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Comparison of dimensional accuracies of stereolithography and 

powder binder printing   

Abstract 

This paper presents a comparative experimental investigation of the dimensional 

accuracies of two widely used rapid prototyping (RP) processes: stereolithography 

(SLA) and powder binder printing (PBP). Four replicates of a purpose-designed 

component using each RP process were fabricated, and the measurements of the internal 

and external features of all surfaces were performed using a general-purpose coordinate 

measurement machine. The results showed that in both cases, the main cause of 

dimensional variations was the volumetric change inherent in the process. The precision 

of SLA was far better than that of PBP. The dimensional accuracy of SLA was better in 

the z direction, whereas PBP produced better dimensional accuracy in the x-y plane. In 

both RP processes, the height error consisted of two components: constant error and 

cumulative error. The constant error component was equal to the datum surface error. 

SLA yielded an average datum surface error that was 68% higher than in PBP. The 

height error of SLA improved with the increase in nominal height, whereas it 

deteriorated in PBP.   

Keywords – 3D printing, stereolithography, powder binder printing, rapid prototyping, 

dimensional error 
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1. Introduction 

The emerging field of three-dimensional (3D) printing has much potential in the 

contemporary world of commercial manufacturing largely because of its inherent 

flexibility. 3D printing uses data from CAD files to create a 3D object through an 

automated layer-by-layer manufacturing process. In today’s rapidly changing consumer 

preferences and accelerating technological development, flexible manufacturing is 

desirable from the perspectives of both production and consumer sales. Since the 

development of the stereolithography (SLA) process in 1987, numerous alternate 3D 

printing processes have used different methods and materials to create 3D objects [1]. 

Other commonly used 3D printing processes are selective laser sintering (SLS), fused 

deposition modelling (FDM), powder binder printing (PBP), and electron beam additive 

manufacturing (EBAM). According to Kruth et al. [2], the poor dimensional control of 

these processes was a major limitation that prevented their further penetration into the 

manufacturing industry.  

This paper presents a comparative experimental investigation of the dimensional 

accuracies of two widely used rapid prototyping (RP) processes: SLA and PBP. Sub-

sections 1.1 and 1.2 below briefly introduce the SLA and PBP processes and review the 

available literature on their dimensional accuracy. 

1.1 Stereolithography 

Developed in the 1980s by Charles Hull of 3D Systems Inc., SLA was the first 

commercial RP machine of its kind [3]. SLA fabricates 3D objects by photo-curing a 

liquid resin using an ultraviolet (UV) laser in a layer-by-layer approach. An SLA 

machine consists of a horizontal platform supported by a vertical piston that is 
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submerged in a vat filled with photo-curable liquid. The platform begins the process at a 

position below the surface of the liquid and it is set at a depth equal to the thickness of 

one layer. A laser then scans the surface in a predetermined manner, creating solid 

material where needed in the x-y plane. This is achieved through the use of a controlled 

optical scanning system that directs the laser using a pivoting mirror. Once the first 

layer of the unfinished part is complete, the platform is lowered until the top surface of 

the part is submerged in the liquid at a depth equal to the thickness of the new layer to 

be created. Due to the nature of this process, each individual layer is selectively traced 

out by outlining the borders of the object being built. Hatching or weaving patterns are 

then projected onto the area depending on the selected hatching styles. This results in a 

‘honeycomb’ interior in which the spaces are filled with liquid resin and then 

encapsulated in a solid skin on both the upper and lower surfaces. The hatch or build 

style applied promotes the gelling and solidification of the cross-sections [4]. A blade 

helps to spread the viscous resin over the surface of the previous layer in order to create 

the next layer. The process is repeated until the part is complete, with each layer 

bonding to the previous layer. After being scanned by the UV laser, the part is about 

95% cured [5]. The post-curing process, which is often performed in a UV chamber or 

thermal oven, is required to complete the solidification process and improve the 

mechanical properties of the object.  

