strategy. While, if the non-vaccination strat-

egy is chosen, the individual is subjected to the infection risk, which is indeed

the negative payoff (i.e. the cost). Therefore, individuals are said to make

use of cost-benefit analysis (considerations) in choosing what is best for them.

For two-person games in the classical game theory, the strategy profile

and its payoff may be given in the form of a static payoff matrix. The out-

come of the strategy interactions (or simply, the solution of the games) is,

either a pure or mixed strategy, Nash equilibrium if no player could increase

his/her payoff by unilaterally switching to other strategy. However, in a pop-

ulation consisting of infinitely many players (and hence infinitely repeated

games played), the strategy choice for a focal player depends on the payoff

difference between his/her own payoff and the strategy interaction partner’s

payoff, in which the strategy update rule is indeed the pairwise payoff com-

parison, where one of the players may switch to the strategy of the other.

This microscopic level of strategy switching (or mutation, in biology) could

be either explicitly implemented as a rule-based model in agent-based simu-

lation frameworks or implicitly modelled in population (or mean-field) games.

In population games, all players (or agents) have identical payoff matrix

and it is assumed that players are randomly matched for strategy interactions

(i.e. play the game) with some probability at each time step, which indeed

governs the speed of game dynamics. Therefore, for any player, he/she would

be regarded as playing the game against a single representative individual
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who plays the population’s average strategy as a mixed strategy [97]. Hence,

it is the evolution of strategy frequencies at macroscopic level that is of most

concern in the population games. Also, the expected payoff of players playing

a certain strategy is now expressed as a function of the strategy frequencies,

rather than a static scalar value in classical game theory. Therefore, this

framework leads to the evolutionary game theory which focuses on the dy-

namics of strategy adaptation. Examples of population games in game theory

literature include the replicator dynamics [100], the best response dynamics

and the logit dynamics (also known as the smoothed best response [36]).

In replicator dynamics, the per capita growth rate of a given strategy is

proportional to the payoff difference between the strategy and the average

payoff of the population. Hence, the evolution of strategy frequencies could

be described in the form of the replicator dynamical equation, which is a

first-order ordinary differential equation. Also, the stationary states of the

replicator equation give the evolutionary stable strategies (corresponding to

the Nash equilibria in classical game theory). In biology, strategies are mostly

inherited. However, the underlying mechanism of strategy switching in epi-

demiology involves social learning and hence the replicator dynamics is also

known as imitation dynamics in disease-behaviour models. Hence, the termi-

nologies “game dynamics”, “replicator dynamics” and “imitation dynamics”

are used interchangeably throughout this thesis.

As individuals are heterogeneous or may belong to certain groups with

specific preferences, they may perceive the risk of infection in different way

and make decisions under the influence of intra- or inter-group pressure. In-

dividuals also tend to imitate other behaviour (or strategy) in their mutual

interactions. As a result, individual behavioural changes in epidemic out-

break could be studied through coupling the replicator dynamical equation

and an epidemic compartmental model, which was pioneered by Bauch [2]

who investigated the vaccination behaviour in childhood diseases. Bauch’s
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framework was modified to investigate the susceptible spontaneous behaviour

change (specifically whether or not to alter their behaviour in order to reduce

their infection risks) in [74]. In this thesis, we extend the one-population

model of [74] to a two-subpopulation model by using the multi-population

game dynamical modelling framework proposed in [47, 48] so as to take into

account the heterogeneity between groups in decision making.

Behaviour change spreads due to not only the information of disease in-

cidence, but also the observations of individuals about their own behaviour

status as compared to the population-level of average behaviour status. This

leads to the development of modelling the implications of the population-scale

epidemic dynamics on individual-scale decision choices by making use of the

Markov decision process theory [77, 79] in disease-behaviour models. As vac-

cine efficacy plays an important role in shaping individual perceived benefits

and costs of vaccination, we extend the one-class imperfect immunity model

in [79] within their vaccination population games framework by incorporating

three additional characteristics of imperfect vaccine, as those proposed in [30]

to the two-class vaccine-induced immunity “vaccination population games”.

In game theory, the best response refers to the strategy that gives the most

favourable outcome to an individual, which may be expressed mathemati-

cally in a step-wise function. As far as the voluntary vaccination behaviour

is concerned, the epidemic models incorporating the best response dynam-

ics of cost-benefit analysis in strategy switching are mostly implemented in

mean-field models. However, the continuous version of the smoothed best

response which is expressed in Fermi’s strategy updating rule (it is indeed a

symmetrical sigmoid function), is mostly implemented in agent-based simula-

tion models. We follow the framework of [116] in which a logistic function is

used to model the continuous (or adult) voluntary vaccination decision mak-

ing based on a simple cost-benefit analysis, but extend the smoothed best

response from symmetric property to asymmetric one by using another type
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of sigmoid functions known as Gompertz functions.

1.3 Objectives

The primary aim of this work is to study the individual-level decision making

on adopting the self-initiated pre-cautionary health preventive actions or tak-

ing the voluntary vaccination in the course of epidemic outbreak with three

game-theoretical modelling frameworks. Specifically, this project has the fol-

lowing objectives:

(i) Formulate a two-subpopulation game-dynamical model to study the in-

terplays between the individual self-initiated pre-cautionary health pro-

tective behaviour, imitation and epidemic dynamics under the influence

of cost-benefit consideration and social group pressure.

(ii) Investigate the impact of imperfect vaccines and two-class vaccine-induced

immunity on vaccine coverage and epidemic dynamics based on the vac-

cination population games framework.

(iii) Develop an epidemic model with individual vaccination strategy adoption

governed by asymmetric smoothed best response function.

Our goal in this thesis is not to study a disease in particular, but to

carry out a deeper investigation with regard to the impact of incorporating

human behaviours in epidemic modelling. Rather than constructing compli-

cated model structures to investigate various aspects of human behaviours

and responses in the spread of infectious diseases, we build three simple

mean-field disease-behaviour models with minimal equations and simplest epi-

demic dynamics to capture the fundamental concepts in two aspects of human

behaviour, namely vaccination behaviour and self-initiated pre-cautionary

health protective behaviour. Besides that, the parameter values used in the
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numerical simulations are not intended to be highly realistic, but rather to il-

lustrate particular scenarios or principles and explain the dynamical behaviour

which the models can exhibit by incorporating certain aspect of game theory

in the modelling. Also, no model validations with real data were carried out.

The focuses of this work are given to the mathematical formulations and nu-

merical simulations, rather than the theoretical analysis and the methods of

solution to the models.

1.4 Main contributions of this thesis

The contributions of this thesis include the following aspects.

(i) Construction of a new two-subpopulation imitation dynamical model

whereby susceptibles in different subpopulations have different prefer-

ences in adopting health protective behaviour.

(ii) Construction of vaccination population games with three additional char-

acteristics of imperfect vaccine in a two-class vaccine-induced immunity

epidemic model.

(iii) Development of a new asymmetric smoothed best response function for

determining the individual voluntary vaccination strategy adoption in an

epidemic model with vaccination.

1.5 Outline of the thesis

This thesis consists of six chapters. Chapter One gives the background and

the objectives of the research as well as the structure of the thesis. Chapter

Two presents the literature review in a wider scope on two types of human

behavioural changes on the disease spread. The basics in epidemic models
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with partially vaccine-induced immunity, without game theory elements, are

also given to serve as the fundamental concepts for further investigations on

corresponding models but with game-theoretical elements. It is followed by

three separate models in the subsequent three chapters with their own spe-

cific backgrounds and literatures. Chapter Three concerns the self-initiated

pre-cautionary health protective behavioural changes whereas Chapter Four

and Five deal with vaccination behaviours.

In Chapter Three, the one-population natural selection and imitation dy-

namics model for behavioural changes involving self-initiated pre-cautionary

health protective actions in an emerging disease is extended to two sub-

populations model with different preferences. The derivations of the two-

subpopulation replicator dynamical equations for the natural selection as well

as imitation process involving the cost-benefit analysis and social group pres-

sure are given. We explore the impact of the subpopulation with existing pref-

erence and relative strength, the cost of altering behaviour, the social group

pressure and the extra benefit to individuals adopting the subpopulation’s

preferred strategy on the strategy distributions. We show that the numerical

simulation results are in good agreement with the local stability analysis.

Chapter Four investigates the impact of imperfect vaccine on the individual-

scale voluntary vaccination decision-making based on the population-scale

epidemiological status within the framework of vaccination population games.

The analysis of the associated reproduction number for the epidemic model

with two classes of infected and/or vaccinated individuals is given and the

existence of the phenomenon of backward bifurcation is shown by using the

center manifold theorem. Then, we give the procedure involved in finding the

utility function and the cost threshold for vaccination population game anal-

ysis in a step-by-step approach. The simulation results highlight the possible

vaccination coverage for three additional characteristics of imperfect vaccines

and the existence of multiple Nash equilibria vaccination rates.
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The first part of Chapter Five is devoted to the literature review on

two types of function (or correspondence, namely the best response and the

smoothed best response) used in describing the probability of choosing the

vaccination strategy in both the mean-field well-mixed and the agent-based

network epidemic models. As we propose to use the smoothed best response

function in the epidemic mean-field model with partially vaccine-induced im-

munity, we present the mathematical formulations of the Gompertz function

in governing the individuals smoothed best response on the cost and benefit

considerations of getting vaccination. The dynamical behaviour of the re-

sulting system is studied through a combination of the Jacobian matrix, the

graphical approach and again the center manifold theorem. We then explore

the difference between the (asymmetric) Gompertz function and the (sym-

metric) logistic function on the vaccine uptake level in this chapter.

A brief summary of the research is given in the first part of Chapter Six.

Several possible future studies on the current topic are then given in the sec-

ond part of Chapter six.
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Chapter 2

Literature Review

In this chapter, we present the literature reviews for game-theoretical mathe-

matical modelling of vaccination behaviour and pre-cautionary health protec-

tive behaviour. Besides that, we give the fundamental concepts dealing with

epidemic models with partially vaccine-induced immunity.

2.1 Mathematical modelling of voluntary vac-

cination behaviour using game-theoretical

approach

Game-theoretical approach, specifically the replicator dynamical equation,

was initially used in [2] to investigate the interplays between individual vol-

untary vaccination behaviour, vaccine coverage and vaccine-preventable child-

hood disease dynamics in a well-mixed population. In this context, the players

of the game are parents who decide between two strategies, that is whether

to vaccinate their children or not based on the payoff maximization (or equiv-

alently, loss-minimization) behaviour. This strategy decision-making can be

largely determined through the cost-benefit analysis on the expected payoffs

of the strategies. Vaccination incurs certain fixed costs (e.g. time and money

spent, the vaccine adverse effects, etc.) but is sufficient to confer lifelong im-

munity (assuming the vaccine is perfect), while non-vaccinators are exposed

to the prevalence-dependent risk of infection and the subsequent monetary

loss (e.g. absence from school / workplace, treatment expenses etc.). There
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is a temptation to free-ride on the herd immunity of others by opting not to

vaccinate but may still be free from infection. The individuals’ fully ratio-

nality and self-interest behaviour lead to oscillations in vaccine coverage over

time [2, 78] and hence voluntary vaccination is unlikely to achieve society-

optimal level [5] for a complete disease eradication [3]. However, the presence

of altruistic individuals who are willing to increase payoff of others regardless

beneficial to oneself or not can significantly shift the vaccine coverage towards

the society optimum [91].

Unlike vaccine-preventable childhood diseases, the vaccine for recurrent

infectious diseases such as influenza are usually effective only for one sea-

son owing to mutation of pathogens and waning immunity [104]. Hence,

the evolutionary game theory is employed to capture the strategy interac-

tions between vaccinators and non-vaccinators during a voluntary vaccina-

tion program, before the next seasonal epidemic begins (see e.g., [35, 104]).

An individual’s payoff is assigned according to their vaccination status and

disease status during the last epidemic season. Individuals adjust their vacci-

nation strategy through observations on their randomly selected role model’s

(or neighbour’s) payoff outcomes and imitate the more successful one with the

probability governed by Fermi strategy updating rule (see e.g. [35, 11, 13]).

This pairwise payoff comparison takes into account the bounded rationality

of human behaviour in which there is a possibility that the worst performing

strategy is being imitated. Since individuals make repeated vaccination de-

cisions based on their expectations about future events, this individual-level

adaptive decisions collectively determine the vaccine coverage and therefore

influence the disease dynamics, and conversely, the disease dynamics influ-

ence the likelihood that individuals will choose to vaccinate. Due to their

inherent complexity, this scenario is usually modelled through a bottom-up

approach, specifically, within an agent-based modelling simulation framework.

Individuals interpret the information that they obtain through observa-
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tions in the social contact and conjecture about the vaccination strategies of

others. Hence, social contact structure has a significant impact on voluntary

vaccination behaviour and its corresponding disease dynamics. Unlike well-

mixed population in which diseases are not eradicated due to the free-riding

effect, social contact structures enable disease eradication when vaccine risk is

not too high and disease risk is not too low [72], particularly effective in scale-

free network than regular networks (since hub nodes of scale-free networks are

more inclined to take vaccination) [119], as well as in adaptive networks than

static networks [90]. The clustering of non-vaccinator individuals in struc-

tural population, either caused by imitation [62] or opinion formation process

[12, 86], has a strong unfavourable effect on disease eradication especially

when vaccination coverage is approximately achieving herd immunity. How-

ever, with the presence of committed vaccinators to stimulate other imitators

to take vaccination, the effect of clustering of susceptible non-vaccinator can

be significantly reduced [58]. Besides that, individuals’ high conformity to

social influence will strengthen the negative correlation between cost of vac-

cination and vaccine coverage [114].

From a cost-benefit analysis perspective, individual vaccination decision-

making is strongly governed by their perceptions on the severity of the dis-

ease outbreak and the perceived risk of vaccination. These risk perceptions

are closely related to individuals’ prior knowledge and awareness. As stated

in the review paper [39], all epidemic models incorporating human behaviour

make assumptions on the source and type of information that individuals’

decision is based on. The interplay between voluntary vaccination behaviour,

publicly available information and childhood disease dynamics was initially

modelled analytically without incorporating the concept of imitation game

dynamics. Even so, similar to models with imitation dynamics, information

dependent vaccination also demonstrates clearly the oscillatory behaviour of

vaccine coverage when parents use not only the current but also the past

information [26], the delayed information [9] about the disease and informa-
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tion on the disease’s mortality [27] to make their vaccination decisions. As

compared to how people arrive at their choices based on locally available

“private” information, public information communicated by public health au-

thorities [25] and newscasts providing individuals with more epidemiological

information [8] are able to stabilize the imitation-induced oscillations, to al-

low disease elimination. Moreover, the possibility for the individuals to go

for vaccination increases with the amount of information and the degree of

sensitivity towards the information obtained by individuals [83] as well as the

reporting rate of severe disease infections, but decreases with the reporting

rate of vaccine-related adverse effect [114]. Individuals’ own characteristics

(such as their experience and memory) also have an impact on the adoption

of vaccination. The vaccination and disease dynamics become less variable

when individuals integrate more of their prior epidemic seasons experience in

their decision-making [18, 110].

2.2 Mathematical modelling of self-initiated

pre-cautionary health protective behaviour

using game-theoretical approach

One of the underlying assumptions in modelling the self-initiated pre-cautionary

health protective behaviour in the spread of infectious diseases is that upon

receiving any information on diseases, individuals may activate their be-

havioural responses by voluntarily taking some non-pharmaceutical interven-

tion measures to reduce their infection risks. For instance, by social distanc-

ing practices (either staying at home from workplaces or schools, or avoiding

crowded places and social events etc.), the contact rates between susceptible

and infected individuals can be significantly reduced and hence the disease

transmission rate, say β, may be modified. This implies that individuals are

not risk-seeking. Also, the pre-cautionary health protective behaviour is as-

sumed to be effective in reducing the disease transmission but not able to

totally eliminate the infectious diseases. Therefore, a modification parameter
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(or a susceptibility reduction factor), say α ∈ (0, 1), is being multiplied with

β in well-mixed epidemic models [73, 74, 75] or agent-based network epidemic

models [17, 33] incorporating pre-cautionary health protective behavioural

changes.

Similar to the vaccination behaviour, individuals may make use of simple

cost-benefit considerations or imitate other’s behaviour in choosing whether

or not to alter their behaviour to reduce their infection risks. In literatures

involving well-mixed epidemic models with game-theoretical approaches, the

population average reduction of force of infection due to pre-cautionary health

preventive actions could be expressed in two ways. First, by using the repli-

cator dynamical equation [74, 75], the authors assumed that susceptibles who

alter their behaviours may have to pay some fixed extra inconvenient costs

(e.g. absence from schools or works, cancelling travels) than doing nothing

(termed as “normal” behaviour in [74]). Hence, the population average re-

duction of force of infection is determined by the proportion of susceptible

adopting altered behaviour at any time in the course of epidemic outbreak.

Second, in social distancing games [76, 77], in which the Markov decision

process theory was employed, the population average reduction of force of

infection is expressed as a monotone decreasing function of the intensity of

investments of susceptibles social distancing practice. This means that the

larger the investments (which could be analogous to the cost of altered be-

haviour in [74]), the lower the population average force of infection will be.

2.3 Epidemic models with continuous vacci-

nation and partially vaccine-induced im-

munity

Although there is a rapidly growing literature on investigating voluntary vac-

cination behaviour using the game-theoretical approach, most of the frame-

works assume that vaccine confers lifelong immunity. There has been rela-

tively little research on accessing the impact of vaccine efficacy on vaccination
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behaviour. As Chapter Four and Five in this thesis are devoted to address

the issue of imperfect vaccine on vaccination behaviour, we briefly discuss the

basics of the imperfect vaccine to the epidemic dynamics, without the com-

ponents of game theory in this section.

The Susceptible-Infectious-Recovered-Vaccinated (SIRV) epidemic com-

partmental model with imperfect vaccine for the continuous vaccination is

given below.

dS

dt
= Λ− β I

N
S − π̄S − µS, (2.1a)

dI

dt
= β

I

N
S + σβ

I

N
V − γI − µI, (2.1b)

dR

dt
= γI − µR, (2.1c)

dV

dt
= π̄S − σβ I

N
V − µV, (2.1d)

where the total population size is N = S + I + R + V . Λ is the (constant)

recruitment rate of susceptible corresponding to births and immigrations, µ

is the constant natural death rate of the population, β is the disease trans-

mission rate, γ is the recovery rate, σ ∈ [0, 1) is the probability of vaccine

failure while 1− σ gives the vaccine efficacy and π̄ is the population average

vaccination rate, which could be constant or time-varying depending on the

modelling assumptions.

We further define σ as the probability of vaccine failure in degree [50, 59,

63] simply to reflect the scenario of partial immunity (i.e. the vaccine-induced

immunity may not be fully protective [41]). This is particularly relevant as

the strain of infectious diseases such as influenza often mutates rapidly enough

[7] that being vaccinated does not guarantee individuals are fully protected

from the risk of infection. Thus, the expression 1 − σ predefines the degree

of the reduction of susceptibility for the vaccinated individuals. σ = 0 means

that the vaccine is fully effective in reducing the susceptibility and system
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(2.1) could be reduced to the SIR model whereby both the vaccine-acquired

and infection-acquired immunity would remove the individuals from the sus-

ceptible pool. On the other hand, σ = 1 implies that the vaccine is totally

useless and from the perspective of controlling the infectious diseases, it is

not worth to introduce such a vaccine to the host population. Hence, we will

not consider the case of σ = 1 in this thesis. In other words, we assume that

the vaccine is at least offering some degree of protection to the vaccinated

individuals.

For the epidemic compartmental model in system (2.1), which does not in-

volve a vector (i.e. a carrier of disease-causing agent) and different host types,

the concept of the basic reproduction number (R0) is sufficient to quantify

the driving force of the spread of infection [82]. The R0 is defined as the aver-

age (or expected) number of individuals (secondary infection) infected by one

typical infective (primary infection), over his/her entire duration of infection,

in a whole susceptible population. For an epidemic compartmental model

with n disease compartments (i.e. the individuals in the compartments are

infected), the basic reproduction number can be computed using the method

of the next generation matrix [23] by the steps given below.

Step 1: Find Fi(x0) and Vi(x0), i = 1, 2, . . . , n, where Fi ≥ 0 represents new

infections in compartment i, Vi ≤ 0 represents a net outflow from

compartment i (such as the recovery rate, death rate etc.), and x0 is

the disease free equilibrium (DFE).

Step 2: Find the n × n next generation matrix K = FV−1 at DFE, where F

and V are the m×m matrices defined by F = ∂Fi(x0)
∂xj

and V = ∂Vi(x0)
∂xj

,

with 1 ≤ j ≤ m.

Step 3: Find the spectral radius (the dominant eigenvalue) of the matrix K,

which gives the basic reproduction number R0.
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At t→∞, we have N → Λ
µ

. For the case where the vaccine offers complete

protection (σ = 0), by assuming Λ = µ (and without loss of generality, we

have N = 1), system (2.1) has DFE, E0 = (S0, I0, R0, V0) = ( µ
π̄+µ

, 0, 0, π̄
π̄+µ

).

The spectral radius of the next generation matrix is given by RC = β
γ+µ

µ
π̄+µ

.

The notation RC reflects the reproduction number with vaccination as a con-

trol measure and is usually known as the control reproduction number. It is

defined as the average number of secondary infections produced by a primary

infected person in a population consisting of susceptible and vaccinated indi-

viduals. If π̄ = 0, then theRC is reduced toR0 = β
γ+µ

. When π̄ > 0, ifRC > 1

(and hence R0 > 1), then the disease grows. If RC < 1 (resp. R0 < 1), then

the disease dies out with the presence (resp. absence) of vaccination program.

It can be seen that RC < 1 if and only if π̄ > π̄critical = µ(R0 − 1), where

π̄critical is the critical vaccination coverage level.

Similarly, for vaccine with partial immunity (0 < σ < 1), we have the same

DFE E0 but the effective reproduction number is given by Reff = β
γ+µ

σπ̄+µ
π̄+µ

with the critical vaccination coverage level becomes π̄c = µ(R0−1)
1−σR0

. The most

important consequence of relaxing the assumption of fully-protective vaccine

is that although π̄ > π̄c leads to Reff < 1, it no longer guarantees disease

eradication.

2.3.1 The existence of multiple endemic equilibria

When 0 < σ < 1, the endemic equilibrium point(s) of system (2.1) is given

by E∗ = (S∗, I∗, R∗, V ∗) where R∗ = γ
µ
I∗, S∗ = (γ+µ)N∗

β
− σV ∗ and V ∗ =

π̄(γ+µ)N∗

β[σπ̄+σλ∗+µ]
with λ∗ = β I∗

N∗
. Since S∗ + I∗ +R∗ + V ∗ = N∗, we obtain

I∗ = N∗
(

1− γ + µ

β
− (1− σ)

π̄(γ + µ)

β[σπ̄ + σλ∗ + µ]

)
µ

γ + µ
(2.2)

By substituting expression (2.2) into λ∗ = β I∗

N∗
, after some algebraic manip-
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ulations, we obtain

Q(λ∗) = A(λ∗)2 +Bλ∗ + C,

where

A = σ(γ + µ) > 0,

B = (γ + µ) [σπ̄ + µ+ σµ(1−R0)] ,

C = µ(γ + µ)(π̄ + µ) [1−Reff] .

(2.3)

The endemic equilibrium point(s) (or endemic state(s)), I∗ = λ∗N
∗

β
, arises

as the solution(s) of quadratic equation (2.3) in which λ∗ could be obtained

by quadratic formula λ∗ = −B±
√
B2−4AC
2A

. Hence, it is obvious that there is

a possibility of the existence of multiple endemic equilibria when the vaccine

only offers partial immunity (0 < σ < 1), as compared to the assumption that

the vaccine offers full protection to vaccinated individuals (σ = 0).

As the type and number of solutions to the quadratic equation will be

determined by the sign of the expression B2 − 4AC, solving B2 − 4AC = 0

for Reff gives

Reff = 1− B2

4σµ(γ + µ)2(π̄ + µ)
≡ Rc

eff (2.4)

where the sub-threshold Rc
eff < 1. Also, it is easy to see that B > 0 implies

that R0 < 1 + σπ̄+µ
σµ
≡ Rc

0. The solutions to quadratic equation (2.3) and the

corresponding property of the SIRV model could be deduced as the following

cases.

(i) If Reff > 1 (⇔ C < 0), then B2 − 4AC > 0 regardless the sign of B.

The quadratic Q(λ∗) has two real roots with opposite sign. Since only

the positive root is biological feasible, the partial immunity model has a

unique positive endemic equilibrium.
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(ii) If Reff = 1 (⇔ C = 0), then Q(λ∗) = λ∗(Aλ∗ + B) = 0. We have λ∗ = 0

(i.e. DFE, I∗ = 0) or λ∗ = −B
A

. The model has a unique endemic equi-

librium if B < 0 (i.e. R0 > Rc
0).

(iii) For the case of Reff < 1 (⇔ C > 0), we analyse the following subcases:

(a) If B ≥ 0 (i.e. R0 ≤ Rc
0) or B2−4AC < 0, then Q(λ∗) has no positive

(or real) roots. (b) If B < 0 (i.e. R0 > Rc
0), then the Q(λ∗) has two

positive real roots if B2−4AC > 0 (i.e. Reff > Rc
eff). Besides that, Q(λ∗)

has a positive real root of multiplicity 2 if B2 − 4AC = 0. This positive

real root of multiplicity of 2 is simply given by λ∗ = − B
2A
> 0.

Therefore, we conclude that there exist multiple endemic equilibria for

system (2.1), with 0 < σ < 1 whenever Rc
eff < Reff < 1. This existence of

multiple endemic states is the main characteristics of a phenomenon known as

backward bifurcation, which has been observed in numerous epidemic models

with vaccine that only offers partial immunity.

2.3.2 Backward bifurcation

In dynamical systems, bifurcation phenomenon is pertinent to the occurrence

of the qualitative change in the structural behaviours (e.g. the equilibria and

its stability) of the system when a parameter value of the system is varied.

Generally, mathematical models with multiple steady states give rise to bifur-

cation phenomena. In epidemic control, the basic reproduction number R0

and/or other associated reproduction numbers, for instance, RC and Reff, are

indeed the disease threshold condition, i.e. the condition necessary for disease

invasion (the existence of endemic state) in the population. As R0 increases

and approaches unity, the DFE (which is characterized by the absence of in-

fectious individuals) changes its stability from stable to unstable, in which

this phenomenon involves a transcritical bifurcation.
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(a) Forward bifurcation (b) Backward bifurcation

Figure 2.1: The schematic diagram of forward and backward bifurcation.

In this context, there are two types of transcritical bifurcation, namely for-

ward (supercritical) bifurcation and backward (subcritical) bifurcation, which

give the “direction” of the endemic state (i.e. I∗) close to the disease thresh-

old, R0 = 1 (Figure 2.1, the solid lines denote stability and the dashed lines

denote instability). If the endemic state exists only for R0 > 1 but not for

R0 < 1, a forward bifurcation occurs (Figure 2.1(a)) and the endemic level

increases slightly and continuously as R0 increases through unity. However,

if the backward bifurcation occurs, as R0 increases and once it goes across

unity, I∗ suddenly jumps from DFE to a high endemic level. Even though

the R0 is reduced back below one, there exist two endemic states, a low level

of unstable endemicity and a higher level of stable endemicity (see Figure

2.1(b)). Depending on the initial number of infected individuals, the system

may end up with the lower endemic level or the higher one. Further reducing

the epidemic threshold R0 to a subthreshold Rc
0 , the saddle-node bifurcation

occurs in which the two endemic states collide and annihilate each other. In

short, backward bifurcation is a phenomenon typically characterized by the

co-existence of multiple stable equilibria when the associated reproduction

number of the epidemic model is less than one [68].
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As far as the immunity in the host is concerned, the phenomenon of back-

ward bifurcation has often been observed in epidemic models with imperfect

vaccine [30, 52, 65], exogeneous reinfection [49, 89], resistance mechanism

[80] and structured acquired immunity [81]. From the epidemiological point

of view, the phenomenon of backward bifurcation has a negative impact on

disease control because reducing R0 (or its associated reproduction number)

below the unity does not guarantee disease eradication. The disease control

becomes highly dependent on the initial proportion of infectious individuals in

the population. The reproduction number must be further reduced to below

the subthreshold Rc
0 for disease elimination.

2.3.3 The center manifold theorem

The qualitative analysis on the quadratic equation presented in Subsection

2.3.1 for showing the existence of multiple endemic equilibria and consequently

the backward bifurcation could be carried out in a more systematic way by

using the center manifold theorem, proven in [14], as given below.

Theorem 2.1. Consider the following system of ordinary differential equa-

tions with a parameter φ:

dx

dt
= f(x, φ), f :Rn × R→ R and f ∈ C2(Rn × R), (2.5)

where 0 is an equilibrium of the system that f(0, φ) = 0 for all φ and assume

(A1) J = Dx f(0, 0) = ∂fi(0,0)
∂xj

is the linearization of system (2.5) around the

equilibrium 0 with φ evaluated at 0. Zero is a simple eigenvalue of J

and all other eigenvalues of J have negative real parts.

(A2) Matrix J has a right eigenvector w and a left eigenvector v correspond-

ing to the zero eigenvalue.
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Let fi be the ith component of f and

a =
n∑

i,j,k=1

viwjwk
∂2fi

∂xj∂xk
(0, 0), (2.6a)

b =
n∑

i,j=1

viwj
∂2fi
∂xj∂φ

(0, 0). (2.6b)

The local dynamics of system (2.5) around 0 are totally determined by the

signs of a and b.

(i) a > 0, b > 0. When φ < 0 with |φ| � 1, the equilibrium point x = 0 is

locally asymptotically stable, and there exists a positive unstable equi-

librium; when 0 < φ � 1, 0 is unstable and there exists a negative and

locally asymptotically stable equilibrium.

(ii) a < 0, b < 0. When φ < 0 with |φ| � 1, the equilibrium point x = 0 is

unstable; when 0 < φ� 1, 0 is locally asymptotically stable equilibrium

and there exists a positive unstable equilibrium.

(iii) a > 0, b < 0. When φ < 0 with |φ| � 1, the equilibrium point x = 0 is

unstable, and there exists a locally asymptotically stable negative equi-

librium; when 0 < φ� 1, 0 is stable and there exists a positive unstable

equilibrium.

(iv) a < 0, b > 0. When φ changes from negative to positive, the equilib-

rium point x = 0 changes its stability from stable to unstable. Corre-

spondingly, a negative unstable equilibrium becomes positive and locally

asymptotically stable.
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2.4 Concluding remarks

The literature review on modelling of vaccination behaviour and pre-cautionary

health protective behaviour in epidemic models with game-theoretical ap-

proaches has been briefly covered in the first part of this chapter. Then,

the basics of the epidemic models with partially vaccine-induced immunity,

namely the existence of the multiple endemic equilibria, the phenomenon of

backward bifurcation and the center manifold theorem used to examine the

types of transcritical bifurcation are presented in the second part of this chap-

ter, which serves as the fundamental concepts for more complicated systems

in Chapter Four and Five.
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Chapter 3

Human Behavioural Responses
in an Emerging Epidemic with
Two-subpopulation
Game-dynamical Model

3.1 Introduction

The role of human behaviour in the spread and control of infectious diseases

has received significant attention [39] and has been recognized as a specific

discipline in epidemiology, known as behavioural epidemiology [1]. Various

behavioural changes, including vaccination, the self-initiated pre-cautionary

health protective actions such as social distancing, wearing mask, reduc-

ing risky sexual behaviour, reducing travels, practicing better hygiene and

avoidence of congregated places, have been incorporated into mathematical

and computational epidemic models. Without including behavioural changes,

the disease spreading model will predict the “worst” possible scenario [22].

The disease-behaviour models capture the interplay between infectious dis-

ease dynamics and individual behaviours under the influence of various fac-

tors such as economic [51], social [4] and information [21]. In the course of

epidemic outbreak, individuals are not passive; they weigh up the costs asso-

ciated with certain self-initiated pre-cautionary health protective actions with

the benefit of reducing the infection risk, and then choose the best option or

strategy that maximizes their own benefit. The individual-level preferences
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and strategic decision-making process can be concisely described in the lan-

guage of game theory.

Unlike the game theory in the field of biology in which strategies are in-

herited, the underlying mechanism for the evolution of strategy adoption in

epidemiology is the imitation process. Individual strategic decision-making

can be conveniently fixed into a simple one-population susceptible-infective-

recovered (SIR) compartmental model in a well-mixed population setting

through the game-dynamical equation. For instance, a replicator equation is

used to model imitation dynamics and is coupled into a SIR epidemic model

in [2] to investigate the interplay between individual voluntary vaccination

behaviour, vaccine coverage and vaccine-preventable childhood disease dy-

namics, in which parents make the cost-benefit analysis to decide whether

or not to vaccinate their children. This model has been extended in [70] by

introducing social norm into it. Along similar lines, Poletti and co-authors

[74] modelled the spontaneous behavioural changes driven by cost-benefit con-

siderations on the perceived risk of infection whereby their game-dynamical

equation involves both the natural selection process and the imitation pro-

cess. Even with these simple well-mixed one-population models that couple

epidemic and imitation dynamics, rich epidemic dynamics, including oscilla-

tions and simulation results fitted with real disease incidence data, can be

achieved.

In one-population mean-field models, every individual has the same kind

of disease-causing contacts and strategy interactions in the homogeneous pop-

ulation. However, individuals are heterogeneous. The minimal level of details

required to model the differences in individual behaviour has been identified as

one of the nine challenges in incorporating the dynamics of human behaviour

in infectious disease models [38]. This challenge is essentially the heterogene-

ity between groups. That is, people that belong to certain group may be more

inclined to certain behaviour or perceive the risk of disease prevalence in a
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specific way. These give rise to the development of multi-group epidemic and

game-dynamical models.

Compared to one-population models, very few multi-group setting of com-

partmental models have been used in epidemic modelling incorporating hu-

man behaviour. Furthermore, among them, most of the studies are related

to vaccination behaviour, with specific investigations on different age groups

[6, 93], different countries [67], and different risk perceptions, for instance

pro-vaccinator (i.e. vaccine believer) versus anti-vaccinator (i.e. vaccine skep-

tics) [60, 92]. On the other domain of human behaviour in epidemiology,

the multi-population model was used in [75, 76] to study self-initiated pre-

cautionary health protective behaviour during epidemic. However, all these

studies assume that individuals only make cost-benefit considerations without

considering other social factors in their decision making. Hence, we focus on

the self-initiated pre-cautionary health protective actions adopted by suscep-

tibles in an emerging epidemic in two-subpopulation setting. The imitation

dynamics in our proposed model is constructed by taking account of a com-

bination of cost-benefit and social points of view.

Our proposed model differs from the epidemiology game between two sub-

populations constructed by Reluga [76] in the aspects of epidemic dynamics

and individual-level decision making. Reluga’s epidemic model is in metapop-

ulation setting whereas our proposed epidemic model is still in one single well-

mixed population. We make use of the metapopulation concepts in our game

dynamical model. This allows us to focus on the heterogeneity of individuals

in their decision making whereby susceptibles have competitive strategy in-

teractions in different subpopulations or groups, apart from keeping the full

model simpler. In other words, we assume that the physical contacts that

cause disease spread is homogeneous, but the behavioural contagion among

susceptibles are heterogeneous. By doing so, we are able to study the be-

havioural response in different groups with different preferences, and conse-
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quently how it affects the epidemic dynamics.

The early theoretical extension of game dynamics from one population

to two populations can be found in the seminal papers [99, 88]. In two-

subpopulation games, in principle, a player could be randomly paired with

one other player either from the same or different subpopulation. This leads

to two types of strategy interactions, namely intra- (i.e. within) and inter-

(i.e. between) subpopulation interactions. If one particular subpopulation

consists of only one kind of players, bi-matrix games are suitable for the situ-

ation whereby there are only inter-subpopulation but no intra-subpopulation

interactions [19, 97]. This specification rules out own subpopulation effects

[34]. However, since we are living in a modern society with people from dif-

ferent backgrounds, religious beliefs, cultures, and professions, both intra-

and inter-subpopulation strategy interactions are important in shaping our

decision making. Therefore, we choose the multi-population game-dynamical

modelling framework proposed in [47, 48] in constructing our game-dynamical

model. The framework allows strategies within and between groups (subpop-

ulations) with different preferences or beliefs. This is essential in investigating

the heterogeneity between groups of individuals in their decision making.

Our proposed model consists of two different dynamics, namely SIR epi-

demic dynamics and imitation dynamics. To distinguish the homogeneity of

our epidemic system and the heterogeneity of our game dynamical system, in

this chapter, we use the term ‘population’ when describing epidemic dynam-

ics and ‘subpopulation’ when describing imitation dynamics, i.e. epidemic

spread in one ‘population’ with individuals divided into two ‘subpopulations’

with different preferences in their strategy switching.

In Section 3.2, we construct a two-subpopulation game dynamical model

for natural selection and imitation process by taking accounts of the cost-

benefit analysis and group pressure. We then carry out the local stability

31



analysis for the model at disease free equilibrium (DFE) in Section 3.3. Re-

sults and discussion are given in Section 3.4 followed by some concluding

remarks in Section 3.5.

3.2 Mathematical formulations

In the course of epidemic outbreak, upon receiving information on disease

prevalence, rational individuals would react by deciding whether or not to al-

ter their behaviour and adopt some pre-cautionary health protective actions

to lower their risk of infection. By adopting altered behaviour, an individual’s

risk of infection is reduced by a factor of α ∈ (0, 1) but he/she has to pay

some inconvenient cost. Thus, to study this kind of individual decision mak-

ing using game theory, we assume that individuals have two strategies, namely

normal behaviour (or strategy) and altered behaviour whereby the strategy

switching is performed by imitating one of the other individuals in the pop-

ulation with the aim to maximize their own payoff. Hence, in this section,

we formulate this imitation dynamics by using the so-called “normal against

altered behaviour game”, leading to a replicator dynamical equation coupled

with the SIR epidemic dynamics.

3.2.1 SIR epidemic and a two-subpopulation natural
selection model

Following the procedures and definitions in [74], we first extend the system

of one-population “natural” selection model into two-subpopulation model.

The natural selection is referred to as a form of strategy switching with-

out cost-benefit considerations. We assume that only susceptible involves in

“normal against altered behaviour game”. Also, each subpopulation has dif-

ferent preferences. We assume that subpopulation 1 prefers normal behaviour

and subpopulation 2 prefers altered behaviour. It is worth mentioning that

although each subpopulation is designated with their respective preference,
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individuals belong to each subpopulation are still given the freedom to adopt

either strategies based on the cost-benefit analysis in imitation process. The

preference of each subpopulation will later be modelled by adding an extra

profit to susceptibles adoting the preferred behaviour in their respective sub-

population.

As a start, in the two-subpopulation setting, at any time step t, the pro-

portion of susceptibles in the population can be subdivided in the following

three equivalent forms:

S(t) ≡ Sn(t) + Sa(t)

≡
[
S1
n(t) + S2

n(t)
]

+
[
S1
a(t) + S2

a(t)
]

≡
[
p(t)S1(t) + (1− q(t))S2(t)

]
+
[
(1− p(t))S1(t) + q(t)S2(t)

]
.

(3.1)

where the variables S with superscript 1 (or 2) are referred to as the suscep-

tibles that belong to subpopulation 1 (or 2), whereas the variables S with

a letter n (or a) in the subscript represent the proportion of susceptibles

adopting normal (or altered) behaviour. We assume that the subpopulation

of susceptibles does not change throughout the course of epidemic outbreak,

i.e. no migrations between subpopulations. Since we focus on the evolution of

strategy (or behaviour) frequency distributions under the mechanism of nat-

ural selection (and imitation dynamics, as discussed in the next subsection),

we denote the proportion of susceptibles adopting the preferred behaviour

in subpopulations 1 and 2 with p and q respectively. Hence, it follows that

p(t) ≡ S1
n(t)

S1
n(t)+S1

a(t)
≡ S1

n(t)
S1(t)

and q(t) ≡ S2
a(t)

S2
n(t)+S2

a(t)
≡ S2

a(t)
S2(t)

.

Using all the forms in equation (3.1), we derive the rate equation of sus-

ceptibles as follows:

33



dS(t)

dt
=
dSn(t)

dt
+
dSa(t)

dt

= −βSn(t)I(t)− αβSa(t)I(t)

= −β
[
S1
n(t) + S2

n(t)
]
I(t)− αβ

[
S1
a(t) + S2

a(t)
]
I(t)

= −β
[
p(t)S1(t) + (1− q(t))S2(t)

]
I(t)

− αβ
[
(1− p(t))S1(t) + q(t)S2(t)

]
I(t)

= −β [p(t) + α(1− p(t))]S1(t)I(t)− β [(1− q(t)) + αq(t)]S2(t)I(t).

(3.2)

Let f = f1 represent the (relative) power of subpopulation 1 and (1 −

f) = f2 the power of subpopulation 2, in which the relative power not only

represents the relative size of the subpopulation, but also reflects how much

influence a subpopulation has on the strategy choice of individuals [47], and

essentially the sizes of both subpopulations evolve in a constant ratio [19]. At

any time step t, we assume that the total number of susceptible individuals is

subdivided into subpopulation 1 and subpopulation 2 according to its relative

power. Thus, S1(t) = f S(t) and S2(t) = (1−f)S(t). Equation (3.2) becomes

dS(t)

dt
= −β [p(t) + α(1− p(t))] fS(t)I(t)− β [(1− q(t)) + αq(t)] (1− f)S(t)I(t)

= −β [fp(t) + αf(1− p(t)) + (1− f)(1− q(t)) + α(1− f)q(t)]S(t)I(t).

(3.3)

From differential calculus, the evolution of the frequency of preferred strat-

egy in subpopulation 1 is given by

dp(t)

dt
=

d

dt

(S1
n(t)

S1(t)

)
=

1

S1(t)

d

dt
S1
n(t)− S1

n(t)

S1(t)

1

S1(t)

d

dt
S1(t)

=
1

fS(t)
[−βp(t)fS(t)I(t)]− p(t) 1

fS(t)
f
dS(t)

dt
.

(3.4)

Substituting (3.3) into (3.4) and simplifying, we obtain
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dp(t)

dt
= βp(t) [fp(t) + αf(1− p(t)) + (1− f)(1− q(t)) + α(1− f)q(t)− 1] I(t).

(3.5a)

Similarly, the evolution of the frequency of preferred strategy in subpopulation

2 is given by

dq(t)

dt
= βq(t) [fp(t) + αf(1− p(t)) + (1− f)(1− q(t)) + α(1− f)q(t)− α] I(t).

(3.5b)

Both equations in (3.5) do not depend explicitly on the densities of suscep-

tible individuals but only on their strategy frequencies. This is aligned with

the idea of replicator dynamics even with the restriction in the two-population

evolutionary dynamics developed in [20]. However, the density of infectious

individuals has an equal effect on all strategies frequency in a given subpop-

ulation.

Combining equations (3.3) and (3.5) into the SIR epidemic model, the

“natural” selection process for behavioural distributions in two subpopula-

tions with different preferences (normal against altered behaviour) embedded

in the disease transmission dynamics can be rewritten as follows:

dS(t)

dt
= −βX(t)S(t)I(t), (3.6a)

dI(t)

dt
= βX(t)S(t)I(t)− γI(t), (3.6b)

dR(t)

dt
= γI(t), (3.6c)

dp(t)

dt
= βp(t) [X(t)− 1] I(t), (3.6d)

dq(t)

dt
= βq(t) [X(t)− α] I(t), (3.6e)

where

X(t) = fp(t) + αf(1− p(t)) + (1− f)(1− q(t)) + α(1− f)q(t). (3.6f)
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in which X reflects the population average reduction of force of infection

which is determined by the strategy frequency and the relative power in both

subpopulations as well as the pre-determined α value. Hereinafter, the in-

dependent variable t is dropped for simplicity of notation. We assume that

individual behavioural response on disease outbreak (i.e. whether to adopt

normal or altered behaviour) is spontaneous and hence the demographic pa-

rameters (birth and death rate) are not included in the model. Also, indi-

viduals in the system (3.6) do not use cost-benefit analysis in changing their

strategy in natural selection model.

By setting f = 1 (resp. f = 0), the two-subpopulation natural selection

model (3.6) reduces to the one-subpopulation model. In the case in which only

subpopulation 1 (resp. 2) exists, only equation (3.6d) (resp. equation (3.6e))

is relevant. After some simplifications, we obtain dp
dt

= p(1 − p)(αβI − βI)

(resp. dq
dt

= q(1− q)(βI − αβI)). Since αβI − βI < 0 (resp. βI − αβI > 0),

the fraction of S1
n (resp. S2

a) is always decreasing (resp. increasing) in the

natural selection process.

3.2.2 The two-subpopulation game-dynamical replica-
tor equations with strategy change through cost-
benefit considerations and social group pressure

Apart from driven by natural selection, we assume that individuals also

change their strategy in “normal against altered behaviour game” through

imitations. To take into account the heterogeneity of individuals’ strategy

adoptions in different subpopulations (or groups), our imitation dynamics is

modelled based on the modelling frameworks in [47, 48]. The payoff matrices

and game-dynamical replicator equations appeared in [47, 48] are given in

details in Appendix A.

We model our imitation dynamics by taking a combination of cost-benefit
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Table 3.1: The 2×2 payoff matrices for the two-subpopulation “normal against
altered behaviour game”

The payoff matrices for individuals belonging to subpopulation 1.

(i) A11
ij , within-subpopulation interactions

Interaction partner’s behaviour
Focal normal (preferred) altered
agent’s normal (preferred) −c1,n + Ω1

n + δ1p −c1,n + Ω1
n

behaviour altered −c1,a −c1,a + δ1(1− p)

(ii) A12
ij , between-subpopulation interactions

Interaction partner’s behaviour
Focal normal altered (preferred)
agent’s normal (preferred) −C1,n + Ω1

n + δ12p(1− q) −C1,n + Ω1
n

behaviour altered −C1,a −C1,a + δ12(1− p)q

The payoff matrices for individuals belonging to subpopulation 2.

(i) A22
ij , within-subpopulation interactions

Interaction partner’s behaviour
Focal normal altered (preferred)
agent’s normal −c2,n + δ2(1− q) −c2,n
behaviour altered (preferred) −c2,a + Ω2

a −c2,a + Ω2
a + δ2q

(ii) A21
ij , between-subpopulation interactions

Interaction partner’s behaviour
Focal normal (preferred) altered
agent’s normal −C2,n + δ21(1− q)p −C2,n

behaviour altered (preferred) −C2,a + Ω2
a −C2,a + Ω2

a + δ21q(1− p)

analysis and social point of view. We construct the 2× 2 payoff matrices for

the two-subpopulation “normal against altered behaviour game”, as given in

Table 3.1.

Imitation driven by cost-benefit considerations

In normal and altered strategy game, the cost incurred to a player (individ-

ual, or agent) adopting a certain strategy will only depend on the type of

strategies chosen, but not on the interaction partner’s strategy. Hence, we

use the notations similar to those employed by [92] in representing costs in

different behavioural groups. Specifically, in Table 3.1, we use the lowercase

letter cu,v to represent the relevant costs incurred for within-subpopulation
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strategy interactions and the uppercase letter Cu,v for between-subpopulation

interactions, in which the first subscript u ∈ {1, 2} denotes the subpopulation

where the focal agent belongs to, and the second subscript v ∈ {n, a} denotes

their adopted strategies, i.e. the normal or altered behaviour. We admit that

the cost for normal behaviour may sound not realistic, and use it here simply

to ensure the elements of payoff matrices have non-zero payoff.

This allow us to assume different costs for normal and/or altered behaviour

in different subpopulations and types of strategy interaction. For instance,

for within-subpopulation strategy interactions, we could assume that the per-

ceived costs of normal behaviour are likely to be lower in subpopulation 1

than in subpopulation 2, i.e. c1,n < c2,n since normal behaviour is preferred

(or favourable) in subpopulation 1. Similarly, we could also assume that the

perceived costs of any strategies for between-subpopulation interactions are

likely to be greater than their corresponding within-subpopulation interac-

tions, i.e. Cu,v > cu,v.

To reflect the incompatible preferences, we assume that one of the two

strategies in a particular subpopulation is more attractive than the other

strategy. For each individual, if one strategy is more attractive, he/she will

be better paid if that strategy is chosen [24]. Hence, unlike [47, 48], the in-

compatible preferences in our proposed model are reflected by adding an extra

profit Ω for individuals choosing the preferred strategy in their respective sub-

population, as in [24]. We further denote that the extra profit for individuals

adopting preferred normal (resp. altered) behaviour in subpopulation 1 (resp.