The major cause of errors during the SLA process is the volumetric shrinkage of resin 

during photo-polymerisation. Two types of shrinkage stemming from the photopolymer 

reaction occur during the SLA process. The first is caused by the formation of the 

polymer bond. As the pre-polymer liquid state is less dense than the solid polymer state, 

the volume of the solid polymer formed is less than the volume of pre-polymer liquid 
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from which it was formed. The second cause of shrinkage is the thermal effect, which 

results from the exothermic chemical reaction during photo-polymerisation. This 

thermal effect results in an instantaneous rise in temperature that causes the 

photopolymer to expand upon formation. Simultaneously, heat is lost to the 

surroundings, which causes the solid to shrink. The combination of these two forms of 

shrinkage is known to result in non-uniform internal stresses that lead to the warping of 

the components [6]. 

Size and shape variations in the laser beam represent another cause of errors during the 

SLA process. The input command for the laser system is to create lines of zero width, 

although the laser beam itself has a finite width. Therefore, software compensation is 

necessary to account for the laser beam’s width. Most of the embedded software in RP 

systems considers the beam diameter to be constant. However, the beam diameter 

actually varies in size and shape in the x-y plane due to the angle the beam makes with 

respect to the centreline of the vat. As the laser beam moves to the outer edges of the 

platform, the beam produces an elliptical spot on the surface of the resin with a major 

diameter larger than the nominal beam diameter [7]. Bjørke [8] and his research group 

performed a simulated SLA experiment by placing a piece of UV sensitive 

photographic paper at the same level as the resin and using the same laser delivery 

system. They reported that 50% of the dimensional error measured on the completed 

part already existed on the photographic paper prior to any volumetric change in the 

material. Moreover, the beam cures the resin at the centre of the platform in a straight 

line, whereas at the edges the beam deviates from the vertical plane, which affects the 

shape of the final part [7]. 
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Narahara et al. [9] examined the effects of the reaction-related heat on both the initial 

linear shrinkage and deformation of parts produced using SLA. They concluded that the 

variation in linear shrinkage was directly proportional to the decrease in temperature 

after the initial photo-polymerisation reaction occurred. Salmoria et al. [10] evaluated 

the impact of post-curing and laser-manufacturing parameters on the properties of the 

photosensitive resin used in SLA and found that the variation in linear dimensional 

behaviour depends on the degree of cure influenced by the laser’s power, the resin’s 

photosensitivity characteristics and other manufacturing parameters. Huang et al. [11] 

reported that curling was most prominent on the bottom of the part closest to the 

platform and least prominent on the top. Huang and Lan [12] applied dynamic FEA to 

the design of a specific component, followed by reverse compensation to achieve 

greater dimensional accuracy in the part printed using SLA. Curl distortion of the 

bottom surface was identified as a major contributor to the inaccuracy of SLA 

prototypes. Lee et al. [13] used a neural network model to predict with reasonable 

accuracy the effects of the input parameters on the dimensional accuracy of the parts 

created. They found that layer thickness, hatch spacing and hatch over-cure were the 

most influential variables. Guangshen et al. [14] investigated the effects of four build 

parameters, namely the laser beam’s scanning speed, cured line width compensation, 

hatch spacing and the coefficient of the resin’s shrinkage compensation, on the 

dimensional accuracy of high-resolution SLA-printed parts. They concluded that the 

hatching space, the coefficient of the resin’s shrinkage compensation and the interaction 

between the scanning speed and hatch spacing had the most significant effect on the 

dimensional accuracy of the parts tested. Cheng et al. [15] proposed that the selection of 

the correct orientation improved the accuracy of the parts produced using SLA. Six 
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sources of errors that were affected by the part’s orientation during the building process 

were identified: tessellation, missing feature, over-cure, distortion and shrinkage, the 

container effect and the staircase effect. Zhou et al. [16] used the Taguchi method to 

determine the relationship between the quality of the parts printed using SLA and the 

variables involved in the input process. Their results pinpointed the optimal settings for 

the variables of layer thickness, resultant over-cure, hatch space, blade gap and part 

location. Jayanthi et al. [17] applied a one-way analysis of variance (ANOVA) to 

investigate the effects of different process parameters, for example, layer thickness, 

hatch spacing, fill cure depth and hatch over-cure, on the curl distortion in parts printed 

using SLA. They concluded that the four main parameters and their interactions 

contributed around 95% of the variation in curl. 