2) as Ω1
n (resp. Ω2

a). Since altered behaviour is beneficial in reducing the force

of infection, we assume that Ω2
a ≥ Ω1

n.
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Imitation under social group pressure

In strategy interactions, it can be phenomenologically assumed that individu-

als apply group pressure to support conformity and discourage dis-coordinated

behaviour. In the one-population game, this could be modelled by subtract-

ing a non-negative value δ from the off-diagonal payoffs or by adding δ to

the diagonal elements in the payoff matrix [47, 48]. In the two-subpopulation

game, it is possible to assign different magnitudes of group pressure for intra-

(i.e. δ1, δ2) and inter-subpopulation (i.e. δ12, δ21) strategy interactions, as

given in Table 3.1.

By taking the approach similar to [70], the group pressure in our proposed

model is included in such a way that individuals playing a strategy receive an

additional payoff in proportion to how many others in the subpopulation are

also playing that strategy. Note that the average group pressures imposing

on the coordinated behaviour (i.e. the agent and his / her interaction partner

are from different subpopulation, but both display the same behaviour) in

inter-subpopulation interactions are assumed to be equal, i.e. δ12 = δ21, and

we have δ12p(1− q) = δ21(1− q)p and δ12(1− p)q = δ21q(1− p).

Since there are no good epidemiological reasons to claim that the confor-

mity rewards will surplus the cost of altered and/or normal behaviour, δ has

to be chosen carefully, small enough to keep the payoffs in negative value. If

the group pressure is too large, the outcomes of a game can be transformed

[47].

The integration of cost-benefit considerations and social group pres-
sure in deriving the imitation dynamics of two-subpopulation model

To derive the imitation dynamics for our two-subpopulation model, the same

approach and simplifications presented in Appendix A are used, together with

two further simplifications. Firstly, we set c1,a = C1,a = c2,a = C2,a ≡ Ca and
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c1,n = C1,n = c2,n = C2,n ≡ Cn to assume that the cost of altered (resp.

normal) behaviour neither depends on the subpopulation an individual be-

longs to, nor the intra- and inter-subpopulation interactions. Secondly, we

set δ1 = δ2 = δ12 = δ21 ≡ δ0 for the similar assumptions. These assumptions

could be easily relaxed, however, by doing so, there would be nine more pa-

rameters to deal with. Understanding the imitation dynamics with all these

parameters being varied is not really feasible.

With the above two simplifications and after some algebraic manipula-

tions, we obtain the following imitation dynamical equations:

dp

dt
= p(1− p)κ

(
f
[
Ca − Cn + Ω1

n + δ0(2p− 1)
]

+ (1− f)
[
Ca − Cn + Ω1

n + δ0(p(1− q)2 − (1− p)q2)
])
, (3.7a)

dq

dt
= q(1− q)κ

(
(1− f)

[
Cn − Ca + Ω2

a + δ0(2q − 1)
]

+ f
[
Cn − Ca + Ω2

a + δ0(q(1− p)2 − (1− q)p2)
])
. (3.7b)

where κ is a proportionality constant denoting how willing individuals are

to switch to new strategy based on the payoff difference. In a nutshell, the

system (3.7) implies that the susceptibles decide whether to adopt normal or

altered behaviour by weighting the inconvenient cost of health protective ac-

tions against their associated risk of infection under the influence of both intra-

and inter-group (or subpopulation) pressure. Similar to the one-population

model of [70], δ0(2p− 1) and δ0(2q − 1) are the intra-group pressure imposed

on subpopulation 1 and 2, respectively.

We take a closer look on the quadratic terms appeared in the expressions

of the inter-group pressure in (3.7). The inter-group pressure can be expanded

in the following way:
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(a) Subpopulation 1 (b) Subpopulation 2

Figure 3.1: The comparison of the magnitude of intra- and inter-group pres-
sure.

p(1− q)2 − (1− p)q2 = p(1− q)× (1− q)− (1− p)q × q

≡ Pr(S1
n meetS2

n)× S2
n − Pr(S1

a meetS2
a)× S2

a, (3.8a)

q(1− p)2 − (1− q)p2 = q(1− p)× (1− p)− (1− q)p× p

≡ Pr(S2
a meetS1

a)× S1
a − Pr(S2

n meetS1
n)× S1

n. (3.8b)

The first (resp. second) probability (Pr) in equation (3.8a) can be inter-

preted as the inter-group pressure of the coordinated normal (resp. altered)

behaviour imposed by susceptibles with normal (resp. altered) behaviour in

subpopulation 2 on susceptibles with normal (resp. altered) behaviour in sub-

population 1. By only considering equation (3.8a), if the inter-group pressure

of the coordinated normal behaviour is greater (resp. smaller) than the inter-

group pressure of the coordinated altered behaviour in inter-subpopulation

strategy interactions, the normal behaviour spreads (resp. does not spread)

in subpopulation 1. Equation (3.8b) could also be interpreted in the similar

way.

However, in the two-subpopulation setting, the players of the game are al-
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lowed to have both intra- and inter-subpopulation strategy interactions. The

combined effects of both intra- and inter-group pressure on a particular sub-

population could be rather complex. Hence, we plot the magnitudes of the

intra- and inter-group pressure acting on subpopulations 1 and 2, respectively,

for 0 ≤ p, q ≤ 1, with δ0 = 0.1 in Figure 3.1. The colour surfaces are the vari-

ations in the inter-group pressure over all possible values of p and q, whereas

the grey planes are the intra-group pressure. Since we set δ0 = 0.1, the range

of either intra- or inter-group pressure is in the interval [−0.1, 0.1]. We ob-

serve that when both p and q are small (i.e. p, q < 0.5), the inter-group (resp.

intra-group) pressure has positive (resp. negative) effect on the conformity of

the preferred strategy in each subpopulation. On the other hand, when both

p and q are large (i.e. p, q > 0.5), the inter-group pressure discourages confor-

mity of the preferred strategy in each subpopulation whereas the intra-group

pressure stimulates it. In other words, when p and q are either both small or

both large, the effect of social group pressure acting on both subpopulations

are identical.

However, when p is large (i.e. S1
n is majority in subpopulation 1) and q

is small (i.e. S2
a is minority in subpopulation 2), the inter-group pressure im-

posed by subpopulation 2 on subpopulation 1 reaches its peak (Figure 3.1(a)).

This is because of Pr(S1
n meetS2

n)×S2
n � Pr(S1

a meetS2
a)×S2

a. Then, we have

p(1 − q)2 − (1 − p)q2 > 0, and the magnitude of this inter-group pressure is

even higher than its corresponding intra-group pressure. For this situation to

occur in subpopulation 2, p needs to be small and q needs to be large (Fig-

ure 3.1(b)). This proportion of strategy frequency corresponds to a scenario

whereby the preferred strategy has become the social norm in the population.

And, both intra- and inter-group pressures stimulate more individuals follow-

ing social norm.

42



The perceived risk of disease prevalence and the speed of two dif-
ferent dynamics

Let the payoffs (Π) associated with adopting normal and altered behaviour

are

Πn(τ) = −mnM(τ) ≡ −Cn, (3.9a)

Πa(τ) = −k0 −maM(τ) ≡ −Ca, (3.9b)

as defined in [74], where mn > ma. The parameters mn and ma are related

to the risk of developing disease symptoms induced by individuals with nor-

mal and altered behaviours, respectively, while k0 represents the additional

cost of any self-initiated pre-cautionary measure (e.g. social distancing, less

traveling, avoidence of congregated places etc.). M(τ) is the perceived risk of

disease prevalence. τ is the time unit for imitation process which has different

time scales from the disease transmission, t = ετ . Since payoff maximization

is also cost minimization, we also denote two time-dependent payoffs as the

cost of normal behaviour, Cn and the cost of altered behaviour, Ca, respec-

tively, in equations (3.9).

Assume that the susceptibles have full information on disease prevalence,

i.e. M(τ) = I(τ), which is certainly not realistic. We made this assumption

in order to use minimal number of equations in our proposed model. Thus,

the expression Ca − Cn in equation (3.7a) can be expressed as

Ca − Cn = k0 +maI(τ)−mnI(τ)

=
εk0

ε
− (mn −ma)I

(
t

ε

)
let εk0 = k

=
k

ε

[
1−

(
mn −ma

k

)
I(t)

]
let m =

mn −ma

k

=
k

ε
[1−mI(t)] . (3.10a)
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Similarly,

Cn − Ca = −k
ε

[1−mI(t)] . (3.10b)

The complete model of SIR epidemics coupled with two-subpopulation
natural selection process and imitation dynamics

Substituting equations (3.10) into equations (3.7), let δ = εδ0, Ωn = εΩ1
n,

Ωa = εΩ2
a and ρ = κ

ε
, the full system of our model becomes

dS

dt
= −βXSI, (3.11a)

dI

dt
= βXSI − γI, (3.11b)

dR

dt
= γI, (3.11c)

dp

dt
= βp(X − 1)I + p(1− p)ρ×

(
f [k(1−mI) + Ωn + δ(2p− 1)]

+ (1− f)
[
k(1−mI) + Ωn + δ(p(1− q)2 − (1− p)q2)

])
, (3.11d)

dq

dt
= βq(X − α)I + q(1− q)ρ×

(
(1− f) [−k(1−mI) + Ωa + δ(2q − 1)]

+ f
[
−k(1−mI) + Ωa + δ(q(1− p)2 − (1− q)p2)

])
, (3.11e)

where X = fp+αf(1−p)+(1−f)(1−q)+α(1−f)q. The parameter ρ gives

the speed of the imitation process with respect to the disease transmission

process as well as a measure of how willing the players are to switch to new

strategy based on the payoff difference. If ρ = 0, individuals in system (3.11)

do not include the cost-benefit analysis in changing their strategies, and sys-

tem (3.11) reduces to the natural selection model.

As the direct consequences of following the multi-population game dynam-

ical modelling framework in [47, 48], the two subpopulations in our proposed

model face a conflict of interest by having different preferences in adopt-

ing normal or altered strategy. Therefore, the ± sign in +k(1 − mI) and
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−k(1−mI) reflects that the evolution of strategy frequency under the cost-

benefit considerations in one subpopulation is the opposite of the outcome

on another subpopulation. In a way, this model the common belief that an

increase (resp. a decrease) of the cost of adopting altered behaviour will drive

more susceptibles in subpopulation 1 (resp. 2) adopting normal (resp. al-

tered) behaviour.

3.3 Local stability analysis

In this section, we present the local stability analysis for the model with no

extra benefit, i.e. Ωn = Ωa = 0. At the disease free equilibrium (DFE),

I = 0, the two-subpopulation replicator dynamical equations (3.11d) and

(3.11e) become

dp

dt
= p(1− p)ρU(p, q) ≡ u(p, q), (3.12a)

dq

dt
= q(1− q)ρ V (p, q) ≡ v(p, q), (3.12b)

where

U(p, q) = f [k + δ(2p− 1)] + (1− f)
[
k + δ(p(1− q)2 − (1− p)q2)

]
, (3.12c)

V (p, q) = (1− f) [−k + δ(2q − 1)] + f
[
−k + δ(q(1− p)2 − (1− q)p2)

]
.

(3.12d)

We first find all the possible fixed (or stationary) points of the system

(3.12) by equating equations (3.12a) and (3.12b) to 0, respectively.

Let
dp

dt
= 0 ⇔ p = 0, 1 or U(p, q) = 0,

Let
dq

dt
= 0 ⇔ q = 0, 1 or V (p, q) = 0.

From p = 0, 1 and q = 0, 1, we obtain the first four fixed points which are

located at four respective corners of the pq-plane. Also, another four fixed

points on the boundary of the pq-plane can be obtained by setting q = 0 or 1
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(resp. p = 0 or 1) and solving U(p, q) = 0 (resp. V (p, q) = 0) for the p (resp.

q) value. Apart from that, if there exist 0 < p, q < 1 values that satisfy the

two equations U(p, q) = 0 and V (p, q) = 0 simultaneously, then the system

of equations (3.12) does have fixed point on the inner part of the pq-plane.

That is, the system (3.12) could possibly have four to nine fixed points in total.

To determine the stability of the system around the fixed points (pl, ql),

following [48], we first calculate the Jacobian matrix of the system (3.12).

J =

∂u∂p ∂u
∂q

∂v
∂p

∂v
∂q

 =

J11 J12

J21 J22

 , (3.13)

where

J11 = (1− 2pl)ρU(pl, ql) + pl(1− pl)ρ
[
2δf + (1− f)δ

(
(1− ql)2 + q2

l

)]
,

J12 = pl(1− pl)ρ [2(1− f) δ (2plql − pl − ql)] ,

J21 = ql(1− ql)ρ [2fδ (2plql − pl − ql)] ,

J22 = (1− 2ql)ρV (pl, ql) + ql(1− ql)ρ
[
2δ(1− f) + fδ

(
(1− pl)2 + p2

l

)]
.

(3.14)

At the fixed point (pl, ql), the eigenvalues (i.e. ηl and νl) of the Jacobian

matrix are given by the determinant below:∣∣∣∣∣∣J11 − ηl J12

J21 J22 − νl

∣∣∣∣∣∣ = 0, (3.15a)

which gives the characteristic equation,

(J11 − ηl)(J22 − νl)− J12J21 = 0. (3.15b)

From equations (3.14) and (3.15), we obtain the solution of the eigenvalues

at all possible points, as listed in the Table 3.2.

From the results given in Table 3.2, we can determine the nature (the
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Table 3.2: The fixed points and their associated eigenvalues when Ωn,Ωa = 0

l Fixed point (pl, ql) Associated eigenvalues, ηl and νl
1 (0, 0) η1 : −ρ(fδ − k)

ν1 : −ρ(k + (1− f)δ)
2 (1, 0) η2 : −ρ(k + δ)

ν2 : −ρ(k + δ)
3 (0, 1) η3 : ρ(k − δ)

ν3 : ρ(k − δ)
4 (1, 1) η4 : −ρ(fδ + k)

ν4 : −ρ(−k + (1− f)δ)

5 (p5 = fδ−k
δf+δ

, 0) η5 : p5(1− p5)ρ(fδ + δ)

ν5 : ρ((1− f)(−k − δ) + f(−k − δp2
5))

6 (p6 = δ−k
δf+δ

, 1) η6 : p6(1− p6)ρ(fδ + δ)

ν6 : −ρ((1− f)(−k + δ) + f(−k + δ(1− p6)2))

7 (1, q7 = k+δ
2δ−δf ) η7 : −ρ(f(k + δ) + (1− f)(k + δ(1− q7)2))

ν7 : q7(1− q7)ρ(2(1− f)δ + δf)

8 (0, q8 = k+δ(1−f)
2δ−δf ) η8 : ρ(f(k − δ) + (1− f)(k − δq2

8))

ν8 : q8(1− q8)ρ(2(1− f)δ + δf)

stability state) of each of the fixed points based on the solution of the two

eigenvalues at the point. If both eigenvalues are negative, the fixed point is a

stable node, for example, at the point (p2, q2) = (1, 0), η2 and ν2 are always

negative and hence the point is always a stable node. If the eigenvalues are

both positive at a fixed point, then the point is an unstable point; and if the

eigenvalues have opposite sign then the point is a saddle point. For example,

at the point (p3, q3) = (0, 1), η3 < 0 and ν3 < 0 if k < δ and η3 > 0 and ν3 > 0

if k > δ. So, the point is stable if k < δ or otherwise unstable. At the point

(1, 1), η4 < 0 and ν4 > 0 if k > (1− f)δ and so this point is a saddle point if

k > (1 − f)δ. It can be seen that when δ → 0, the fixed points (pl, ql) with

l = 5, 6, 7, 8 do not exist.

Similarly, for the two subpopulation models with extra profit given to sus-

ceptibles adopting the preferred behaviour, i.e. Ωn,Ωa 6= 0, by carrying out

a similar local stability analysis, we obtain the fixed points and its associ-

ated eigenvalues as listed in Table 3.3, where p5 = fδ−Ωn−k
δf+δ

, p6 = δ−Ωn−k
δf+δ

,

q7 = k−Ωa+δ
2δ−δf , and q8 = k−Ωa+δ(1−f)

2δ−δf . It is interesting to note that by adding
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Table 3.3: The fixed points and their associated eigenvalues when Ωn,Ωa 6= 0

l Fixed point Associated eigenvalues, ηl and νl
(pl, ql)

1 (0, 0) η1 : −ρ(fδ − k − Ωn)
ν1 : −ρ(k − Ωa + (1− f)δ)

2 (1, 0) η2 : −ρ(k + Ωn + δ)
ν2 : −ρ(k − Ωa + δ)

3 (0, 1) η3 : ρ(k + Ωn − δ)
ν3 : ρ(k − Ωa − δ)

4 (1, 1) η4 : −ρ(fδ + Ωn + k)
ν4 : −ρ(−k + Ωa + (1− f)δ)

5 (p5, 0) η5 : p5(1− p5)ρ(fδ + δ)
ν5 : ρ((1− f)(−k + Ωa − δ) + f(−k + Ωa − δp2

5))
6 (p6, 1) η6 : p6(1− p6)ρ(fδ + δ)

ν6 : −ρ((1− f)(−k + Ωa + δ) + f(−k + Ωa + δ(1− p6)2))
7 (1, q7) η7 : −ρ(f(k + Ωn + δ) + (1− f)(k + Ωn + δ(1− q7)2))

ν7 : q7(1− q7)ρ(2(1− f)δ + δf)
8 (0, q8) η8 : ρ(f(k + Ωn − δ) + (1− f)(k + Ωa − δq2

8))
ν8 : q8(1− q8)ρ(2(1− f)δ + δf)

the extra profit into the model, it affects the stability of the fixed points sub-

stantially. For instance, if Ωa is sufficiently large, i.e. Ωa > k+δ, then ν2 > 0.

Thus, it is possible to have the fixed point (1, 0) as a saddle point, rather than

a stable node as in the case with no extra profit.

3.4 Results and discussion

3.4.1 The two-subpopulation model with no extra profit
for adopting the preferred behaviour (i.e. Ωn =
Ωa = 0)

The key parameter which characterizes the speed of the imitation process

with respect to the “natural” selection process is ρ. By setting ρ = 0 (Fig-

ure 3.2(a)), the imitation dynamic model is reduced to the “natural” selec-

tion model. Without the influence of imitation, the altered behaviour in

subpopulation 2 grows in a modest scale, whereas the normal behaviour

in subpopulation 1 declines slightly in a single epidemic outbreak for all
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(a) ρ = 0 (b) ρ = 1.5, δ = 0.001

(c) ρ = 1.5, δ = 0.1 (d) ρ = 1.5, δ = 0.4

Figure 3.2: The (p(t), q(t)) trajectories for the natural selection model and
the imitation dynamic model with different magnitudes of group pressure δ.

initial conditions (p(0), q(0)). The initial conditions (p(0), q(0)) can be re-

garded as the previous history of proportion of susceptibles adopting nor-

mal and altered strategies in both subpopulations, which is indeed the ex-

isting preferences of particular subpopulation. We simulate all results by

using 0.1 ≤ p(0), q(0) ≤ 0.9 in order to make sure that all pure strategies of

the imitation game are present in the initial subpopulations. In Figure 3.2,

{•, ◦,×} denotes {stable, unstable, saddle} point, respectively. Unless oth-

49



erwise specified, the combination of parameter values (β, γ, α, ρ, f,m, k, δ) =

(0.625, 0.25, 0.86, 1.5, 0.5, 0.1, 0.025, 0.1) is used for all simulations in this chap-

ter, together with the initial conditions S(0) = 0.95, I(0) = 0.05. This pair

of β and γ values gives the basic reproduction number, R0 = β
γ

= 2.5 which

is the R0 for airborne droplet transmission, such as influenza (R0 = 2 to 3)

[64]. The simulations end at 80 time steps, with 4t = 1.

By incorporating social group pressure and cost-benefit analysis into the

imitation dynamics of the two-subpopulation model, i.e. set ρ > 0, there exist

four basins of attraction in the game dynamics leading to four fixed points, re-

spectively, provided δ > k, as shown in Figure 3.2(c) and (d). The stationary

solution (p, q) = (1, 0) (resp. (0, 1)) means that all individuals finally adopt

the behaviour preferred in subpopulation 1 (resp. 2), meanwhile (p, q) = (1, 1)

(resp. (0, 0)) corresponds to the case where both subpopulations will (resp.

will not) end up with subpopulation-specific norms (i.e. every subpopulation

just does what it likes [48]). By comparing Figure 3.2(a) to other figures in

Figure 3.2, we conclude that without the imitation dynamics, the “natural”

selection can only drive a small portion of susceptibles to switch their strate-

gies, i.e. the expected temporal change of behavioural pattern of susceptibles

in both subpopulations is minimal. By including the imitation dynamics with

the social group pressure, the behavioural pattern of susceptibles will eventu-

ally end up in one of the four specific directions.

The existence of four basins of attraction can be explained qualitatively

as follows. When both p(0) and q(0) are small, i.e. the proportions of the

preferred behaviour in their respective subpopulation are low, from the per-

spective of any susceptibles adopted the preferred behaviour, the impact of

intra-group pressure has on strategy switching is smaller than the inter-group

pressure. In other words, susceptibles with preferred behaviour in either sub-

population will have higher probability of meeting one other susceptible with

the coordinated behaviour from another subpopulation than from the same
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subpopulation. For any specific pairs of p and q, the effect of the intra-group

pressure is always larger than the inter-group pressure, this results in a fall

of the preferred behaviour in both subpopulations. Thus, non-preference be-

haviour survives in their respective subpopulation and everybody behaves

non-coorperatively in the end. For large p(0) and q(0), the proportion of

the preferred behaviour in their respective subpopulation is high. The intra-

group pressure thus has a considerate effect on stimulating more susceptibles

adopting the preferred behaviour. Hence, both subpopulations will be even-

tually occupied by susceptibles with their respective subpopulation preferred

behaviour. For initial conditions with large (resp. small) p(0) but small (resp.

large) q(0), the majority of susceptibles in both subpopulations are with nor-

mal (resp. altered) behaviour, and both intra- and inter-group pressure in

subpopulations will drive more susceptibles to adopt the normal (resp. al-

tered) behaviour. Therefore, trajectories (p(t), q(t)) evolve toward the fixed

point (1, 0) (resp. (0, 1)).

For the imitation dynamic model with the magnitude of group pressure

δ = 0.001 (Figure 3.2(b)), almost all (p(t), q(t)) flow lines move towards the

fixed point (1, 0). All susceptibles are expected to end up with normal be-

haviour as the epidemic outbreak is over. However, if a large δ value is used,

for instance δ = 0.4 (Figure 3.2(d)), the effect of group pressure is more pro-

nounced and the trajectories (p(t), q(t)) follow a more distinct path towards

their respective fixed points.

Based on the fixed points and eigenvalues given in Table 3.2, we examine

the nature of each fixed point in Figure 3.2(b) and 3.2(c) by evaluating its as-

sociated eigenvalues, as given in Table 3.4. The numerical simulation results

as shown in Figure 3.2 are in good agreement with the results of the local

stability analysis in Section 3.3. With the combination of parameter values

used in Figure 3.2(b), there are no real solutions within the range [0, 1] for the

simultaneous equations U(p9, q9) = 0 and V (p9, q9) = 0 (i.e. equations (3.12c)
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Table 3.4: The fixed points and their associated eigenvalues for Figure 3.2 (b)
and 3.2(c)

l Fixed point Figure 3.2(b) Figure 3.2(c)
(pl, ql) ηl νl Type of ηl νl Type of

point point
1 (0, 0) 0.037 -0.038 SP -0.038 -0.113 stable
2 (1, 0) -0.039 -0.039 stable -0.188 -0.188 stable
3 (0, 1) 0.036 0.036 unstable -0.113 -0.113 stable
4 (1, 1) -0.038 0.037 SP -0.113 -0.038 stable
5 (0.167, 0) Note: All p5, p6, q7 and q8 0.031 -0.115 SP
6 (0.5, 1) values are out of range [0, 1]. 0.056 -0.056 SP
7 (1, 0.833) Therefore, no fixed points on -0.115 0.031 SP
8 (0, 0.5) the boundary of the pq-plane. -0.056 0.056 SP
9 (0.36, 0.64) No inner fixed points. 0.029 0.059 unstable
SP = saddle point

(a) α = 0.78 (b) α = 0.94

Figure 3.3: The time evolution of SIR dynamics with different reductions of
force of infection, α.

and (3.12d)). However, for Figure 3.2(c), there exists one real solution which

gives the inner fixed point (p9, q9) = (0.36, 0.64).

As suggested in [74], the reduction of force of infection received by al-

tered susceptible is in the range of α ∈ (0.78, 0.94). Hence, by taking its

lowest and highest value, the time evolutions of the SIR dynamics with all

possible initial conditions (p(0), q(0)) are plotted in Figure 3.3. A lower α
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(a) f = 0.5 (b) f = 0.25

(c) f = 0.75 (d) f = 0.99

Figure 3.4: The epidemic final size with different (relative) power of subpop-
ulation, f .

value implies greater benefits to altered susceptibles and results in consider-

able variance in the epidemic final sizes. On the other hand, for α = 0.94, the

altered susceptibles do not reduce much of their probability of being infected

and the epidemic final sizes become more consistent with all initial conditions

(p(0), q(0)) considered. Hence, we use the median value α = 0.86 throughout

the simulations in this chapter.
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Instead of the typical SIR time evolution presented in Figure 3.3, we illus-

trate the correlation between the previous history of proportion of strategies

in both subpopulations and the epidemic final size, with α = 0.86 and δ = 0.4

in Figure 3.4. When the two subpopulations are equally strong (i.e. f = 0.5),

the severity of the epidemic outbreak is low (resp. high) if the initial pro-

portion of susceptible with preferred altered behaviour is high (resp. low)

(Figure 3.4(a)). However, if we incorporate the heterogeneity between sub-

populations, the epidemic final sizes may be significantly changed. For the

scenario whereby the subpopulation 2 is stronger than subpopulation 1, if the

initial proportion of susceptibles with preferred altered behaviour is minority

in its subpopulation, the epidemic final sizes almost reach its peak regardless

of the initial proportion of susceptibles with preferred normal behaviour in

another subpopulation (Figure 3.4(b)).

In contrast, the epidemic final sizes are relatively high when the initial

proportion of susceptibles with normal behaviour in subpopulation 1 is domi-

nant, regardless the initial proportion of susceptibles with altered behaviour in

subpopulation 2, when subpopulation 1 is more powerful than subpopulation

2 (Figure 3.4(c)). It can thus be suggested that not only the heterogene-

ity among individuals but also the heterogeneity of subpopulations has an

important impact on the epidemic dynamics. If the more powerful subpop-

ulation prefers normal (resp. altered) behaviour and the initial proportion

of the preferred strategy is majority (resp. minority), the epidemic final size

is high regardless the initial proportion of the other subpopulation. Figure

3.4(d) highlights the scenario of population with single preference whereby

we purposely impose an extreme high relative strength on subpopulation 1

by setting f = 0.99. By doing so, the whole population can be regarded as

comprising of only one single group with normal behaviour as their prefer-

ence. Without heterogeneity between groups in a population, the epidemic

final sizes evolve smoothly as compared to the model of two subpopulations

with different relative strengths.

54



(a) p(0) = 0.15, q(0) = 0.85 (b) p(0) = 0.85, q(0) = 0.85

(c) p(0) = 0.15, q(0) = 0.15 (d) p(0) = 0.85, q(0) = 0.15

Figure 3.5: The contour plots of the epidemic final size in parameter space
(δ, k).

As our two-subpopulation model incorporates both cost-benefit consid-

erations and social group pressure, each of these factors should be weighed

according to its relative impact on the epidemic final size. Hence, we ex-

plore the parameter space (δ, k) for δ ∈ [0.05, 0.4] and k ∈ [0.025, 0.2] for

four different initial proportions of strategies in two subpopulations in Fig-

ure 3.5. In particular, Figure 3.5(a) (resp. 3.5(d)) corresponds to the case

with high initial proportion of altered (resp. normal) susceptible in both sub-
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populations. The lowest epidemic final size in Figure 3.5(a) and the highest

in Figure 3.5(d), among four panels in Figure 3.5, again suggests that the

previous history of strategies adopted by susceptible in both subpopulations

has a significant effect on epidemic dynamics. Figure 3.5(b) and 3.5(c) show

similar results simply because both subpopulations are equally strong and the

proportions of susceptibles with altered and normal behaviour in the initial

population are quite compatible.

All panels in Figure 3.5 show that the increase of additional costs to those

adopting altered behaviour during epidemic outbreak would discourage peo-

ple to take up pre-cautionary health protective actions and hence results in

higher epidemic final size. For a specific cost of altered behaviour, the sever-

ity of epidemic outbreak could be reduced if the intensity of the social group

pressure increases (Figure 3.5(a) to 3.5(c)). However, interestingly, the social

group pressure could be a “double edged sword” if the initial proportions of

the normal behaviour susceptibles are already the majority in both subpopu-

lations. The increases of social group pressure acting on normal susceptibles

will give rise to higher epidemic final size (Figure 3.5(d)). This finding aligns

with that of [70], who identified that social norms could either support or

hinder immunization goals.

3.4.2 The two-subpopulation model with extra profit
for adopting the preferred behaviour (i.e. Ωn,Ωa 6=
0)

For the two-subpopulation model presented in Section 3.4.1, when the effect

of social group pressure is sufficiently large, the (p(t), q(t)) trajectories form

four basins of attraction. However, this social group pressure may be balanced

out by extra profit Ω given to individuals adopting the preferred strategy in

their respective subpopulation. Therefore, including the extra profit Ω results

in a variety of interesting game dynamics in which four basins of attraction
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(a) Ωn = 0.03, Ωa = 0.07 (b) Ωn = −0.08, Ωa = 0.08

Figure 3.6: Comparing the (p(t), q(t)) trajectories between the imitation pro-
cess with different extra profits.

could be reduced to only two (or three) basins of attraction. For instance,

with Ωn = 0.03 and Ωa = 0.07 (Figure 3.6(a)), both subpopulations end

up with subpopulation-specific norms (coexisting “subcultures”, as defined in

[47]) whenever the initial fractions p(0) and q(0) are not very different. With

Ωn = −0.08 and Ωa = 0.08 in which negative value of Ωn implies that for indi-

viduals in subpopulation 1, he/she will be punished if adopting the preferred

normal strategy, we find that all individuals in both subpopulations finally

adopt the preferred altered strategy in subpopulation 2 for most of the initial

conditions (p(0), q(0)) (Figure 3.6(b)). The location and stability of the fixed

points in Figure 3.6 are verified with the local stability analysis and are given

in Table 3.5.

3.5 Concluding remarks

We conclude this chapter with the following remarks.

(i) Without imitation dynamics, the “natural” selection drives only a small
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Table 3.5: The fixed points and their associated eigenvalues for Figure 3.6

Figure 3.6(a) Figure 3.6(b)
l (pl, ql) ηl νl Type of (pl, ql) ηl νl Type of

point point
1 (0, 0) 0.008 -0.008 SP (0, 0) -0.158 0.008 SP
2 (1, 0) -0.233 -0.083 stable (1, 0) -0.068 -0.067 stable
3 (0, 1) -0.068 -0.218 stable (0, 1) -0.233 -0.233 stable
4 (1, 1) -0.158 -0.143 stable (1, 1) 0.008 -0.158 SP
5 NA - - - (0.7, 0) 0.047 -0.029 SP
6 (0.3, 1) 0.047 -0.179 SP NA - - -
7 (1, 0.367) -0.188 0.052 SP (1, 0.3) -0.029 0.047 SP
8 (0, 0.033) 0.007 0.007 unstable NA – - -
SP = saddle point, NA = no answer

number of susceptibles switching their strategy.

(ii) By including sufficiently large magnitude of social group pressure in imi-

tation dynamics, there exist four basins of attraction for the behavioural

pattern of susceptibles in the two-subpopulation model.

(iii) With other parameter values fixed, the outcome of the strategy switching

depends on the initial proportion of susceptibles with normal and altered

strategies in both subpopulations.

(iv) There exists a correlation between the previous history of proportion of

strategies in both subpopulations and the epidemic final size.

(v) The increase of additional cost to the susceptibles with altered behaviour

discourages people from taking up pre-cautionary health protective ac-

tions and hence results in higher epidemic final size. For a specific cost

of altered behaviour, the social group pressure could be a “double edged

sword”, though.
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Chapter 4

SIRVS Epidemic Model with
Two-class Vaccine-induced
Immunity and Vaccination
Population Games

4.1 Introduction

Behavioural factors play an important and crucial role in determining the

success of a voluntary vaccination programme for infectious diseases. Individ-

ual vaccination decisions are usually based on a complex balance of perceived

costs of vaccination and disease. The perceived cost of vaccination is highly

influenced by the perceived probability of vaccine complications (for instance,

the vaccine side effects (VSE)) and the degree of protection conferred by vac-

cines, which is closely related to the vaccine efficacy and vaccine failure. Both

the vaccine efficacy and vaccine failure will be termed as vaccine imperfection

in this chapter.

According to [109], the vaccine efficacy is defined as the theoretical success

rate whereas the vaccine efficiency is indeed the practical observed success in

preventing vaccinated individuals from getting infections. In reviewing the lit-

erature, it is not uncommon that the vaccine imperfections have been taken

into account for a more realistic modelling exercise in epidemiology, for in-

stance, in [65]. Imperfect vaccines always increase the critical vaccination
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threshold that may lead to disease eradication [40] simply because being vac-

cinated does not always confer vaccine-acquired immunity. Overall, vaccine

failure could arise in three aspects. First, vaccine may fail to generate immu-

nity in a fraction of people vaccinated, which is defined as vaccine failure in

take (“all-or-nothing”) [31, 59]. Second, vaccine may only offer partial protec-

tion to vaccinated individuals either in reducing an individual susceptibility

to infection or subsequent transmission if the individual becomes infected, as

well as speeding up recovery. Such vaccines permit vaccine failure in degree,

described as “leaky” in [50, 59]. Centers for Disease Control and Prevention

(CDC) [15] claims that if someone who has been vaccinated with chickenpox

vaccine does get the disease, it is usually very mild and they can recover faster

than those who are not vaccinated. Third, for many diseases, the vaccine-

(and disease-) acquired immunity wanes over time which is described as vac-

cine failure in duration [46, 59]. For instance, pertussis (whooping cough)

vaccines for adolescents and adults could protect about 7 out of 10 people in

the first year after getting vaccinated, but only fully protecting 3 or 4 out of

10 people in four years after getting the vaccine [16].

Since individuals are not vaccinated at the same time in voluntary vac-

cination, it is possible, therefore, that vaccinated individuals with fully pro-

tective vaccine-acquired immunity coexist with other vaccinated individuals

with partially protective vaccine-acquired immunity in the population. The

epidemic dynamics of this coexistence of fully and partially protected vacci-

nated individuals is well-captured in a SIRVS epidemic model extended with

two classes of vaccine-induced immunity [30], where vaccinated individuals

first have high vaccine-acquired immunity with full protection from infection

and their immunity wanes in two stages, from high to low immunity (where

individuals still have some partial protection) and from low to no immunity

following a gamma distribution. Apart from that, another two features in the

extended model in [30] are that the vaccine may reduce transmissibility and

accelerate recovery in breakthrough infections for vaccinated infected individ-
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uals. These make the model suitable for investigating the epidemic dynamics

with vaccine failure in degree and in duration.

It is possible to hypothesise that no one takes vaccination until the vaccine

is sufficiently efficient in protecting vaccinated individuals from infection, and

also, an increase in vaccine efficacy will boost vaccine uptake level. However,

in a population of self-interested individuals, high vaccine efficacy leads to

uptake drops due to free-riding effects [113]. When vaccine immunity wanes

slowly, vaccine coverage is expected to be low but stable [110]. This is because

when vaccines are able to provide long-term protection, the risk awareness

among individuals may be hard to maintain and this could lead to substan-

tial drop in vaccination coverage and is likely to result in severe infrequent

epidemics [105]. The imperfections of vaccine also increase the probability

of non-vaccinating and the overall cost of optimum vaccination strategy [87].

When the vaccination cost is higher than the threshold value for the vaccine

imperfection, vaccination behaviours do not spread across the population and

the disease could also invade in scale-free networks [13]. Another implication

of the vaccination confers partial immunity on vaccination behaviours is the

existence of multiple equilibria of vaccination rate in voluntary vaccination

program [79].

These findings suggest that a strong interplay between vaccine imperfec-

tion, vaccination coverage and disease dynamics arises. However, the findings

may be somewhat limited by the definition of vaccine efficacy in the above-

mentioned literatures whereby they are merely referred to the reduction of

susceptibility to infection. The impacts of several other characteristics of im-

perfect vaccines on individual vaccination decision-making remain unanswered

at present. Hence, in this chapter, we employ the SIRVS epidemic model with

two classes of vaccine-induced immunity and additional characteristics of im-

perfect vaccine (namely, the reduction of transmissibility and faster recovery)

in [30], together with the vaccination population games framework [79], to
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investigate the interplay between these characteristics of imperfect vaccines,

the relative cost of vaccination to infection, the force of infection, the individ-

ual and population vaccination rates.

In Section 4.2, the full SIRVS epidemic model with two classes of vaccine-

induced immunity is presented. Since models with imperfect vaccines exhibit

backward bifurcation [44], we then show that the SIRVS model with two

classes of vaccine-induced immunity undergoing backward bifurcation by us-

ing center manifold theory in Subsection 4.2.1. Subsection 4.2.2 concerns the

analysis of the effective reproduction number. Then the details of vaccina-

tion population games for two classes of vaccine-induced immunity model are

explored in Section 4.3. Results are discussed in Section 4.4 and some con-

cluding remarks are given in Section 4.5.

4.2 Analysis of the SIRVS epidemic model with

two classes of vaccine-induced immunity

The population-scale dynamics of the vaccination population games can be

described by the SIRVS model with two classes of vaccine-induced immunity

in the extended model in [30]:

dS

dt
= Λ− λS − π̄S + ωRR + ωV V2 − µS,

dI

dt
= λS − γuI − µI,

dW

dt
= σλV2 − γvW − µW,

dR

dt
= γuI + γvW − ωRR− µR,

dV1

dt
= π̄S − γ1V1 − µV1,

dV2

dt
= γ1V1 − σλV2 − ωV V2 − µV2,

(4.1)

where Λ denotes the (constant) recruitment rate of susceptible corresponding

to births and immigration, and µ is the natural death rate of the population.
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The total population at time t, N(t), is divided into six mutually exclusive

subpopulations, namely susceptible (S), two compartments for respective two

classes of infected individuals (I and W ), recovered (R), two compartments

for respective two classes of vaccinated individuals (V1 and V2). Specifically,

those individuals in the V1 class are the vaccinated individuals with high

vaccine-induced immunity. They are fully protected from infection until their

vaccine-induced protection is reduced and they then move to the V2 class at

a rate γ1. While these vaccinated individuals reside in the V2 class, they only

gain low vaccine-induced immunity, i.e. partial protection provided by the

vaccine. When the breakthrough infection of individuals in the V2 class oc-

curs, they move to the vaccinated infected class, W at the rate σλ, where

0 ≤ σ < 1 is the relative risk of infection for vaccinated individuals in the V2

class compared to unvaccinated susceptible individuals, or simply the prob-

ability of vaccine failure in degree, with the vaccine efficacy given by 1 − σ.

Thus, it is assumed that the vaccine is regarded as fully effective to individuals

in the V1 class and imperfect to individuals in the V2 class. Meanwhile, the

unvaccinated susceptible individuals, S, move to the unvaccinated infected

class, I, at the rate λ.

The individuals in the I and W classes differ from two aspects resulted

from the imperfect vaccine. First, unlike the unvaccinated infected individuals

in the I class with disease transmissibility β, the vaccinated infected individu-

als in the W class can only transmit infection at a reduced rate θβ ≤ β, where

0 < θ ≤ 1 is a modification parameter that accounts for the reduced infec-

tiousness of vaccinated infected individuals. Therefore, the force of infection

of model (4.1) is given by λ = β I+θW
N

. Second, the vaccine may accelerate

recovery in breakthrough infections. Hence, the vaccinated infected individ-

uals will have faster recovery than the unvaccinated infected individuals, i.e.

γu < γv.

Since N(t) = S(t) + I(t) +W (t) +R(t) + V1(t) + V2(t), the rate of change
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of the total population in model (4.1) is given by dN
dt

= Λ− µN . At t→∞,

we have N → Λ
µ

. Hence, we assume Λ = µ so that the population size is

constant. The model (4.1) also takes into account two vaccine failures in du-

ration, namely vaccine- and disease-acquired immunity wanes at rate ωV and

ωR, respectively.

The model (4.1) has a disease-free equilibrium (DFE) given by

E0 = (S0, I0,W0, R0, V10, V20) = (S0, 0, 0, 0, V10, V20) where

S0 =
(ωV + µ)(γ1 + µ)

ωV γ1 + (ωV + γ1 + µ)(π̄ + µ)
,

V10 =
(ωV + µ)π̄

ωV γ1 + (ωV + γ1 + µ)(π̄ + µ)
,

V20 =
γ1π̄

ωV γ1 + (ωV + γ1 + µ)(π̄ + µ)
.

(4.2)

Since the population is not completely susceptible and the vaccine efficacy

plays a crucial role in shaping the epidemic dynamics, we shall use the effec-

tive reproduction number, denoted by Rvac, instead of the basic reproduction

number, R0. In one class of infective epidemic model with vaccination, Rvac

measures the average number of new infective individuals generated by a

single infectious individual in a population where a certain fraction of the

susceptible population are vaccinated. However, since the model (4.1) has

two infective compartments (i.e. I and W ) with different infectivity, we em-

ploy the method of next generation matrix in [103] to obtain the following

effective reproductive number:

Rvac =
βS0

γu + µ
+
σβθV20

γv + µ

=
β

(γu + µ)(γv + µ)

[
(γv + µ)(ωV + µ)(γ1 + µ) + σθγ1π̄(γu + µ)

ωV γ1 + (ωV + γ1 + µ)(π̄ + µ)

]
.

(4.3)

Following [103], Rvac represents the number of secondary infections, both un-

vaccinated and vaccinated, produced by an “index case”, distributed in both

I and W classes, with one part in I and σV20
S0

parts in W (for the detail of this
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interpretation, see Appendix B).

Let E∗ = (S∗, I∗, R∗,W ∗, V ∗1 , V
∗

2 ) be any endemic equilibrium point (EEP)

of the model (4.1). The non-zero equilibria of the model satisfy the following

quadratic equation

a2(λ∗)2 + a1λ
∗ + a0 = 0 (4.4)

where

a2 = σ(ωR + γu + µ)(γ1 + µ)(γv + µ), (4.5a)

a1 = σ(γu + µ)
[
γ1π̄(ωR + γv + µ) + (γv + µ)(ωR + µ)(γ1 + π̄ + µ)

]
+ (γ1 + µ)(γv + µ)

[
(ωV + µ)(ωR + γu + µ)− βσ(ωR + µ)

]
, (4.5b)

a0 = (ωR + µ)(γu + µ)(γv + µ)
[
ωV γ1 + (ωV + γ1 + µ)(π̄ + µ)

]
(1−Rvac).

(4.5c)

In epidemic models with imperfect vaccines, there are two types of tran-

scritical bifurcation at Rvac = 1, namely forward and backward bifurcation

[14]. From the epidemiological perspective, it is not enough to only reduce

the Rvac to less than unity to eliminate a disease if backward bifurcation oc-

curs. As imperfect vaccine is one of the causes for backward bifurcation [44],

we first show that backward bifurcation occurs in the SIRVS epidemic model

with two classes of vaccine-induced immunity by using the center manifold

theory [14, 30], as given in Theorem 2.1.

4.2.1 Center manifold analysis near the disease-free equi-
librium

We explore the backward bifurcation using the center manifold theory (see

Section 2.3.3) in the following four simple steps.
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Step 1: Show that one of the eigenvalues for the Jacobian matrix
of the model at DFE is zero when β = β∗.

The Jacobian matrix of model (4.1) at the DFE is given below.

J =



−π̄ − µ −βS0 −βθS0 ωR 0 ωV

0 βS0 − γu − µ βθS0 0 0 0

0 σβV20 σβθV20 − γv − µ 0 0 0

0 γu γv −ωR − µ 0 0

π̄ 0 0 0 −γ1 − µ 0

0 −σβV20 −σβθV20 0 γ1 −ωV − µ


(4.6)

The Jacobian matrix (4.6) has the following eigenvalues:

λ1 = −µ, (4.7a)

λ2 = −ωR − µ, (4.7b)

λ3,4 = −1

2
(π̄ + ωV + γ1 + 2µ)± 1

2

√
(π̄ + ωV + γ1)2 − 4 [ωV γ1 + π̄(ωV + γ1)],

(4.7c)

λ5,6 =
1

2
(βS0 + σβθV20 − γu − γv − 2µ)

± 1

2

√
(S0 + σθV20)2β2 − 2(γu − γv)(S0 − σθV20)β + (γu − γv)2.

(4.7d)

Since all the parameter values are non-negative, λ1 and λ2 are always negative

while λ3,4 have negative real part. Let β = β∗ be the disease transmission rate

that makes the effective reproduction numberRvac equal to 1. By substituting

β = β∗ =
(γu + µ)(γv + µ)

(γv + µ)S0 + σθV20(γu + µ)

=
(γu + µ)(γv + µ) [ωV γ1 + (π̄ + µ)(ωV + γ1 + µ)]

(γv + µ)(ωV + µ)(γ1 + µ) + σθγ1π̄(γu + µ)

(4.8)

into equation (4.7d), λ5,6 can be simplified as λ5 = 0 and

λ6 = −(γv + µ)2S0 + (γu + µ)2σθV20

(γv + µ)S0 + (γu + µ)σθV20

< 0,
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since the initial conditions S0 and V20 as well as the parameters γu, γv, σ, θ,

µ are all non-negative. That is, at β = β∗, the Jacobian matrix (4.6) at DFE

has a simple eigenvalue 0 and all other eigenvalues have negative real parts.

Therefore, the center manifold theory can be used to analyse the dynamics of

the model near β = β∗.

By setting β = β∗, the DFE is locally stable when β < β∗ (⇔ λ5 < 0)

and locally unstable when β > β∗ (⇔ λ5 > 0). Therefore, the critical value

β = β∗ is a bifurcation value.

Step 2: Obtain the left and right eigenvector associated with the
zero eigenvalue.

The Jacobian matrix (4.6) at DFE and β = β∗ has the left eigenvector

v = [v1, v2, v3, v4, v5, v6] , (4.9)

where v1 = v4 = v5 = v6 = 0, v2 = γv + µ and v3 = θ(γu + µ). Furthermore,

it has a right eigenvector

w = [w1, w2, w3, w4, w5, w6]T , (4.10)

where

w1 =
γ1 + µ

π̄
w5,

w2 =
(γv + µ)(ωV + µ)(γ1 + µ)

σπ̄γ1(γu + µ)
w3,

w3 = w3,

w4 =
γuw2 + γvw3

ωR + µ
,

w5 = −
(γv + µ)

[
(ωV + µ)2 (γ1 + µ) + ωV σπ̄γ1

]
− (ωV + µ)m2

σγ1µm1

w3,

w6 = −(γv + µ)(γ1 + µ) [ωV + µ+ σ(π̄ + µ)]−m2

σµm1

w3,
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with

m1 = ωV γ1 + (π̄ + µ)(ωV + γ1 + µ),

m2 =
ωR [γu(γv + µ)(ωV + µ)(γ1 + µ) + γvσπ̄γ1(γu + µ)]

(γu + µ)(ωR + µ)
.

Since the elements of eigenvector v and w must satisfy the equality v ·w = 1

[10], using equations (4.9) and (4.10), we have v2w2 + v3w3 = 1 which gives

w3 =
σπ̄γ1(γu + µ)

(γv + µ)2(ωV + µ)(γ1 + µ) + σθπ̄γ1(γu + µ)2
. (4.11)

Step 3: Compute all the mixed derivatives for the bifurcation coef-
ficients a and b.