1.2 Powder binder printing 

PBP was developed in 1993 at the Massachusetts Institute of Technology [18]. In this 

process, layers are created by the selective distribution of binder liquid through an inkjet 

printer head over a flat layer of anhydrite powder in the x-y plane. Similar to SLA, the 

layers are formed on a piston-held platform that is lowered after the completion of each 

layer. After the completion of a layer, additional powder is distributed over the powder 

bed and a roller is then used to spread it evenly. Post-process treatments are commonly 

used to improve the finished surface and strength of the part. 

Relvas et al. [19] compared the dimensional and geometric performance of four rapid 

prototyping processes: SLA, PBP, SLS, and FDM. PBP recorded the worst dimensional 

performance of all the RP processes, although the geometrical performance of PBP 

compared favourably with that of most of the other processes. Dimetriov et al. [20] 
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fabricated numerous test parts for measurement in order to determine which variables 

influenced the dimensional and geometric accuracy of the PBP process. They concluded 

that both types of accuracy were influenced by three major factors: powder material, 

build orientation and the magnitude of nominal dimension. Ollison and Berisso [21] 

conducted a series of experiments to determine the build variables that influenced the 

cylindricity of parts printed using PBP and found that only the build orientation had a 

statistically significant effect on the cylindricity of the parts. Hsu et al. [22] applied the 

Taguchi method to optimise the quality and efficiency of the build considering four 

process variables: layer thickness, the binder saturation level of the shell, and the core 

and location in the powder bed. Islam et al. [23] investigated the length, width, height 

and hole diameter of parts produced using PBP and found that the dimensions in the x-y 

plane were undersized, while those on the z-axis were about three to four times higher 

than the average error. Islam et al. [24] analysed the dimensional errors and 

repeatability of commonly used engineering parts, including a metric bolt, a gear and a 

shaft, produced using the PBP process. In most cases, the dimensional errors on the 

produced parts were within acceptable limits. However, the process was unsuitable for 

features that required very high dimensional accuracy and a good surface finish. Islam 

and Sacks [25] analysed the dimensional and geometric accuracy of various test parts. 

Their results showed the existence of a bottom surface concave curvature (inverse to the 

traditional curl). This curvature influenced the height error, which consisted of both a 

constant component and a cumulative error component. 

A review of the available literature revealed a substantial body of work focussing on the 

analysis and optimisation of the dimensional accuracy of the SLA process. The 

phenomenon of ‘curl’ and the shrinkage that occurs in SLA printed parts are well 



8 
 

documented. However, the influence of the curl produced by volumetric shrinkage on 

the dimensional accuracy of the created parts has not yet been adequately investigated. 

Furthermore, only a limited number of studies have been carried out on the dimensional 

accuracy of PBP. Recently, Islam and Sacks [25] reported that the dimensional accuracy 

of PBP was affected by the volumetric expansion of powder material during setting in 

the presence of a water-based binder. The opposing nature of the volumetric changes 

that occur in these two RP processes (i.e. contraction in SLA and expansion in PBP) 

suggests that the dimensional accuracy of printed parts will be influenced in different 

ways. The objective of this research is hence to investigate this hypothesis in greater 

detail. This paper presents a comparative experimental investigation of the dimensional 

accuracy of the two RP processes—SLA and PBP—with a focus on the volumetric 

changes and their influence on the dimensional accuracy of the produced parts. This 

quantitative analysis will provide useful information on the accuracy of these two RP 

processes, which is vital for making an informed decision regarding the selection of the 

appropriate method for the design and manufacture of products. 

2. Experimental work 

The part used for this study, which was taken from [25], is displayed in Figure 1. It 

consists of six concentric cylinders with reducing diameters that are located on top of 

one another. A central hole of uniform diameter runs through the entire part. The base 

diameter, the maximum height and the central hole diameter are 126, 60 and 30 mm, 

respectively. This particular geometry was chosen because of its isosymmetric 

characteristics. Corner junctions were avoided because they could complicate the 

distortion patterns because of uneven volume changes in the x-y plane. The part was 

designed such that numerous dimensional measurements can be taken for each replicate, 
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thus reducing the number of replicates required for testing. Six different height 

measurements, six different external diameter measurements and the diameter of the 

central hole can be determined from a single replicate.  

Four replicates of the test part were produced using a Z450 3D printer (Z Corporation, 

USA). The specifications of the Z450 3D printer are available in [26]. The printer has a 

specific resolution of 300 dpi×450 dpi, and the build size is 203 mm×254 mm×203 mm. 