By using the transformation S = x1, I = x2, W = x3, R = x4, V1 = x5 and

V2 = x6, so that N =
∑6

j=1 xj, the model (4.1) can be rewritten as dx
dt

= f

where

dx1

dt
= f1 = Λ− λx1 − π̄x1 + ωRx4 + ωV x6 − µx1,

dx2

dt
= f2 = λx1 − γux2 − µx2,

dx3

dt
= f3 = σλx6 − γvx3 − µx3,

dx4

dt
= f4 = γux2 + γvx3 − ωRx4 − µx4,

dx5

dt
= f5 = π̄x1 − γ1x5 − µx5,

dx6

dt
= f6 = γ1x5 − σλx6 − ωV x6 − µx6,

(4.12)

where λ = β x2+θx3∑6
j=1 xj

. The bifurcation coefficients in this six compartmental

model at DFE x0 are given by

a =
6∑

i,j,k=1

viwjwk
∂2fi

∂xj∂xk
(x0, β

∗), (4.13a)

b =
6∑

i,j=1

viwj
∂2fi
∂xj∂β

(x0, β
∗). (4.13b)
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Since v2 6= 0 and v3 6= 0 in (4.9), we only need to find the mixed derivatives

of f2 and f3 in (4.12) at the DFE. For f2, we obtain

∂2f2

∂x1∂x2

=
∂2f2

∂x2∂x1

= β,
∂2f2

∂x1∂x3

=
∂2f2

∂x3∂x1

= βθ,

∂2f2

∂x2∂β
= S0,

∂2f2

∂x3∂β
= θS0,

and all other mixed derivatives for f2 are zero. For f3, we obtain

∂2f3

∂x2∂x6

=
∂2f3

∂x6∂x2

= σβ,
∂2f3

∂x3∂x6

=
∂2f3

∂x6∂x3

= σβθ,

∂2f3

∂x2∂β
= σV20,

∂2f3

∂x3∂β
= σθV20,

and all other mixed derivatives for f3 are zero.

Step 4: Compute a and b.

By substituting the elements of eigenvectors v and w as well as the respective

mixed derivatives found in Step 3, after some algebraic manipulations, we

obtain

a = v2

6∑
j,k=1

wjwk
∂2f2

∂xj∂xk
(x0, β

∗) + v3

6∑
j,k=1

wjwk
∂2f3

∂xj∂xk
(x0, β

∗)

= 2β(w2 + θw3) [(γv + µ)w1 + σθ(γu + µ)w6]

=
2βw2

3 [(γv + µ)(ωV + µ)(γ1 + µ) + σθπ̄γ1(γu + µ)]

µ(σπ̄γ1)2(γu + µ) [ωV γ1 + (π̄ + µ)(ωV + γ1 + µ)]

×


−σθπ̄γ1(γu + µ)(γv + µ)(γ1 + µ) [ωV + µ+ σ(π̄ + µ)]

+ [(ωV + µ)(γv + µ)(γ1 + µ) + σθπ̄γ1(γu + µ)]m2

−(γv + µ)2(γ1 + µ) [(ωV + µ)2(γ1 + µ) + ωV σπ̄γ1]

 ,

(4.14a)
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b = v2

6∑
j=1

wj
∂2f2

∂xj∂β
(x0, β

∗) + v3

6∑
j=1

wj
∂2f3

∂xj∂β
(x0, β

∗)

= (w2 + θw3) [(γv + µ)S0 + σθ(γu + µ)V20]

=
w3 [(γv + µ)(ωV + µ)(γ1 + µ) + σθπ̄γ1(γu + µ)]2

σπ̄γ1(γu + µ) [ωV γ1 + (π̄ + µ)(ωV + γ1 + µ)]
> 0.

(4.14b)

According to [14], the local dynamics of the system (4.12) around the DFE

are totally determined by the signs of a and b (see Theorem 2.1). Since all the

parameter values as well as w3 as given in (4.11) are non-negative, the quan-

tity b in equation (4.14b) is always positive. On the other hand, the sign of

a depends on the sign of expressions in the curly bracket in (4.14a). If a > 0,

then there are unstable endemic equilibrium exhibiting backward bifurcation

near the DFE, while if a < 0, there are locally asymptotically stable endemic

equilibrium showing forward bifurcation near the DFE [84].

4.2.2 Analysis of the effective reproduction number

The interplay between the characteristics of imperfect vaccines in SIRVS epi-

demic model with two classes of vaccine-induced immunity and the disease

outbreak threshold with vaccination as a control measure may be explained

by carrying out some analysis of Rvac (eq. (4.3)) for the following three cases.

Case 1: A model with only one class of vaccinated individuals

The SIRVS epidemic model with two classes of vaccine-induced immunity as

given in (4.1) could be reduced to one class by assume either that the vacci-

nated individuals lost their high vaccine-induced immunity immediately (i.e.

γ1 → ∞ ⇔ 1
γ1
→ 0) or that the vaccine offers lifelong high vaccine-induced

immunity (i.e. γ1 → 0 ⇔ 1
γ1
→ ∞). The former (resp. the latter) corre-

sponding to the period of high vaccine-induced immunity is so short (resp.

long) that the V1 (resp. V2) class can be ignored.
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By firstly applying the L’Hopital’s rule to the expression Rvac in (4.3) and

then assuming θ = 1 and γv = γu, we have

lim
γ1→∞

Rvac = lim
γ1→∞
θ→1
γv→γu

β

(γu + µ)(γv + µ)

[
(γv + µ)(ωV + µ) + σθπ̄(γu + µ)

ωV + (π̄ + µ)

]

=
β

(γu + µ)

[
ωV + σπ̄ + µ

ωV + π̄ + µ

]
.

(4.15)

The limit of Rvac above corresponds to the effective reproduction number

of SIRVS with one class of vaccinated individuals with partially-protective

vaccine-induced immunity. The expression (4.15) is always less than basic re-

production number R0 = β
γu+µ

for 0 ≤ σ < 1. The smaller value of σ (i.e. the

better vaccine efficacy, 1−σ), the greater reduction to the basic reproduction

number.

On the other hand, when the period of high vaccine-induced immunity is

long, we have

lim
γ1→0
Rvac =

β

γu + µ

[
µ

π̄ + µ

]
, (4.16)

which corresponds to the product of the basic reproduction number R0 and

µ
π̄+µ

. In this case, on average, a proportion µ
π̄+µ

of the contact made by a single

unvaccinated infective individual in the population would be with susceptible

[52]. Its value will be always less than R0 if the population vaccination rate

π̄ > 0. Notice that the expression (4.16) is independent of the parameters σ,

θ, γv and ωV .
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Case 2: A model with two classes of vaccine-induced immunity.
(a) Totally failure vaccine (TFV) versus fully protective vaccine
(FPV)

When the vaccine is totally failure (i.e. σ = 1), the other two additional

vaccine characteristics, namely the reduced infectivity and faster recovery for

vaccinated infected individuals would become irrelevant. Therefore, we set

θ = 1 and γv = γu in this scenario.

RTFV
vac = lim

σ→1
Rvac

= lim
σ→1
θ→1
γv→γu

β

(γu + µ)(γv + µ)

[
(γv + µ)(ωV + µ)(γ1 + µ) + θγ1π̄(γu + µ)

ωV γ1 + (ωV + γ1 + µ)(π̄ + µ)

]

=
β

(γu + µ)

{
(ωV + µ)(γ1 + µ) + γ1π̄

[(ωV + µ)(γ1 + µ) + γ1π̄] + π̄(ωV + µ)

}
.

(4.17)

Unlike the one-class vaccinated individuals model whereby no reduction on

the reproduction number when σ = 1 (see expression in (4.15)), whenever

the population vaccination rate π̄ > 0, the expression in the curly bracket

in (4.17) will be always less than one due to appearance of π̄(ωV + µ) in its

denominator, where ωV +µ is the rate at which individuals leave the V2 class.

When the vaccine confers full protection (i.e. σ = 0) to vaccinated individ-

uals even though they only have low vaccine-induced immunity, the effective

reproduction number for the two-class immunity SVIRS model becomes

RFPV
vac = lim

σ→0
Rvac

=
β

(γu + µ)

[
(ωV + µ)(γ1 + µ)

(ωV + µ)(γ1 + µ) + π̄(ωV + µ) + γ1π̄

]
.

(4.18)

When σ → 0, almost no vaccinated individuals in the V2 class would be in-

fected. Hence, the parameters θ and γv become irrelevant in determining the

value of effective reproduction number. By comparing expressions (4.17) and

(4.18), we found that RFPV
vac < RTFV

vac < R0, provided that γ1 does not ap-

proach 0, which implies that the reduction to basic reproduction number is
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larger whenever the vaccine offers full protection from infection risks to vacci-

nated individuals in the V2 class. Both expressions (4.17) and (4.18) are more

complicated than those (4.15) and (4.16) simply because they correspond to

the coexistence of vaccinated individuals with high and low vaccine-induced

immunity in the population.

(b) Lifelong and temporary low vaccine-induced immunity

If the duration of spending in the V2 class is very long for vaccinated individ-

uals, then with other parameters fixed, we have

lim
ωV→0

Rvac =
β

(γu + µ)(γv + µ)

[
(γv + µ)µ(γ1 + µ) + σθγ1π̄(γu + µ)

(γ1 + µ)(π̄ + µ)

]
=

β

γu + µ

[
µ

π̄ + µ

]
+

σθβ

γv + µ
×
[

π̄

π̄ + µ
× γ1

γ1 + µ

]
.

(4.19)

The first part of the expressions in (4.19) is exactly the one in (4.16) which

is the case whereby the duration of high vaccine-induced immunity is suffi-

ciently long. The second part could be interpreted as the expected number

of newly infected individuals produced by a vaccinated infected individual

when the reduced susceptibility for vaccinated individual is σ, multiply with

two factors, namely the proportion of contact made would be with vaccinated

individuals in the V2 class (i.e. π̄
π̄+µ

) as well as the probability of losing high

vaccine-induced immunity in their lifetime, instead of leaving V1 class by dy-

ing (i.e. γ1
γ1+µ

) [52].

If vaccinated individuals only have temporary low vaccine-induced immu-

nity, then applying L’Hopital’ rule gives

lim
ωV→∞

Rvac =
β

γu + µ

[
γ1 + µ

π̄ + γ1 + µ

]
. (4.20)

Expression (4.20) differs from (4.16) by the appearance of parameter γ1. As

long as the population vaccination rate π̄ > 0, the vaccine would be able to
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reduce the basic reproduction number in the two-class vaccine-induced im-

munity model even though vaccinated individuals would only stay in the V2

class temporarily. Note that the parameters σ, θ and γv become irrelevant in

this case.

Case 3: The effective reproduction number for immediate vaccina-
tion

Among the parameters in the effective reproduction number (4.3), we are most

interested in the population vaccination rate, π̄. We assume that if everyone

in the population vaccinated (i.e. π̄ → ∞), the vaccination is able to reduce

Rvac below one, otherwise vaccination is useless in combating the disease [52].

It follows that we must assume

lim
π̄→∞

Rvac =
β

γv + µ

[
σθγ1

ωV + γ1 + µ

]
< 1. (4.21)

Therefore, we have

σθβγ1 < (γv + µ)(ωV + γ1 + µ). (4.22)

The inequality (4.22) gives the condition of the combination parameter values

{β, θ, σ, γ1, γv, ωV , µ} whereby the disease will be eradicated if everyone in the

population vaccinated immediately. By rearranging Rvac(π̄) < 1, we arrive at

π̄ >
(γv + µ)(ωV + µ)(γ1 + µ)

[
β

γu+µ
− 1
]

(γv + µ)(ωV + γ1 + µ)− σθβγ1

. (4.23)

As the condition given in (4.22), the denominator of the right-hand side of

inequality (4.23) is always positive. Thus, the population vaccination rate π̄

is positive if and only if β
γu+µ

− 1 > 0, i.e. R0 > 1.

In general, the SIRVS model with two-class of vaccine-induced immunity

seems to behave consistent with the one-class imperfect vaccine model in
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which the better vaccine efficacy, the greater reduction to the basic reproduc-

tion number will be. Also, the population vaccination rate is positive if and

only if R0 > 1. However, with the two classes of vaccine-induced immunity,

expressions (4.16) and (4.20) suggest that the vaccine efficacy does not appear

to be significant in determining Rvac if a vaccine is able to provide long-term

high immunity (γ1 →∞) or vaccinated individuals only have temporary low

immunity (ωV →∞).

4.3 The vaccination population games

4.3.1 Population-scale and individual-scale dynamics

Population-scale epidemic dynamics

In order to keep the population size constant, we exclude the recruitment

rate, natural and disease-induced death rate in the extended model in [30],

that is by setting Λ = µ = 0 in model (4.1). Then, we have

dS

dt
= −λS − π̄S + ωRR + ωV V2,

dI

dt
= λS − γuI,

dW

dt
= σλV2 − γvW,

dR

dt
= γuI + γvW − ωRR,

dV1

dt
= π̄S − γ1V1,

dV2

dt
= γ1V1 − σλV2 − ωV V2.

(4.24)

In model (4.24), the population-level continuous vaccination rate is given by

π̄, where the bar denotes the average rate in the population. The model

(4.24) has three additional epidemiological aspects that have not previously

been described in Model (3.31) in [79]. First, apart from the two waning

rates of vaccine- and infection-acquired immunity, denoted by ωV and ωR,

respectively, in model (4.24) the vaccinated individuals with high vaccine-
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induced protection in the V1 class move to the V2 class with low vaccine-

induced protection at the rate γ1, which uses a gamma distribution for the

vaccine-derived immunity. This implies that there is always a mixed state

of vaccinators with full and partial protection from infection in model (4.24)

provided that γ1 does not approach ∞, whereas Model (3.31) in [79] could

either have all fully- or partially-protected vaccinators, not both, depending

on the pre-defined value of parameter σ. Second, the model (4.24) has two

recovery rates γu and γv where the latter does not appear in Model (3.31)

in [79]. Third, the model (4.24) has additional parameter θ which gives the

reduced transmissibility in breakthrough infection for individuals in the W

class. By incorporating the parameter θ in vaccination population games, the

scenario that only vaccinated individuals bear the cost of vaccination while

those who are not vaccinated benefit directly from the reduced transmissibil-

ity of vaccinated infected individuals can be explored. This shifts from the

individual self-interest towards selflessness in vaccination decisions. Hence,

the vaccination population game of model (4.24) provides an alternative to

study the influence of altruism in vaccination decisions, as altruism does play

an important role in vaccination decisions [91].

Similar to model (4.1), the model (4.24) has a disease-free equilibrium

(DFE) given by E0 = (S0, I0,W0, R0, V10, V20) = (S0, 0, 0, 0, V10, V20) where

S0 =
ωV γ1

ωV γ1 + (ωV + γ1)π̄
, V10 =

ωV π̄

ωV γ1 + (ωV + γ1)π̄
, V20 =

γ1π̄

ωV γ1 + (ωV + γ1)π̄
(4.25)

and the effective reproduction number is given by

Rvac =
β

γuγv
[γvS0 + σθγuV20] =

β

γuγv

[
γvωV γ1 + σθγ1π̄γu
ωV γ1 + (ωV + γ1)π̄

]
. (4.26)

Let E∗ = (S∗, I∗, R∗,W ∗, V ∗1 , V
∗

2 ) represent any endemic equilibrium point

(EEP) of the model (4.24). The non-zero equilibria of the model satisfy the

following quadratic equation
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a2(λ∗)2 + a1λ
∗ + a0 = 0, (4.27)

where

a2 = σ(ωR + γu)γ1γv > 0, (4.28a)

a1 = σγu
[
γ1π̄(ωR + γv) + γvωR(γ1 + π̄)

]
+ γ1γv

[
ωV (ωR + γu)− βσωR

]
(4.28b)

a0 = ωRγuγv
[
γ1ωV + (ωV + γ1)π̄

]
(1−Rvac). (4.28c)

The model (4.24) has (i) a unique endemic equilibrium if a0 < 0, (ii) a unique

endemic equilibrium if a0 = 0 (⇔ Rvac = 1) or a2
1 − 4a2a0 = 0, and a1 < 0,

(iii) two endemic equilibria if a0 > 0, a1 < 0 and a2
1 − 4a2a0 > 0, and (iv) no

endemic equilibrium otherwise.

Since all the parameters value are non-negative, the coefficient a2 is al-

ways positive. The coefficient a0 is positive (resp. negative) if Rvac is less

than (resp. greater than) 1. As in [108], the above cases can be deduced

with the help of Descartes rule of signs which states that if the terms of a

polynomial with real coefficients are arranged in descending order, then the

number of positive roots of the polynomial is either equal to the number of

sign changes between the non-zero coefficients or less than the sign changes

by a multiple of 2 (as the polynomial may have complex roots which always

come in pairs).

For case (i), whenever a2 > 0 and a0 < 0, no matter a1 > 0 or a1 < 0,

there is always only one change of sign between the consecutive coefficients.

Therefore, according to the Descartes rule of signs, there exists a unique en-

demic equilibrium if a0 < 0. For case (ii), when a0 = 0, the quadratic equation

(4.27) reduces to λ∗(a2λ
∗ + a1) = 0 and hence λ∗ = 0 or λ∗ = −a1

a2
. Alter-

natively, when a2
1 − 4a2a0 = 0, solving equation (4.27) gives λ∗ = − a1

2a2
. For

both subcases, it follows that equation (4.27) has a unique positive endemic

equilibrium if a1 < 0. For case (iii), if a0 > 0 and a1 < 0, we have exactly two
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(a) (b)

Figure 4.1: Backward bifurcation diagram for model (4.24) in the (λ∗,Rvac)
and (π̄, σ) plane.

changes of signs and according to the Descartes rule of signs, there is possible

two or no real positive root for the equation (4.27). Thus, the additional con-

dition of the discriminant a2
1 − 4a2a0 > 0 rules out the possibilities of having

a pair of complex roots and we deduce that the model (4.24) has two endemic

equilibria in this case.

The existence of two endemic equilibria in case (iii) suggests that the oc-

currence of backward bifurcation phenomenon in the SIRVS model with two

classes of vaccine-induced immunity is also a direct consequence of modelling

the imperfect vaccines [44]. Backward bifurcation phenomenon has important

public health implications because it might not be sufficient to reduce Rvac

below unity to eliminate the disease [10]. Depending on the initial sizes of the

infective, the disease would persist if Rvac is close to unity [30]. Figure 4.1

gives the simulation of model (4.24) for the combination of parameter values

(β, θ, γu, γv, γ1, ωR, ωV , π̄, σ) = (2, 0.85, 0.4, 2, 0.15, 0.5, 0.05, 0.25, 0.75) which

illustrates the phenomenon of backward bifurcation in the SIRVS model with

two classes of vaccine-induced immunity.
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By setting the discriminant of equation (4.27) to zero (i.e. 4 = a2
1 −

4a2a0 = 0) and solving for the critical value of Rvac, denoted by Rc
vac, we

have the sub-threshold

Rc
vac = 1− a2

1

4a2Θ

where Θ = ωRγuγv [ωV γ1 + (ωV + γ1)π̄]. Figure 4.1(a) clearly shows that the

backward bifurcation occurs at value Rvac = 1 and a subsequent saddle-node

(or fold) bifurcation (two endemic equilibria collide and disappear) at Rc
vac.

In the range of Rc
vac < Rvac < 1, both stable endemic and disease-free equi-

librium coexist with an unstable endemic equilibrium. For the cases where

the phenomenon of backward bifurcation occurs, the effective reproduction

number must be reduced below Rc
vac in order to ensure that the disease dies

out.

In the absence of vaccination, i.e. at π̄ = 0, Rvac reduces to basic repro-

duction number, R0 = β
γu

, and the quadratic equation (4.27) together with

(4.28) becomes

σ(ωR + γu)γ1γv(λ
∗)2 + {γ1γv [σωR(γu − β) + ωV (ωR + γu)]}λ∗

+ ωRγvγ1ωV (γu − β) = 0. (4.29)

Solving the quadratic equation (4.29) gives two solutions, λ∗10 = (β−γu) ωR
ωR+γu

and λ∗20 = −ωV
σ
< 0. Since λ∗20 is biologically infeasible, we conclude that the

force of infection corresponding to no vaccination in the population is given

by

λ∗(π̄ = 0) = λ∗10 = (β − γu)
ωR

ωR + γu
. (4.30)

Note that the vaccine-associated epidemiological (i.e. θ, γv) and immune (i.e.

γ1, ωV ) parameters do not appear in (4.30).
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In the case where individuals in the population vaccinate instantly, π̄ →

∞, by rearranging equation (4.27) and finding the limit of λ∗ when π̄ → ∞

using L’Hopital’s rule, we obtain

lim
π̄→∞

λ∗ =
[σθβγ1 − γv(γ1 + ωV )]ωR
σ [γ1(γv + ωR) + γvωR]

. (4.31)

Hence, the equilibrium force of infection is

λ∗ = max

{
0,

[σθβγ1 − γv(γ1 + ωV )]ωR
σ [γ1(γv + ωR) + γvωR]

}
.

Note that this λ∗ is independent of the unvaccinated infected individuals’ re-

covery rate γu and the transmission rate becomes θβ in instant vaccination.

Also, the expression (4.31) is non-negative if and only if the reverse of the

inequality (4.22) is being satisfied. That is, if σθβγ1 > γv(γ1 + ωV ), even

the instant vaccination of everyone in the population will not eradicate the

infectious diseases.

Individual-scale dynamics

An individual-scale model can be expressed as a Markov process with transi-

tion rates derived from the population-scale model. Specifically, the changes

in a single representative individual’s disease state when the population dy-

namics reach its steady state are described by the following continuous-time

Markov process [79]:

dp(t)

dt
= Q∗p(t) (4.32)

with p(0) = [1, 0, 0, 0, 0, 0]T . The initial condition p(0) means that ev-

ery individual in the population starts in the susceptible state. p(t) is the

probability density that an individual is susceptible, unvaccinated infected,

vaccinated infected, recovered, vaccinated with high vaccine-induced immu-

nity or vaccinated with low vaccine-induced immunity at time t, that is
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p(t) = [S(t), I(t),W (t), R(t), V1(t), V2(t)]T . The full matrix form of equation

(4.32) is given by

dS
dt

dI
dt

dW
dt

dR
dt

dV1
dt

dV2
dt


=



−λ∗ − π 0 0 ωR 0 ωV

λ∗ −γu 0 0 0 0

0 0 −γv 0 0 σλ∗

0 γu γv −ωR 0 0

π 0 0 0 −γ1 0

0 0 0 0 γ1 −σλ∗ − ωV





S

I

W

R

V1

V2


. (4.33)

Note that the individual vaccination rate, π is used in individual-scale dy-

namics. It could be the same or different from the population vaccination

rate, π̄.

4.3.2 Utility calculation

In this subsection, the expected utility function will be calculated according

to the Markov decision process theory. In population games, the utility of

any strategy depends on both the individual’s strategy and population (res-

ident) average strategy (i.e. choice, decision, behaviour, or investment). An

individual’s strategy may differ from the resident strategy. We assume that

almost all individuals in the population use the population average strategy,

and the population is so large that population epidemic dynamics are not

significantly affected by the change of a single individual’s strategy [92].

According to [79], the expected utility has the following closed form

U(a, ā) =
[
fT + 1T (F •Q∗)

]
(hI−Q∗)−1p(0), (4.34)

where a is an individual’s strategy and ā is its corresponding population av-

erage strategy, U(a, ā) indicates that the individual’s utility depends on both

the individual’s decision and the population’s average behaviour, h is the dis-
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count rate, I is identity matrix, f is the vector of utility (or payoff) gains

per unit time for individuals (or residents) of each state, F is the vector of

instantaneous utility gains associated with each transition of state.

f =



0

−cI
−cW

0

0

0


, F =



0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

−cV 0 0 0 0 0

0 0 0 0 0 0


, 1 =



1

1

1

1

1

1


. (4.35)

As individuals reside in the unvaccinated infected (resp. vaccinated in-

fected) state, they accumulate the cost of infection, cI (resp. cW ). The

instantaneous vaccination cost cV to the individual occurs in the transition

from susceptible to vaccinated state in the V1 class. The vaccination cost cV

is referred to not only the monetary cost, but also the psychological bur-

den of possibility of developing vaccine side effects (VSE). F • Q∗ is the

Hadamard product, i.e. the product of the components of F and Q∗. Thus,

by using equations (4.35), the expected change in utility per unit time for

individuals in each disease state is given by the vector fT + 1T (F • Q∗) =

[−πcV − cI − cW 0 0 0 ]. Thus, by using equation (4.34) and taking

limh→0 hU(a, ā), the utility of strategy π to an individual in a population at

equilibrium with strategy π̄ is given by

U(π, π̄) =
−ωRγ1 {λ∗ [(λ∗σ + ωV )γvcI + πσγucW ] + γuγvπ(λ∗σ + ωV )cV }

u11(λ∗)2 + u12λ∗ + u13

,

(4.36a)

where

u11 = γ1γv(γu + ωR)σ, (4.36b)

u12 = γ1γv [ωV (γu + ωR) + γuωRσ] + σπγu [ωR(γ1 + γv) + γ1γv] , (4.36c)

u13 = γuγvωR [γ1ωV + (γ1 + ωV )π] . (4.36d)

Since the epidemiological parameters are all non-negative, the utility cal-
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culated by equations (4.36) will be always less than 0 and hence termed as

disutility. For a given population vaccination rate π̄, individuals aim to min-

imize the loss of utility, i.e. maximize the disutility by choosing their own

individual vaccination rate π. For simplicity, we define the relative cost of vac-

cination to cost of infection as c = cV
cI

, where 0 ≤ c ≤ 1 and set ωR = ωV = ω,

cW = cI = 1 . The utility function U(π, π̄) in (4.36) is an expression of var-

ious costs (cI , cW and cV ), epidemiological parameters (γ1, γu, γv, ωR, ωV ),

the probability of vaccine failure (σ), individual vaccination rate (π), and the

population force of infection at steady state (λ∗), with the population-level

vaccination rate π̄ implicitly embedded in λ∗ through equations (4.27) and

(4.28). Since equation (4.27) is not linear as well as the mathematical rela-

tion between π̄ and λ∗ is not always one-to-one, it is not possible to replace

the terms λ∗ in utility function (4.36) explicitly by the population-level vac-

cination rate π̄ so as to investigate the individuals’ best response (of their

own vaccination rate π) on the population-level vaccination rate π̄. Hence,

for vaccination population games with imperfect vaccine, the individual best

response correspondence, πbest, is defined differently for specific subsets of c

in the following form:

πbest(c) =


0 if c > cno

[0,∞) if cinstant ≤ c ≤ cno

∞ if c < cinstant

, (4.37)

where cno and cinstant are the cost threshold for no vaccination and instant

vaccination, respectively. We will derive these two thresholds in the next sub-

section.