The printer enables the selection of a build-layer thickness between 0.089 and 0.102 

mm. The thickness selected for this experiment was the default setting of 0.102 mm. 

The time of printing was about 3h. The material used for the fabrication of the part was 

high-performance composite powder Z150 (calcium sulphate hemihydrate, or plaster of 

Paris) with a water-based clear binder solution zb63 (2-pyrrolidone). Each part was 

printed individually to avoid location errors in the powder bed. 

A ProJet 3500 HDMax printer was used to produce four additional replicates of the test 

part. The specifications of ProJet 3500 HDMax printer are available in [27].The 

replicates were printed using the ultra-high definition (UHD) mode setting, which has a 

specific resolution of 750 dpi×750 dpi×890 dpi, a build volume of 298 mm×185 

mm×203 mm and a layer thickness of 29 microns. The time of printing was about 15h. 

The material used for the fabrication of the part was UV-curable plastic VisiJet M3X. 

The support material was made from the white melt-away wax material, VisiJet S300. 

After the completion of each print, the part was subjected to post-processing, in which it 

was transferred to a thermal oven set at a constant 75 °C until all the wax used in the 

build process was removed. Any residual wax was then removed using a paper hand 

towel. The part was then set on a clean paper hand towel on a wooden bench to cool at 

ambient temperature.  
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Each completed part was transferred to a general-purpose coordinate measuring 

machine (CMM) (Discovery model D-8, Sheffield, UK), which collected measurement 

data through the selective probing of predetermined locations. The CMM has a position 

resolution of 0.1 microns. The axial repeatability of the measurement within its full 

travel area is ±2.5 microns. A spherical probe 4 mm in diameter (Renishaw Electrical 

Ltd., UK) was used. Measurements were taken of the central hole diameter, the outer 

diameters of each cylinder, the height of the each step and the base geometry. The probe 

locations used to take these measurements are shown in Figure 2. The base of the part 

was considered as the primary datum, which was placed on the flat granite table of the 

CMM. All measurements of height in the z direction were taken from the granite table. 

The surface topography of the datum surface was obtained by placing the part upside 

down on a fixture. The aligning capability of the CMM was used to align the datum 

surface with the CMM granite table. The diameters of the central hole and the outer 

cylinders were determined using the standard built-in software package for the CMM. 

Eight points at different angular locations in the same horizontal plane were probed. The 

diameter of the central hole was checked at height intervals of 1 mm, and the external 

diameter of each cylinder was checked at three height positions. 
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Figure 1: 3D sketch of test part [25] 
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Figure 2: Probe touch locations (all measurements in millimetres) [25] 

3. Results 

3.1 Datum surface error 

Figure 3 displays the datum surface error for each replicate produced using SLA and 

PBP. In SLA, the datum surface error varied between 0.427 and 0.439 mm with an 

average value of 0.434 mm and a standard deviation of 0.005 mm. In PBP, it varied 

between 0.187 and 0.353 mm with an average value of 0.258 mm and a standard 
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deviation of 0.072 mm. It should be noted that SLA produced an average datum surface 

error that was 68% greater than PBP, whereas the standard deviation was 14.4 times 

less than PBP. 

 (a) 

 

 

 (b) 

Figure 3: Datum surface error: (a) SLA and (b) PBP 

 

The close inspection of the datum surfaces revealed that SLA produced a convex 

curvature, whereas PBP produced a concave curvature. Figure 4 presents an accentuated 

comparison of datum surface curvature produced by SLA and PBP. The surface 

topography of the datum surfaces for SLA and PBP are depicted in Figure 5. The 

average measurements of the datum surface with ± 3σ variations for SLA and PBP are 

shown in Figure 6. In SLA, the height from the lowest point increased with the increase 

in distance from the hole axis, producing the highest point at the periphery, whereas in 

PBP, the height from the lowest point decreased, producing the lowest point at the 

periphery. In both cases, the variations increased with the increase in distance from the 

hole axis, but in PBP, the variations were noticeably higher. 
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(a) 

 

(b) 

Figure 4: Accentuated comparison of datum surface curvature: (a) SLA and (b) PBP 
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(a) 

 

(b) 

Figure 5: Surface topography of datum surfaces: (a) SLA and (b) PBP 
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 (a) 

(b) 

Figure 6: Datum surface measurement results: (a) SLA and (b) PBP 

3.2 Z-axis error 
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between 0.765 and 1.150 mm, with an average value of 0.954 mm and a standard 

deviation of 0.157 mm. It should be noted that PBP produced an average height error 

that was 190 times larger than that in SLA, and the standard deviation in PBP was 22 

times higher than in SLA. 