In order to find the rate of change in utility when the individual vaccination

rate π is varied, we differentiate the utility function (4.36) with respect to π,

equate the resulting derivative to zero and change the subject of formula to

c, we obtain the following critical value c.
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c =
λ∗ [σ2(λ∗)2c11 + σωλ∗c12 + ω2c13]

σ2(λ∗)3c21 + σω(λ∗)2c22 + ω2λ∗c23 + ω3c24

, (4.38)

where c11 = γv(γ1 + ω) − γ1γu, c12 = 2γv(ω + γ1) − (σ + 1)γ1γu, c13 =

γv(ω + γ1) − σγ1γu, c21 = γ1γv(γu + ω), c22 = γ1γv [γu(σ + 2) + 2ω],

c23 = γ1γv(ω+ 2σγu + γu) and c24 = γ1γuγv. Rearranging equation (4.38), we

obtain the following cubic equation in terms of λ∗:

A3(λ∗)3 + A2(λ∗)2 + A1λ
∗ + A0 = 0, (4.39)

where

A3 = σ2 [γ1γv(γu + ω)c+ γ1γu − γv(γ1 + ω)] , (4.40a)

A2 = σω {γ1γv [γu(σ + 2) + 2ω] c+ γ1γu(σ + 1)− 2γv(ω + γ1)} , (4.40b)

A1 = ω2 {γ1γv(ω + 2σγu + γu)c+ σγ1γu − γv(ω + γ1)} , (4.40c)

A0 = ω3γ1γuγvc > 0. (4.40d)

Equations (4.27) and (4.39) not only differ in the order of its polynomial

and the number of parameters involved, but also most importantly, the cubic

equation (4.39) is the result of investigating the interplay among the relative

cost of vaccination to infection c, the force of infection λ∗ and the population

vaccination rate, π̄, whereas equation (4.27) is only focusing on the relation

of the force of infection (λ∗) and the population vaccination rate (π̄).

4.3.3 Population game analysis

We assume that individuals are fully rational in making their vaccination de-

cision and have complete knowledge about the epidemiological parameters,

including the three additional parameters in the two-class vaccine-acquired

immunity model, namely the duration of staying in V1 class after vaccina-

tion, the recovery rate and the reduced transmissibility of vaccinated infected

individuals. As a direct consequence of splitting the vaccinated individuals

with full protection (V1) from those with partial protection (V2), we further
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assume that the first additional parameter (γ1) is the factor being considered

by rational individuals before they take into account the vaccine efficacy in

their decision making, as vaccine efficacy is only relevant to vaccinated indi-

viduals after they have lost their high vaccine-induced immunity and move to

the V2 class in a rate γ1. Meanwhile, the second (θ) and third (γv) additional

parameters are factors being considered after the vaccine efficacy. These two

factors play no role if the vaccine is very efficient (i.e. σ → 0, see eq. (4.18)).

These additional assumptions are not strong or not compulsory, either, but it

will be useful in explaining our numerical simulation results later.

The Nash equilibrium vaccination rate is denoted as π∗. By taking ωR =

ωV = ω, we first find the threshold of the relative cost of vaccination to

infection, c, for the zero population vaccination rate (i.e. π∗ = π̄ = 0) by

substituting equation (4.30) into equation (4.38). The resulting critical value

c is the cost threshold for no vaccination, cno. If

c > cno =
(β − γu) [(γ1 + ω)k1 − σγ1γu(β + ω)]

βγ1(γu + ω)k1

, (4.41)

where k1 = γv [(1− σ)γu + σβ + ω], then no one in the population will vac-

cinate. Similarly, by substituting equation (4.31) into equation (4.38), we

conclude that if σθβγ1 > γv(γ1 + ωV ) and

c < cinstant =
(γ1θσβ − k4γv) {θσβ(k4γv − γ1γu)− k3σγu + γvk4k5}

γ1γv {k5γ1(θσβ)2 + θσβ [k3σγu − k5k2)] + γuσωk3 − γvωk4k5}
,

(4.42)

where k2 = γv(γ1 + ω) − γ1ω, k3 = ω(γ1 + γv) + γvγ1, k4 = γ1 + ω and

k5 = γu + ω, then susceptible individuals in the population will vaccinate

instantly (i.e. π∗ = π̄ →∞). Whenever

cinstant ≤ c ≤ cno, (4.43)

the vaccination rate in the population is finite (i.e. π∗ = π̄ ∈ (0,∞)).
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Since every cubic equation with real coefficients has at least one solution

among the real numbers, we find the closed-form of the discriminant of the

cubic equation (4.39) with

4 = 18A3A2A1A0 − 4A3
2A0 + A2

2A
2
1 − 4A3A

3
1 − 27A2

3A
2
0. (4.44)

If 4 = 0, then the cubic equation (4.39) has a multiple root and all its roots

are real. This corresponds to the case where saddle-node (or fold) bifurcation

occurs in the utility function (4.36), i.e. the multiple endemic equilibria λ∗

(and its corresponding population vaccination rates π̄, if exist) collide and

merge into one. After some algebraic manipulations, we obtain the following

quadratic equation for the location of saddle-node (or fold) bifurcation in

terms of the variable c.

k2
7

([
γ1γv [(σ − 1)γu − ω]

]2
c2

+2γ1γv [(σ − 1)γu(σγ1γu + γ1ω + k6) + ω(γ1γu − k6)] c+(σγ1γu−k6)2

)
= 0,

(4.45)

where k6 = γv(γ1+ω) and k7 = γ1γuσ(σ−1)ω3. Therefore, with other parame-

ters fixed, theoretically, bifurcation should occur at the roots of the quadratic

equation (4.45), that is the number of endemic equilibrium and hence the

Nash equilibria of vaccination rate should change from three to two, and then

to only one.

However, by investigating various possibilities for the roots of cubic equa-

tion (4.39) using the Descartes rule of signs (as in [123]), we find that the

necessary condition for the cubic equation (4.39) to have three positive real

roots is that whenever Case 7 in Table 4.1 is satisfied. Let us assume that the

equation (4.39) does have three positive real roots. It follows that the follow-

ing three inequalities must be satisfied at the same time for the combination

of parameter values selected in the numerical simulations.
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Table 4.1: Number of possible positive real roots of equation (4.39)

Case A3 A2 A1 A0 Number of Number of possible
sign changes positive real roots

1 + + + + 0 0
2 + + − + 2 2, 0
3 + − + + 2 2, 0
4 − + + + 1 1
5 + − − + 2 2, 0
6 − − + + 1 1
7 − + − + 3 3, 1
8 − − − + 1 1

γ1γv(γu + ω)c+ γ1γu < γv(ω + γ1), (4.46a)

1

2
{γ1γv [γu(σ + 2) + 2ω] c+ γ1γu(1 + σ)} > γv(ω + γ1), (4.46b)

γ1γv(ω + 2σγu + γu)c+ σγ1γu < γv(ω + γ1). (4.46c)

By using the transitivity of order in real number axioms (i.e. if A < B

and B < C, then A < C), the inequalities (4.46a) and (4.46b) give

2γ1γv(γu + ω) + 2γ1γu < 2γ1γv(γu + ω)c+ γ1γvγuσc+ γ1γu(1 + σ).

After simplifying, we obtain σ(γvc+1) > 1. Similarly, the inequalities (4.46b)

and (4.46c) give σ(3γvc + 1) < 1. By applying the transitivity of order

once more to these two resulting inequalities, we arrive at the inequality

σ(3γvc + 1) < σ(γvc + 1) which results in 3 < 1. This contradicts with

the basic properties of the real number. Hence, our earlier assumption that

the cubic equation (4.39) has three positive real roots is not valid. There-

fore, we rule out the possibility to have three positive real roots in the cubic

equation (4.39). It follows that the phenomenon of pitchfork bifurcation and

hysteresis loops are not possible for the cubic equation (4.39) meanwhile the

saddle-node (or fold) bifurcation are still possible if Cases 2, 3, and 5 in Table

4.1 are satisfied.
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(a) γu = γv = 1, γ1 = 10, ω = 0.05, β = 6,
θ = 1

(b) Same as (a) except γ1 = 0.9

(c) Same as (a) except γv = 1.1 (d) Same as (a) except θ = 0.8

Figure 4.2: Parameter-space (c-σ) diagram of the bifurcation structure in the
Nash equalibria of equation (4.36).

4.4 Results and discussion

4.4.1 The cost thresholds for no, finite and instant vac-
cination for three additional characteristics of im-
perfect vaccine

In the previous section, we derived the cost threshold for no vaccination (eq.

(4.41)) and instant vaccination (eq. (4.42)), as well as the condition for the

location of fold bifurcation (eq. (4.45)) in the utility function (eq. (4.36)). In
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the aspect of epidemiological parameters, the impact of the additional three

characteristics of imperfect vaccine, namely γ1, θ and γv in our proposed

model, on the individual vaccination decision-making has not previously been

described in the model (3.31) in [79]. However, if we assume that all vacci-

nated individuals in the V1 class move to the V2 class instantly (i.e. γ1 →∞,

say γ1 = 10), and vaccinated infected individuals in the W class have the

same infectiousness (i.e. θ = 1) and recovery rate (i.e. γv = γu) as those

unvaccinated infected individuals in the I class, our proposed model (and

its corresponds cost thresholds and condition for the location of fold bifur-

cation) reduces to the model (3.31) in [79]. We recover the same pattern of

parameter-space (c-σ) diagram of the bifurcation structure in the Nash equi-

libria, as depicted in Figure 4.2(a).

We then carried out some sensitivity analysis of the cost thresholds in

order to have a rough idea on how each additional epidemiological parameter

of imperfect vaccine influences the Nash equilibrium vaccination strategy in

population game. If a small portion of vaccinated individuals stays in the

V1 class for some duration of time (i.e. γ1 < 1), or vaccinated infected indi-

viduals recover slightly faster than the unvaccinated infected individuals (for

instance, γv = 1.1 > γu = 1), then all three curves are shifted upward for

σ → 1 (Figures 4.2(b) and 4.2(c)). These two parameters tuning will also

cause a marginally shift to the right for the instant vaccination boundary, as

the lower bound of σ for instant vaccination boundary could be determined

through solving inequality σθβγ1 > γv(γ1 + ωV ). When vaccinated infected

individuals have a slightly reduced transmissibility (e.g. θ = 0.8), we observe

that the curve for the instant vaccination boundary is shifted to the right on a

larger scale (Figure 4.2(d)) compared to the cases of γ1 and γv. These suggest

that incorporating additional characteristics of imperfect vaccine may alter

the individual best response for vaccination strategy.

To further investigate the impact of additional characteristics of imperfect
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(a) θ = 0.85

(b) θ = 0.65

Figure 4.3: The cost thresholds for no and instant vaccination with various
values of γ1 and θ.

90



vaccine on vaccination behaviours, we plot the cost thresholds for no vac-

cination and instant vaccination for various values of γ1 = {0.15, 0.35, 2.5}

and θ = {0.85, 0.65} in Figure 4.3. For both diagrams, the parameter values

(β, γu, γv, ω) = (6, 1, 2, 0.05) are used.

As defined in equation (4.37), with the pairs of cost threshold for no and

instant vaccination, the c-σ plane in Figure 4.3 could be divided into three

regions, namely no vaccination, finite vaccination and instant vaccination. If

both the c and σ values fall into the region of no (resp. instant) vaccination,

no one (resp. everyone) in the population will opt for vaccination. However,

as the equilibrium of force of infection λ∗ at π̄ → ∞ in equation (4.31) will

be positive if and only if σθβγ1 > γv(γ1 + ω) (where ω ≡ ωV ), the region of

instant vaccination should be viewed as unfavourable from the perspective of

infectious diseases control. This is because the region of instant vaccination

is referred to as the scenario in which even though everyone in the population

vaccinated immediately, the infectious diseases would still not be eradicated.

Hence, the vaccine efficacy (1 − σ) could be a major factor, if not the only

one, causing the voluntary vaccination program not sufficient in reducing the

basic reproduction number to below unity.

The relationship between relative cost of vaccination and vaccine efficacy

for no vaccination is much more simple in which the cost threshold of no

vaccination (eq. (4.41)) is a decreasing function of σ. For a specific vaccine

efficacy, 1− σ, the longer duration the vaccinated individuals reside in the V1

class (i.e. smaller γ1), the higher the cost threshold for no vaccination (three

upper curves in Figure 4.3(a)) will be. From the community perspective, the

higher the cost threshold for no vaccination, the better it will be since indi-

viduals will not opt for vaccination if the relative cost of vaccination, c, is

higher than the cost threshold of no vaccination. From an individual point of

view, higher cost threshold for no vaccination implies that his/her utility is

lower if he/she refuses to vaccinate, and hence rational individuals are highly
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likely to vaccinate if γ1 is small. As the higher values of σ correspond to the

lower vaccine efficacy, and vice versa, when the transition rate from V1 to V2

class is low enough (for instance γ1 = 0.15) and the vaccine efficacy is high

enough (i.e. σ → 0), the Nash equilibrium vaccination rate is always finite.

The effect of γ1 on the instant vaccination boundary, albeit minimal, is not

insignificant. As observed in Figure 4.2(b), any γ1 value less than 1 will shift

the three curves upward for σ → 1. Therefore, in Figure 4.3(a) with θ = 0.85,

we found that the instant vaccination will only occur when σ > 0.4. For

intermediate values of σ, the longer duration individuals stay in the V1 class,

the lower the relative cost will be for instant vaccination to occur. However,

it is interesting to find that as σ → 1, instant vaccination occurs for higher

relative cost of vaccination when γ1 is smaller. A possible explanation for this

might be that the model (4.24) takes into account more realistic assumptions

that the vaccine would offer, on one hand full protection to individuals in V1

and on the other hand, partial protection to individuals in V2. That is, a

mixed vaccinated individuals with full and partial protection coexist in the

population in the two-class vaccinated individuals model, while the one-class

imperfect vaccine-induced immunity model in [79] assumes that vaccine of-

fers either full protection or partial protection to all vaccinated individuals,

depending on the pre-defined σ value. Thus, when the vaccine failure is al-

most certain, the model (3.31) in [79] predicts no one in the population will

go for vaccination. It is therefore likely that the coexistence of vaccinated

individuals with full and partial protection may have something to do with

the dissimilarity between our vaccination population games in Figure 4.3(a)

and the one in Figure 5(a) in [79].

The effect of the reduction of transmissibility (or infectivity), θ in break-

through infection for individuals in the W class in relation to those in the I

class on individuals vaccination strategy is illustrated in Figure 4.3(b). As θ

only appears in the cost threshold for instant vaccination (4.42) but not in
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the cost threshold for no vaccination (4.41), the three upper curves in Figure

4.3(b) are exactly those in Figure 4.3(a). When the reduction of transmissibil-

ity increases (i.e. smaller θ, for instance θ = 0.65) and vaccinated individuals

stay longer in the V1 class (i.e. smaller γ1), the unfavourable phenomenon

of coexistence of instant vaccination and prevailing diseases occurs for lower

relative cost of vaccination and narrower range of low vaccine efficacy (Figure

4.3(b)).

When vaccine may offer large reduction of infectivity to vaccinated in-

fected individuals, vaccines can be of greater benefit to the society than to

the recipient who bears the cost of vaccination. It follows that vaccination

can be regarded as a somewhat altruistic behaviour [95]. If most people are

altruistic, the spontaneous vaccination rate will not differ substantially from

the social optimum [101]. Contrary to the selfishness assumption in the game

theory, it can thus be suggested that altruism reduces the possibility of in-

stant vaccination to occur but diseases may not be eradicated in our two-class

vaccine-induced immunity epidemic model with additional reduction trans-

missibility parameter θ, despite the fact that vaccine is not fully perfect.

As Figure 4.2(c) reveals that for any γv value greater than γu, the cost

thresholds for no vaccination and for instant vaccination will be shifted up-

ward. We further examine the effect of γv on the vaccination rates in the two

classes of vaccine-induced immunity model, in Figure 4.4. The most obvious

finding to emerge from this figure is that when the γv value increases, the cost

threshold for no vaccination are shifted upward, on a greater scale, especially

for larger value of σ. When vaccine is very effective in protecting vaccinated

individuals with low vaccine-induced immunity from getting infection, it is

likely that individuals will only put slightest concern on the recovery rate

for breakthrough infection in making their vaccination decisions. However, if

vaccine is not effective in reducing vaccinated individuals’ susceptibility, then

the fact that vaccine is able to shorten the duration of infection will signifi-
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Figure 4.4: The cost thresholds for no and instant vaccination with various
values of γv.

cantly raise the cost threshold for no vaccination. That is, individuals will not

refuse to vaccinate for a higher relative cost of vaccination (i.e. lower utility)

if vaccines offer faster recovery in breakthrough infection. On the other hand,

the faster vaccineted infected individuals recovered, the unfavourable instant

vaccination occurs for lower c and larger σ.

It is interesting to note that in all cases of Figures 4.3 and 4.4, when the

probability of vaccine failure is low, i.e. σ → 0, no one takes vaccination

instantly. However, expression (4.15) implies that the better vaccine effi-

cacy, the greater reduction to basic reproduction number will be and hence

epidemic could be better controlled. Thus, with the population vaccination

games framework, we are able to demonstrate that individuals would not

refuse to vaccinate in all range of relative cost of vaccination to infection (i.e.

finite vaccination rate always exists) when σ → 0 provided that vaccinated

individuals do not lose their high vaccine-induced immunity in a short time.

These results further support the claim in [113] that although an increase in

94



vaccination effectiveness leads to vaccine uptake drops due to free-riding ef-

fects, the epidemic can be better mitigated. It could be argued that the drop

of vaccine uptake in [113] might be attributed to no instant vaccination from

self-interested individuals, meanwhile a possible explanation for better mitiga-

tion of epidemic despite of vaccine uptake drops might be that of the existence

of finite vaccination rate in all range of relative vaccination costs when σ → 0.

4.4.2 Nash equilibrium vaccination rate

We solve the cubic equation (4.39) together with (4.40) numerically for pa-

rameter values (β, θ, γ1, γu, γv, ω) = (6, 0.85, 0.15, 1, 2, 0.05) for σ = 0.15 and

plot the graph of the equilibrium force of infection λ∗ versus the relative cost

of vaccination c in Figure 4.5(a). As agreed with the findings in inequali-

ties (4.46), the graph gives at most two endemic equilibria. Furthermore,

equation (4.45) and the numerical simulation in Figure 4.5(a) both give the

location of fold bifurcation at c = 0.874. By substituting the force of infec-

tion λ∗ obtained into the quadratic equation (4.27) with (4.28), and solving

for population vaccination rate π̄, the Nash equilibrium vaccination rate (i.e.

π∗ = π̄ = π) versus the relative cost of vaccination c is depicted in Figure

4.5(b). The existence of an equilibrium in the population games is referred

to as a stable collection of individual strategies such that nobody has any

incentive to change his own individual strategy [87]. We find that there is

neither instant vaccination nor multiple Nash equilibria vaccination rates, for

this specific combination of parameter values in vaccination population game

with two-class vaccine-induced immunity. As the combination of parameter

values used in Figures 4.5(a) and 4.5(b) are the same as the parameter values

for the solid line curves in Figure 4.3(a), when σ = 0.15, the cost threshold

for no vaccination is c ≈ 0.858 (see Figure 4.3(a)). Thus, the curve of popula-

tion equilibrium vaccination rate in Figure 4.5(b) is in good agreement with

that of Figure 4.3(a). This implies that the two cost thresholds derived in

Subsection 4.3.3 may be used to study the interplay among the relative cost
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(a) σ = 0.15 (b) σ = 0.15

(c) σ = 0.8 (d) σ = 0.8

Figure 4.5: Dependence of the force of infection λ∗ and equilibrium vaccina-
tion rate π∗ on the relative cost of vaccination c, for β = 6.

of vaccination to infection, c, the force of infection λ∗ at steady state and

the population vaccination rate π̄, without having to solve the cubic equation

(4.39) and the quadratic equation (4.27).

We then plot the graph of equilibrium force of infection λ∗ (and its Nash

equilibrium vaccination rate π∗) versus the relative cost of vaccination c for

the same combination of parameter values except σ = 0.8. As can be seen on
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(a) (b)

Figure 4.6: Dependence of the force of infection λ∗ and equilibrium vacci-
nation rate π∗ = π̄ on the relative cost of vaccination c, for β = 18 and
θ = {0.85, 0.65, 0.15}.

the lower solid-line curve in Figure 4.3(a), instant vaccination occurs when

c < 0.429. The same behaviour is observed in Figure 4.5(d) whereby the

Nash equilibrium vaccination rates are greater than 1 for c < 0.429. If we

calculate the corresponding force of infection λ∗ (Figure 4.5(c)) (unlike Figure

4.5(a), we discard those λ∗ > λ∗(π∗ = 0) = 0.238 in this graph), we find that

the force of infection is not zero even though individuals vaccinate instantly

when c < 0.429. These results further support that the instant vaccination in

the vaccination population game is not favourable from perspective of the in-

fectious diseases control, simply because diseases will not be eradicated even

though π∗ is already high. Also, it seems possible that these unfavourable

instant vaccinations are due to imperfect vaccines.

We then increase the disease transmission rate from β = 6 to β = 18 to in-

vestigate the individuals vaccination decision-making in the course of a highly

contagious infectious disease, with (β, σ, γ1, γu, γv, ω) = (18, 0.15, 0.15, 1, 2, 0.05)

for θ = {0.85, 0.65, 0.15}. As the force of infection λ∗(π̄ = 0) = 0.810, we dis-

card the graph whenever the numerical simulation gives λ∗ > 0.810 in Figure
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4.6(a). Similar to Figure 4.5(a), the force of infection λ∗ at steady state in

Figure 4.6(a) shows the occurrence of the fold bifurcation at a specific value

of cfold ≈ 0.917. When the c value is greater than cfold there is no feasi-

ble endemic equilibrium but when the c value is smaller than and close to

cfold, there are two endemic equilibria. The phenomenon of fold bifurcation

complicates the individual vaccination decision-making in the cases of highly

contagious infectious disease in which the three Nash equilibria vaccination

rates π∗ = π̄ = π, corresponding to two finite vaccination rates and one no

vaccination which coexist at 0.861 ≤ c ≤ 0.874 (Figure 4.6(b)).

As θ is implicitly appear in λ∗ = β I
∗+θW ∗

N∗
, the curves in Figure 4.6(b)

clearly shows that the greater reduction of infectivity to vaccinated infected

individuals (i.e. smaller θ) would be able to reduce the possibility of the

unfavourable phenomenon of instant vaccination coexistence with prevalent

infectious diseases in the population. For instance, even though its corre-

sponding λ∗ are non-zero whenever c < 0.861 for all three θ values, finite

vaccination (i.e. π∗ < 1) is the Nash equilibrium strategy for θ = 0.15 as

compared to instant vaccination (i.e. π∗ > 1) for θ = 0.65 and 0.85.

4.5 Concluding remarks

We conclude this chapter with the following remarks.

(i) Rational individuals would not refuse to vaccinate if vaccines are able to

provide longer duration of high vaccine-induced immunity to vaccinated

individuals.