 (a) 

 

 

 (b) 

Figure 7: Height error: (a) SLA and (b) PBP 

 

Figure 8 shows the change in average height error with the nominal heights of SLA and 

PBP and their respective trend lines. In SLA, the trend line was a quadratic function, 
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decreased with the increase in nominal height. In PBP, the relationship was linear, and 

the height error increased with the increase in nominal height. The variations were 

similar as the nominal height increased. Figure 9 shows an accentuated comparison of 

the height errors produced by SLA and PBP. 
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(a) 

 

(b) 

Figure 8: Change in height error with nominal height: (a) SLA and (b) PBP 
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(a) 

  

(b) 

Figure 9: Accentuated representation of height error: (a) SLA and (b) PBP 
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noted that SLA produced an average error in hole diameter that was about 4.5 times 

larger than in PBP. However, the standard deviation was 2.5 times less than in PBP.  

Figure 11 shows an accentuated plot of the deviation from the nominal values of the 

central vertical hole in the test parts. The measurements of both PBP and SLA showed 

diameters smaller than the nominal values. The SLA dimensions were smaller than PBP 

dimensions.   

 (a) 

 

 

 (b) 

Figure 10: Hole diameter error: (a) SLA and (b) PBP 
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Figure 11: Accentuated hole diameter comparison 
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Figure 12: Outer diameter error: (a) SLA and (b) PBP 

 

 

 

 

 

 

 

 

 

Figure 13 shows the change in outer diameter error with the nominal diameters of SLA 

and PBP and their respective trend lines. In SLA, the diameter error was greatly 

influenced by the change in nominal diameter. The trend line was a linear function and 
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diameters produced by SLA and PBP. 
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(a) 

 

(b) 

Figure 13: Variations in outer diameter with nominal diameter: (a) SLA and (b) PBP 
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(a) 

 

(b) 

Figure 14: Accentuated outer diameter comparison: (a) SLA and (b) PBP 
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4. Analysis and discussion 

The error analysis of both RP processes found that the inherent changes in volume 

caused the variations in dimension. In SLA, volumetric contraction was found to occur 

during the photo-polymerisation process, resulting in a convex datum. A similar trend 

was reported in the literature [12]. In PBP, however, volumetric expansion was found to 

occur because of the hygroscopic expansion of the plaster of Paris (the powdered 

material used in PBP) when it set in the presence of water-based binder, which resulted 

in a concave datum. A similar trend has been observed in Islam and Sacks [25].  

Although the SLA process yielded higher dimensional accuracy and repeatability in the 

z direction than the PBP process, its average datum surface error was greater by 68%. 

The reason for the greater datum error in SLA is difficult to explain because two 

entirely different processes were employed. However, one reason may be that the layer 

thickness used in SLA (29 microns) was far smaller than that used in PBP (102 

microns), which caused greater curling after the volumetric changes in SLA. Further 

research is needed to test this hypothesis. Nevertheless, the large datum error in SLA is 

worrisome. Because all dimensions refer to it, the dimensional accuracy of any part is 

significantly influenced by the accuracy of the datum surface. 

This study established that in SLA, the height error improved with the increase in 

nominal height, whereas it deteriorates in PBP (Figures 8 and 9). The reason is that the 

height error comprises two components: constant error and cumulative error [25]. 

Because of volumetric contraction, the layer thickness produced in SLA was smaller 

than the design thickness was. Consequently, the constant error on the datum surface 

was compensated because of the increased number of layers. The layer thickness 
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produced in PBP was larger than the design thickness because pf volumetric expansion. 

Consequently, because of the increased number of layers, additional error components 

were added to the constant datum surface error. In this study, the total height (60 mm) 

produced by SLA was highly accurate and undersized by only 5 microns. However, it 

was expected that further increases in height, the total height of the part would be 

increasingly undersized.   