(ii) All individuals opt for vaccination instantly for an intermediate region

of vaccine efficacy when vaccines neither offer much shorter duration of

recovery nor greater reduction of transmissibility for vaccinated infected

individuals in breakthrough infection.
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(iii) Greater reduction of infectivity to vaccinated infected individuals would

be able to reduce the possibility of the unfavourable phenomenon of in-

stant vaccination coexistence with prevalent infectious diseases in the

population whenever the vaccine is not effective in reducing vaccinated

individuals’ susceptibility.

(iv) When vaccine efficacy is low and vaccine does not offer faster recovery

to vaccinated infected individuals, self-interested individuals are highly

likely to refuse vaccination. However, the cost threshold for no vaccina-

tion is not affected by the scale of reduction of transmissibility offered by

vaccines to vaccinated individuals.
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Chapter 5

Asymmetric Smoothed Best
Response in Voluntary
Vaccination Decisions

5.1 Introduction

The effectiveness of health preventive strategy against infectious diseases is

highly dependent on human self-initiated behaviour. The study of individual-

level decision-making on adopting health protective actions becomes espe-

cially relevant considering that certain control measures are not mandatory.

As vaccine-preventable diseases still pose a great threat to human popula-

tion, it is of great important to have a better understanding on the individual

voluntary vaccination decision-making. Individuals usually base their vacci-

nation choices on a complex balance of perceived costs of vaccination and

infection, which may be made through a simple cost-benefit analysis. The

perceived cost of vaccination is highly influenced by the perceived probability

of the vaccine complications, for instance, the vaccine adverse effects and the

degree of protection conferred by vaccines. Also, the perceived cost of infec-

tion is closely related to the severity of the epidemic outbreak.

In the last decade, there is a growing number of literatures on incorporat-

ing the individual vaccination decision-making based on cost-benefit analysis

into the epidemic models. In the language of game theory, the most simplest

type of the vaccination behavioural rule is that all susceptibles (i.e. players
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of the game) are assumed to have two strategies to choose, namely vacci-

nation and non-vaccination strategies. By opting for vaccination strategy,

it is assumed that individuals will go to vaccinate and the vaccine-induced

immunity becomes effective immediately, whereas adopting non-vaccination

strategy implies that individuals are subject to the risk of infection but they

will have the chance to make a new vaccination decision in the future. This

leads to an epidemic model with time-varying vaccination rate.

The classical game theory assumes that all players make their pure ratio-

nal decisions based on the complete and accurate information to maximize

their payoffs. Assuming other individuals’ strategy is given, the strategy

that produces the highest payoff for an individual is the best response for

him/her. For two-strategy games, the step-wise function such as the Heavi-

side step function may be used to describe the best response correspondence.

As for voluntary vaccination decision-making through cost-benefit consider-

ations, when the benefit is perceived to be higher (resp. lower) than the

perceived cost of vaccination, individuals will choose (resp. not choose) vac-

cination strategy. However, when the cost equals the benefit, the probability

of vaccination lies in [0, 1], which is indeed random. Hence, the best response

correspondence could be very sensitive to the epidemiology information used

in cost-benefit analysis.

The use of the best response correspondence in investigating vaccination

behavioural rule in epidemic models with well-mixed population could be

found in a type of vaccination population game framework whereby the util-

ity depends on both the individual’s vaccination decision and the population’s

average vaccination rate [79, 92]. Also, it was used in structured population

(i.e. network-based models) through agent-based simulation framework in

[18, 72].

However, in epidemiology, precise knowledge of the cost and the benefit of
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adopting a particular preventive strategy in the course of epidemic outbreak

is not explicitly available. Hence, evolutionary game theory which assumes

individuals are not fully rational is being considered in modelling voluntary

vaccination decisions. In this bounded rationality paradigm, individuals are

allowed to switch their strategy through imitating other’s strategy which gives

higher payoff (i.e. social learning). Through the use of a replicator dynamical

equation and rescaling of the cost of infection to vaccination, the step-wise

best response correspondence for cost-benefit analysis in [2, 25, 70] produces

the logistic-like of vaccine coverage dynamics. It can thus be suggested that

instead of non-smoothed best response correspondence, the smoothed ver-

sion of best response behaviour may be expressed in the form of the sigmoid

function. The mathematical functions with “S” shape including the logistic

function, hyperbolic tangent function and Gompertz function, which are all

differentiatable real functions.

Apart from using replicator equations to model the imitation process, in

bounded rationality paradigm, individuals are also allowed to make mistakes

by adopting a strategy which gives lower payoff. This smoothed best response

version of imitation dynamics in vaccination behaviour was first studied by

Fu and co-authors [35]. They used a type of logistic function known as Fermi

updating learning rule to model the strategy switching of players through

pairwise payoff comparisons. That is, an individual randomly chooses one

other individual in the population as his/her role model to play the game. In

their study, vaccine is assumed to be fully perfect and individuals use anec-

dotal evidence to estimate the cost and benefit of vaccination before making

decision in the beginning of an epidemic season. If the strength of selection

parameter in Fermi function (see parameter r in equation (5.6b)) is small, the

individual with a higher payoff may adopt the strategy of a less successful role

model. This characterization diverges from a fully rational decision in best

response dynamics models to a bounded rationality decision.
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Since then, this type of bounded rationality models has been extensively

explored in various aspects of vaccination decision making for epidemic mod-

els in structured population, and is mainly implemented through agent-based

simulation modelling framework. For instance, the vaccine with imperfect

immunity [13, 113], the provision of subsidy to vaccination [120, 121], and the

existence of committed vaccinators [58] were added to the framework in [35]

to investigate the impact of these factors on vaccination decision making and

hence the dynamics of vaccine coverage. The Fermi updating rule has been

modified by including social preference [122], conformity [45], memory [118],

average opinion from neighbours [11] or society [37] as the additional factors

in determining how the cost and benefit of vaccination are being perceived.

However, among these literatures, only few works [35, 58, 113, 120] give the

analytical frameworks apart from the agent-based simulations.

The two trends for modelling vaccination behaviour in literature, namely

the best response with Heaviside step function (mainly implemented through

mean-field epidemic model) and the smoothed best response with Fermi func-

tion (mainly implemented through agent-based simulations), suggest that the

smoothed best response could possibly be incorporated into mean-field epi-

demic models to study the similarity or the gap between full and bounded

rationality vaccination decision assumptions through theoretical analysis. To

this end, Xu and Cressman [116] studied the voluntary adult vaccination

decision-making by constructing a mean-field epidemic model coupled with

a cost-benefit analysis. The vaccination strategy adoption is governed by a

logistic function. This is indeed the mean-field version of the Fermi updating

function in the literature of vaccination behaviour.

Following the work in [116], in this chapter, we study the smoothed best

response dynamics of vaccination behaviour with another type of sigmoid

function known as Gompertz function. We formulate this Gompertz-type

smoothed best response for individuals vaccination decision based on a sim-
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ple cost-benefit analysis in the Susceptible-Infectious-Recovered-Vaccinated

(SIRV) epidemic model with partial vaccine-induced immunity in Section 5.2.

The dynamical behaviours of the system for both perfect vaccine and im-

perfect vaccine models are given in Section 5.3. Results and discussions are

presented in Section 5.4 followed by some concluding remarks in Section 5.5.

5.2 Model formulations

We begin by considering a simple Susceptible-Infectious-Recovered-Vaccinated

(SIRV) compartmental model with imperfect vaccine-induced immunity.

dS

dt
= Λ− β I

N
S − φ [G(4P )]S − µS, (5.1a)

dI

dt
= β

I

N
S + σβ

I

N
V − γI − µI, (5.1b)

dR

dt
= γI − µR, (5.1c)

dV

dt
= φ [G(4P )]S − σβ I

N
V − µV, (5.1d)

where N = S+ I +R+V , Λ is the (constant) recruitment rate of susceptible

corresponding to births and immigrations, µ is the constant natural death

rate of the population, β is the disease transmission rate, γ is the recovery

rate, σ ∈ [0, 1) is the probability of vaccine failure while 1 − σ gives the

vaccine efficacy and φ is the vaccination effort parameter [66]. G(4P ) is

the Gompertz-type smoothed best response function and φG(4P ) gives the

time-varying vaccination rate. 4P is the difference between payoff for adopt-

ing vaccination (PV ) and non-vaccination (PNV ) strategies.

We assume that every susceptible merely uses a simple cost-benefit analy-

sis in making decision whether or not to vaccinate in the course of an epidemic

outbreak. That is, susceptible individuals do not involve in any social learning

process in choosing their vaccination strategy. Since individuals are subjected

to the risk of getting infection if they are not vaccinated, the perceived payoff
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Figure 5.1: Graphs of best response correspondence, smoothed best response
with Gompertz function and logistic function.

for adopting non-vaccination strategy could be described as PNV = −β I
N

,

where we simply assume that the cost of non-vaccination is proportional to

the disease transmission rate and depends on the state of the epidemic (i.e.

the disease prevalence). When vaccination is voluntary, taking vaccination

incurs not only monetary cost (e.g. time and money spent in getting vaccina-

tion) but also psychological cost (e.g. the risk of developing vaccine adverse

effects (VAE)). We denote these costs of vaccination as cv. When vaccine is

not fully perfect, being vaccinated does not guarantee an individual free from

infection risk. Individuals who opt for vaccination strategy would have to pay

an extra cost if breakthrough infection occurred. Hence, the perceived payoff

for vaccination strategy is defined as PV = −cv − σβ I
N

. This implies that PV

is lower if the vaccine is less effective. Therefore, the payoff difference is given

by

4P = PV − PNV

= (1− σ)β
I

N
− cv. (5.2)

If PV > PNV , then individuals are highly likely to vaccinate.
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Unlike the full rationality models that use a Heaviside step function (5.3)

to construct the best response correspondence

BR(4P ) =


0 if 4P < 0

[0, 1] if 4P = 0

1 if 4P > 0,

(5.3)

a type of sigmoid function, known as Gompertz function, is implemented as

our smoothed best response function, i.e.,

G(4P ) = s e−d e
−r4P

, (5.4)

where s is the upper horizontal asymptote of the Gompertz function, d is the

displacement along typical x-axis (i.e. 4P -axis) and r gives the growth rate

of the Gompertz curve. We only consider s ∈ (0, 1], d > 0 and r > 0. Similar

to the logistic function used in [116], G(4P ) is defined as the probability of

susceptible taking the vaccination based on the cost-benefit considerations.

However, unlike the best response correspondence BR(4P ) whereby individ-

uals refuse to vaccinate once the cost is higher than the benefit, in smoothed

best response, even if the cost of vaccination is higher than the benefit of

getting vaccination, individuals will still opt for vaccination with probability

in between [0, 1
2
). This leads to the bounded rationality assumptions in evo-

lutionary game theory. On the other hand, individuals in best response will

vaccinate with probability one once the benefit is higher than the cost. As

for smoothed best response, this probability lies in (1
2
, 1].

Since we propose the use of the Gompertz function for quantifying the

probability of individual receiving vaccination, we set s = 1 so as to have

G(4P ) ∈ [0, 1]. However, we could simply assign the value of s less than

unity if we were to model the existence of a proportion of population who

refuse to take vaccination possibly for religious or psychological reasons. To
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be consistent with the Fermi function and logistic function used in litera-

ture, we further assume d = −ln(d0) so as to have d = 0.693 when we set

d0 = 0.5 (Figure 5.1(a)). By setting d0 = 0.5, it means that an individual

has 50-50 chance to adopt vaccination strategy when the payoff difference

4P = 0. Indeed, we may take other values of d0, for instance, d0 = 0.2, then

d = −ln(0.2) = 1.609 (i.e. a probability of 20% to vaccinate when 4P = 0

provided that s = 1, see Figure 5.1(b)) to reflect a scenario whereby indi-

viduals are more reluctant to vaccinate whenever they perceive that the cost

equals the benefit of vaccination. For the individuals responsiveness, r, to

the payoff difference, individuals are more sensitive to the payoff difference

when r is large. Similar to the logistic function, the Gompertz function ap-

proaches the best response correspondence (5.3) as r →∞ (see Figure 5.1(a)).

Substituting (5.2) into (5.4), we have

G(4P ) = s e−d e
−r((1−σ)β I

N
−cv)

. (5.5)

The φG (i.e. G(4P ) together with the vaccination effort parameter φ) gives

the non-constant vaccination rate for the population. At individual level, this

vaccination effort may also represent the proportion of susceptible individuals

who make their vaccination decision per unit time, as defined in [116]. By

assuming that disease prevalence is covered in media reports [66], in a way,

system (5.1) provides a simple framework to study the prevalence-based vac-

cination behavioural change.

For comparison purposes, in the following, the simple logistic function

L(4P ) used in mean-field model [116], and its counterpart Fermi function

F (4P ) used in agent-based simulation framework (e.g. [35]) are given.

L(4P ) =
erPV

erPV + erPNV
, (5.6a)

F (4P ) =
1

1 + e−r(Pj−Pi)
, (5.6b)
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where Pi and Pj are the payoffs for focal individual i and his/her role model

(say, individual j), respectively, in a pairwise payoff comparison. In both

equations (5.6), there are only one parameter value r for tuning. In contrast,

there are three tunable parameters, namely s, d and r to be chosen to reflect

the vaccination behaviour based on the Gompertz-type smoothed best re-

sponse function. This allows us to model various types of scenarios, as stated

in the aforementioned paragraph. Apart from that, the simple logistic curve

(5.6) will approach both its upper and lower horizontal asymptotes symmet-

rically, whereas the Gompertz function will approach the upper horizontal

asymptote much more gradually than the lower horizontal asymptote (Figure

5.1(a)). It can therefore be assumed that individuals require more motiva-

tion, in the form of greater payoff gain, to switch to vaccination strategy in

the Gompertz smoothed best response. Meanwhile, they will refuse to vacci-

nate even with the slightest decline of payoff when the net payoff is negative

(i.e. PNV > PV ). This asymmetric nature of Gompertz function corroborates

the ideas of asymmetric smoothed best response in [117], i.e. the risk-averse

individuals are more sensitive to the payoff difference when the net payoff is

negative.

5.3 Dynamical behaviour of the system

Since N(t) = S(t)+I(t)+R(t)+V (t), the rate of change of the population in

system (5.1) is given by dN
dt

= Λ−µN . At t→∞, we have N → Λ
µ

. Assuming

that Λ = µ, the population size is constant.

5.3.1 SIRV model with perfect vaccine

When vaccine is assumed to be perfect, σ = 0, the reduced form of the system

(5.1) is
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dS

dt
= µ− β I

N
S − φ

[
s e−d e

−r(β IN −cv)
]
S − µS, (5.7a)

dI

dt
= β

I

N
S − γI − µI, (5.7b)

dR

dt
= γI − µR, (5.7c)

dV

dt
= φ

[
s e−d e

−r(β IN −cv)
]
S − µV. (5.7d)

The disease free equilibrium (DFE) of system (5.7) is E0 = (S0, I0, R0, V0)

where I0 = R0 = 0 and

S0 =
µ

φ [s e−d er cv ] + µ
, (5.8a)

V0 =
φ
[
s e−d e

r cv
]

φ [s e−d er cv ] + µ
. (5.8b)

With the presence of voluntary vaccination as a control measure, the control

reproduction number is given by

RC = R0S0 =
β

γ + µ

(
µ

φ [s e−d er cv ] + µ

)
, (5.9)

where R0 = β
γ+µ

is the basic reproduction number, which is a measure of

disease outbreak severity in the absence of vaccination.

Theorem 5.1. The disease free equilibrium of system (5.7) is locally asymp-

totically stable if RC < 1 and unstable if RC > 1.

Proof. The Jacobian matrix of system (5.7) at DFE E0 is

J(E0) =


−φ g0 − µ − (1 + rd er cv φ g0) β S0 0 0

0 β S0 − γ − µ 0 0
0 γ −µ 0
φ g0 rd er cv φ g0 β S0 0 −µ

 , (5.10)

where g0 = s e−d e
r cv

> 0. The eigenvalues of the matrix J(E0) are given by
λ1 = λ2 = −µ, λ3 = −φ g0−µ and λ4 = βS0−γ−µ. If RC < 1, then λ4 < 0,
and all the eigenvalues of J(E0) are negative and E0 is locally asymptotically
stable.
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The endemic equilibrium E∗ = (S∗, I∗, R∗, V ∗) is obtained by first setting

the right-hand side of last three equations in (5.7) to zero. Since I∗ 6= 0, we

get S∗ = (γ+µ)N∗

β
, R∗ = γ

µ
I∗ and

V ∗ =

φ

[
s e−d e

−r(β I
∗

N∗ −cv)
]
S∗

µ
.

Use S∗+ I∗+R∗+ V ∗ = N∗, and without loss of generality, let N∗ = 1, then

the nonzero equilibrium is governed by h1(I∗) = h2(I∗) where

h1(I∗) =
γ + µ

βµ
φ
[
s e−d e

−r(βI∗−cv)
]
, (5.11a)

h2(I∗) = 1− γ + µ

β
− γ + µ

µ
I∗. (5.11b)

Setting h1(I∗) = h2(I∗) leads to a transcendental-algebraic equation which

cannot be solved analytically for I∗. Following the work in [56, 85], we show

the existence of the endemic equilibrium through analytical study. Finding

the derivatives of h1(I∗) and h2(I∗) with respect to I∗, respectively, we have

h′1(I∗) =
γ + µ

µ
φ
[
r d e−r(βI

∗−cv)s e−d e
−r(βI∗−cv)

]
> 0, (5.12a)

h′2(I∗) = −γ + µ

µ
< 0. (5.12b)

Since all the parameter values are non-negative, then from (5.12), h1(I∗) is

a monotonic increasing function and h2(I∗) is a linear decreasing function.

When I∗ = 0, we have h1(0) = γ+µ
βµ
φ
[
s e−d e

r cv
]
> 0 provided that φ 6= 0.

Also, h2(0) = β−(γ+µ)
β

> 0 provided that R0 > 1. It is easy to know that

h1(0) < h2(0) if and only if RC > 1. Also, as the second order derivative of

h1(I∗) is given by

h′′1(I∗) =
φ rβg2

(
d e−r(βI

∗−cv) − 1
)

R0µ
,

where g1 = s e−d e
−r(β I∗−cv)

> 0 and g2 = g1rd β e
−r(β I∗−cv) > 0. h1(I∗) is ei-
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Figure 5.2: Illustrations of h1(I∗) (thin curves) and h2(I∗) (thick line) for
showing the existence and uniqueness of I∗.

ther concave up (whenever d > er(βI
∗−cv), see lower curve C2) or concave down

(whenever d < er(βI
∗−cv), see upper curve C1) (as sketched in Figure 5.2). In

either way, we have one and only one point of intersection between the curve

h1(I∗) and the line h2(I∗) for 0 < I∗ < 1. That is, I∗ is unique if RC > 1

(and so as the endemic equilibrium E∗ exists and is unique). And, there exists

no point of intersection if RC < 1 which implies that h1(0) > h2(0). Also,

h2(I∗) = 0 at I∗ = µ[β−(γ+µ)]
β(γ+µ)

implies that 0 < I∗ < 1 when R0 > 1.

Therefore, we conclude that system (5.7) has an unique endemic equilib-

rium E∗. We show that this endemic equilibrium is stable if RC > 1, in the

following theorem.

Theorem 5.2: The endemic equilibrium of system (5.7) is locally asymptot-

ically stable if RC > 1 and unstable if RC < 1.

Proof. The Jacobian matrix of system (5.7) at endemic equilibrium E∗ is
given by

J(E∗) =


−β I∗ − φ g1 − µ −β S∗ − φ g2 S

∗ 0 0
β I∗ β S∗ − γ − µ 0 0

0 γ −µ 0
φ g1 φ g2 S

∗ 0 −µ

 , (5.13)

At S∗ = γ+µ
β

,
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det(J(E∗)) = I∗(γ + µ) (φ g2 + β) > 0,

tr(J(E∗)) = −βI∗ − φ g1 − µ < 0.

Hence, E∗ is locally asymptotically stable.

5.3.2 SIRV model with imperfect vaccine

When 0 < σ < 1, the vaccine only provides partial immunity to vaccinated

individuals and we shall analyse system (5.1). The DFE of system (5.1) is

the same as E0 but the effective reproduction number is given by

Reff = R0(S0 + σV0) =
β

γ + µ

(
σφ
[
s e−d e

r cv
]

+ µ

φ [s e−d er cv ] + µ

)
, (5.14)

where (5.14) reduces to (5.9) whenever σ = 0.

Similar to Theorem 5.1, it is easy to show system (5.1) has stable DFE if

Reff < 1.

Theorem 5.3. The disease free equilibrium of system (5.1) is locally asymp-

totically stable if Reff < 1 and unstable if Reff > 1.

Proof. The Jacobian matrix of system (5.1) at DFE E0 is given by
−φ g0 − µ −{1 + rd er cv (1− σ)φ g0} β S0 0 0

0 β(S0 + σV0)− γ − µ 0 0
0 γ −µ 0
φ g0 −σβ V0 + rd er cv (1− σ)φ g0 β S0 0 −µ

 , (5.15)

where g0 = s e−d e
r cv

> 0. The eigenvalues of the matrix (5.15) are given by
η1 = η2 = −µ, η3 = −φ g0−µ and η4 = β(S0 +σV0)− γ−µ. If Reff < 1, then
λ4 < 0 and all the eigenvalues of Jacobian matrix (5.15) are negative. Hence,
E0 is locally asymptotically stable.

In epidemic models with perfect vaccine and constant vaccination rate,

forward bifurcation takes place at reproduction number equal to unity. How-

ever, imperfect vaccine has been identified as one of the causes of backward
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bifurcation [44], that is the existence of multiple endemic equilibria when Reff

is less than and close to unity. The infectious disease is much more difficult

to be eliminated by vaccination if the phenomenon of backward bifurcation

occurs [52]. Hence, we use the center manifold theorem in [14] to determine

the type of transcritical bifurcation at Reff = 1.

For this purpose, we introduce the notations x1 ≡ S, x2 ≡ I, x3 ≡ R,

x4 ≡ V and N =
∑4

j=1 xj. Thus, system (5.1) can be written as dx
dt

= f and

f = [f1, f2, f3, f4]T with

f1 = Λ− λx1 − φ
[
s e−d e

−r[(1−σ)λ−cv ]
]
x1 − µx1, (5.16a)

f2 = λ(x1 + σx4)− γx2 − µx2, (5.16b)

f3 = γx2 − µx3, (5.16c)

f4 = φ
[
s e−d e

−r[(1−σ)λ−cv ]
]
x1 − σλx4 − µx4, (5.16d)

where λ = β µx2
Λ

at an equilibrium point.

The DFE corresponds to x0 = (x10, x20, x30, x40) = (S0, 0, 0, V0). Taking β

as bifurcation parameter, at Reff = 1, the critical value of β is β∗ = γ+µ
S0+σV0

.

The linearization matrix of (5.16) at x0 has the same eigenvalues as those given

in Theorem 5.3. It is clear that the eigenvalue η4 in Theorem 5.3 becomes zero

when β = β∗. The left eigenvector associated with the zero eigenvalue is v =

[v1, v2, v3, v4] = [0, 1, 0, 0] and the right eigenvector is w = [w1, w2, w3, w4]T

where

w1 = −µ(γ + µ) [1 + (1− σ)rdφ er cvg0]

q
,

w2 = 1,

w3 =
γ

µ
,

w4 = −(γ + µ)φg0 [σφg0 + µ(σ + 1)− µ2(1− σ)rdercv ]

µ q
,

(5.17)
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in which q = (σφ g0 + µ)(φ g0 + µ) and v ·w = 1.

Since only the second component of v is non-zero, we calculate the second

derivatives for f2 evaluated at x0 as follows:

∂2f2

∂x1∂x2

= β∗ µ
Λ
,

∂2f2

∂x2∂x4

= σβ∗ µ
Λ
,

∂2f2

∂x2∂β
= (S0 + σV0) µ

Λ
,

and all other derivatives are zero. We then determine the direction of trans-

critical bifurcation at Reff = 1 by computing the following values.

a = v2

4∑
j,k=1

wjwk
∂2f2

∂xj∂xk
(x0, β

∗)

= 2β∗ µ
Λ

(w1 + σ w4), (5.18a)

b = v2

4∑
j=1

wj
∂2f2

∂xj∂β
(x0, β

∗)

= (S0 + σV0) µ
Λ
> 0. (5.18b)

Substituting expressions in (5.17) into (5.18a), after some algebraic manipu-

lations, we have

a = −2β∗

Λq
(γ + µ)

[
µ2(1− σ)2rd er cvφ g0 + q1

]
< 0, (5.19)

where q1 = σ2φ g0(φ g0+µ)+µ(σφ g0+µ). Since a < 0 and together with b > 0,

we conclude that forward bifurcation occurs at Reff = 1. We rule out the pos-

sibility of backward bifurcation in system (5.1) with partial vaccine-induced

immunity in the scenario whereby individuals use a simple cost-benefit anal-

ysis in voluntary decision-making.
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(a) Logistic: β = 0.625, γ = 0.25, cv = 0.2
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(b) Gompertz: Same as (a)
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(c) Logistic: β = 1, γ = 0.125, cv = 4
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(d) Gompertz: Same as (c)

Figure 5.3: Time evolution of SIRV dynamics with perfect vaccine model
whereby the vaccination rate is governed by logistic and Gompertz smoothed
best response functions.

5.4 Results and discussion

5.4.1 SIRV dynamics with perfect vaccine

Unless other specified, the set of parameter values (β, γ,Λ, µ, cv, φ, s, d, r) =

(0.625, 0.25, 0.05, 0.05, 0.2, 0.2, 1,−ln(0.5), 1) is used for all simulations in this

chapter, together with initial conditions S(0) = 0.95, I(0) = 0.05. We first

simulate the SIRV dynamics with perfect vaccine (σ = 0) with two types

of smoothed best response functions, namely logistic and Gompertz func-

tions, by using r = 0.5 in Figure 5.3. As for the logistic smoothed best

response dynamics, we simply replace G(4P ) in system (5.7) with L(4P ) in
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(5.6a) and its corresponding control reproduction number is calculated using

RC = R0
µ

φ(1+er cv )−1+µ
. We find that both logistic and Gompertz functions

give very similar epidemic dynamics and vaccination coverage throughout the

simulation time (Figure 5.3(a) and 5.3(b)) when the risk of disease spread-

ing is intermediate (R0 = 2.0833) and the low cost of vaccination (cv = 0.2)

is considered. The epidemics die out as the control reproduction numbers

(RC = 0.7184 for logistic and RC = 0.7286 for Gompertz) are less than unity.

However, when the basic reproduction number (R0 = 5.7143) and the cost

of vaccination (cv = 4) are both relatively high, it is found that the vaccination

uptake level resulting from both functions are significantly different (Figure

5.3(c) and 5.3(d)). The logistic smoothed best response still yields significant

vaccine uptake levels whereas the Gompertz function does not. It seems pos-

sible that this discrepancy is due to the asymmetry property of Gompertz

function. When the cost of vaccination is higher than the benefit of getting

vaccination (i.e. the net payoff is negative, 4P < 0), the probability of taking

vaccination drops more steeply in the Gompertz function model compared to

that using the logistic function. This distinction between the Gompertz and

logistic function models is more pronounced when individuals are not very

responsive to payoff difference, for instance when r = 0.5, as can be seen in

Figure 5.1(a). This result is in agreement with the finding in [117]. We thus

claim that whenever individuals are more sensitive to negative net payoff in

asymmetric vaccination strategy, individuals are said to be risk-averse. The

disease may be more difficult to be controlled by voluntary vaccination with

asymmetric smoothed best response when the cost of vaccination is very high.

We next examine the impact of parameters s, d, r in the Gompertz func-

tion (5.4) and the vaccination effort parameter φ on the disease equilibrium

point of the SIRV model with perfect vaccine (5.7) in Figure 5.4. The simula-

tions end at t = 100 unit time with 4t = 1. As we assume that s is less than

unity to reflect the scenarios whereby a certain proportion (i.e. (1−s)100%) of
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(a) For s ∈ (0.8, 1)
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(b) d = −ln(d0), where 0.1 ≤ d0 ≤ 0.8
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(c) 0 < r ≤ 20
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(d) 0 ≤ φ ≤ 1

Figure 5.4: The impact of parameter s, d, r and φ on the equilibrium of SIRV
perfect vaccine model with Gompertz smoothed best response function.

the individuals in population are vaccine refusers, we find that an increase of

proportion of vaccine refusers does not substantially influence the vaccine up-

take level (Figure 5.4(a)), as compared to other parameters being investigated

in Figure 5.4. A possible explanation for this might be that our modelling

framework assumes not all susceptibles taking the effort to rely on the cost-

benefit analysis in deciding whether or not to vaccinate at each time step, as

the vaccination effort parameter used here is relatively small (φ = 0.2).

The impacts of parameters d and φ on disease equilibrium structure and

vaccine uptake level, albeit not exactly in the same way, do have some sim-
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(a) 0 ≤ cv ≤ 1 and 0 ≤ σ ≤ 0.4 (b) 0.001 ≤ r ≤ 6 and 0 ≤ σ ≤ 0.4

(c) 0.1 ≤ d0 ≤ 0.8, where d = −ln(d0) and
0 ≤ σ ≤ 0.6

(d) 0 ≤ φ ≤ 1 and 0 ≤ σ ≤ 0.6

Figure 5.5: The parameter-space {cv, r, d, φ} − σ diagrams for the effective
reproduction numberReff of the SIRV imperfect vaccine model with the Gom-
pertz smoothed best response function.

ilarities. As we have d = −ln(d0), it is indeed d0, not d, that represents

the probability of individuals choosing vaccination strategy when the payoff

difference 4P = 0, and we also observe that the disease with R0 = 2.0833

is under controlled only when d0 is not too small (Figure 5.4(b)). Similar

observation is obtained in Figure 5.4(d) in which disease is being eradicated

only when the vaccination effort parameter φ is greater than 0.15. Indeed,

no one takes vaccination if φ = 0. The results in Figure 5.4(d) are consistent
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with the one obtained by using the logistic smoothed best response function

in [116]. With the combination parameter values used in Figure 5.4, it can

thus be suggested that a small increment in φ, when its value is still low, may

lead to a sharply increase in vaccine uptake level. On the other hand, the in-

creases produced by increments in d0, despite significant, however, are not as

encouraging as those produced by φ. Similar to the finding in [116] for logistic

smoothed best response function, the increases of individuals’ responsiveness

to payoff difference, r, would cause the vaccine uptake level to decrease when

the Gompertz function is used (Figure 5.4(c)).

5.4.2 SIRV dynamics with imperfect vaccine

For the SIRV model with imperfect vaccine, equation (5.2) implies that the

higher the probability of vaccine failure σ, the lower payoff benefit in choosing

vaccination strategy. We expect the vaccine uptake level would be lower and

the disease spreading would be more severe than the case of perfect vaccine.

Hence, we study how the probability of vaccine failure σ influences the dy-

namical behaviour of the system numerically by presenting the changes of the

effective reproduction number Reff for various parameter-space in Figure 5.5.

The solid curves in all panels denote the points where both parameter values

give Reff = 1. For the combination parameter values used, we find that an

increase of the cost of vaccination, cv, or the individual responsiveness to pay-

off difference, r, would cause the epidemic outbreak even worse with reduced

vaccine efficacy (Figure 5.5(a) and 5.5(b)). However, it is interesting to find

that increasing the probability of choosing vaccination strategy when4P = 0

or increasing the vaccination effort parameter φ may offset the negative effect

of increasing σ in our SIRV model with Gompertz smoothed best response in

the vaccination decision making.
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5.5 Concluding remarks

We propose the Gompertz-type asymmetric smoothed best response function

in modelling the voluntary vaccination strategy of each individual based on a

cost-benefit analysis in an epidemic model with perfect and partial vaccine-

induced immunity. For the case of perfect vaccine, we prove that the disease

free equilibrium is locally asymptotically stable when the control reproduction

number is less than unity. We show that the endemic equilibrium exists and

is unique if the control reproduction number is greater than unity through

qualitative analysis. The endemic equilibrium, if it exists, is locally asymp-

totically stable. For the case of imperfect vaccine, the forward bifurcation

occurs when the effective reproduction number is unity.

We conclude this chapter with the following remarks.

(i) The Gompertz smoothed best response gives the similar epidemic dy-

namics and vaccine uptake level as the logistic function when the risk of

disease spreading is intermediate and the cost of vaccination is low, but it

diverges from logistic function when the cost of vaccination is relatively

high. The asymmetry property of the Gompert function is a major fac-

tor that gives rise to this discrepancy. This suggests that the Gompertz

function may be suitable in modelling the nature of risk-averse individ-

uals who are usually more careful in accepting vaccination but refuse to

vaccinate when the cost is only marginally higher than its benefit.

(ii) An increase of vaccination effort and the probability of taking vaccina-

tion when the cost and benefit are perceived to be the same would be

beneficial to disease control through voluntary vaccination, whereas the

greater responsiveness of individuals to the payoff difference would reduce

the vaccine uptake level.
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(iii) When vaccine efficacy decreases, increasing the probability of choosing

vaccination strategy when the cost equals the benefit and/or increasing

the vaccination effort offset the reduction in the degree of protection pro-

vided by vaccines.
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Chapter 6

Conclusions and Future Work

6.1 Summary of the research

This thesis focuses on modelling the self-initiated health protective behavioural

change and the vaccination behaviour in the course of epidemic outbreaks.

Within the game theoretical modelling framework, we model the former be-

havioural change by using two-subpopulation replicator dynamical equations

whereas the latter through the following two ways. First, an utility function

in terms of both individual- and population-scale vaccination rate are used

to express the preference of individuals opting for vaccination, in the vacci-

nation population game framework. Second, the asymmetric smoothed best

response dynamics is described in Gompertz function for individuals’ vacci-

nation decision-making in an epidemic model with the prevalence-dependent

vaccination rate.

All the approaches share a few common features. First, individuals are

modelled as making use of the cost-benefit considerations in their behavioural

changes. That is, upon receiving the disease prevalence information, they

weigh the perceived benefits and costs of adopting certain strategy. This is

indeed the most essence part of disease-behaviour models with game theory

components where the strategy adoption is payoff-driven. Second, all the

models assume that the disease information is available to the individuals in

the population which is unavoidably unrealistic but to keep the models as

122



simple as possible. On the other hand, the ratio of the cost of behavioural

change (i.e. adopting vaccination strategy) to the cost of disease is used in

the framework of vaccination population game in Chapter Four. This implies

that the perceived cost of the behavioural change would never be greater than

the perceived cost of disease itself. Meanwhile, this normalization does not

appear in the frameworks used in Chapter Three and Five, which means that

the perceived cost of behavioural changes could be higher than its perceived

benefit.

For modelling the self-initiated health protective behavioural changes in

Chapter Three, we find that without imitations, the natural selection drives

only a small number of susceptibles to switch their strategy. With imitation

process, the strategies distribution will depend on the initial proportion of

susceptible with normal and altered strategies in both subpopulations, the

magnitude of the social group pressure and the amount of extra profit given

to susceptible adopting the preferred behaviour in respective subpopulation.

This in a way reflects the influence of the existing preference, the conformity

of the coordinated behaviour and the rewards (or punishments) in shaping

the imitation dynamics and hence the epidemic dynamics. It is interesting

to find that the social group pressure could be a “double-edged sword” in

promoting the adoption of the pre-cautionary health protective behaviour.

Although the mean-field model is used, the heterogeneity of groups is being

investigated in terms of different relative strengths and different preferences

of subpopulations. It is found that all these factors give rise to rich dynamics

of imitations and epidemics.

In Chapter Four, we look into the impact of three additional character-

istics of imperfect vaccine in a two-class vaccine-induced immunity model

on the vaccination behaviour with the vaccination population game frame-

work. Intuitively, rational individuals would opt for vaccination if vaccines

are able to provide longer duration of high immunity to vaccinated people.
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When vaccine is not effective in reducing the susceptibility of the vaccinated

individuals, the greater reduction of infectivity to vaccinated infected indi-

viduals would be beneficial in circumventing the persistence of disease even

instant vaccination is achieved. However, it is somewhat surprising that the

scale of this reduction of transmissibility does not affect the cost threshold

for no vaccination. In addition, without faster recovery in breakthrough in-

fection, the self-interested individuals are highly likely to refuse vaccination

when the vaccine efficacy is low. As the imperfect vaccine gives rise to the

phenomenon of backward bifurcation, the vaccination population game with

three additional characteristics of imperfect vaccine also results in multiple

Nash equilibria vaccination rates which complicates the disease control efforts.

The Gompertz-type of the asymmetrically smoothed best response func-

tion is proposed in modelling the individuals’ voluntary vaccination strategy

based on a simple cost-benefit consideration in epidemic model with perfect

and partial vaccine-induced immunity in Chapter Five. We find that an in-

crease of vaccination effort and the probability of taking vaccination when the

cost and benefit are perceived to be the same would be beneficial to disease

control through voluntary vaccination, whereas the greater responsiveness of

individuals to the payoff difference would reduce the vaccination rate. An-

other important finding is that the asymmetric property of the smoothed best

response produces a different vaccine uptake level from the symmetric one in

an otherwise similar pattern when the cost of vaccination is perceived to be

very high. This reflects that the risk-averse individuals have a more down-

ward inclination to vaccination than the rational people in general. Contrary

to expectations, the study in this chapter did not find any significant differ-

ence between the vaccination strategy adoptions for vaccine that offers full

and partial protection to vaccinated individuals. However, a note of caution

is due here since it is simply that the probability of vaccine failure is being

modelled as a factor in reducing the perceived benefit of getting vaccination.
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6.2 Future works

The average reduction of force of infection for behavioural changes involving

the self-initiated pre-cautionary health protective actions in Chapter Three

takes a pre-defined reduction factor multiplied with the prevalence-based

strategy frequencies of susceptibles in the population. This leads to a smoothed

game dynamics which implies that people start to have strategy interactions

(and hence possibly alter their behaviours) as long as there are some disease

incidences in the population. This smoothed and continuous modelling frame-

work, despite giving promising results on the coupled imitation and epidemic

dynamics, does not reflect the more realistic scenarios. For instance, the pre-

cautionary measures which are usually triggered once the number of infected

individuals exceeds a threshold level [115] and/or the information on the dis-

ease outbreak would only be covered in media when the number of infected

cases reaches some critical number [107]. In reality, not only control measures

imposed by public health authorities or pscyhological effects induced by media

coverage on disease outbreaks would result in non-smoothed (i.e. piecewise

continuous) transmission rate [106], game-theoretical approaches of individ-

uals’ self-initiated pre-cautionary health protective behaviours might also be

developed in a modelling framework of non-smoothed dynamical systems in

further investigations, so as to reflect the nature of people who only consider

strategy switching once the disease prevalence reaches a certain threshold.

Despite the promising results obtained in investigating the impact of im-

perfect vaccine in the framework of vaccination population game in Chapter

Four, there are still many unanswered questions about the optimal vaccina-

tion policy even when the vaccine is assumed to be perfect. The recent works

in this respect including the formulation of a policy problem as an optimal

control problem [53]. On the other domain, the relationships between the indi-

vidual investments in pre-cautionary health protective actions and the public
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health policies are investigated in [55]. These indicate that further studies,

which take into account of the policy aspects, will need to be undertaken in

modelling human behaviour in disease spreading so as to provide more mean-

ingful insights and guides, especially to public health policy makers, in the

effort of combating the infectious diseases.

As the disease prevalence-based of continuous vaccination with the asym-

metrically smoothed best response function is developed in Chapter Five with

the aims to provide a corresponding mean-field version of model to the agent-

based simulation framework with Fermi strategy updating rule, in which the

simulation framework models a repeated vaccination decision-making before

each of the epidemic season. While the framework in Chapter Five does not

take into account of seasonality, further studies, which take into account of

seasonal force [28], will need to be undertaken in order to better explain the

nature of risk-averse individuals in vaccination decision-making for influenza.
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Appendix A: Multi-population
game-dynamical replicator
equations

Following [47, 48], for two subpopulations, the set of mutual-coupled game-

dynamical replicator equations is given by

dpai (t)

dt
= pai (t)κ [Ea

i (t)− Aa(t)] . (1)

The superscripts a, b ∈ {1, 2} denote different subpopulations, subscripts

i, j ∈ {1, 2} denote different behaviours (or strategies), the “expected suc-

cess”, Ea
i (t) =

∑2
b=1

∑2
j=1A

ab
ij fb p

b
j(t) for the fraction of individuals belonging

to subpopulation a, fa ≥ 0, with
∑

a fa = 1, and the proportion of individuals

belonging to subpopulation a characterized by strategy i at time t, pai (t) ≥ 0,

with
∑

i p
a
i (t) = 1. Also, the average success in subpopulation a is given by

Aa(t) =
∑2

k=1 p
a
k(t)E

a
k(t).

Equation (1) differs from the one stated in [48] in which the parameter

κ is added to model the imitation dynamics under the influence of epidemic

dynamics. In this situation, the strategies or behaviours spread proportion-

ally to their success, but not inherited. In the language of evolutionary game

theory, κ is a proportionality constant denoting how willing the players are

to switch to new strategy based on the payoff difference.

Following notations in equation (1), the game-dynamical equation for

strategy i = 1 in subpopulation a = 1 is derived as follows:
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Table 1: The payoff matrices for two-subpopulation asymmetric game

The payoff matrix for individuals belonging to subpopulation 1
(i) A11

ij , within-subpopulation interactions (ii) A12
ij , between-subpopulation interactions

Interaction partner’s behaviour Interaction partner’s behaviour
Focal j = 1∗ j = 2 Focal j = 1 j = 2∗

agent’s i = 1∗ r1 s1 agent’s i = 1∗ R1 S1
behaviour i = 2 t1 p1 behaviour i = 2 T1 P1

The payoff matrix for individuals belonging to subpopulation 2
(i) A22

ij , within-subpopulation interactions (ii) A21
ij , between-subpopulation interactions

Interaction partner’s behaviour Interaction partner’s behaviour
Focal j = 1 j = 2∗ Focal j = 1∗ j = 2
agent’s i = 1 p2 t2 agent’s i = 1 P2 T2
behaviour i = 2∗ s2 r2 behaviour i = 2∗ S2 R2

∗ The preferred behaviour for susceptibles in their respective subpopulations. Ref: [47, 48]

dp1
1(t)

dt
= p1

1(t)κ
[
E1

1(t)− A1(t)
]

= p1
1(t)κ

[
E1

1(t)−
{
p1

1(t)E1
1(t) + p1

2(t)E1
2(t)
}]

= p1
1(t)κ

[
E1

1(t)−
{
p1

1(t)E1
1(t) + (1− p1

1(t))E1
2(t)
}]

= κ p1
1(t)(1− p1

1(t))
[
E1

1(t)− E1
2(t)
]
.

Let p1
1(t) = p(t) be the proportion of individuals with the (preferred)

strategy 1 in subpopulation 1 and p1
2(t) = 1 − p1

1(t) = 1 − p(t). The above

equation becomes

dp(t)

dt
= κ p(t) (1− p(t))

[
E1

1(t)− E1
2(t)
]
. (2a)

Similarly, the game-dynamical equation for strategy j = 2 in subpopulation

b = 2 is given by

dq(t)

dt
= κ q(t) (1− q(t))

[
E2

1(t)− E2
2(t)
]
. (2b)

In their multi-population game-dynamical replicator equations, Helbing

and Johannson [47, 48] derived the expected success of strategy interactions

from the 2 × 2 payoff matrices for two-subpopulation asymmetric game, as
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given in Table 1. In classical game theory, the notations in the elements of

matrices in Table 1 are associated to r (reward), s (sucker’s payoff), t (temp-

tation), and p (punishment). Notice that the payoffs for within-subpopulation

interactions are denoted by lowercase letters r, s, p, and t, whereas upper-

case letters R, S, P and T are used for payoffs for between-subpopulation

interactions. To reflect incompatible preferences of two subpopulations, the

payoff matrix of individuals belonging to subpopulation 2 is assumed to be

“inverted” or “mirrored” of the payoff matrix of individuals in subpopulation

1 [47], and vice versa. However, in the context of adopting normal or altered

strategies in the course of epidemic outbreak in Chapter Three, the issue is

always whether one will be beneficial or not from adopting certain strategy.

Hence, the r, s, p, and t (resp. R, S, P , and T ) in the formulations in Chap-

ter Three are simply variables used to denote the payoff value received by

individuals (or agents) in the pairwise strategy interactions.

By using the payoff matrices of A11
ij and A12

ij in Table 1 and substitut-

ing E1
1(t) =

∑2
b=1

∑2
j=1A

1b
1jfb p

b
j(t) and E1

2(t) =
∑2

b=1

∑2
j=1A

1b
2jfb p

b
j(t) into

equation (2a), after some algebra, we obtain the game-dynamical equation

for subpopulation 1, as follows:

dp(t)

dt
= κ p(t) (1− p(t))

[
(r1 − t1)fp(t) + (s1 − p1)f(1− p(t))

+ (R1 − T1)(1− f)(1− q(t)) + (S1 − P1)(1− f)q(t)

]
. (3a)

Similarly, the game-dynamical equation for subpopulation 2 is

dq(t)

dt
= κ q(t) (1− q(t))

[
(S2 − P2)fp(t) + (R2 − T2)f(1− p(t))

+ (s2 − p2)(1− f)(1− q(t)) + (r2 − t2)(1− f)q(t)

]
. (3b)

The system of equations (3) consists of 16 payoff-dependent model param-

eters. They could be reduced for simplicity through several ways. Following

[47, 48], let ba = sa − pa, Ba = Sa − Pa, ca = ra − ta, and Ca = Ra − Ta, the
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system (3) becomes

dp(t)

dt
= κ p(t) (1− p(t))

[
b1f + (c1 − b1) f p(t) + C1(1− f) + (B1 − C1)(1− f)q(t)

]
,

(4a)

dq(t)

dt
= κ q(t) (1− q(t))

[
b2(1− f) + (c2 − b2)(1− f)q(t) + C2f + (B2 − C2)f p(t)

]
.

(4b)

The system (4) has 8 payoff-dependent model parameters.
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Appendix B: The derivation of
the effective reproduction
number by using the next
generation matrix

We first find the effective reproduction number (4.3) for system (4.1) by using

the procedure in Section 2.3, as follows.

Step 1: Let I and W be the disease compartments, we have

F =

 β I+θW
N

S

σβ I+θW
N

V2

 , V =

 (γu + µ)I

(γv + µ)W

 .
Step 2: Find the linearization of the relevant rate equations in Step 1 at DFE,

F =

 β S0

N
βθS0

N

σβ V20
N

σβθ V20
N

 , V =

γu + µ 0

0 γv + µ

 ,
and the next generation matrix is given by

K = FV−1 =

 β
γu+µ

S0

N
βθ

γv+µ
S0

N

σβ
γu+µ

V20
N

σβθ
γv+µ

V20
N

 .
Step 3: The dominant eigenvalue of matrix K is the effective reproduction

number

Rvac =
βS0

γu + µ
+
σβθV20

γv + µ
. (5)
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The expression (5) could be interpreted as the sum of the number of sec-

ondary infection of unvaccinated susceptible individuals produced by a pri-

mary infected person in the I class and the number of secondary infections of

vaccinated susceptible individuals produced by a primary infected person in

the W class. As the primary infected person (also known as the “index case”,

or “patient zero”, in epidemiology) could be simply referred to as the first

individual in the population showing the symptoms of the infectious disease,

the existing of two primary infection cases in the above interpretation may

be misleading. Also, this interpretation rules out the possibility of disease

transmission from individuals in the I (resp. W ) class to individuals in the V2

(resp. S) class, which the number of infections is not insignificant. Therefore,

it is necessary to adopt different notations (and hence different interpreta-

tions) to deal with the reproduction number involving more than one class of

infected and/or susceptible individuals.

Following [103], we denote β ≡ βuu, βθ ≡ βuv, σβ ≡ βvu and σβθ ≡ βvv,

then the next generation matrix in Step 2 above becomes

K =

 βuu
γu+µ

S0

N
βuv
γv+µ

S0

N

βvu
γu+µ

V20
N

βvv
γv+µ

V20
N

 ≡
Ruu Ruv

Rvu Rvv

 . (6)

The dominant eigenvalue of the matrix K in (6) is given by

Rvac =
Ruu +Rvv

2
+

1

2

√
(Ruu +Rvv)2 − 4RuuRvv + 4RuvRvu. (7)

It follows that the disease eradication threshold condition Rvac < 1 is now

equivalent to the following pair of conditions.

1

2
(Ruu +Rvv) <1,

Ruu +Rvv −RuuRvv +RuvRvu <1.

Hence, following [103], we shall interpret the reproduction number Rvac as the
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number of secondary infections, both vaccinated and unvaccinated, produced

by an index case distributed in both disease compartments, with one part in

the I class and σ V20
S0

parts in the W class.
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