Consistent with Islam and Sacks [25], the findings of the present study confirm their 

assertion that both a constant error and a cumulative component of the z-direction error 

existed in the PBP parts. In addition, the constant error could be attributed to the datum 

surface error, and the cumulative error was caused by overall volumetric expansion. It is 

worth noting that the y-intercept of the height error trend line (0.2459 mm) shown in 

Figure 8b is very close to the average datum surface error (0.258 mm) shown in Figure 

3b. A different trend was observed in the SLA parts. Figure 8a shows that when the 

height error in the nominal values was plotted against the nominal values for the SLA 

parts, the resultant plot had a high correlation with a positive quadratic function in 

which the gradient was negative. The y-intercept of the height error trend line (0.5434 

mm) shown in Figure 8a was close to the average datum surface error (0.434 mm) 

shown in Figure 3a. Thus, it can be concluded that SLA parts also had a constant error 

caused by the curvature on the bottom surface. Unlike the PBP parts, however, the SLA 

data resembled a function that at all times had a negative gradient and the gradient was 

not constant but instead had a negative rate of change.  

An analysis of the x-y plane error was conducted to achieve a complete picture of the 

nature of deformation in these RP processes. In both cases, the internal diameter was 

smaller than nominal values, as shown in Figure 10. The negative deviation was greater 
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in the SLA parts than in the PBP parts. Moreover, the SLA parts showed less data 

spread and more consistent errors than the PBP showed.  

The external diameter measurements of the PBP parts showed no obvious trend. When 

the deviations from nominal outer diameters were plotted against their nominal values, 

the SLA parts presented a high correlation with a negative linear function (Figure 13a). 

This negative gradient was consistent with the volumetric shrinkage that occurred in the 

SLA process.  

The precision of a manufacturing process is often expressed by the international 

tolerance (IT) grade [28]. The smaller the grade of the IT number, the higher the 

precision of the process. The following formula [29-31], which is based on the tolerance 

standards for cylindrical fits, was used to calculate the IT grade in which process 

capability tolerance was replaced by six times the standard deviation of measured 

dimension data. 

( ) 5
16

3 10001.045.0
−

+=
IT

XXPC                                                 (1) 
 
where PC is the process capability tolerance (mm), X is the manufactured dimension 

(mm) and IT is the IT grade number.  

 

Table 1 presents the comparison of the dimensional error results for SLA and PBP. The 

calculated IT grade values showed that the SLA was far more precise than the PBP was. 

In SLA, the IT grade varied between 6.108 and 10.769, with an average value of 8.049. 

In PBP, the IT grade varied between 10.396 and 15.637, with an average value of 

13.054. In terms of dimensional accuracy, SLA was better in the z direction, whereas 

PBP produced better dimensional accuracy in the x-y plane. 
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Table 1: Comparison of dimensional errors 

  SLA     PBP     

Input parameters Unit Height  Height Hole Dia Outer Dia 

 

Outer Dia Height  Height Hole Dia Outer Dia 

 

Outer Dia 

Design size mm 10 60 30 46 126 10 60 30 46 126 
Measured mean size mm 10.367 59.995 29.859 45.768 125.394 10.373 60.954 29.969 45.952 125.955 

Dimensional error µm 367 -5 -141 -232 -606 373 954 -31 -48 -45 

6 x standard deviation µm 88 45 54 21 25 828 819 108 255 606 

IT grade  10.769 7.967 8.890 6.513 6.108 15.637 14.267 10.396 11.937 13.031 
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5. Conclusion 

This study conducted a comparative analysis of the dimensional errors in the RP 

processes using SLA and PBP. The findings of the volumetric changes in each RP 

process were consistent with previous studies. The results of this study provide new 

insights into the nature of the dimensional errors in these processes, which were caused 

by two contrasting volumetric changes. The major findings of this study are listed 

below: 

• The precision of SLA was far better than PBP.  

• The dimensional accuracy SLA was better in the z direction, whereas PBP 

produced better dimensional accuracy in the x-y plane. 

• In both RP processes, the height error was comprised of two components: 

constant error and cumulative error. The constant error component was equal to 

the datum surface error.  

• Within the considered range, the height error in SLA improved with the increase 

in nominal height, whereas it deteriorated in PBP.  
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